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Abstract. Recently the Riemann-Hilbert problem, with jumps supported on appropriate
curves in the complex plane, has been presented for matrix biorthogonal polynomials, in
particular non-Abelian Hermite matrix biorthogonal polynomials in the real line, under-
stood as those whose matrix of weights is a solution of a Sylvester type Pearson equation
with coe�cients first order matrix polynomials. We will explore this discussion, present
some achievements and consider some new examples of weights for matrix biorthogonal
polynomials.

1. Introduction

Matrix extensions of real orthogonal polynomials where first discussed back in 1949 by
Krein [47, 48] and thereafter were studied sporadically until the last decade of the XX cen-
tury, being some relevant papers [13], [42] and [57]. Then, in 1984, Aptekarev and Nik-
ishin, for a kind of discrete Sturm–Liouville operators, solved the corresponding scattering
problem in [57], and found that the polynomials that satisfy a relation of the form

xPk (x) = Ak Pk+1(x) + Bk Pk (x) + A∗k−1Pk−1(x), k = 0, 1, . . . ,

are orthogonal with respect to a positive definite measure; i.e., they derived a matrix
version of Favard’s theorem.
In a period of 20 years, from 1990 to 2010, it was found that matrix orthogonal polyno-

mials (MOP) satisfy, in some cases, properties as do the classical orthogonal polynomials.
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Let us mention, for example, that for matrix versions of Laguerre, Hermite and Jacobi poly-
nomials, i.e., the scalar-type Rodrigues’ formula [36, 35] and a second order di�erential
equation [33, 34, 14] has been discussed. It also has been proven [38] that operators of the
form D=∂2F2(t)+∂1F1(t)+∂0F0 have as eigenfunctions di�erent infinite families of MOP’s.
A new family of MOP’s satisfying second order di�erential equations whose coe�cients
do not behave asymptotically as the identity matrix was found in [14]; see also [17]. We
have studied [3, 5] matrix extensions of the generalized polynomials studied in [1, 2]. Re-
cently, in [6], the Christo�el transformation to m,atrix orthogonal polynomials in the real
line (MOPRL) have extended to obtaining a new matrix Christo�el formula, and in [7, 8]
more general transformations –of Geronimus and Uvarov type– where also considered.
It was 26 years ago, on 1992, when Fokas, Its and Kitaev, in the context of 2D quantum

gravity, discovered that certain Riemann-Hilbert problem was solved in terms of orthog-
onal polynomials in the real line (OPRL), [39]. Namely, it was found that the solution of
a 2 × 2 Riemann–Hilbert problem can be expressed in terms of orthogonal polynomials
in the real line and its Cauchy transforms. Later, Deift and Zhou combined these ideas
with a non-linear steepest descent analysis in a series of papers [28, 29, 31, 32] which was
the seed for a large activity in the field. To mention just a few relevant results let us cite
the study of strong asymptotic with applications in random matrix theory, [28, 30], the
analysis of determinantal point processes [25, 26, 49, 50], orthogonal Laurent polynomials
[53, 54] and Painlevé equations [45, 27].
In this work we obtain Sylvester systems of di�erential equations for the orthogonal

polynomials and its second kind functions, directly from a Riemann–Hilbert problem,
with jumps supported on appropriate curves in the complex plane. The di�erential prop-
erties for the weight function are fundamental. In this case we consider a Sylvester type
di�erential Pearson equation for the matrix of weights. We also study whenever the or-
thogonal polynomials and its second kind functions are solutions of a second order linear
di�erential operators with matrix eigenvalues. This is done by stating an appropriate
boundary value problem for the matrix of weights. In particular, special attention is paid
to non-Abelian Hermite biorthogonal polynomials in the real line, understood as those
whose matrix of weights is a solution of a Sylvester type Pearson equation with given first
order matrix polynomials coe�cients.

2. Riemann–Hilbert problem for Matrix Biorthogonal Polynomials

2.1. Matrix biorthogonal polynomials. Let

W =



W (1,1) · · · W (1,N )

...
. . .

...
W (N,1) · · · W (N,N )


∈ CN×N

be a N × N matrix of weights with support on a smooth oriented non self-intersecting
curve γ in the complex plane C, i.e. W ( j,k) is, for each j, k ∈ {1, . . . , N }, a complex weight
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with support on γ. We define the moment of order n associated with W as

Wn =
1
2π i

∫
γ

znW (z) d z, n ∈ N := {0, 1, 2, . . . }.

We say that W is regular if det
[
W j+k

]
j,k=0,...n , 0, n ∈ N. In this way, we define a sequence of

matrix monic polynomials,
{
PL

n (z)
}

n∈N, left orthogonal and right orthogonal,
{
PR

n (z)
}

n∈N with
respect to a regular matrix measure W , by the conditions,

1
2π i

∫
γ

PL
n (z)W (z)zk d z = δn,kC−1n ,(1)

1
2π i

∫
γ

zkW (z)PR
n (z) d z = δn,kC−1n ,(2)

for k = 0, 1, . . . , n and n ∈ N, where Cn is an nonsingular matrix.
Notice that neither the matrix of weights is requested to be Hermitian nor the curve γ

to be the real line, i.e., we are dealing, in principle with nonstandard orthogonality and,
consequently, with biorthogonal matrix polynomials instead of orthogonal matrix polyno-
mials.
The matrix of weights induce a sesquilinear form in the set of matrix polynomials
CN×N [z] given by

〈P,Q〉W :=
1
2π i

∫
γ

P(z)W (z)Q(z) d z.(3)

Moreover, we say that
{
PL

n (z)
}

n∈N and
{
PR

n (z)
}

n∈N are biorthogonal with respect to a matrix
weight functions W if〈

PL
n , P

R
m
〉

W = δn,mC−1n , n,m ∈ N.(4)

As the polynomials are chosen to be monic, we can write

PL
n (z) = IN zn + p1L,nzn−1 + p2L,nzn−2 + · · · + pn

L,n,

PR
n (z) = IN zn + p1R,nzn−1 + p2R,nzn−2 + · · · + pn

R,n,

with matrix coe�cients pk
L,n, pk

R,n ∈ C
N×N , k = 0, . . . , n and n ∈ N (imposing that p0L,n =

p0R,n = I, n ∈ N). Here I ∈ CN×N denotes the identity matrix.
We define the sequence of second kind matrix functions by

QL
n (z) :=

1
2π i

∫
γ

PL
n (z′)

z′ − z
W (z′) d z′,(5)

QR
n (z) :=

1
2π i

∫
γ

W (z′)
PR

n (z′)
z′ − z

d z′,(6)
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for n ∈ N. From the orthogonality conditions (1) and (2) we have, for all n ∈ N, the follow-
ing asymptotic expansion near infinity for the sequence of functions of the second kind

QL
n (z) = −C−1n

(
IN z−n−1 + q1L,nz−n−2 + · · ·

)
,(7)

QR
n (z) = −

(
IN z−n−1 + q1R,nz−n−2 + · · ·

)
C−1n .(8)

Assuming that the measures W ( j,k), j, k ∈ {1, . . . , N } are Hölder continuous we obtain, by
the Plemelj’s formula applied to (5) and (6), the following fundamental jump identities(

QL
n (z)

)
+ −

(
Qn(z)L

)
− = PL

n (z)W (z),(9) (
QR

n (z)
)
+ −

(
QR

n (z)
)
− = W (z)PR

n (z),(10)

z ∈ γ, where,
(

f (z)
)
± = lim

ε→0±
f (z + iε ); here ± indicates the the positive/negative region

according to the orientation of the curve γ.

2.2. Reductions: from biorthogonality to orthogonality. We consider two possible
reductions for the matrix of weights, the symmetric reduction and the Hermitian reduction.

i) A matrix of weights W (z) with support on γ is said to be symmetric if

(W (z))> = W (z), z ∈ γ.

ii) A matrix of weights W (x) with support on R is said to be Hermitian if

(W (x))† = W (x), x ∈ R.

These two reductions leads to orthogonal polynomials, as the two biorthogonal families
are identified; i.e., for the symmetric case

PR
n (z) =

(
PL

n (z)
)>, QR

n (z) =
(
QL

n (z)
)>, z ∈ C,

and for the Hermitian case, with γ = R,

PR
n (z) =

(
PL

n ( z̄)
)†, QR

n (z) =
(
QL

n ( z̄)
)†, z ∈ C.

In both cases biorthogonality collapses into orthogonality, that for the symmetric case
reads as

1
2π i

∫
γ

Pn(z)W (z)
(
Pm(z)

)> d z = δn,mC−1n , n,m ∈ N,

while for the Hermitian case can be written as follows
1
2π i

∫
R

Pn(x)W (x)
(
Pm(x)

)† d x = δn,mC−1n , n,m ∈ N,

where Pn = PL
n .
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2.3. The Riemann-Hilbert problem. Let us consider the particular case when the N×N
matrix of weights with support on a smooth oriented non self-intersecting curve γ has
entrywise power logarithmic type singularities at the end points of the support of the
measure, that is the entries W ( j,k) of the matrix measure W can be described as

W ( j,k) (z) = (z − c)α j,k logpj,k (z)W̃ ( j,k) (z)

where α j,k > −1, p j,k ∈ N and W̃ j,k (x) is Hölder continuous, bounded and non-vanishing
on γ.
The biorthogonality can be characterized in terms of a left and right Riemann-Hilbert

formulation,

Theorem 1.
i) The matrix function

YL
n (z) :=

[
PL

n (z) QL
n (z)

−Cn−1PL
n−1(z) −Cn−1QL

n−1(z)

]

is, for each n ∈ N, the unique solution of the Riemann–Hilbert problem; which consists in
the determination of a 2N × 2N complex matrix function such that:
(RHL1): YL

n (z) is holomorphic in C \ γ;
(RHL2): has the following asymptotic behaviour near in�nity,

YL
n (z) =

(
IN +

∞∑
j=1

(z− j )Y j,L
n

) [IN zn 0N
0N IN z−n

]
;

(RHL3): satis�es the jump condition(
YL

n (z)
)
+ =

(
YL

n (z)
)
−

[
IN W (z)
0N IN

]
, z ∈ γ.

(RHL4): YL
n (z) =

[
O(1) O(sL

1 (z))
O(1) O(sL

2 (z))

]
, as z → c,

where c denotes any of the end points of the curve γ if they exists,

lim
z→c

(z − c)sL
j (z) = 0N, j = 1, 2

and the O conditions are understood entrywise.
ii) The matrix function

YR
n (z) :=

[
PR

n (z) −PR
n−1(z)Cn−1

QR
n (z) −QR

n−1(z)Cn−1

]

is, for each n ∈ N, the unique solution of the Riemann–Hilbert problem; which consists in
the determination of a 2N × 2N complex matrix function such that:
(RHR1): YR

n (z) is holomorphic in C \ γ;
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(RHR2): has the following asymptotic behaviour near in�nity,

YR
n (z) =

[
IN zn 0N
0N IN z−n

] (
IN +

∞∑
j=1

(z− j )Y j,R
n

)
;

(RHR3): satis�es the jump condition(
YR

n (z)
)
+ =

[
IN 0N

W (z) IN

] (
YR

n (z)
)
−, z ∈ γ.

(RHR4): YR
n (z) =

[
O(1) O(1)

O(sR
1 (z)) O(sR

2 (z))

]
, as z → c,

where c denotes any of the end points of the curve γ if they exists,

lim
z→c

(z − c)sR
j (z) = 0N, j = 1, 2

and the O conditions are understood entrywise.
ii) The determinant of YL

n (z) and YL
n (z) are both equal to 1, for every z ∈ C.

Proof. Using the standard calculations from the scalar case it follows that the matrices YL
n

and YR
n satisfy (RHL1) − (RHL3) and (RHR1) − (RHR3) respectively.

The entries W ( j,k) of the matrix measure W can be described as

W ( j,k) (z) = (z − c)α j,k logpj,k (z)W̃ ( j,k) (z)

where α j,k > −1, p j,k ∈ N and W̃ j,k (x) is Hölder continuous, bounded and non-vanishing
on γ. At the boundary values of the curve γ if they exists and are denote by c, it holds
[41] that in a neighbourhood of the point c, the Cauchy transform of the function

1
2πi

∫
γ

p(z′)(z′ − c)α j,k logpj,k (z′)W̃ ( j,k) (z′)
z′ − z

dz′

where p(z′) denotes any polynomial in z′, behaves like O((z−c)α j,k logpj,k (z))+O(z−c)α
′
j,k ,

where −1 < α′j,k < α j,k . It follows that

lim
z→c

(z − c)(z − c)α j,k logpj,k (z) = 0

and the condition (RHL4), is fulfilled for the matrix YL
n and respectively the condition

(RHR4), is fulfilled for the matrix YR
n . Now let us consider

G(z) = YL
n (z)

[
0N IN

−IN 0N

]
YR

n (z)
[
0N −IN

IN 0N

]

It can easily be proved that G has no jump on the curve γ. In a neighbourhood of the
point c
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G(z) =


O(sL
1 (z)) +O(sR

2 (z)) O(sL
1 (z)) +O(sR

1 (z))

O(sL
2 (z)) +O(sR

2 (z)) O(sL
2 (z)) +O(sR

1 (z))


so

lim
z→c

(z − c)G(z) = 0

and at the point c the singularity is removable. Now using the behaviour for z → ∞,

G(z) =
[
IN zn 0N
0N IN z−n

] [
0N IN

−IN 0N

] [
IN zn 0N
0N IN z−n

] [
0N −IN

IN 0N

]
=

[
IN 0N

0N IN

]

and using Liouville’s Theorem it holds that G(z) = I, the identity matrix. From this follows
the unicity of the solution of each of the Riemann-Hilbert problems stated in this theorem.
Again using the standard arguments as in the scalar case we can conclude that detYL

n (z)
and detYR

n (z) are both equal to 1. �

We recover a representation for the inverse matrix
(
YL

n
)−1 given by the following result

Corollary 1. It holds that

(11)
(
YL

n
)−1(z) =

[
0N IN

−IN 0N

]
YR

n (z)
[
0N −IN

IN 0N

]

Corollary 2. In the conditions of theorem 1 we have that for all n ∈ N,

QL
n (z)PR

n−1(z) − PL
n (z)QR

n−1(z) = C−1n−1,(12)

PL
n−1(z)QR

n (z) −QL
n−1(z)PR

n (z) = C−1n−1,(13)

QL
n (z)PR

n (z) − PL
n (z)QR

n (z) = 0.(14)

Proof. As we have already proven the matrix
[
−QR

n−1(z)Cn−1 −QR
n (z)

PR
n−1(z)Cn−1 PR

n (z)

]
,

is the inverse of YL
n (z), i.e.

YL
n (z)

[
−QR

n−1(z)Cn−1 −QR
n (z)

PR
n−1(z)Cn−1 PR

n (z)

]
= I;

and multiplying the two matrices we get the result. �
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2.4. Three term recurrence relation. Following the standard arguments from the Riemann-
Hilbert formulation we can prove

YL
n+1(z) = TL

n (z)YL
n (z), n ∈ N.

where

TL
n (z) =

[
zIN − β

L
n C−1n

−Cn 0N

]
,

denotes the left transfer matrix
For the right orthogonality, we similarly obtain from (16) that

YR
n+1(z) = YR

n (z)TR
n (z), n ∈ N.

where

TR
n (z) =

[
zIN − β

R
n −Cn

C−1n 0N

]
,

Hence, we conclude that the sequence of monic polynomials
{
PL

n (z)
}

n∈N satisfies the
three term recurrence relations

zPL
n (z) = PL

n+1(z) + βL
n PL

n (z) + γL
n PL

n−1(z), n ∈ N,(15)

with recursion coe�cients

βL
n := p1L,n − p1L,n+1, γL

n := C−1n Cn−1,

with initial conditions, PL
−1 = 0N and PL

0 = IN . We can also assert that

zPR
n (z) = PR

n+1(z) + PR
n (z) βR

n + PR
n−1(z)γR

n , n ∈ N,(16)

where

βR
n := Cn β

L
nC−1n , γR

n := Cnγ
L
n C−1n = Cn−1C−1n ,

3. Matrix weights supported on a curve γ on the complex plane that
connects the point 0 to the point ∞: Laguerre weights

Motivated by di�erent attempts that appear in the literature we try to consider some
classes of weights with the aim to use the Riemann-Hilbert formulation. In this matrix case
it is not so obvious which are the conditions we should to impose in order to guarantee
the integrability of the matrix measure that we want to consider. If we consider
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3.1. Matrix weights supported on a curve γ without end points: W (z) = zAH (z).

We begin considering the weight W (z) = zAH (z) supported on a curve γ on the complex
plane that connects the point 0 to the point ∞, where
i) The function zA is defined as zA = eA log z, where γ is the branch cut of the logarithmic

function, and we define por t ∈ γ, the t A := (zA)+, where (zA)+ is the non-tangential
limit as z → t, from the left side of the oriented curve γ.

ii) A is a constant matrix such that the minimum of the real part of the eigenvalues of
the matrix A is greater than −1.

iii) The factor H (t) is the restriction to the curve γ of H (z), a matrix of entire functions,
z ∈ C such that H (z) is invertible for all z ∈ C.

iv) The left logarithmic derivative h(z) :=
(
H (z)

)−1 (H (z)
)′ is an entire function.

It is necessary in other to consider the Riemann-Hilbert problem related to the weight
function W (z) to clarify the behaviour of this weight function W (z) on a neighbourhood
of the point z = 0.

If we consider the Jordan decomposition of the matrix A, it holds that there exists an
invertible matrix P such that

A = PJP−1

where J = D+N , where D is the diagonal matrix formed whose entries are the eigenvalues
of the matrix A and N is a nilpotent matrix that commutes with the matrix D. This
commutation permits to obtain

zA = zPJP−1 = PzJ P−1 = PzDzN P−1

where zN is a polynomial in the variable log z. The matrix zD is a diagonal matrix whose
entries are of the form zα j+i β j , where α j + i β j is a eigenvalue of the matrix A. Let us
consider as an example the matrix

A =


−1
2 1 0
0 −1

2 0
0 0 1


In this case

zA =



z−
1
2 0 0

0 z−
1
2 0

0 0 z





1 log z 0
0 1 0
0 0 1


So we observe that the matrix A is not diagonalizable, appears factors in the behaviour
near 0, such as z−

1
2 log z, so it appears a power logarithmic type singularity. To assure the

integrability of this kind of measure it is enough to ask that α > −1, where is the minimum
of the real part of the eigenvalues of the matrix A. So in this case for this weight we are
in the conditions of the theorem (1).
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It is also valuable to comment about the factor H (z) of the measure W (z). In other also
to have integrability of this matrix weight function we should be careful. If for example we
consider H (z) = eBz, then it is clear that, by reasoning similarly as before, that we should
impose that the real part of the eigenvalues of the matrix B are negative. If we consider
h(z) :=

(
H (z)

)−1 (H (z)
)′ to be a matrix polynomial h(z) = B0 + B1z + . . . Bmzm, it should

be enough in order to guarantee integrability of the measure, to impose that the real part
of the eigenvalues of the matrix Bm to be negative.

3.2. Matrix weights supported on a curve γ without end points: W (z) = zαH (z)G(z)zB.

In [34] appears di�erent examples of Laguerre matrix weights for the Matrix Orthogonal
polynomials on the real line. This motivates to consider the matrix weight We begin con-
sidering the weight W (z) = zαH (z)G(z)zB supported on a curve γ on the complex plane
that connects the point 0 to the point ∞. with similar considerations as in the case treated
before. Nevertheless when we try to apply the general methods from the Riemann-Hilbert
formulation we find a lot of dificulties, derived of the non-commutativity of the matrix
product and we should impose important restrictions.
This kind of matrix weights can be treating in a more general context. If we consider

instead of a given matrix of weights we are provided with twomatrices, say hL(z) and hR(z),
of entire functions such that the following two matrix Pearson equations are satisfied

z
dWL

d z
= hL(z)WL(z),(17)

z
dWR

d z
= WR(z)hR(z);(18)

and given solutions to them we construct the corresponding matrix of weights W = WLWR.
Moreover, this matrix of weights is also characterized by a Pearson equation.

Proposition 1 (Pearson Sylvester di�erential equation). Given two matrices of entire func-
tions hL(z) and hR(z), any solution of the Sylvester type matrix di�erential equation, which we
call Pearson equation for the weight,

z
dW
d z
= hL(z)W (z) +W (z)hR(z)(19)

is of the form W = WLWR where the factor matrices WL and WR are solutions of (17) and (18),
respectively.

Proof. Given solutions WL and WR of (17) and (18), respectively, it follows intermediately,
just using the Leibniz law for derivatives, that W = WLWR fulfills (19). Moreover, given
a solution W of (19) we pick a solution WL of (17), then it is easy to see that (WL)−1W
satisfies (18). �
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