

## Susana Afonso João

Unveiling the bioactive potential of marine bacteria

Desvendando o potencial bioativo de bactérias marinhas



## Susana Afonso João Unveiling the bioactive potential of marine bacteria

# Desvendando o potencial bioativo de bactérias marinhas

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Microbiologia, realizada sob a orientação científica da Doutora Olga Maria Oliveira da Silva Lage, Professora Associada do Departamento de Biologia da Universidade do Porto e do Doutor Artur Jorge da Costa Peixoto Alves, Professor Auxiliar com Agregação do Departamento de Biologia da Universidade de Aveiro.

Science makes people reach selflessly for truth and objectivity; it teaches people to accept reality, with wonder and admiration, not to mention the deep awe and joy that the natural order of things brings to the true scientist. – Lise Meitner

| o júri     |                                                                                                                                                                      |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| presidente | Prof. Doutora Sónia Alexandra Leite Velho Mendo Barroso<br>Professora Auxiliar com Agregação do Departamento de Biologia da Universidade de Aveiro                   |
| arguente   | Doutora Cláudia Alexandra dos Reis Serra<br>Investigadora Auxiliar do CIIMAR – Centro Interdisciplinar de Investigação Marinha e ambiental,<br>Universidade do Porto |
| orientador | Prof. Doutora Olga Maria Oliveira da Silva Lage<br>Professora Associada da Faculdade de Ciências da Universidade do Porto                                            |

#### agradecimentos

Antes de mais, gostaria de agradecer à Prof. Dra. Olga Lage por me ter orientado desde a licenciatura e por me ter voltado a receber de braços abertos como sua aluna em mestrado, por toda a sua disponibilidade para me ajudar quando eu mais precisava e pelos conselhos dados.

Ao Prof. Dr. Artur Alves por estar sempre disponível, por ser uma inspiração na área da microbiologia, pela sua paixão e compromisso.

A todos os professores do mestrado em microbiologia da Universidade de Aveiro que me abriram os horizontes para as várias vertentes da microbiologia e que me inspiraram a dar o meu melhor.

A todos os meus colegas do LEMUP por me terem apoiado ao longo deste ano através de todas as adversidades. Em especial ao Zé e à Inês por me terem guiado e terem acreditado em mim mais do que eu propriamente acredito e por além de serem meus colegas de laboratório se terem tornado meus amigos.

À Filipa e ao Nelo, por me terem acompanhado desde a licenciatura e que tornam os meus dias sempre mais risonhos. Sem vocês não teria chegado ao mestrado viva. São os melhores amigos que poderia ter!

À Ana, à Diana, à Joana e ao Rafa por também terem alegrado os meus tempos de licenciatura. Depois da pandemia certamente faremos mais escapes.

À Daniela e à Rita que tornaram os tempos de pandemia menos sombrios e que ouviram (e vão continuar a ouvir) todos os meus desabafos. Obrigada por estarem sempre presentes (mesmo que não presencialmente), são uma das melhores coisas que Aveiro me trouxe!

Ao meu Piuzone por ser o meu apoio moral, por estar sempre presente e fazer mais do que se apercebe. Vou para sempre sentir-me agradecida pelos anos que passei contigo!

Por fim, como não podia deixar de ser, aos meus pais, pelo seu apoio incondicional e por me terem ouvido todos estes anos, não há palavras que cheguem para vos agradecer. Por último, gostaria de agradecer ao meu irmão David por estar sempre pronto a ajudar e por nunca dizer que não a mais um BG, obrigada por tudo.

palavras-chave

Compostos bioativos, Atividade antimicrobiana, Antibióticos, OSMAC, PKS-I, NRPS, Conjugação Triparental.

resumo

Para além de um metabolismo primário, os organismos vivos possuem um metabolismo secundário que permite a produção de metabolitos secundários que, normalmente, não são fundamentais para o crescimento e sobrevivência do organismo. Estes metabolitos permitem uma melhor adaptação ao ambiente envolvente, uma vez que atuam como mecanismos de defesa e podem ser bioativos contra vários agentes patogénicos, podendo ser utilizados como medicamentos para os eliminar eficazmente.

Inicialmente, a procura por novos compostos naturais pela comunidade científica era focada em ambientes terrestres. No entanto, mais recentemente, cada vez mais atenção é dada aos oceanos.

Uma vez que tem existido um abuso geral na utilização de antibióticos, o número de bactérias resistentes a antibióticos tem vindo a aumentar rapidamente. Por isso, é essencial investir na descoberta de novos compostos que podem ser usados como alternativas aos antibióticos tradicionais.

Este trabalho teve como principal objetivo a análise do potencial antimicrobiano de uma coleção de bactérias marinhas através de ensaios moleculares e de despiste.

Com o objetivo de aumentar a produção de metabolitos secundários, neste trabalho, uma transformação do planctomycete *Roseimaritima ulvae* UC8<sup>T</sup> foi realizada utilizando a técnica de conjugação triparental. Esta bactéria foi escolhida uma vez que *Planctomycetes* mostraram serem promissores a nível de potencial bioativo. No entanto, esta estirpe exibiu a produção de algum tipo de composto bioativo capaz de inibir o crescimento de *Escherichia coli* ATCC 25922 e que, possivelmente, afetou o crescimento da *E. coli* DH5 $\alpha$  dadora e ajudante envolvida no processo de transformação.

Em paralelo, um ensaio molecular para a amplificação de sintases de policétidos tipo I (PKS-I) e sintetases de péptidos não ribossomais foi realizado com 329 estirpes recentemente isoladas e pertencentes ao Laboratório de Ecofisiologia Microbiana da Universidade do Porto. Destas estirpes 36% deram origem a amplicões para PKS-I e 24% para NRPS. As restantes não amplificaram para nenhum destes genes. Posteriormente, uma seleção foi realizada baseada na amplificação destes genes e as estirpes promissoras foram escolhidas para serem testadas contra *E. coli* ATCC 25922 e *Staphylococcus aureus* ATCC 29213.

Para além disso, uma abordagem de uma estirpe muitos compostos (OSMAC) foi realizada com as estirpes que mostraram ser bioativas no ensaio preliminar em 5 meios de cultura diferentes (1:10 M607, M607, M600, MA e CGY).

Das bactérias selecionadas apenas 16 estirpes foram consideradas bioativas e principalmente contra *E. coli* ATCC 25922, ao contrário de *Streptomyces flavoviridis* PMIC\_1A8B que foi altamente bioativa contra *S. aureus* ATCC 29213. A maior parte das estirpes bioativas pertencem ao filo *Actinobacteria* exceto *Arenibacter aquaticus* PMIC\_1E11B.2, *Aquimarina algiphila* PMO90\_19.1 e uma nova espécie PMO138\_17 relacionada com *Methylotenera mobilis*.

No ensaio OSMAC, os valores mais altos de bioatividade foram obtidos nos extratos de estirpes crescidas em 1:10 M607, o meio de cultura menos rico em nutrientes. Para além disso, também foram obtidas bioatividades altas para o meio de cultura mais rico em nutrientes CGY.

Em conclusão, a abordagem OSMAC mostrou a importância da composição do meio de cultura para a produção de compostos bioativos.

Bioactive compounds, Antimicrobial activity, Antibiotics, OSMAC, PKS-I, NRPS, Triparental Mating.

abstract

Besides a primary metabolism, living organisms possess a secondary metabolism which allows for the production of secondary metabolites that, normally, are not fundamental to the organism's growth and survival. These metabolites allow for a better adaptability to their environment as they act as defence mechanisms, can be bioactive against several pathogenic agents and can be used as drugs to efficiently eliminate them.

At first, the search for new natural compounds by the scientific community was based on terrestrial environments. However, more recently, more and more attention has been paid to the oceans.

Since there has been a general abuse in the use of antibiotics, the numbers of antibiotic resistant bacteria have been rising rapidly. Therefore, it is essential to invest in the discovery new compounds that can be used as alternatives to the traditional antibiotics.

The main aim of this work was the analysis of the antimicrobial potential of a collection of marine bacteria by molecular and screening assays.

Aiming at obtaining a higher yield of secondary metabolites, in this work a transformation of the planctomycete *Roseimaritima ulvae* UC8<sup>T</sup> was performed using the triparental mating technique. This bacterium was chosen since *Planctomycetes* have shown promising bioactive potential. However, this strain exhibited the production of some kind of bioactive compounds that inhibited the growth of *Escherichia coli* ATCC 25922 and possibly affected the growth of the donor and helper *E. coli* DH5 $\alpha$  involved in the transformation process.

In parallel, a molecular screening for the amplification of polyketide synthases type I (PKS-I) and non-ribosomal peptide synthetases (NRPS) was performed in 329 newly isolated strains which belong to Laboratório de Ecofisiologia Microbiana da Universidade do Porto (LEMUP) collection. From these strains 36% generated amplicons for PKS-I and 24% for NRPS. The rest did not amplify for either one of these genes. Then, a selection was made based on the amplification for these genes and the promising strains were chosen to be tested against *E. coli* ATCC 25922 and *Staphylococcus aureus* ATCC 29213. Furthermore, a one strain many compounds (OSMAC) approach was performed to the strains that showed to be bioactive in the preliminary antimicrobial assay in 5 different culture media (1:10 M607, M607, M600, MA and CGY).

From all the bacteria that were selected only 16 strains were considered bioactive, and mostly against *E. coli* ATCC 25922, unlike *Streptomyces flavoviridis* PMIC\_1A8B which was highly bioactive against *S. aureus* ATCC 29213. Most of the bioactive strains belong to the *Actinobacteria* phylum except for *Arenibacter aquaticus* PMIC\_1E11B.2, *Aquimarina algiphila* PMO90\_19.1 and the new species PMO138\_17 closely affiliated with *Methylotenera mobilis*. In the OSMAC assay, the highest values of bioactivity were obtained in extracts from strains grown in 1:10 M607, the lowest nutrient rich culture medium. Also, high activities were displayed in the more nutrient rich CGY culture medium. In conclusion, the OSMAC approach showed the importance of the culture medium composition for the production of bioactive molecules.

keywords

## Index

| Ir | ıdex   |                                                            | I   |
|----|--------|------------------------------------------------------------|-----|
| F  | igure  | Index                                                      | Π   |
| Т  | able I | IndexV                                                     | ΊΙ  |
| L  | ist of | abbreviations VI                                           | Π   |
| 1  | •      | Introduction                                               | . 1 |
|    | 1.1.   | Bioactive Compounds                                        | . 1 |
|    | 1.2.   | Bioactive compounds from bacteria                          | . 2 |
|    | 1.3.   | The importance of antimicrobials                           | . 4 |
|    | 1.4.   | Non-Ribosomal Peptide Synthetases and Polyketide Synthases | . 6 |
|    | 1.5.   | One Strain Many Compounds (OSMAC) approach                 | . 8 |
|    | 1.6.   | Planctomycetes                                             | 10  |
|    | 1.6.1  | . Planctomycetes cell biology                              | 10  |
|    | 1.6.2  | 2. Planctomycetes ecology                                  | 11  |
|    | 1.7.   | Bacterial genetic manipulation                             | 11  |
|    | 1.7.1  | . Triparental mating                                       | 12  |
|    | 1.7.2  | 2. Genetic manipulation in <i>Planctomycetes</i>           | 12  |
|    | 1.8.   | Objectives                                                 | 13  |
| 2  | •      | Materials and Methods                                      | 14  |
|    | 2.1.   | Biological material and culture conditions                 | 14  |
|    | 2.2.7  | Triparental Mating                                         | 16  |
|    | 2.3.   | Molecular Analyses                                         | 19  |
|    | 2.4.   | Extraction procedures for bioactivity assays               | 20  |
|    | 2.4.1  | . Extraction from <i>R. ulvae</i> UC8 <sup>T</sup>         | 20  |
|    | 2.4.2  | 2. Solid culture extraction using ethyl acetate            | 21  |
|    | 2.5.   | Antimicrobial assays                                       | 21  |
|    |        |                                                            |     |

|   | 2.5.1. Antimicrobial assays of marine bacterial extracts             | 1  |
|---|----------------------------------------------------------------------|----|
|   | 2.5.2. <i>R. ulvae</i> UC8 <sup>T</sup> extract antimicrobial assays | 2  |
|   | 2.6. Statistical analyses                                            | 3  |
| 3 | . Results and Discussion                                             | 4  |
|   | 3.1. Triparental Mating                                              | 4  |
|   | 3.2. <i>R. ulvae</i> UC8 <sup>T</sup> extract antimicrobial assays   | 6  |
|   | 3.3. PKS-I and NRPS amplification                                    | 7  |
|   | 3.4. Antimicrobial assays                                            | 0  |
|   | 3.4.1. Initial screening with M607 75% seawater culture medium       | 0  |
|   | 3.4.2. OSMAC approach                                                | 9  |
| 4 | . Conclusion 4                                                       | -8 |
| 5 | . References 4                                                       | .9 |
| 6 | . Annexes                                                            | 1  |

#### **Figure Index**

| Figure $4 - R$ . <i>ulvae</i> UC8 | <sup>r</sup> extract: A) Dissolved in | dichloromethane | before the final | drying |
|-----------------------------------|---------------------------------------|-----------------|------------------|--------|
| and B) in a 20% DMSO              | solution                              |                 |                  | 20     |

Figure 10 – Growth of *E. coli* ATCC 25922. Bioactive strains from the first assay as well as the streptomycin control, the culture medium extract control, the growth control and the DMSO control. The asterisks correspond to statistically significant conditions (p < 0.05).33

Figure 11 – Growth of *S. aureus* ATCC 29213 when in contact with the same bioactive strains' extracts reported in Fig. 10 as well as the ampicillin control, the culture medium extract control, the growth control and the DMSO control. No bioactivity was observed for these strains. The asterisks correspond to statistically significant conditions (p < 0.05).... 33

Figure 12 - Growth of *E. coli* ATCC 25922. Bioactive strains from the second assay as well as the streptomycin control, the culture medium extract control, the growth control and the DMSO control. The asterisks correspond to statistically significant conditions (p < 0.05).34

Figure 14 - Growth of *E. coli* ATCC 25922. Bioactive strains from the third assay as well as the streptomycin control, the culture medium extract control, the growth control and the DMSO control. The asterisks correspond to statistically significant conditions (p < 0.05).35

### **Table Index**

| Table 1 – Bioactive metabolites produced by marine Proteobacteria (Adapted from Anjum,       |
|----------------------------------------------------------------------------------------------|
| 2021)                                                                                        |
| Table 2 – Composition of the culture media used in this study. The culture media utilized in |
| the OSMAC approach were prepared using 75% of seawater in order to equalize the amount       |
| of seawater in all media15                                                                   |
| Table 3 – List of plasmids used in this study. 17                                            |
| Table 4 – PKS-I and NRPS primers used for PCR. 19                                            |
| Table 5 – Quantities of reagents per PCR reaction. 19                                        |
| Table 6 – $R$ . $ulvae$ UC8 <sup>T</sup> Triparental Mating results                          |
| Table 7 – Bioactive strains from the initial assay using 75% seawater M607 that were used    |
| for the OSMAC approach and their phenotypical characteristics                                |

## List of abbreviations

| R            | Registered trademark                                             |  |
|--------------|------------------------------------------------------------------|--|
| A.U.         | Arbitrary units                                                  |  |
| bp           | Base pairs                                                       |  |
| CDC          | Centers for Disease Control and Prevention                       |  |
| CGY medium   | Casitone-Glycerol-Yeast extract medium                           |  |
| DMSO         | Dimethyl sulfoxide                                               |  |
| DNA          | Deoxyribonucleic acid                                            |  |
| EDTA         | Ethylenediamine tetraacetic acid                                 |  |
| et al.       | et alii - "and others"                                           |  |
| Fig. /Figs.  | Figure/Figures                                                   |  |
| FtsZ         | Filamenting temperature-sensitive mutant Z protein               |  |
| HCl-Tris     | Tris-Hydrochloride                                               |  |
| HGT          | Horizontal Gene Transfer                                         |  |
| kb           | Kilo base                                                        |  |
| LB medium    | Luria Broth medium                                               |  |
| LEMUP        | Laboratório de Ecofisiologia Microbiana da Universidade do Porto |  |
| MA medium    | Marine Agar medium                                               |  |
| NA/NB medium | Nutrient agar/ Nutrient broth medium                             |  |
| NAG          | N-acetylglucosamine                                              |  |
| NRPS         | Non-Ribosomal Peptide Synthetases                                |  |
| °C           | Degree Celsius                                                   |  |

| OD                        | Optical Density                                   |
|---------------------------|---------------------------------------------------|
| OSMAC                     | One Strain Many Compounds                         |
| PBS buffer                | Phosphate Buffered Saline buffer                  |
| РСР                       | Peptidyl Carrier Protein                          |
| PCR                       | Polymerase Chain Reaction                         |
| рН                        | Potential of Hydrogen                             |
| PKS/PKS-I                 | Polyketide Synthases/ Type I Polyketide Synthases |
| rpm                       | Rotations per minute                              |
| sp.                       | Specie                                            |
| Т                         | Type strain                                       |
| To                        | Initial time                                      |
| TAE                       | Tris-Acetate EDTA                                 |
| $\mathbf{T}_{\mathbf{f}}$ | Final time                                        |
| ТМ                        | Trademark                                         |
| Tris                      | Tris(hydroxymethyl)aminomethane                   |
| WHO                       | World Health Organization                         |

#### 1. Introduction

#### **1.1. Bioactive Compounds**

Living organisms have a primary metabolism, which mediates absolutely vital reactions and pathways fundamental for survival. Furthermore, the secondary metabolism allows for the production of secondary metabolites which, normally, are not fundamental to the organism's growth or reproduction (Petersen et al., 2018). The production of these metabolites generally results in better adaptability to their environment and they act as defence mechanisms (Colegate & Molyneux, 2008). Secondary metabolites are not always produced, and there is a need for particular conditions to be met in order for the organisms to produce them (Dewick, 2009). These molecules can be bioactive against pathogenies, turning them into great opportunities for new drug development since they possess a large number of medical applications that have been explored along the centuries (Blunt et al., 2018).

The history of compounds extracted from natural sources began with salicylic acid, a compound present in willow trees that was used by Sumerians to treat inflammatory rheumatic diseases (Montinari et al., 2019). Other tribes and populations also used extracts from this plant to treat diseases and dimmish pain in several cases.

At first, the search for new natural compounds by the scientific community was based on terrestrial environments rather than the oceans (Haefner, 2003). The oceans have a vast biological diversity comprehending up to  $10^{30}$  bacterial and archaeal cells (Salazar & Sunagawa, 2017). Only in the second half of the 1950s, more consideration was given towards the idea of extracting natural products from the oceans. The first natural products from the sea, vidarabine and cytarabine, extracted from sponges, possess anticancer activities and have passed the clinical trials, being used for many years (Bergmann & Feeneyz, 1951). Natural compounds can also be found in organisms like tunicates and algae (Molinski et al., 2008). For example, didemnin B, with cytotoxic and antiviral activities, was isolated from the tunicate *Trididemnum solidum* (Rinehart et al., 1981). However, didemnin B presented too much toxicity to be used as a medicine.

The rich biological diversity in the marine environment leads to a strong competition between species where the natural products are important weapons (Younis et al., 2016).

Furthermore, since life on Earth started in the water and only later on moved to the terrestrial environment, oceans have undergone the vastest period of evolution. This means that oceans possess the greatest amount of time to create complex biotic interactions that stimulate the production of natural products (Romano et al., 2016). The major problem with the approach to find new marine natural products is the quantity of product obtained, since these compounds are only produced in trace amounts specially by organism like sponges (Varijakzhan et al., 2021). Nevertheless, this can be avoided by using fermentation in large scales, in the case of bacteria or algae, even though it might prove to be challenging, and sometimes, the upscale does not work as intended (Jiménez, 2018).

#### **1.2.** Bioactive compounds from bacteria

The main bacterial phyla producing bioactive natural compounds are primarily Actinobacteria and Myxobacteria (Diez et al., 2012; Takahashi & Omura, 2003) but also Firmicutes, Proteobacteria, Bacteroidetes and Planctomycetes (Stincone & Brandelli, 2020). Actinobacteria are responsible for the production of the most promising compounds, namely salinosporamide A, which is a compound that is in phase 3 of the clinical trials and is a very potent proteosome inhibitor. Salinosporamide A has antitumor activity against several cancers, namely myeloma (Takacsová et al., 2016). The Streptomyces genus, in particular, possesses a great bioactive potential, containing species that have antibacterial, anticancer and antifungal activities. For example, Streptomyces kanamyceticus produces the antibiotic kanamycin, *Streptomyces venezuelae* produces the antibiotic chloramphenicol, Streptomyces griseus produces streptomycin and Streptomyces nodosus produces amphotericin B, a landmark in antifungals (Solanki et al., 2008). There is also, *Streptomyces* antibioticus which produces vidarabine, a compound with antiviral activity, capable of curing systemic infections, being effective against herpes virus, since it stops the viral DNA replication (Hong et al., 1986). While most Actinobacteria have been isolated from the soil, the marine Actinobacteria are still underexplored. More and more marine Actinobacteria are known by their bioactive potential since they produce terpenes, peptides, polyketides, quinones and other compounds which hold activities such as antimicrobial and anticancer (Solanki et al., 2008).

Also, *Myxobacteria* show a great bioactive potential. However, not many compounds produced by *Myxobacteria* have been approved. Still, the first compound extracted from a myxobacterium was haliangicin, which was extracted from *Haliangium luteum* isolated from a macroalgal sample in Japan (Fudou et al., 2001). This compound hinders the respiratory chain of filamentous fungi. Also extracted from a bacterium of the same genus, haliamide, is a cytotoxic compound against tumour cells and it is a hybrid between Polyketide Synthases (PKS) and Non-Ribosomal Peptide Synthetases (NRPS) (Sun et al., 2016), enzymes involved in the production of bioactive compounds. Almost all the marine bioactive *Myxobacteria* are from the genus *Enhygromyxa*. The earliest compound found from this genus was salimabromide, a natural product that has effect against *Arthrobacter* sp. (Felder et al., 2013).

Regarding other phyla, the *Firmicutes Enterococcus faecalis* strain #118\_3 has shown to have a strong activity against *Trypanosoma cruzi* causing total growth inhibition (Santos et al., 2020). Also recently, *Bacillus rugosus* was discovered to be a producer of a diketopiperazine (3,6-diisobutylpiperazine-2,5-dione) (Bhattacharya et al., 2020), which had a strong antibacterial activity against *Escherichia coli* and *Staphylococcus aureus* (Bhattacharya et al., 2019). Furthermore, a compound with antibacterial activity, bacicyclin, was discovered in the bacterium *Bacillus* sp. (Wiese et al., 2018). This compound is a cyclic hexapeptide that can affect the growth of *S. aureus* and *E. faecalis*.

In the phylum *Proteobacteria*, there are some compounds that have been synthetized from marine strains, namely solonamides produced by *Photobacterium* sp. which have been bioactive against methicillin resistant *S. aureus* (Nielsen et al., 2014). More examples of bioactive *Proteobacteria* are presented in Table 1.

The *Bacteroidetes Pontibacter korlensis* produces pontifactin, a lipopeptide biosurfactant. This species showed to be bioactive against *Streptococcus mutans*, *Micrococcus luteus*, *Salmonella typhi* and *Klebsiella oxytoca* (Balan et al., 2016).

Planctomycetes also possess promising potential, since, recently, Stieleria maiorica has shown to produce stieleriacines (Kallscheuer et al., 2020). These compounds are moderately bioactive against *Bacillus subtilis*, *Micrococcus luteus*, *S. aureus* and *Mucor hiemalis*. Furthermore, it has been proven that planctomycetal strains possess activity against *E. coli* in antimicrobial assays (Jeske et al., 2016) as well as against *Candida albicans* (Graça et al., 2016). Likewise, *Planctomycetes* also possess anticancer activity, since the several *Planctomycetes* were capable of stimulating apoptosis in prostate and kidney cancer cells, as well as diminishing their growth (Calisto et al., 2019). Besides, *Planctomycetes* also display antialgae activity by producing the 3,5-dibromo-p-anisic acid, which was the first bioactive compound to be discovered in this group (Panter et al., 2019).

| Affiliation        | Metabolites    | Bioactivity            | References                                          |  |  |
|--------------------|----------------|------------------------|-----------------------------------------------------|--|--|
| <i>Vibrio</i> sp.  | Moiramide      |                        | (Pohlmann et al. 2005: Slightom & Buchan            |  |  |
|                    | Kahalalides    | Antibacterial activity | (10)minum et al., 2003, 51ghtoni et Buenan<br>2009) |  |  |
|                    | Andrimid       |                        | 2007)                                               |  |  |
| Photobacterium sp. | Solonamides    |                        |                                                     |  |  |
|                    | Ngercheumicins | Antibacterial activity | (Mansson et al., 2011; Oku et al., 2004)            |  |  |
|                    | Unnarmicins    |                        |                                                     |  |  |
| Myxococcus fulvus  | Myxothiazols   | Antibacterial activity | (Irschik et al., 1983)                              |  |  |
|                    | Myxovalargins  | This deterior derivity |                                                     |  |  |
|                    | Althiomycin    | Antifungal activity    | (Yamaguchi et al., 1957)                            |  |  |

Table 1 – Bioactive metabolites produced by marine *Proteobacteria* (Adapted from Anjum, 2021).

#### **1.3.** The importance of antimicrobials

Since their discovery, antibiotics have shown their great potential to overcome some of humanity's greatest hurdles against bacteria and are partly responsible for the extension of our average life span (Ventola, 2015). As an example, their use in certain surgeries, such as organ transplantation and insertion of medical devices, greatly improves patients' outcomes (Rossolini et al., 2014).

The first chemically pure natural antibiotic was first discovered by accident by the bacteriologist Alexander Fleming, after noticing that one of his cultures was contaminated by fungi which had the power to influence the growth of the bacteria nearby (Swann, 1983). This contamination was in fact *Penicillium notatum* producing penicillin. This molecule was capable of binding to the active site of an enzyme called transpeptidase avoiding this enzyme from forming links between peptidoglycan strands, an essential step for the formation of peptidoglycan, which is a very important component to the bacterial cell wall (Lobanovska & Pilla, 2017).

However, the mishandling of antibiotics induced the appearance of antibiotic resistant bacteria which number is increasing rapidly, a fact predicted by Fleming himself (Norrby et al., 2005). An example of abuse in the use of antibiotics is in livestock production. The population increase implies a greater need of meat production for which is necessary to invest in more intensive production systems that rely mostly on antibiotics. Around the world, 73% of the antibiotics are used to empower this industry (Boeckel et al., 2019).

The rise in antimicrobial resistance in bacteria is leading also to an increase in mortality in patients. For example, according to the World Health Organization (WHO), the mortality in patients infected with *E. coli* which is resistant to 3<sup>rd</sup> generation cephalosporin has doubled. The same scenario is true for methicillin resistant *S. aureus*, for which its infections have increased their mortality ratio (WHO, 2018). Some Gram negative bacteria present a huge public health risk (Brown & Wright, 2016) and, according to WHO the most problematic bacteria under this group are the carbapenem-resistant *Acinetobacter baumannii*, *Pseudomonas aeruginosa* and *Enterobacteriaceae*, including *E. coli* and *Klebsiella pneumoniae* which are responsible for a large amount of the bacterial infections caused to humans (Willyard, 2017). The fight against these bacteria is hindered by the decrease in effective antibiotics and also by the lack of interest in the discovery of new antibiotics by the pharmaceutical industry since the amount of profit per treatment is very reduced, due to the large costs associated with drug development (Norrby et al., 2005).

Antibiotic resistance in bacteria happens due to several mechanisms, which can either be intrinsic or extrinsic (Murray et al., 2007). Acquired resistance results from transformation, transduction or conjugation, and can involve plasmids, integrons, transposons and bacteriophages (Murray et al., 2007). Therefore, a mechanism that contributes to mutation and consequently, antibiotic resistance, is horizontal gene transfer (HGT), as it also corresponds to the most common cause for evolution in bacteria (Giedraitienė et al., 2011).

Regarding the mechanisms of inactivation of antibiotics, one consists in the production of enzymes that take action by complementing the molecules with chemical motifs that destroy the drug (Munita et al., 2016). Another mechanism, especially in Gram negative bacteria, is the decrease of the permeability of the membrane to some compounds. Some of the drugs affected by this mechanism include  $\beta$ -lactams, tetracyclines and several

fluoroquinolones (Pagès et al., 2008). Bacteria can also change the efflux through efflux pumps. Due to these pumps, it is possible for them to inhibit the action of many antibiotics. It is also possible to change the target of the antibiotics, avoiding their engagement (Munita et al., 2016).

Antifungal resistance is also rising (Mille-Lindblom et al., 2006). Infections by these microorganisms seem to be increasing rapidly, and there appears to be a greater number of unique fungi causing infection (Lockhart & Guarner, 2019). According to The Centre for Disease Control and Prevention (CDC), 7% of *Candida* isolated from the bloodstream is already resistant to fluconazole (Toda et al., 2019). *Candida auris*, an emerging fungus, also shows resistance to amphotericin B (33%) and fluconazole (90%) (Lockhart et al., 2017). *Aspergillus* infections are not as common as *Candida* infections, since they normally infect immunosuppressed patients. However, there has been a growth in its numbers (Pfaller, 2012). Therefore, it is essential to invest in the discovery new compounds that can be used as alternatives to the traditional antifungals, allowing to battle this rising resistance and fight efficiently fungi (Interagency Coordination Group on Antimicrobial Resistance, 2019).

To better battle these superbugs, it is necessary to expand our knowledge, namely prioritize the sequencing and study of several bacteria with the potential to produce bioactive compounds (Spízek et al., 2010). Furthermore, to search for these new compounds there are several approaches, such as searching for new drugs using metagenomics in environmental DNA and genome sequencing to identify gene clusters responsible for the synthesis of these compounds (Spízek et al., 2010). This last approach is getting easier and easier to achieve since with technology advancements it was possible to achieve genome sequencing in a much faster, cheaper and reliable way (Ansorge, 2009). Thanks to new bioactive compounds it is possible to reduce the multi drug resistance crisis. (Redondo-Blanco et al., 2017).

#### **1.4.** Non-Ribosomal Peptide Synthetases and Polyketide Synthases

Non-ribosomal peptide synthetases (NRPS) possess several modules which make them large enzymes that are responsible for the production of non-ribosomal peptides which are obtained from the secondary metabolism of the cell (Walsh, 2008). Much like the NRPS, polyketide synthases (PKS) also function as modules. NRPS and PKS represent the most common gene clusters responsible for the production of new bioactive molecules. This way, the presence of these enzymes is normally associated with the discovery of new natural compounds (Donadio et al., 2007). Since they are modular enzymes, NRPS and PKS are a product of the elongation of acyl-S-proteins (Fischbach & Walsh, 2006), after an initiation module and respective elongation, the terminal module allows for the release of the acyl chain from the thioester link (Walsh, 2008).

PKS can be found in three types. Type I PKS is divided in two groups: iterative or modular. In iterative type I PKS there are enzymes which are used more than once to condense carbon blocks into the palmitate fatty acid. One example of this type of PKS can be observed in the fatty acid synthase in humans (Keatinge-Clay, 2012). As for modular type I PKS as the name indicates, they possess modules that can condense blocks of carbon into a polyketide chain. One of these enzymes is the erythromycin PKS (Keatinge-Clay, 2012). Furthermore, type I PKS can be found in several microorganisms such as *Actinomycetes*, *Myxobacteria*, *Cyanobacteria* and fungi (Bulkley et al., 2010). Plus, *Planctomycetes* have been screened for PKS and it has been found that they do possess type I PKS (Graça et al., 2016). As for type II PKS, they have heterodimers and are exclusive to bacteria (Shen, 2000). Type III is a homodimer with a ketosynthase domain, unlike type I and type II PKS. Type III PKS can be found in plants, fungi and several bacteria (Shimizu et al., 2016).

NRPS carry peptide and amino-acid intermediates to catalytic domains to perform the initiation step, then the elongation and afterwards, termination, leading to peptide release (Marahiel et al., 1997). For the initiation, there is amino-acid adenylation and the intermediate that is formed is then bound to peptidyl carrier protein (PCP) domain, which is similar to the one in fatty acids synthesis. Next, it is the elongation step, in which there is the formation of bonds to elongate the peptide chain through the action of the condensation domain. And finally, in the termination step, there is the release of the long and completed peptide from the PCP domain (Figure 1) (Miller & Gulick, 2016).



Figure 1 - NRPS synthesis schematic. Aa: amino-acid; A: adenylation domain; C: condensation domain; PCP: peptidyl carrier protein and TE: thioesterase domain (Adapted from Desriac et al., 2013).

#### **1.5.** One Strain Many Compounds (OSMAC) approach

The One Strain Many Compounds approach was developed by Bode et al., (2002). The idea behind this approach was to enable the research field to compete with the pharmaceutical industry as well as the big biotechnology companies that possess a much larger amount of funds, since this methodology involved the detailed study of few organisms and a shift in the cultivation conditions, which made this work a lot cheaper. The hypothesis formed was that a single microorganism could produce several compounds. However, those compounds were only produced when the different growth parameters were changed (Bode et al., 2002). This way, thanks to the OSMAC approach, Bode et al., (2002) were able to discover that *Aspergilus ochraceus* produced several compounds, when, initially it was thought to produce only one compound. With the change of nutrients, temperature, co-cultivation and other changes in physical and chemical parameters, it is possible to uncover the hidden potential of microorganisms, namely the ones that are not compatible with genetic manipulation. And it is also possible to use the OSMAC approach without having any previous knowledge about the biosynthetic gene clusters involved (Reen et al., 2015; Romano, 2018).

It has been proven that changes in the ratio between carbon and nitrogen, as well as salinity have influence over the production of bioactive compounds (Pan et al., 2019). The carbon source is important since it is the energy source provided to the microorganisms and it is also vital for the formation of the bioactive metabolites because it grants carbon bases

necessary for their structure. The nitrogen source is necessary for the production of proteins and nucleic acids involved in the synthesis of secondary metabolites (Singh et al., 2017). Differences in the nitrogen and carbon sources cause differences in the degradation of the medium components that are providing these sources to the microorganisms, which in turn, trigger changes in the pH of the culture medium. These changes are unique from medium to medium and result in the production of diverse secondary metabolites when the microorganisms are exposed to different culture media (Ma et al., 2009). Salinity is key to determine the seawater chemistry. Salinity is variable and so, the expression of secondary metabolites has evolved to adapt to these conditions. It has been proven that the addition of sea salts, as well as differences in salinity, influence the production of such compounds (Overy et al., 2017; Wang et al., 2011). Furthermore, salinity impacts the osmotic pressure. In order to maintain regular growth, it is necessary to possess the right amount of salinity, since high osmotic pressure causes the dehydration of the cells and, consequently, has effect in the biochemical reactions that occur in the cells (Wang et al., 2011).

Overall, different cultivation parameters that mimic the conditions that the microorganisms find in their natural environment might be the trigger since natural conditions are often variable (Pan et al., 2019). The key is to figure out which are the right conditions for the production of bioactive compounds. For example, Breinlinger et al., (2021) was able to identify that the cause for the death of waterfowl and raptors in the south eastern United States from avian vacuolar myelinopathy was the production of a neurotoxin by the cyanobacteria *Aetokthonos hydrillicola*, which is an epiphytic organism, living in the surface of the invasive *Hydrilla verticillata*. However, the neurotoxin responsible for the death of the birds was only produced when in the presence of bromide. Since bromide was accumulated by the invasive plant that lived in association with this bacterium and the culture media used in the laboratory was not supplemented with bromide, under regular conditions the neurotoxin would not be produced. The compound produced by the cyanobacterium possessed bromine in its structure. Brominated compounds are produced by marine microorganisms such as *Actinobacteria* (Faulkner, 2001; Gribble, 2000) and are often associated with a strong antimicrobial activity (Gribble, 2015).

#### **1.6.** *Planctomycetes*

#### **1.6.1.** *Planctomycetes* cell biology

*Planctomycetes* is a phylum which belongs to the *Planctomycetes* – *Verrucomicrobia* – *Chlamydia* (PVC) superphylum (Devos, 2014). When *Planctomycetes* were discovered, they were thought to be eukaryotes, since they were mistaken as fungi (Dedysh et al., 2020; Gimesi, 1924). Only afterwards, in 1972 were they considered to be bacteria (Hirsch, 1972). It was later speculated that they could be the missing link between bacteria and eukaryotes (Devos et al., 2004; Fuerst & Sagulenko, 2011). *Planctomycetes* were thought to possess several eukaryotic features such as endocytosis (Boedeker et al., 2017; Jermy, 2010; Lonhienne et al., 2010; Wiegand et al., 2018). Recently, it was discovered that a *Planctomycetes*-related bacterium can actually perform phagocytosis and engulf other bacterial cells, just like eukaryotes do for their nutrition (Shiratori et al., 2019).

Originally, *Planctomycetes* were not neither aligned with Gram negative or Gram positive bacteria (Fuerst & Webb, 1991). Therefore, instead of the classical peptidoglycan cell wall, *Planctomycetes* were thought to possess a proteic cell wall (König et al., 1984). According to this theory, the cell cytoplasm was divided between paryphoplasm and pirellulosome (Lindsay et al., 2001), with the pirellulosome containing the cell's DNA compacted into a nucleoid at least in one species (Fuerst & Sagulenko, 2011). However, it has been proven that, in fact, *Planctomycetes* do possess peptidoglycan (Jeske et al., 2015). Peptidoglycan is a striking characteristic of bacterial cell wall as it allows them to maintain a certain level of osmotic pressure and avoid the collapse of the cell, as well as maintain their shape (Lovering et al., 2012). Another aspect was the concept of compartmentalization which has shifted and the intracytoplasmic membrane is now considered to be the cytoplasmatic membrane and the former cytoplasmatic membrane is considered to be the outer membrane. This way, it is possible to place *Planctomycetes* into the Gram negative bacterial group, with the unique trait of having a larger periplasmatic space (Wiegand et al., 2018).

The planctomycetal cells still harbour many mysteries (Wiegand et al., 2018) as, for example, they do not possess FtsZ, a tubulin analogue, which is essential in bacteria for the formation of the septum that allows for the development of the binary fission process (Bernander & Ettema, 2010). *Planctomycetes* have been reported to display two types of

division: polar and lateral budding in *Planctomycetia* (Wiegand et al., 2018) and binary fission by *Phycisphaerae* (Fukunaga et al., 2009) and anammox planctomycetes, which are capable of oxidizing ammonium anaerobically (Wagner & Horn, 2006). These have great importance in the nitrogen cycle and perform an imperative role in the oceanic oxygen minimum zones (Fuerst, 2017).

*Planctomycetes* have intricated and long-life cycles, just like *Actinobacteria* and *Myxobacteria*, known producers of bioactive compounds. *Planctomycetes* is a group that has shown great potential in this area, as they have shown to present NRPS and PKS, which indicate the production of bioactive compounds (Calisto et al., 2019; Donadio et al., 2007; Graça et al., 2016).

#### **1.6.2.** *Planctomycetes* ecology

*Planctomycetes* can be found in a wide variety of habitats. Initially, it was even thought that the majority of *Planctomycetes* inhabited aquatic environments, both marine and freshwater, especially associated to marine snow (Lage & Bondoso, 2014) and sediments (Bondoso et al., 2011). Yet, it has been reported that *Planctomycetes* can be found in abundance in soils (Buckley et al., 2006) and can even be found in subarctic environments (Dedysh & Ivanova, 2019). *Planctomycetes* have also been reported to be in association with other organisms, such as sponges (Izumi et al., 2013) and several macroalgae (Lage & Bondoso, 2011). In fact, compounds secreted by algae can be utilized by *Planctomycetes* for growth but also to produce bioactive compounds, which can help them thrive in those complex and competitive environments (Graça et al., 2016; Jeske et al., 2013).

#### **1.7.** Bacterial genetic manipulation

Marine bacteria represent a huge amount of opportunity in the biotechnology field, as they can be used for several pharmaceutical applications, such as antimicrobial, antiparasitic or anticancer drugs (Xiong et al., 2013). However, due to problems in isolation or in cultivation sometimes it becomes very difficult to use the hidden potential of these microorganisms, as there is a lack of genetic tools for them (Joint et al., 2010; Prakash et

al., 2013). Therefore, it is very important to reconsider this paradigm and start to apply innovative methods for genetic manipulation of marine bacteria (Joint et al., 2010).

Bacterial cells can assimilate DNA from exogenous sources spontaneously through cell to cell contact by conjugation (Chen et al., 2012), transduction by bacteriophage contact (Lang et al., 2012) or by transformation. These mechanisms that occur naturally in bacterial cells can be used to genetically manipulate them. For the manipulation it is necessary to have plasmids. Plasmids are made up from extrachromosomal DNA and are treated as shuttle vectors that are then utilized in methods based on conjugation (Wang et al., 2007).

#### **1.7.1.** Triparental mating

Triparental mating is a method based in conjugation that happens naturally in the bacterial cells. For this to happen it is required the processing of DNA and its transference to the recipient cell. Therefore, a single strand of DNA is formed by cleaving the DNA that is to be transferred with a relaxase that binds to the origin of transfer (Garcillán-Barcia et al., 2009). The transportation of the target DNA is performed by a type IV secretion apparatus (Grohmann et al., 2003). Relaxase carries a great role in this process since it emits signals for the recognition of the substrate (Chen et al., 2012).

The triparental mating method uses three bacterial strains, a donor, a helper and a recipient. The donor possesses a plasmid that carries the target gene and a selection marker (Wise et al., 2006). In the classical route, the helper plasmid which has mobility will move into the donor cell and help mobilize the donor plasmid, which is not mobile, into the recipient cell. In the recipient cell there will be recombination between the donor plasmid and the genomic DNA (Timmery et al., 2009).

#### 1.7.2. Genetic manipulation in *Planctomycetes*

As planctomycetal cells present a unique cell conformation and have been an underexplored group it was just recently explored the possibility of engineering their genomes (Wiegand et al., 2018). One of the hurdles that made it impossible until now is their great resistance capacity to several antibiotics, such as beta-lactams and aminoglycosides. This way, it is difficult to use them in techniques that involve antibiotics as selection markers (Wiegand et al., 2018).

However, Jogler et al., (2011) was capable of performing genetic manipulation in *Planctopirus limnophila*, one of the fastest growing *Planctomycetes*. Later, electroporation and transposon mutagenesis was described for this group of bacteria, with the purpose of expressing fluorescent proteins and to analyse the cell compartmentalization through gene deletion (Boedeker et al., 2017). Electroporation was also used later for exploring the presence of microcompartments gene clusters (Erbilgin et al., 2014). Lastly, more recently triparental mating has been applied to freshwater and marine *Planctomycetes* (Rivas-Marín et al., 2016). The same authors used triparental mating to assess the presence and the effects of the lack of sterols in *Gemmata obscuriglobus* (Rivas-Marín et al., 2019).

#### 1.8. Objectives

The objective of this study consisted in evaluating the bioactive potential of several marine bacterial strains by molecular approaches and antimicrobial screenings. The marine bacteria used are newly isolated bacteria from the "Laboratório de Ecofisiologia Microbiana da Universidade do Porto" (LEMUP) collection. These bacteria belong to diverse phyla including *Actinobacteria*, *Planctomycetes*, *Firmicutes*, *Proteobacteria* and *Bacteroidetes*. An OSMAC approach was also applied to the bacteria that showed to be bioactive in an initial screening for optimization of the compound production.

This work also focuses on the attempt to genetically manipulate the planctomycete *Roseimaritima ulvae* strain UC8<sup>T</sup> through the triparental mating technique in order to overexpress biosynthetic genes, and therefore, increase the production of bioactive compounds. As it was said above, *Planctomycetes* are still an underexplored group. However, planctomycetal growth is very slow, which becomes a hurdle when talking about scale up studies since it is necessary to obtain a great quantity of biomass for the antimicrobial assays. These bacteria are also hard to handle in genetic transformation assays so, in this study, the triparental mating technique was used since it has already been described for *Planctomycetes*.

# Materials and Methods Biological material and culture conditions

For this study, several marine bacterial strains belonging to the collection of LEMUP were chosen as biological material. These strains include members of diverse phyla: *Actinobacteria, Planctomycetes, Proteobacteria, Firmicutes* and *Bacteroidetes*. Moreover, they were previously isolated by our group from macroalgae, sand sediments and mussels collected in the Portuguese north coast at Memória Beach, in Leça da Palmeira (41° 13'N, 8° 43' W). Some examples of these bacteria are shown in Figure 2.



Figure 2– Examples of marine bacteria from LEMUP's culture collection that were utilized in this thesis. A) *Streptomyces hydrogenans* strain PMIC\_111A; B) *Streptomyces ardesiacus* strain PMIC\_2C8B and C) From left to right: *Sphingopyxis ummariensis* strain PMI45\_2, *Sphingorhabdus* sp. strain PMI12\_1B, *Ochrobactrum* sp. strain PMI41\_5 and *Erythrobacter* sp. strain PMI29\_1.

Bacteria were maintained either in M607 (modified M13) medium (Lage & Bondoso, 2011) or in Marine Agar (MA) medium and M607 (Table 2) supplemented with 10 mL of a 5% N-acetylglucosamine (NAG) solution per liter, and incubated at 25 °C, in the darkness. For the OSMAC approach, five culture media were experimented: M607, 1:10 M607, M600, CGY, and MA (Table 2). Two more nutrient-poor media were chosen (M607 and 1:10 M607) and three more nutrient-rich media (M600, CGY and MA) were chosen to perform an OSMAC approach. The M607, M600 and MA were chosen since these strains were isolated in these media. CGY was chosen because it has different carbon sources.

| Reagents                                   | M607<br>(75%) | M600<br>(75%) | CGY<br>(75%) | 1:10<br>M607<br>(75%) | MA<br>(75%) | NA         | LB         | M600<br>(25%) |
|--------------------------------------------|---------------|---------------|--------------|-----------------------|-------------|------------|------------|---------------|
| Peptone                                    | 0.25 g        | 1 g           |              | 0.025 g               | 5 g         | 5 g        |            | 1 g           |
| Yeast extract                              | 0.25 g        | 1 g           | 1 g          | 0.025 g               | 1 g         | 3 g        | 5 g        | 1 g           |
| Agar                                       | 16 g          | 16 g          | 16 g         | 16 g                  | 16 g        | 16 g       | 16 g       | 16 g          |
| Tryptone                                   |               |               |              |                       |             |            | 10 g       |               |
| Casitone                                   |               |               | 5 g          |                       |             |            |            |               |
| Glycerol                                   |               |               | 5 mL         |                       |             |            |            |               |
| Filtred sea water                          | 750 mL        | 750 mL        | 750 mL       | 750 mL                | 750<br>mL   |            |            | 220 mL        |
| Deionized water                            | 160 mL        | 160 mL        | 250 mL       | 169 mL                | 250<br>mL   | 1000<br>mL | 1000<br>mL | 660 mL        |
| 0.1 M HCl -Tris pH =<br>7.5                | 50 mL         | 50 mL         |              | 50 mL                 |             |            |            | 50 mL         |
| Glucose solution <sup>1</sup> (2.5%)       | 10 mL         | 40 mL         |              | 1mL                   |             |            |            | 40 mL         |
| Vitamins solution <sup>2</sup>             | 10 mL         | 10 mL         |              | 10 mL                 |             |            |            | 10 mL         |
| Hutner's Basal Salts solution <sup>3</sup> | 20 mL         | 20 mL         |              | 20 mL                 |             |            |            | 20 mL         |

Table 2 – Composition of the culture media used in this study. The culture media utilized in the OSMAC approach were prepared using 75% of seawater in order to equalize the amount of seawater in all media.

Glucose, Vitamin and Hutner's Basal Salt's solutions were added after the medium autoclavation and sterilized through a 0.22 µm pore filter.

<sup>2</sup> 2 mg/L Biotin, 2 mg/L Folic Acid, 10 mg/L Pyridoxine-HCl, 5 mg/L Riboflavine, 5 mg/L Thiamine-HCl.2H<sub>2</sub>O, 5 mg/L Nicotinamide, 5 mg/L D-Ca-pantothenate, 0.2 mg/L Vitamin B12, 5 mg/L p-Aminobenzoic acid.

<sup>3</sup> 99 mg/L FeSO<sub>4</sub>.7H<sub>2</sub>O, 12.67 mg/L NaMoO<sub>4</sub>.2H<sub>2</sub>O, 3.34 g/L CaCl<sub>2</sub>.2H<sub>2</sub>O, 29.70 g/L MgSO<sub>4</sub>.7H<sub>2</sub>O, 50 mL/L "44" Metals and 10.0 g/L Nitrilotriacetic acid.

"44" Metals: 12% EDTA, 52.63% ZnSO<sub>4</sub>.7H<sub>2</sub>O, 24% FeSO<sub>4</sub>.7H<sub>2</sub>O; 7.4% MnSO<sub>4</sub>.H<sub>2</sub>O, 1.64% CuSO<sub>4</sub>.5H<sub>2</sub>O; 1.19% Co(NO<sub>3</sub>)<sub>2</sub>.6H<sub>2</sub>O, 0.85% Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub>10H<sub>2</sub>O.

The planctomycete *R. ulvae* UC8<sup>T</sup>, previously isolated by our group from *Ulva* sp. in Carreço (41°44'N, 8°52'W) (Lage & Bondoso, 2011) was used for the triparental mating experiments. *R. ulvae* UC8<sup>T</sup> was cultivated in M600 with 25% seawater (Table 2) instead of the regular 90% and was incubated at 25 °C, 250 rpm, in the darkness.

*E. coli* DH5α, used in the triparental mating method, was cultivated in Luria broth (LB culture medium) (Table 2), which was supplemented with erythromycin (250 mg/L) and

ampicillin (100 mg/L) when carrying the donor plasmids (pOL003, pOL004 and pOL006) or kanamycin (25 mg/L) for the helper plasmid (pKR2013).

Regarding the antimicrobial assays, *E. coli* ATCC 25922 and *S. aureus* ATCC 29213 were chosen as biological targets. These were maintained in Nutrient Agar (NA), at 37 °C (Table 2).

#### 2.2. Triparental Mating

In order to obtain a transformed planctomycete that could overexpress biosynthetic genes related to bioactivity, a triparental mating assay was performed. This technique is performed using a helper, a donor, both *E. coli* DH5 $\alpha$  and a receptor, which was *R. ulvae* UC8<sup>T</sup>.

In brief, the helper cell's role consists in allowing the transmission of the donor cell's plasmid to the recipient cell, since the donor does not possess mobility to move by itself to the receptor. Through the contact of the *tra* genes, contained in the helper plasmid, with genes in the donor plasmid it is possible to allow for mobilization. The helper cell is kanamycin resistant while the donor cell possesses a plasmid that has a selection marker, which is an erythromycin resistance gene (ermC) (Godinho, 2018). Previous studies by Godinho et al., (2019) showed that R. ulvae UC8<sup>T</sup> is susceptible to erythromycin, making this a perfect marker to select for transformed cells. Moreover, the donor plasmid allows the recombination of the target genes with the receptor genome, since it holds a sequence that matches that of the receptor's genome. Furthermore, the donor cell is ampicillin and erythromycin resistant. These two antibiotics correspond to selection markers for the donor, used for the introduction of the plasmid inside the cells. Lastly, the receptor receives the donor plasmid and there is recombination with the homologous sequence from the donor plasmid (Fig. 3). The receptor is sensitive to erythromycin, which is a selection marker for the transformed cells. Likewise, there are two selection markers for the helper and the donor, ampicillin and kanamycin to which these strains are resistant and were used for the introduction of the plasmid inside the cells.



Figure 3- Triparental mating process schematic: A) Helper plasmid mobilizes itself to the donor cell; B) Helper plasmid allows for the transmission of the donor plasmid to the receptor cell; C) There is recombination between the donor plasmid and the genomic DNA of the receptor cell and the target genes are knocked-out in the receptor genome.

In this technique, three strains of *E. coli* DH5 $\alpha$  were used: a helper, a donor with an empty plasmid and a donor with the full plasmid. The helper was *E. coli* DH5 $\alpha$  pKR2013 and the two donor cells utilized were *E. coli* DH5 $\alpha$  pOL003 with the empty vector that does not possess the recombinant sequence and pOL004 with the full vector that possesses the recombinant sequence (Table 3).

| Plasmid              | Genotype                                                                                                       | References                   |
|----------------------|----------------------------------------------------------------------------------------------------------------|------------------------------|
| pRK2013 (Helper)     | ColE1 origin, Tra <sup>+</sup> , Km <sup>R</sup> , Mob <sup>+</sup>                                            | (Figurski & Helinski., 1979) |
| pOL003 (Empty donor) | pBKS with <i>ColE1</i> origin, Erm <sup>R</sup> , <i>Mob</i> <sup>+</sup> , Amp <sup>R</sup>                   | (Godinho, 2018)              |
| pOL004 (Full Donor)  | pBKS with <i>ColE1</i> origin, Erm <sup>R</sup> , <i>Mob</i> <sup>+</sup> , <i>bla</i> , Amp <sup>R</sup>      | (Godinho, 2018)              |
| pOL006 (Donor)       | pBKS with <i>ColE1</i> origin, Erm <sup>R</sup> , <i>Mob</i> <sup>+</sup> , big protein gene, Amp <sup>R</sup> | (Godinho, 2018)              |

Table 3 – List of plasmids used in this study.

 $Erm^{R}$  – erythromycin resistant;  $Amp^{R}$  – ampicillin resistant;  $Km^{R}$  – Kanamycin resistant; *ColE1* - colicin E1; *Tra*<sup>+</sup> - transfer gene; *Mob*<sup>+</sup> - Mobility; *bla* – betalactamase.

The experiment involves the execution of 3 patches, with different conditions, which consist of drops that were spread in the petri dishes. The first patch was composed by the receptor, the donor cells with the full plasmid (pOL004) and the helper cells (pKR2013).

This was the main patch, since patch 2 and patch 3 were controls and served to validate the results in patch 1. In patch 2 there was the receptor, the donor cells with the empty plasmid (pOL003) and the helper cells (pKR2013). This condition served as a control to assess if the plasmid was non-replicative. If the plasmid is, in fact, replicative, then it can replicate inside the cell and maintain itself in its lineage. However, in the desired condition this would not happen, and the daughter cells would not incorporate the plasmid and therefore, would not possess the antibiotic resistance associated with the plasmid. Finally, in patch 3, it was tested the receptor with the helper cells (pKR2013) with Phosphate Buffered Saline (PBS) buffer replacing the donor cells. This condition is considered the negative control.

The protocol used for triparental mating was adapted from Rivas-Marín et al. (2016), with some minor modifications, including different helper and donor strains and differences in the washing steps to remove the antibiotics. Initially, *R. ulvae* UC8<sup>T</sup> was incubated at 25 °C, in M600 culture medium with 25% seawater, containing ampicillin (100 mg/L) and cycloheximide (50 mg/L), for 7 days, at 250 rpm. On the day prior to the mating assay, the donor and helper E. coli strains were cultivated in LB, at 37 °C and 250 rpm, containing either kanamycin (25 mg/L) for the helper strain or ampicillin and erythromycin (250 mg/L) for the donor strain. Afterwards, the receptor culture was diluted to 0.1 A.U. at OD 600nm and when the receptor reached 0.35 A.U. OD  $_{600nm}$ , the helper and the donors were diluted to 0.1 A.U. OD 600nm. When all the OD 600nm were between 0.35 A.U. and 0.4 A.U., 15 mL of the receptor culture were centrifuged and the cell pellet resuspended in 1mL of PBS buffer. Then it was centrifuged again and the cell pellet was resuspended in 600 µL of PBS. Next, 200 µL of the helper strain and 200  $\mu$ L of the donor strain were mixed with 200  $\mu$ L of PBS, they were centrifuged again and washed with 400 µL PBS. After centrifugation, they were resuspended in 400 µL of PBS and the receptor was added. Later, this mixture was then centrifuged and resuspended in 100 µL of PBS and plated in 25% seawater M600. After 24 h, the patch was resuspended in 1 mL of PBS and serial dilutions until 10<sup>6</sup> were prepared. Then, 100 µL of the serial dilutions were plated in 25% seawater M600 selective and viable media. The selective medium was supplemented with ampicillin, streptomycin, cycloheximide and erythromycin, while the viable medium was supplemented with ampicillin, streptomycin and cycloheximide. Ampicillin inhibits the growth of the helper strain, streptomycin inhibits the donor strain growth, cycloheximide inhibits the growth of fungi and erythromycin, as it was mentioned above, constitutes the selection marker for the receptor. After 12 days, the growth in each patch was evaluated.

#### 2.3. Molecular Analyses

329 marine bacteria from the LEMUP collection were evaluated regarding their bioactive potential by searching for the presence of two different putative biosynthetic genes, PKS-I and NRPS and in Table 4 are the primers used for the search of these genes. Genomic DNA was extracted using the protocol from Omega E.Z.N.A. Bacterial DNA Isolation Kit, and Polymerase Chain Reaction (PCR) was applied according to the protocol described by Graça et al., (2013) (Table 5).

| Primer  | Sequence 5'- 3'   | Target genes |
|---------|-------------------|--------------|
| MDPQQRf | RTRGAYCCNCAGCAICG | PKS - I      |
|         |                   |              |

Table 4 – PKS-I and NRPS primers used for PCR.

VGTNCCNGTGCCRTG

CCNCGDATYTTNACYTG

GCNGGYGGYGCNTAYGTNCC

HGTGTr

MTf

MTr

The PCR was performed in a MyCycler<sup>™</sup> Thermo Cycler (Bio-Rad) thermocycler and the amplification products detected in a 1.2% agarose gel stained with Green Safe (NZYTech<sup>®</sup>), and submerged in 1x Tris(hydroxymethyl)aminomethane (Tris) Acetate EDTA (TAE) buffer. The ladder used for the validation of the results was Generuler 1kb Plus DNA Ladder (Thermo Scientific<sup>®</sup>). The results were viewed in a GenoPlex Transilluminator (VWR<sup>®</sup>).

NRPS

Table 5 – Quantities of reagents per PCR reaction.

| Reagents                    | 1 reaction quantities |
|-----------------------------|-----------------------|
| NZY Taq 2x Green Master Mix | 12.5 μL               |
| MDPQQRf / MTf (10 mM)       | 2 μL                  |
| HGTGTr / MTr (10 mM)        | 2 μL                  |
| DNA                         | 2 μL                  |
| Milli Q water               | 6.5 μL                |

References

(Kim et al., 2005)

(Tambadou et al.,

2014)

#### **2.4. Extraction procedures for bioactivity assays**

### **2.4.1.** Extraction from *R. ulvae* $UC8^T$

To evaluate the bioactive potential of *R. ulvae*  $UC8^{T}$ , a liquid extraction protocol using methanol was performed. Liquid cultures were used in order to obtain more biomass.

Firstly, a 10 mL pre-inoculum of UC8<sup>T</sup> was prepared in M600 medium with 25% seawater and incubated for 7 days under 200 rpm. It was then upscaled to a 250 mL culture which was incubated for another 7 days at 200 rpm. The whole culture was centrifuged at 13 000 rpm during 10 minutes in an Eppendorf <sup>TM</sup> Centrifuge 5810 R. The cell pellet was collected, stored at - 80 °C and freeze-dried in a BenchTop Pro with Omnitronics<sup>TM</sup> freeze drier (VirTis SP Scientific<sup>®</sup>). Subsequently, the pellet was rinsed with methanol to disrupt the cell's membrane and later, the methanol was dried in a Buchi<sup>®</sup> R-100 rotary evaporator at 25 °C. The extracted compounds obtained were then collected by adding 1.5 mL of dichloromethane and transferred to a previously weighted vial (Fig. 4A). Subsequently, the extract was left to dry overnight and the weight of the extracted product residue determined. The extract was solubilized in 20% dimethyl sulfoxide (DMSO) mixture (Fig. 4B) at the final concentration of 10 mg/mL.



Figure 4 – *R. ulvae* UC8<sup>T</sup> extract: A) Dissolved in dichloromethane before the final drying and B) in a 20% DMSO solution.
# 2.4.2. Solid culture extraction using ethyl acetate

The promising selected strains that possessed PKS-I or NRPS potential genes were cultivated in 25 mL agar plates of M607 medium. The cultures were then incubated at 25 °C during 2 weeks in the dark (Fig. 5A). Afterwards, the culture medium was removed from the petri dishes and 50 mL of ethyl acetate were added. This mixture was left to steep overnight (Fig. 5B). The day after, the mixture was collected and the flasks rinsed two times with 25 mL of ethyl acetate. Later, it was transferred to a Buchi R-100 rotary evaporator (Fig. 5C), at 25 °C to dry. The solid residues were collected and dissolved in 500  $\mu$ L of a 20% DMSO solution.



Figure 5 – A) Bacterial growth of *Streptomyces ardesiacus* strain PMIC\_2C8A after two weeks incubation at 25 °C in darkness, B) Agar cubes of the same strain left to steep overnight and C) Rotary evaporator used to dry the extracts.

Afterwards, strains that showed to be bioactive against *E. coli* ATCC 25922 and *S. aureus* ATCC 29213 were tested using an OSMAC approach and were cultivated in different culture media. The protocol utilized for extraction was similar to the one described above for the strains that amplified for PKS-I and/ or NRPS.

# 2.5. Antimicrobial assays

### **2.5.1.** Antimicrobial assays of marine bacterial extracts

The antimicrobial activity of the extracts obtained from the 329 marine bacterial strains was evaluated against *E. coli* ATCC 25922 and *S. aureus* ATCC 29213.

For the antimicrobial assays, 10 mL pre-inocula of *E. coli* ATCC 25922 and *S. aureus* ATCC 29213 were incubated at 37 °C and 250 rpm overnight. The day after, several conditions were tested in a 96 well plate and based on predetermined growth curves of both targets, the OD <sub>600nm</sub> was measured and the following equations applied for standardization of the *E. coli* ATCC 25922 (1) and *S. aureus* ATCC 29213 (2) cultures for a final concentration of  $5 \times 10^5$  cells:

$$x = 4 \times 10^{9} \times OD_{600nm} - 5 \times 10^{7}$$
(1)  
$$x = 5 \times 10^{9} \times OD_{600nm} - 2 \times 10^{7}$$
(2)

The conditions applied to the wells were: 90  $\mu$ L of the target strains with 10  $\mu$ L of ampicillin (40 mg/mL) or streptomycin (10 mg/mL), for *S. aureus* ATCC 29213 and *E. coli* ATCC 25922, respectively, or with 10  $\mu$ L extract, DMSO or distilled water and 100  $\mu$ L of culture medium.

Afterwards, the OD  $_{600nm}$  was measured in a Thermo Scientific<sup>®</sup> Multiskan Go 96 well plate reader and then the plate was incubated at 37 °C for 24 h and subsequently the OD  $_{600nm}$  was read again. The growth of the culture present in each well was then calculated throught the following formula:

Growth % = 100 × 
$$\frac{(T_{fS} - T_{0S}) - (T_{fB} - T_{0B})}{(T_{fG} - T_{0G}) - (T_{fB} - T_{0B})}$$
 (3)

Where,  $T_f$  represents the final OD  $_{600nm}$  and  $T_0$  represents the initial OD  $_{600nm}$ . B represents the blank (culture media control), G the DMSO growth control and S the sample that is being analysed.

# 2.5.2. *R. ulvae* UC8<sup>T</sup> extract antimicrobial assays

The antimicrobial capacity of *R. ulvae* UC8<sup>T</sup> was evaluated against the various *E. coli* used in the triparental mating assay. For the antimicrobial assays, 10 mL pre-inocula of helper *E. coli* (pKR2013) and donor *E. coli* strains (pOL003, pOL004 and pOL006) with either kanamycin, for the helper, or ampicillin and erythromycin, for the donors, were incubated at 37 °C and 250 rpm, overnight. The day after, several conditions were tested in a 96 well plate. In a Thoma cell counting chamber, the concentration of cells in the culture

was measured and an adequate dilution was made in order to have  $5 \times 10^5$  cells in each well. Then, 90 µL of the different *E. coli* target strains (helper and donor) were plated on the wells of the 96 well plate with either 10 µL of streptomycin (10 mg/mL), or 10 µL of ampicillin (40 mg/mL) (for donors) or 10 µL of kanamycin (25 mg/L) (for helper) or 10 µL of a 20% DMSO solution or 10 µL of *R. ulvae* UC8<sup>T</sup> extract. Plus, there were wells with only the target strains and wells with only culture media (100 µL). Subsequently, the process is similar to the one described for the marine bacterial extracts' antimicrobial assays.

### **2.6. Statistical analyses**

In order to evaluate if the results from the antimicrobial assays were statistically significant, normality tests were performed. The data samples that were considered to have a normal distribution by the Shapiro-Wilk test (p > 0.05) were analysed using the one sample t-test and were considered significant if p < 0.05. Data samples that did not possess a normal distribution were analysed using the Wilcoxon signed rank test and were considered significant if p < 0.05. The software used for the statistical analyses as well for the boxplots was IBM<sup>®</sup> SPSS<sup>®</sup> Statistics 25.

# **3. Results and Discussion**

### **3.1.** Triparental Mating

In this study, a triparental mating assay was performed in order to obtain a mutant planctomycete that could produce a higher amount of the bioactive compounds' mass. Firstly, it was necessary to validate the technique, and therefore, the planctomycete *R. ulvae* UC8<sup>T</sup> was used. This technique was previously used by Godinho and collaborators (2018) for the same strain and using a beta lactamase gene as target. The results obtained were not satisfactory because the transformation was not successful. However, it was demonstrated by Rivas-Marín et al., (2020); Rivas-Marín et al., (2019) that the triparental mating can be adapted to marine as well as freshwater *Planctomycetes*. In order to minimize the potential effects of salinity in the triparental mating assay, *R. ulvae* strain UC8<sup>T</sup> was cultivated in M607 medium using only 25% of the regular amount of seawater, since it was the minimum percentage of salinity that this strain could handle. This strain was used since it has already shown to possess a hybrid NRPS-PKS and PKS-I genes (Graça et al., 2016). This indicates that *R. ulvae* UC8<sup>T</sup> has bioactive potential, since these genes are most commonly associated with the production of bioactive secondary metabolites (Donadio et al., 2007). The results obtained for the triparental mating using *R. ulvae* UC8<sup>T</sup> are described in Table 6.

| Table $6 - R$ . <i>ulvae</i> | UC8 <sup>T</sup> Triparental | Mating results. |
|------------------------------|------------------------------|-----------------|
|------------------------------|------------------------------|-----------------|

| Patch Plasmids |                  | Viable media                  |                  | Selective media                                                                                         |                            |
|----------------|------------------|-------------------------------|------------------|---------------------------------------------------------------------------------------------------------|----------------------------|
| 1              |                  | Antibiotics                   | Colonies         | Antibiotics                                                                                             | Colonies                   |
| 1              | pRK2013 + pOL004 | Ampicillin<br>+               | UC8 <sup>T</sup> | Ampicillin +                                                                                            | UC8 <sup>T</sup> / E. coli |
| 2              | pRK2013 + pOL003 | Streptomycin                  | UC8 <sup>T</sup> | Streptomycin +<br>Cycloheximide +<br>Erythromycin UC8 <sup>T</sup> / <i>E. coli</i><br>UC8 <sup>T</sup> | UC8 <sup>T</sup> / E. coli |
| 3              | pRK2013          | <sup>+</sup><br>Cycloheximide | UC8 <sup>T</sup> |                                                                                                         | UC8 <sup>T</sup>           |

Patch 1 represents the condition where the genetic transformation should occur. Here, *R. ulvae* UC8<sup>T</sup> colonies should grow in both selective and viable media, if the transformation occurred. In this study, it was observed that *R. ulvae* UC8<sup>T</sup> colonies grew in both selective

and viable media, which means the transformation may have occurred. However, as *E. coli* colonies also grew (probably because the antibiotics did not work as intended due to a high amount of *E. coli* DH5α biomass), no final conclusion about the transformation can be taken.

If the plasmid shows to be replicative inside the planctomycete, then, in patch 2 growth of *R. ulvae* UC8<sup>T</sup> in the viable and in the selective media should occur. However, if the plasmid is not replicative, then it should only grow in the viable media. In this experiment, *R. ulvae* UC8<sup>T</sup> grew in both the viable and the selective media, which might indicate that the plasmid is replicative inside the planctomycete. Once again, non planctomycetal colonies appeared, which could also be due to antibiotics not working as intended (Table 6). In both patches, the *E. coli* strains should not have grown because streptomycin and ampicillin are antibiotics to which the donor and helper *E. coli*, respectively, are susceptible.

Finally, in the negative control (patch 3), a few *R. ulvae* UC8<sup>T</sup> colonies were observed. This should not have happened since the donor is not present and the culture medium contains erythromycin to which *R. ulvae* UC8<sup>T</sup> is susceptible.

The results obtained may be indicative of occurrence of transformation but as other colonies appeared and *R. ulvae* UC8<sup>T</sup> also grew in the patch 3 it is not possible to determine if transformation really happened.

The triparental mating technique has already shown results with *Planctomycetes*, since the freshwater planctomycete *Gemmata obscuriglobus* has been transformed to prove that the genes that synthesize sterol are essential for its growth (Rivas-Marín et al., 2019). Besides, *Planctopirus limnophila* was also transformed by Rivas-Marín et al., (2020) with the purpose of uncovering the importance of the FtsZ protein in cellular growth. Furthermore, triparental mating has been successfully used to transform rhizosphere associated bacteria such as *Agrobacterium* (Gürel, 2001). More recently, it was discovered that, when transformed with triparental mating, *Pseudomonas putida* was able to show antimicrobial activity with the insertion of an amino acid synthase in its genome (Lee et al., 2019).

# **3.2.** *R. ulvae* UC8<sup>T</sup> extract antimicrobial assays

Since the results of the triparental mating assay were not satisfactory, the hypothesis of *R. ulvae* UC8<sup>T</sup> being bioactive against the other bacteria involved in the transformation process was considered. Therefore, an antimicrobial assay using a *R. ulvae* UC8<sup>T</sup> extract against the helper and the donor E. coli as targets was performed, obtaining 97.22% growth inhibition for *E. coli* DH5a pOL003; 98.37% for pOL004; 93.79% for pOL006 and 97.84% for the helper. However, the results were not conclusive since the DMSO control showed bioactivity (97.66% for *E. coli* DH5a pOL003; 99.83% for pOL004; 99.32% for pOL006 and 63.97% for the helper), which should not have happened because DMSO is the solvent used to dissolve the extracts. This way, it is not possible to conclude if the bioactivity shown was due to the solvent or the bacterial secondary metabolites themselves. DMSO is an amphiphilic solvent that is often used to dissolve extracts since it does not affect the drug binding (Singh et al., 2017). E. coli has shown to withstand a certain concentration of DMSO (Dyrda et al., 2019) in spite of being affected by this solvent at higher concentrations (Ansel et al., 1969). The antimicrobial activity that the DMSO displayed might have been due to problems with the growth of the E. coli strains. Since the antimicrobial assay was not standardized for these E. coli strains, there might have been some variability in the cell counting which might have originated dilution errors.

Despite the non-conclusive results obtained in this antimicrobial assay against the triparental mating *E. coli* strains, later it was observed that *R. ulvae* UC8<sup>T</sup> was bioactive against *E. coli* ATCC 25922 with an average mean of 54.89% antimicrobial activity (Fig. 12 and Supplementary Table 2). These results were obtained in an antimicrobial assay where the DMSO solvent control was not bioactive and *E. coli* ATCC 25922 was able to grow normally. We can hypothesize that the triparental mating assay was not successful due to the secondary metabolites that were being produced by *R. ulvae* UC8<sup>T</sup> and that were affecting the capability of the donor and helper *E. coli* strains to perform the bacterial transformation. As it was mentioned above, *R. ulvae* UC8<sup>T</sup> possesses PKS-I and a hybrid NRPS-PKS-I, which are indicative of its bioactive potential. According to Graça et al. (2016) and Calisto et al., (2019), *R. ulvae* UC8<sup>T</sup> has also the potential to produce anticancer and antifungal secondary metabolites. Besides, presenting mild bioactivity against *E. coli* ATCC 25922 (54.89%) it also presented some kind of effect in *S. aureus* ATCC 29213 (48.26%)

bioactivity) (Figs. 12 and 13 and Supplementary Table 2). A 1:10 dilution of the initial extract was performed in order to assess if the bioactivity would be maintained. Although, it was not considered bioactive in this study, the dilution still presented some kind of effect on both *E. coli* ATCC 25922 and *S. aureus* ATCC 29213 cells. This experiment was also applied to *R. ulvae* UC8<sup>T</sup> in order to observe if in a scenario where the DMSO control had no negative effects in the target bacteria's cells and the targets grew normally the bioactivity that was shown initially would be maintained.

The OSMAC approach was also performed on *R. ulvae* UC8<sup>T</sup>. In this assay, *R. ulvae* UC8<sup>T</sup> was not able to grow in CGY and MA, even when supplemented with the vitamins, glucose and hutner's basal salts solution used to supplement the M600 and M607 culture media. Both MA and CGY, possess higher concentration of nitrogen when compared to M600 and M607. However, it was previously reported by Pollet et al., (2014) that planctomycetal communities found in lakes are not affected by a greater afflux of nitrogen. Despite that, *R. ulvae* UC8<sup>T</sup> was mildly bioactive against *E. coli* ATCC 25922 in M607 and 1:10 M607 culture media with 41.95% and 26.42% growth inhibition respectively. It was also mildly bioactive against *S. aureus* ATCC 29213 in the 1:10 M607 culture mediam with 30.01% growth inhibition.

# **3.3. PKS-I and NRPS amplification**

To assess the bioactive potential of the newly isolated 329 bacterial strains of the laboratory collection, a PKS-I and NRPS gene amplification was performed since these genes are the most common ones involved in the production of bioactive compounds (Donadio et al., 2007).

Of the screened bacteria, 163 belong to the phylum *Proteobacteria* and 110 to *Actinobacteria*. Less represented phyla were *Bacteroidetes*, *Firmicutes* and *Planctomycetes*, which together represent only 17% of the total bacteria used for this study. Of these, the most abundant were the *Firmicutes*, with 26 strains, followed by *Bacteroidetes*, with a representation of 19 strains and 10 strains of *Planctomycetes* (Fig. 6).



Figure 6 – Representation of the different phyla in the 329 bacterial strains used in this study for the PKS-I and NRPS screening. Most strains belong to the phyla *Proteobacteria* and *Actinobacteria*.

Figures 7 and 8 are examples of the results obtained for the PKS-I (amplicon size of 700 base pairs (bp)) and the NRPS (amplicon size of 1000 bp). The results of the amplification of PKS-I and NRPS genes are given in Supplementary Table 1. From the 329 bacterial strains screened, 80 strains possessed NRPS, 121 possessed PKS-I and 28 strains amplified for both.



Figure 7 – Example of one of the PKS-I electrophoresis agarose gel. The strains that possess PKS-I had an expected fragment amplified at 700 bp. The affiliation of the isolates is given in Supplementary Table 1.



Figure 8 – Example of one of the NRPS electrophoresis agarose gel. The strains that possess NRPS had an expected fragment amplified at 1000 bp. The affiliation of the isolates is given in Supplementary Table 1.

Regarding all isolates that were screened in this study, the phylum that presented the higher percentage of PKS-I amplification (60%) was the *Planctomycetes*. Six out of the 10 isolates studied showed amplification for PKS-I gene but none amplified for NRPS gene. Five of the *Planctomycetes* were affiliated with *Rhodopirellula baltica* SH1<sup>T</sup>. According to the literature, the genome of this strain has shown to possess two NRPS genes and two PKS genes and also a hybrid NRPS-PKS gene (Donadio et al., 2007; Glöckner et al., 2003). Our results confirmed the presence of PKS-I genes but not NRPS genes in the studied strains.

Regarding Actinobacteria, the isolates were mostly affiliated with Streptomyces sp., which did not display amplification for NRPS, except for PMIC\_1C12A (Streptomyces albidoflavus DSM 40455), PMIC\_2C8B (Streptomyces ardesiacus NRRL B-1773) and PMIC\_2D11C (Streptomyces hydrogenans NBRC 13475). Despite that, it has been shown that several Streptomyces strains possess NRPS (Komaki et al., 2018). As for PKS, out of 58 Streptomyces, 21 amplified for PKS. Streptomyces possess several polyketides such as rapamycin or oleandomycin, produced by Streptomyces hygroscopicus and Streptomyces antibioticus respectively (Dutta et al., 2014; Rodríguez et al., 2001).

According to Anjum, (2021), the *Proteobacteria* bioactive potential derives essentially from non-ribosomal pathways. In this study, however, the number of isolates with NRPS (35.58%) is similar to the number of isolates with PKS (32.51%). The isolates belong to a high number of genera with emphasis in the *Pseudoalteromonas* genus. This genus is

mostly explored in terms of the production of alkaloids (Offret et al., 2016), and more recently it has been possible to explore its potential regarding PKS and NRPS, which also include other classes of chemical compounds, thanks to the genome mining technology (Graça et al., 2015; Machado et al., 2015; Ross et al., 2015).

In the *Firmicutes*, only one isolate amplified for PKS, PMIC\_1E1B.1 (*Bacillus aryabhattai* B8W22) and seven amplified for NRPS. This data adds up with the literature, since *Firmicutes* are mostly known by the production of NRPS instead of PKS (Lukoseviciute et al., 2021). *Bacillus* is the most common genus between the isolates studied. *Bacillus* are known for producing surfactin, bacilysin and bacillomycin (Mariappan et al., 2012; Roongsawang et al., 2011; Wang et al., 2010). Surfactin inhibits fibrin clot formation and presents antimicrobial, antiviral and anticancer activity (Rodrigues et al., 2006), while bacilysin is an antimicrobial non-ribosomal peptide (Mariappan et al., 2012) and bacillomycin is an antifungal (Moyne et al., 2001).

In the phylum *Bacteroidetes*, 26.92% of the isolates amplified for NRPS while only 3.85% amplified for PKS. The phylum *Bacteroidetes* is represented in the isolates mainly by the *Aquimarina* genus. It has been proven that *Aquimarina* possess PKS (Esteves et al., 2013) and more recently, genome mining allowed for the detection of NRPS in several *Aquimarina* genomes (Hudson et al., 2019; Keller-Costa et al., 2016; Ranson et al., 2018). Furthermore, some isolates from this phylum belong to the *Arenibacter* genus which is still very underexplored when it comes to their bioactive potential (Romanenko et al., 2020).

### **3.4.** Antimicrobial assays

#### **3.4.1. Initial screening with M607 75% seawater culture medium**

From the 329 bacterial strains screened, 80 strains possessed NRPS (24%) and 121 possessed PKS-I (36%) and 28 strains amplified for both. Based on the analysis of the PKS and NRPS genes, the most promising strains were selected, and 116 extracts were prepared. Of these extracts, only 16 strains were considered bioactive against *E. coli* ATCC 25922 and *S. aureus* ATCC 29213 (Fig. 9). Therefore, only a small percentage of the strains (5%) that were screened actually showed to be bioactive against these targets in an initial screening using M607 culture medium with 75% seawater. These strains were analysed using and OSMAC approach and their phenotypical characteristics are shown in Table 7.



Figure 9 – PKS-I and NRPS amplification. 36% of the strains amplified for PKS and 24% for NRPS. The rest did not amplify for either one of these genes. From the selection made based on the strains bioactive potential only 5% showed to be bioactive.

Table 7 – Bioactive strains from the initial assay using 75% seawater M607 that were used for the OSMAC approach and their phenotypical characteristics.

| Strain designation | Taxon                                             | Phenotype                                                                                                                |
|--------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| PMIC_2A12B.1       | 99.77% Streptomyces albogriseolus NRRL<br>B-1305  | Grayish white aerial mycelium; brown substrate<br>mycelium; smooth spore surface and long or<br>oval spores              |
| PMIC_1A10B         | 99.82% Nocardia nova NBRC 15556                   | Filamentous bacilli; "cotton candy" aerial mycelium and white substrate mycelium                                         |
| PMIC_1F12B         | 100% Streptomyces setonii NRRL ISP-<br>5322       | Grey aerial mycelium; grey-yellow substrate<br>mycelium; smooth spore surface and spores<br>organized in straight chains |
| PMIC_2H2C.2        | 100% Nocardiopsis alba DSM 43377                  | White aerial mycelium; cream substrate mycelium; long branched filaments                                                 |
| PMIC_1E10C         | 99.69% <i>Rhodococcus coprophilus</i> NBRC 100603 | Non filamentous coccoid cells; light orange/<br>white colonies                                                           |
| PMIC_2C12          | 99.69% Streptomyces albidoflavus DSM<br>40455     | White aerial mycelium; dark yellow substrate mycelium                                                                    |
| PMIC_1F6A.3        | 99.76% Nocardiopsis alba DSM 43377                | White aerial mycelium; cream substrate mycelium; long branched filaments                                                 |
| PMIC_111A          | 100% Streptomyces hydrogenans NBRC 13475          | Yellow aerial mycelium; dark yellow substrate mycelium                                                                   |
| PMIC_1D9B          | 99.75% Streptomyces griseoflavus LMG<br>19344     | Dark brown aerial mycelium; dark brown substrate mycelium                                                                |

| PMIC_2A11B.1 | 100% Nocardiopsis alba DSM 43377            | White aerial mycelium; cream substrate mycelium; long branched filaments    |
|--------------|---------------------------------------------|-----------------------------------------------------------------------------|
| PMIC_1A8B    | 99.43% Streptomyces flavoviridis NBRC 12772 | Grey aerial mycelium; green- grey substrate mycelium                        |
| PMIC_1E11B.2 | 99.59% Arenibacter aquaticus GUO666         | Non flagellated and non-sporulating rod shaped cells; light yellow colonies |
| PMIC_1E12B   | 100% Arthrobacter gandavensis R 5812        | Rod or coccoid cells; smooth bright yellow colonies                         |
| PMIC_1A11B.2 | 100% Nocardiopsis alba DSM 43377            | White aerial mycelium; cream substrate<br>mycelium; long branched filaments |

For the extraction process ethyl acetate was used as a solvent, which is capable of extracting non-polar compounds. Furthermore, it presents the advantage of being immiscible in water. This represents a massive benefit for the extraction process, since it allows for a better separation between phases, avoiding the necessity of lyophilizing the cultures (Siek, 1978). The extracts that were made are part of a small-scale study, in order to select the most promising strains and perform scale up assays.

From the 16 bioactive strains (Supplementary Table 2), the most represented bacterial group were the *Actinobacteria*. From all the currently known drugs that are derived from microbial bioactive compounds, 45% are produced by *Streptomyces* (Azman et al., 2017; Berdi, 2005). This information also matches up with this study's results since from the 13 actinobacterial strains that showed bioactivity, 6 were *Streptomyces*.

For the antimicrobial assay performed against *E. coli* ATCC 25922 and *S. aureus* ATCC 29213 using extracts made in 75% seawater M607 medium, the bioactive strains and the respective controls are represented in Figs. 10 and 11 in the first assay, Figs. 12 and 13 for the second assay and Figs. 14 and 15 for the third assay. In this study, only strains that possessed an average growth inhibition equal or higher to 50% were considered bioactive. The average activity and the activity values of the 3 replicates as well as the information regarding the non-bioactive strains are shown in Supplementary Table 2.



Figure 10 – Growth of *E. coli* ATCC 25922. Bioactive strains from the first assay as well as the streptomycin control, the culture medium extract control, the growth control and the DMSO control. The asterisks correspond to statistically significant conditions (p < 0.05).



Figure 11 – Growth of *S. aureus* ATCC 29213 when in contact with the same bioactive strains' extracts reported in Fig. 10 as well as the ampicillin control, the culture medium extract control, the growth control and the DMSO control. No bioactivity was observed for these strains. The asterisks correspond to statistically significant conditions (p < 0.05).



Figure 12 - Growth of *E. coli* ATCC 25922. Bioactive strains from the second assay as well as the streptomycin control, the culture medium extract control, the growth control and the DMSO control. The asterisks correspond to statistically significant conditions (p < 0.05).



Figure 13 - Growth of *S. aureus* ATCC 29213 when in contact with the same bioactive strains' extracts reported in Fig. 12 as well as the ampicillin control, the culture medium extract control, the growth control and the DMSO control. The asterisks correspond to statistically significant conditions (p < 0.05).



Figure 14 - Growth of *E. coli* ATCC 25922. Bioactive strains from the third assay as well as the streptomycin control, the culture medium extract control, the growth control and the DMSO control. The asterisks correspond to statistically significant conditions (p < 0.05).



Figure 15 - Growth of *S. aureus* ATCC when in contact with the same bioactive strains' extracts reported in Fig. 14 from the same strains reported in Fig. 14 as well as the ampicillin control, the culture medium extract

control, the growth control and the DMSO control. The asterisks correspond to statistically significant conditions (p < 0.05).

Strains PMIC\_111A, PMIC\_2C12, PMIC\_1D9B, PMIC\_2A12B.1, PMIC\_1F12B and PMIC\_1A8B that showed bioactivity are all affiliated with the *Streptomyces* genus.

The actinomycete *Streptomyces hydrogenans* PMIC\_1I1A has shown to be bioactive only against *E. coli* ATCC 25922 (average bioactivity of 80.24%). In the literature, it has been reported that *S. hydrogenans* produces the antibiotic actinomycin D (Kulkarni et al., 2017). Actinomycin D is a non-ribosomal peptide (Vardanyan & Hruby, 2016), this way it would make sense that PMIC\_1I1A would have amplified for NRPS in the molecular analysis that was performed prior to the antimicrobial assays, however, that did not occur (Supplementary Table 1). Furthermore, actinomycin D, was considered the first antibiotic that also possessed anticancer activity, and it has been used in the clinic since 1954 in the treatment of tumours such as sarcomas, choriocarcinoma and testicular cancer (Mauger & Lackner, 2005). More recently it has been discovered that *S. hydrogenans* also has the potential to produce a new antifungal compound called 10-(2,2-dimethyl-cyclohexyl)-6,9-dihydroxy-4,9-dimethyl-dec-2-enoic acid methyl ester, or compound SH2, for short. Compound SH2 can be used as a fungicide to control fungi growth in plants, as it is capable of promoting plant growth and eliminating the fungi without harming the plant (Kaur et al., 2016).

Streptomyces albidoflavus PMIC\_2C12 was able to inhibit the growth of *E. coli* ATCC 25922 by 64.84%. It has been reported that this species can produce dibutyl phthalate, an antimicrobial agent (Roy et al., 2006). In the past, dibutyl phthalate was not bioactive against Gram negative bacteria like *E. coli* unless its concentration was above 300  $\mu$ g/mL (El-Naggar, 1997). This species is also known for producing the cytotoxic agent antimycin A18 (Yan et al., 2010).

Streptomyces griseoflavus PMIC\_1D9B inhibited *E. coli* ATCC 25922 in 64.60%. This species is known for the production of aborycin, which is a ribosomal synthesized peptide type I. (Helynck et al., 1993; Potterat et al., 1994). This data is consistent with the results of this study, as this strain amplified for PKS-I in the molecular analyses performed (Supplementary Table 1). Unlike the results obtained by Shao et al., (2019), the strain used in this study was not bioactive against *S. aureus*. Shao et al., (2019) also reported bioactivity from this species against other Gram positive bacteria such as *E. faecalis* and the Gram

negative bacteria *K. pneumoniae*. This species is also capable of producing colabomycin A (Grote & Zeeck, 1988), which is not efficient against fungi or Gram negative bacteria. However, growth inhibition against *E. coli* ATCC 25922 was obtained in this study. Colabomycin A belongs to the manumycin group, however, it shows less growth inhibition of Gram positive bacteria than manumycin, which is relatable to the results presented. It was also discovered that colabomycin A can have anticancer properties (Grote & Zeeck, 1988).

*Streptomyces albogriseolus* PMIC\_2A12B.1 was bioactive against *S. aureus* inhibiting 87.36% of its growth, and also against *E. coli* ATCC 25922 (56.06% growth inhibition). This species is responsible for the production of several bioactive compounds including the anticancer drugs echinosporin and microeunicellols A and B (Cui et al., 2007; Ma et al., 2020). Furthermore, *S. albogriseolus* also produces the antibacterial methyl-4,8-dimethylundecanate and the antimicrobial albogrisin A (Gao et al., 2019; Thirumurugan et al., 2018).

*Streptomyces setonii* PMIC\_1F12B was only bioactive against *E. coli* ATCC 25922 (62.07% growth inhibition) and there is no information about the bioactive potential of this species.

*Streptomyces flavoviridis* PMIC\_1A8B was the most consistent strain in terms of bioactivity, presenting a strong growth inhibition of *S. aureus* ATCC 29213 (100%), comparable to the effect of ampicillin, and also being bioactive against *E. coli* ATCC 25922 (75.85% average bioactivity). The growth inhibition of *S. aureus* ATCC 29213 was 100% in the 3 replicates, as it is possible to see in Fig. 16 where the transparency in the well with the extract was similar to that of the ampicillin control and of the blank. *S. flavoviridis* is responsible for the production of zorbamycin, an antibiotic with anticancer activity (Wang et al., 2007). It was found that this antibiotic is active against several Gram negative and Gram positive bacteria as well as fungi, having a strong bioactivity against *S. aureus* (Argoudelis et al., 1971), just like what happened in the current study.

Strains PMIC\_1A11B.2, PMIC\_2A11B.1, PMIC\_2H2C.2 and PMIC\_1F6A.3 are all affiliated with *Nocardiopsis alba*. Most of them were only bioactive against *E. coli* ATCC 25922, however, PMIC\_2H2C.2 was only bioactive against *S. aureus* 29213 (Supplementary Table 2). This species is known for the production of several bioactive compounds including isomethoxyneihumicin, a compound with cytotoxic activity against Jurkat cells, inhibiting the cell cycle (Fukuda et al., 2017). *N. alba* is also responsible for the production of

albonoursin, a cyclic dipeptide with antibacterial activity (Li et al., 2014) and nocazine D and E and nocarazepine A, three diketopiperazines (Zhang et al., 2013; Zhou et al., 2017).

*Rhodococcus coprophilus* strain PMIC\_1E10C also displayed bioactivity against *E. coli* ATCC 25922, but not against *S. aureus* ATCC 29213. This species is able to biotransform hydrocortisone (Costa et al., 2020). In spite of this, it has not been reported bioactivity for this species.



Figure 16-96 well plate of the second assay with *S. aureus* after incubating for 24 h. Amp – ampicillin; DMSO – DMSO control; CM – culture medium blank; GC - growth control; 1A8B - S. *flavoviridis* extract effect on the *S. aureus* growth were is visible that the culture medium is without any apparent growth.

Arenibacter aquaticus PMIC\_1E11B.2 was bioactive against *E. coli* ATCC 25922 (64.96% bioactivity). For this species there is no data regarding its bioactivity. However, Chen et al., (2013) confirmed that *Arenibacter nanhaiticus* produced phenethylamine derivatives, despite having weak activity against *S. aureus* and *B. subtilis*. More recently, Romanenko et al., (2020) performed a biodiversity screening with strains of *Arenibacter* isolated from sediments in Russia. These *Arenibacter* strains possessed PKS-I just like the *Arenibacter aquaticus* that was used in this study (Supplementary Table 1). These authors also reported that the information regarding the *Arenibacter* genus is very limited.

*Nocardia nova* PMIC\_1A10B presented activity against *E. coli* ATCC 25922 (50.64%). In the literature it is described the production of nocardimicins from this species, which inhibit the muscarinic receptors (Ikeda et al., 2005). Muscarinic receptors can be found in neurons and are important for the action of the parasympathetic nervous system (Abrams et al., 2006).

Strain PMO138\_17 corresponds to a new species which is more closely associated with *Methylotenera mobilis* JLW8. This new species along with *Aquimarina algiphila* PMO90\_19.1 and *Arthrobacter gandavensis* PMIC\_1E12B were all bioactive against *E. coli* ATCC 25922 (68.76%; 70.75% and 64.82% bioactivity respectively) but were not bioactive against *S. aureus* ATCC 29213. For all these species there is no information about their bioactive potential.

In all the antimicrobial assays performed the antibiotic control worked as intended, as well as the growth and the DMSO control. Despite that, the culture medium extract possessed an average bioactivity of 25.76% against *E. coli* ATCC 25922 and 8.65% against *S. aureus* ATCC 29213. The bioactivity that was expressed in the culture medium might be due to the use of natural seawater in the medium. Natural seawater corresponds to a very complex mixture of components that limit the reproducibility of assays, since each batch is unique and, therefore, differs from the next one. There is also the limitation due to seawater collected in different locations to prepare the culture media, which has distinctive characteristics that constrain the replication of the results (Henson et al., 2016).

# **3.4.2. OSMAC approach**

For the OSMAC approach the strains that previously showed bioactivity were selected. As so, all the strains that previously have inhibited the growth of *E. coli* ATCC 25922 or *S. aureus* ATCC 29213 above 50% were tested in 5 different culture media, with different nutrient richness (M600, M607, 1:10 M607, MA and CGY), except for strains PMO138\_17 and PMO90\_19.1 which did not present enough biomass in order to make the compound's extraction.

The bioactive strains and the respective controls are presented in Figs. 17 to 25. The average bioactivity and the bioactivity values of the 3 replicates as well as the information regarding the non-bioactive strains are shown on Supplementary Table 3.



Figure 17 – Growth of *E. coli* ATCC 25922 when in contact with strain PMIC\_2A12B.1 extracts made from 5 different culture media. It is possible to observe the streptomycin control, the culture media extract controls, the growth control and the DMSO control. The asterisks correspond to statistically significant conditions (p < 0.05).

This time, *S. albogriseolus* strain PMIC\_2A12B.1 was bioactive against *E. coli* ATCC 25922 (Fig. 17). Despite testing 5 different culture media, including the M607 medium, which was initially used to assess the bioactivities of all the strains in a preliminary assay, none of them showed bioactivity against *S. aureus* ATCC 29213, when initially this strain in specific showed to be bioactive against both *E. coli* ATCC 25922 and *S. aureus* ATCC 29213. Regarding the variation between the different culture media for the *E. coli* ATCC 25922 assay, in 1:10 M607, which is a medium with less nutrient load, it was possible to observe the highest average bioactivity, with 90.4% growth inhibition. In CGY there was also a higher bioactivity than in the other media with 68.9% bioactivity. The other three media presented similar bioactivities of around 50%.

The OSMAC approach has already been applied to *S. albogriseolus*, but instead of experimenting with the culture media composition, this species was cultivated in co-culture



with *Bacillus cereus*. This interaction resulted in the production of a new peptide: dentigerumycin E which possesses anticancer activity (Shin et al., 2018).

Figure 18 – Growth of *E. coli* ATCC 25922 when in contact with strain PMIC\_1A10B extracts made from 5 different culture media. It is possible to observe the streptomycin control, the culture media extract controls, the growth control and the DMSO control. The asterisks correspond to statistically significant conditions (p < 0.05).

Regarding *N. nova* strain PMIC\_1A10B, just like before, it was only bioactive against *E. coli* ATCC 25922 (Fig. 18). However, its bioactivity has increased when compared to its previous average activity (50.65%). In M607, its average *E. coli* ATCC 25922 growth inhibition was 61.95%. A lower value was obtained for MA and for all the other culture media, the activity was higher. Again, the 1:10 M607 culture medium which was considered a poorer medium showed better results, with a 100% growth inhibition of *E. coli* ATCC 25922.

*N. alba* strain PMIC\_2H2C.2 was bioactive against *E. coli* ATCC 25922 (Fig. 19) but not against *S. aureus* ATCC 29213, unlike what was shown in the preliminary assay where this strain was only bioactive against *S. aureus* ATCC 29213. This strain showed the highest bioactivity in 1:10 M607 with 91.63% bioactivity against *E. coli* ATCC 25922, followed by CGY (68.1%) and M600 (54.68%), just like the majority of strains that were tested in the OSMAC approach. However, for MA and M607 this strain was not considered



Figure 19 – Growth of *E. coli* ATCC 25922 when in contact with strain PMIC\_2H2C.2 extracts made from 5 different culture media. It is possible to observe the streptomycin control, the culture media extract controls, the growth control and the DMSO control. The asterisks correspond to statistically significant conditions (p < 0.05).



Figure 20 - Growth of *E. coli* ATCC 25922 when in contact with strain PMIC\_1F12B extracts made from 5 different culture media. It is possible to observe the streptomycin control, the culture media extract controls,

the growth control and the DMSO control. The asterisks correspond to statistically significant conditions (p < 0.05).

Similarly, *S. setonii* strain PMIC\_1F12B was most bioactive against *E. coli* ATCC 25922 (Fig. 20) when cultivated in 1:10 M607 (93.07%) and the culture medium that had the second highest activity was CGY (70.36%) followed by M600 (52.88%). Both MA and M607 did not display bioactivity, despite in the preliminary assay with M607 it has showed a 62.07% growth inhibition of *E. coli* ATCC 25922. In the literature it is referred that *Streptomyces* are unable to produce bioactive compounds when cultivated in culture medium that contain casein (Williams & Davies, 1965). However, this does not apply to this strain, as well as other *Streptomyces*, since in CGY some of the highest growth inhibitions for *E. coli* ATCC 25922 were obtained.

*S. hydrogenans* strain PMIC\_111A was bioactive against both *E. coli* ATCC 25922 and *S. aureus* ATCC 29213 (Figs. 21 and 22). For *E. coli* ATCC 25922, this strain was bioactive in the culture media 1:10 M607 and CGY, while for *S. aureus* ATCC 29213, the bioactivity occurred in 1:10 M607.



Figure 21 - Growth of *E. coli* ATCC 25922 when in contact with strain PMIC\_111A extracts made from 5 different culture media. It is possible to observe the streptomycin control, the culture media extract controls, the growth control and the DMSO control. The asterisks correspond to statistically significant conditions (p < 0.05).



Figure 22 – Growth of *S. aureus* ATCC 29213 when in contact with strain PMIC\_111A extracts made from 5 different culture media. It is possible to observe the streptomycin control, the culture media extract controls, the growth control and the DMSO control. The asterisks correspond to statistically significant conditions (p < 0.05).

*S. griseoflavus* strain PMIC\_1D9B possessed bioactivity against *E. coli* ATCC 25922 in all culture media except in MA (Fig. 23), with the highest growth inhibition being observed in CGY (98.28%). For *S. aureus* ATCC 29213, growth inhibition was only observed in the CGY culture medium (91.06%) (Fig. 24).

*S. flavoviridis* strain PMIC\_1A8B was again highly bioactive against *S. aureus* ATCC 29213 with 100% growth inhibition when cultivated in M600 and M607 culture media (Fig. 25). These results are contrary to the ones obtained for the other strains, where higher bioactivities were obtained in CGY and 1:10 M607.

The other strains that were initially considered bioactive that are not presented here were not bioactive in the OSMAC antimicrobial assay (Supplementary Table 3).

All the culture media extract controls tested were not considered bioactive, however in some cases the activity against the target strains was above 10%, namely in 1:10 M607 (14.72%), M600 (10.19%) and M607 (12.01%) for *S. aureus* and M600 (15.43%) and M607 (11.7%) for *E. coli* ATCC 2592.



Figure 23 – Growth of *E. coli* ATCC 25922 when in contact with strain PMIC\_1D9B extracts made from 5 different culture media. It is possible to observe the streptomycin control, the culture media extract controls, the growth control and the DMSO control. The asterisks correspond to statistically significant conditions (p < 0.05).



Figure 24 – Growth of *S. aureus* ATCC 29213 when in contact with strain PMIC\_1D9B extracts made from 5 different culture media. It is possible to observe the streptomycin control, the culture media extract controls, the growth control and the DMSO control. The asterisks correspond to statistically significant conditions (p < 0.05).



Figure 25 – Growth of *S. aureus* ATCC 29213 when in contact with strain PMIC\_1A8B extracts made from 5 different culture media. It is possible to observe the streptomycin control, the culture media extract controls, the growth control and the DMSO control. The asterisks correspond to statistically significant conditions (p < 0.05).

As stated in the literature, different bioactive compounds require different conditions in order to activate the dormant genes that express them (Barrios-González, 2018). The 5 different culture media used in this study, differ in the proportion of nitrogen and carbon sources. Carbon sources might influence the production of secondary metabolites. For example, glucose has an influence in the production of antibiotics such as streptomycin and kanamycin by *Streptomyces* (Sánchez et al., 2010). Furthermore, antimycin, which has been proven to be produced by *S. albidoflavus* is also affected by the amount of glucose and glycerol present in the culture medium (Sanchez & Demain, 2002).

If the nitrogen source is constituted by amino acids, this might also affect the production of secondary metabolites, since NRPS and NRPS-PKS hybrids contain amino acids in their structure (Romano et al., 2018). In fungi, when the only nitrogen source is either peptone or yeast extract, there is a decrease in the quantity of antimicrobial compounds produced with the increment of biomass above certain levels. Lower concentrations of these nitrogen sources contributed to the production of secondary metabolites (Miao et al., 2006). This way, nutrient poor culture media also favour the production of anticancer and antimicrobial metabolites produced by diatoms and microalgae as well (Lauritano et al.,

2016; Wang et al., 2018). In this study, the highest bioactivity obtained for most of the strains was in fact obtained in the 1:10 M607 culture medium, which is nutritionally poorer when compared to the others. However, it was also possible to obtain very high activities in the CGY culture medium which is considered to be more nutrient rich. For example, Machushynets et al., (2019) discovered that high concentrations of glycerol, which is used as a carbon source in the CGY culture medium, could trigger the production of quinazolinone A and B by *Streptomyces* sp. MBT27. This result was not possible with other carbon sources such as glucose.

OSMAC approaches are normally based in certain cultivation conditions, with the most commonly used condition being the application of nutrient rich culture media (Mearns-Spragg et al., 1998; Rigali et al., 2008). In this study, 5 culture media with different composition and different nutrient concentrations were used.

Salinity is another aspect that might influence the production of secondary metabolites. Growth under high salinity conditions is prone to trigger the production of bioactive compounds (Wang et al., 2011), while low salt concentration might inhibit the production of those same compounds (Bose et al., 2015; Ng et al., 2014).

Regarding the differences between using solid culture medium *versus* liquid culture medium, it is said that in solid media the microorganisms are forced to develop another type of physiology and since the media is more concentrated than when in liquid culture the production of bioactive compounds is stimulated (Barrios-González, 2012). Besides, strains that are able to obtain higher growth rates are also better suited for cultivation in solid media (Barrios-González & Mejýa, 2008). This might indicate that bacterial groups such as *Planctomycetes* that were not bioactive in this study (Supplementary Table 2), are not suited for this kind of cultural strategy.

## 4. Conclusion

In principle, *R. ulvae* UC8<sup>T</sup> transformation was achieved, but due to non-validation of controls, this process could not be confirmed. Furthermore, *R. ulvae* UC8<sup>T</sup> extracts showed to be bioactive against *E. coli* ATCC 25922, which could interfere with the growth of the donor and helper *E. coli* DH5 $\alpha$  involved in the transformation process in the triparental mating.

Regarding the antimicrobial assays using strains that previously presented the presence of PKS-I, NRPS or both genes, the majority of the bacteria that showed bioactivity belong to the phylum *Actinobacteria*, being the most bioactive strain *S. flavoviridis* strain PMIC\_1A8B which was able to 100% inhibit *S. aureus*' growth. The only strains that did not belong to the *Actinobacteria* phylum, and that were bioactive, are the *Flavobacteriaceae A. aquaticus* PMIC\_1E11B.2 and *A. algiphila* PMO90\_19.1 and a novel taxon in the *Proteobacteria* phylum, strain PMO137\_18, which is most closely affiliated with *Methylotenera mobilis* JLW8.

The OSMAC approach, performed using the bioactive strains from the preliminary assay, showed, in general, higher levels of bioactivity mainly when the strains were grown in 1:10 M607 and CGY culture media. The results also indicate that there are, in fact, differences between the cultivation in different culture media for the production of bioactive compounds.

Future perspectives include scale up studies in order to confirm the strains' bioactivity. It is also important to verify the bioactivity of extracts of culture medium, therefore, the use of sea salts or artificial seawater instead of natural seawater would be crucial, since the first batch of culture medium extracts showed some growth inhibition of the target strains. Natural seawater composition varies from batch to batch and these variations might influence the antimicrobial assays results. Furthermore, it would be interesting to explore the extracts' composition that showed bioactivity. In fact, dereplication of the extracts is already in progress.

# 5. References

- Abrams, P., Andersson, K. E., Buccafusco, J. J., Chapple, C., De Groat, W. C., Fryer, A. D., Kay, G., Laties, A., Nathanson, N. M., Pasricha, P. J., & Wein, A. J. (2006). Muscarinic receptors: Their distribution and function in body systems, and the implications for treating overactive bladder. *British Journal of Pharmacology*, 148(5), 565–578. https://doi.org/10.1038/sj.bjp.0706780
- Anjum, K. (2021). Biologically active peptides from marine *Proteobacteria*: Discussion article. *Open Journal of Bacteriology*, 5(1), 005–012. https://doi.org/10.17352/ojb.000018
- Ansel, H. C., Norred, W. P., & Roth, I. L. (1969). Antimicrobial activity of dimethyl sulfoxide against *Escherichia coli*, *Pseudomonas aeruginosa*, and *Bacillus megaterium*. *Journal of Pharmaceutical Sciences*, 58(7), 836–839. https://doi.org/10.1002/jps.2600580708
- Ansorge, W. J. (2009). Next-generation DNA sequencing techniques. New Biotechnology, 25(4), 195–203. https://doi.org/10.1016/j.nbt.2008.12.009
- Argoudelis, A. D., Bergy, M. E., & Pyke, T. R. (1971). Zorbamycin and Related Antibiotics. *The Journal of Antibiotics*, 24(8), 543–557.
- Azman, A. S., Othman, I., Fang, C. M., Chan, K. G., Goh, B. H., & Lee, L. H. (2017). Antibacterial, Anticancer and Neuroprotective Activities of Rare Actinobacteria from Mangrove Forest Soils. Indian Journal of Microbiology, 57(2), 177–187. https://doi.org/10.1007/s12088-016-0627-z
- Balan, S. S., Kumar, C. G., & Jayalakshmi, S. (2016). Pontifactin, a new lipopeptide biosurfactant produced by a marine *Pontibacter korlensis* strain SBK-47: Purification, characterization and its biological evaluation. *Process Biochemistry*, 51(12), 2198– 2207. https://doi.org/10.1016/j.procbio.2016.09.009
- Barrios-González, J. (2012). Solid-state fermentation: Physiology of solid medium, its molecular basis and applications. *Process Biochemistry*, 47(2), 175–185. https://doi.org/10.1016/j.procbio.2011.11.016
- Barrios-González, J. (2018). Secondary Metabolites Production: Physiological Advantages in Solid-State Fermentation. In *Current Developments in Biotechnology and Bioengineering* (pp. 257–283). https://doi.org/10.1016/b978-0-444-63990-5.00013-x

- Barrios-González, J., & Mejýa, A. (2008). Production of Antibiotics and other Commercially Valuable Secondary Metabolites. In *Current Developments in Solid-state Fermentation* (pp. 302–336).
- Berdi, J. (2005). Bioactive Microbial Metabolites. *Journal of Antibiotics*, 58(1), 1–26. https://0-www-nature-com.pugwash.lib.warwick.ac.uk/articles/ja20051.pdf
- Bergmann, W., & Feeneyz, R. J. (1951). Contributions to the study of marine products. XXXII. The nucleosides of sponges. *The Journal of Organic Chemistry*, 16(6), 981– 987.
- Bernander, R., & Ettema, T. J. G. (2010). FtsZ-less cell division in archaea and bacteria. *Current Opinion in Microbiology*, 13(6), 747–752. https://doi.org/10.1016/j.mib.2010.10.005
- Bhattacharya, D., Lai, T. K., Saha, A., & Selvin, J. (2019). Structural elucidation and antimicrobial activity of a diketopiperazine isolated from a *Bacillus* sp. associated with the marine sponge *Spongia officinalis*. *Natural Product Research*, *October*, 1–9. https://doi.org/10.1080/14786419.2019.1672684
- Bhattacharya, D., Villalobos, S. D. L. S., Ruiz, V. V., Selvin, J., & Mukherjee, J. (2020). *Bacillus rugosus* sp. nov . producer of a diketopiperazine antimicrobial , isolated from marine sponge *Spongia*. *Antonie van Leeuwenhoek*, 9. https://doi.org/10.1007/s10482-020-01472-9
- Blunt, J. W., Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., & Prinsep, M. R. (2018). Marine natural products. *Natural Product Reports*, 35(1), 8–53. https://doi.org/10.1039/c7np00052a
- Bode, H. B., Bethe, B., Höfs, R., & Zeeck, A. (2002). Big effects from small changes: Possible ways to explore nature's chemical diversity. *ChemBioChem*, 3(7), 619–627. https://doi.org/10.1002/1439-7633(20020703)3:7<619::AID-CBIC619>3.0.CO;2-9
- Boeckel, T. P. Van, Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N. G., Gilbert, M., Bonhoeffer, S., & Laxminarayan, R. (2019). Global trends in antimicrobial resistance in animals in low- and middle-income countries. *Science*, 365(6459). https://doi.org/10.1126/science.aaw1944
- Boedeker, C., Schu, M., Reintjes, G., Jeske, O., Teeseling, M. C. F. Van, Jogler, M., Rast, P., Borchert, D., Devos, D. P., Kucklick, M., Schaffer, M., Kolter, R., Niftrik, L. Van, Engelmann, S., Amann, R., Rohde, M., Engelhardt, H., & Jogler, C. (2017).

Determining the bacterial cell biology of *Planctomycetes*. *Nature Communications*, 8(14853), 14853. https://doi.org/10.1038/ncomms14853

- Bondoso, J., Albuquerque, L., Nobre, M. F., Lobo-da-Cunha, A., da Costa, M. S., & Lage,
  O. M. (2011). Aquisphaera giovannonii gen. nov., sp. nov., a planctomycete isolated from a freshwater aquarium. International Journal of Systematic and Evolutionary Microbiology, 61(12), 2844–2850. https://doi.org/10.1099/ijs.0.027474-0
- Bose, U., Hewavitharana, A. K., Ng, Y. K., Shaw, P. N., Fuerst, J. A., & Hodson, M. P. (2015). LC-MS-based metabolomics study of marine bacterial secondary metabolite and antibiotic production in *Salinispora arenicola*. *Marine Drugs*, *13*(1), 249–266. https://doi.org/10.3390/md13010249
- Breinlinger, S., Phillips, T. J., Haram, B. N., Mareš, J., Martínez Yerena, J. A., Hrouzek, P.,
  Sobotka, R., Henderson, W. M., Schmieder, P., Williams, S. M., Lauderdale, J. D.,
  Wilde, H. D., Gerrin, W., Kust, A., Washington, J. W., Wagner, C., Geier, B., Liebeke,
  M., Enke, H., ... Wilde, S. B. (2021). Hunting the eagle killer: A cyanobacterial
  neurotoxin causes vacuolar myelinopathy. *Science*, *371*(6536).
  https://doi.org/10.1126/science.aax9050
- Brown, E. D., & Wright, G. D. (2016). Antibacterial drug discovery in the resistance era. *Nature*, *529*, 336–343. https://doi.org/10.1038/nature17042
- Buckley, D. H., Huangyutitham, V., Nelson, T. A., Rumberger, A., & Thies, J. E. (2006). Diversity of *Planctomycetes* in Soil in Relation to Soil History and Environmental Heterogeneity. *Applied and Environmental Microbiology*, 72(7), 4522–4531. https://doi.org/10.1128/AEM.00149-06
- Bulkley, D., Innis, C. A., Blaha, G., & Steitz, T. A. (2010). Revisiting the structures of several antibiotics bound to the bacterial ribosome. *Proceedings of the National Academy of Sciences of the United States of America*, 107(40), 17158–17163. https://doi.org/10.1073/pnas.1008685107
- Calisto, R., Sæbø, E. F., Storesund, J. E., Øvreås, L., Herfindal, L., & Lage, O. M. (2019). Anticancer Activity in *Planctomycetes*. *Frontiers in Marine Science*, 5(January), 1–10. https://doi.org/10.3389/fmars.2018.00499
- Chen, I., Christie, P. J., & Dubnau, D. (2012). The Ins and Outs of DNA Transfer in Bacteria. *Science*, *310*(5753), 1456–1460. https://doi.org/10.1126/science.1114021
- Chen, Y., Tang, J., Tang, X., Wang, C., Lian, Y., Shao, Z., Yao, X., & Gao, H. (2013). New

phenethylamine derivatives from *Arenibacter nanhaiticus* sp. nov. NH36A T and their antimicrobial activity. *Journal of Antibiotics*, *66*(11), 655–661. https://doi.org/10.1038/ja.2013.65

- Colegate, S. M., & Molyneux, R. J. (2008). *Bioactive Natural Products: Detection, Isolation* and Strutural Determination 2nd Edition.
- Costa, S., Zappaterra, F., Summa, D., Semeraro, B., & Fantin, G. (2020). Δ1-Dehydrogenation and C20 Reduction of Cortisone and Hydrocortisone Catalyzed by. *Molecules*, 25(9), 2192.
- Cui, C. B., Liu, H. B., Gu, J. Y., Gu, Q. Q., Cai, B., Zhang, D. Y., & Zhu, T. J. (2007).
  Echinosporins as new cell cycle inhibitors and apoptosis inducers from marine-derived *Streptomyces albogriseolus*. *Fitoterapia*, 78(3), 238–240.
  https://doi.org/10.1016/j.fitote.2006.11.017
- Dedysh, S. N., Henke, P., Ivanova, A. A., Kulichevskaya, I. S., Philippov, D. A., Meier-Kolthoff, J. P., Göker, M., Huang, S., & Overmann, J. (2020). 100-year-old enigma solved: identification, genomic characterization and biogeography of the yet uncultured *Planctomyces bekefii. Environmental Microbiology*, 22(1), 198–211. https://doi.org/10.1111/1462-2920.14838
- Dedysh, S. N., & Ivanova, A. A. (2019). *Planctomycetes* in boreal and subarctic wetlands : diversity patterns and potential ecological functions. *FEMS Microbiology Ecology*, 95(2). https://doi.org/10.1093/femsec/fiy227
- Desriac, F., Jégou, C., Balnois, E., Brillet, B., Le Chevalier, P., & Fleury, Y. (2013). Antimicrobial peptides from marine *Proteobacteria*. *Marine Drugs*, *11*(10), 3632–3660. https://doi.org/10.3390/md11103632
- Devos, D., Dokudovskaya, S., Alber, F., Williams, R., Chait, B. T., Sali, A., & Rout, M. P. (2004). Components of Coated Vesicles and Nuclear Pore Complexes Share a Common Molecular Architecture. *PLOS Biology*, 2(12). https://doi.org/10.1371/journal.pbio.0020380
- Devos, D. P. (2014). Re-interpretation of the evidence for the PVC cell plan supports a Gram-negative origin. Antonie Van Leeuwenhoek, 105(2), 271–274. https://doi.org/10.1007/s10482-013-0087-y
- Dewick, P. M. (2009). Medicinal Natural Products Medicinal. In John Wiley & Sons, Ltd. (Vol. 1).

- Diez, J., Martinez, J. P., Mestres, J., Sasse, F., Frank, R., & Meyerhans, A. (2012). *Myxobacteria* : natural pharmaceutical factories. *Microbial Cell Factories*, 11, 2–4.
- Donadio, S., Monciardini, P., & Sosio, M. (2007). Polyketide synthases and nonribosomal peptide synthetases: The emerging view from bacterial genomics. *Natural Product Reports*, 24(5), 1073–1079. https://doi.org/10.1039/b514050c
- Dutta, S., Basak, B., Bhunia, B., Chakraborty, S., & Dey, A. (2014). Kinetics of rapamycin production by *Streptomyces hygroscopicus* MTCC 4003. *3 Biotech*, 4(5), 523–531. https://doi.org/10.1007/s13205-013-0189-2
- Dyrda, G., Boniewska-Bernacka, E., Man, D., Barchiewicz, K., & Słota, R. (2019). The effect of organic solvents on selected microorganisms and model liposome membrane. *Molecular Biology Reports*, 46(3), 3225–3232. https://doi.org/10.1007/s11033-019-04782-y
- El-Naggar, M. Y. M. (1997). Dibutyl phthalate and the antitumour agent F5A1, two metabolites produced by *Streptomyces nasri* submutant H35. *Biomedical Letters*, 55(218), 125–131.
- Erbilgin, O., Mcdonald, K. L., & Kerfeld, A. (2014). Characterization of a Planctomycetal Organelle : a Novel Bacterial Microcompartment for the Aerobic Degradation of Plant Saccharides. *Applied and Environmental Microbiology*, 80(7), 2193–2205. https://doi.org/10.1128/AEM.03887-13
- Esteves, A. I. S., Hardoim, C. C. P., Xavier, J. R., Gonçalves, J. M. S., & Costa, R. (2013). Molecular richness and biotechnological potential of bacteria cultured from Irciniidae sponges in the north-east Atlantic. *FEMS Microbiology Ecology*, 85(3), 519–536. https://doi.org/10.1111/1574-6941.12140
- Faulkner, D. J. (2001). Marine natural products. *Natural Product Reports*, 18(1), 1–49. https://doi.org/10.1039/b006897g
- Felder, S., Dreisigacker, S., Kehraus, S., Neu, E., Bierbaum, G., Wright, P. R., Menche, D., Schaberle, T. F., & Kçnig, G. M. (2013). Salimabromide: Unexpected Chemistry from the Obligate Marine Myxobacterium *Enhygromxya salina*. *Chemistry*, *19*(28), 9319– 9324. https://doi.org/10.1002/chem.201301379
- Figurski, D. H., & Helinski, D. R. (1979). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. *Proceedings of the National Academy of Sciences of the United States of America*, 76(4), 1648–1652.

- Fischbach, M. A., & Walsh, C. T. (2006). Assembly-Line Enzymology for Polyketide and Nonribosomal Peptide Antibiotics : Logic , Machinery , and Mechanisms. *Chemical Reviews*, 106(8), 3468–3496.
- Fudou, R., T Iizuka, S. S., T Ando, N. S., & Yamanaka, S. (2001). Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. 2. Isolation and structural elucidation. *The Journal of Antibiotics*, 54(2), 152–156.
- Fuerst, J. A. (2017). Planctomycetes New Models for Microbial Cells and Activities. In Microbial Resources. Elsevier Inc. https://doi.org/10.1016/B978-0-12-804765-1/00001-1
- Fuerst, J. A., & Sagulenko, E. (2011). Beyond the bacterium: *Planctomycetes* challenge our concepts of microbial structure and function. *Nature Reviews Microbiology*, 9(June), 13–18. https://doi.org/10.1038/nrmicro2578
- Fuerst, J. A., & Webb, R. I. (1991). Membrane-bounded nucleoid in the eubacterium Gemmata obscuriglobus. Proceedings of the National Academy of Sciences, 88(September), 8184–8188.
- Fukuda, T., Takahashi, M., Nagai, K., Harunari, E., Imada, C., & Tomoda, H. (2017).
  Isomethoxyneihumicin, a new cytotoxic agent produced by marine *Nocardiopsis alba* KM6-1. *Journal of Antibiotics*, 70(5), 590–594. https://doi.org/10.1038/ja.2016.152
- Fukunaga, Y., Kurahashi, M., Sakiyama, Y., Ohuchi, M., Yokota, A., & Harayama, S. (2009). *Phycisphaera mikurensis* gen. nov., sp. nov., isolated from a marine alga, and proposal of Phycisphaeraceae fam. nov., Phycisphaerales ord. nov. and Phycisphaerae classis nov. in the phylum *Planctomycetes*. *The Journal of General and Applied Microbiology*, 55(4), 267–275.
- Gao, D., Zhou, T., Da, L. T., Bruhn, T., Guo, L. L., Chen, Y. H., Xu, J., & Xu, M. J. (2019). Characterization and Nonenzymatic Transformation of Three Types of Alkaloids from *Streptomyces albogriseolus* MGR072 and Discovery of Inhibitors of Indoleamine 2,3-Dioxygenase. *Organic Letters*, 21(21), 8577–8581. https://doi.org/10.1021/acs.orglett.9b03149
- Garcillán-Barcia, M. P., Francia, M. V., & Cruz, F. de la. (2009). The diversity of conjugative relaxases and its application in plasmid classification. *FEMS Microbiology Reviews*, 33(3), 657–687. https://doi.org/10.1111/j.1574-6976.2009.00168.x

Giedraitienė, A., Vitkauskienė, A., Naginienė, R., & Pavilonis, A. (2011). Antibiotic

Resistance Mechanisms of Clinically Important Bacteria. *Medicina (Kaunas)*, 47(3), 137–146.

- Gimesi, N. (1924). Hydrobiologiai Tanulmányok [Hydrobiological studies]. I. *Planctomyces bekefii* Gim. Nov. gen. Et sp. *Budapest Kiadja a Magy Ciszterci Rend*, 1–8.
- Glöckner, F. O., Kube, M., Bauer, M., Teeling, H., Lombardot, T., Ludwig, W., Gade, D., Beck, A., Borzym, K., Heitmann, K., Rabus, R., Schlesner, H., Amann, R., & Reinhardt, R. (2003). Complete genome sequence of the marine planctomycete *Pirellula* sp. strain 1. *Proceedings of the National Academy of Sciences of the United States of America*, 100(14), 8298–8303. https://doi.org/10.1073/pnas.1431443100
- Godinho, O. (2018). Several aspects of *Planctomycetes* biology.
- Godinho, O., Calisto, R., Øvreås, L., Quinteira, S., & Lage, O. M. (2019). Antibiotic susceptibility of marine *Planctomycetes*. *Antonie van Leeuwenhoek*, 112(8), 1273– 1280. https://doi.org/10.1007/s10482-019-01259-7
- Graça, A. P., Bondoso, J., Gaspar, H., Xavier, J. R., Monteiro, M. C., de la Cruz, M., Oves-Costales, D., Vicente, F., & Lage, O. M. (2013). Antimicrobial Activity of Heterotrophic Bacterial Communities from the Marine Sponge *Erylus discophorus* (Astrophorida, Geodiidae). *Plos One*, 8(11). https://doi.org/10.1371/journal.pone.0078992
- Graça, A. P., Calisto, R., & Lage, O. M. (2016). *Planctomycetes* as Novel Source of Bioactive Molecules. *Front Microbiol.*, 7(August). https://doi.org/10.3389/fmicb.2016.01241
- Graça, A. P., Viana, F., Bondoso, J., Correia, M. I., Gomes, L., Humanes, M., Reis, A., Xavier, J. R., Gaspar, H., & Lage, O. M. (2015). The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge *Erylus deficiens* (Astrophorida, Geodiidae). *Frontiers in Microbiology*, 6(May), 389. https://doi.org/10.3389/fmicb.2015.00389
- Gribble, G. W. (2000). The natural production of organobromine compounds. *Environmental Science and Pollution Research*, 7(1), 37–49. https://doi.org/10.1065/espr199910.002
- Gribble, G. W. (2015). Biological activity of recently discovered halogenated marine natural products. *Marine Drugs*, *13*(7), 4044–4136. https://doi.org/10.3390/md13074044
- Grohmann, E., Muth, G., & Espinosa, M. (2003). Conjugative Plasmid Transfer in Gram-

Positive Bacteria. *Microbiology and Molecular Biology Reviews*, 67(2), 277–301. https://doi.org/10.1128/MMBR.67.2.277

- Grote, R., & Zeeck, A. (1988). Metabolic products of microorganisms. 244. Colabomycins, new antibiotics of the manumycin group from *Streptomyces griseoflavus*. I. Isolation, characterization and biological properties. *The Journal of Antibiotics*, 41(9), 1178– 1185. https://doi.org/10.7164/antibiotics.41.1178
- Gürel, E. (2001). Insertion of an Antimicrobial Gene into *Agrobacterium* and its Further Use in Transforming Tobacco. *Turkish Journal of Botany*, 25, 169–175.
- Haefner, B. (2003). Drugs from the deep : marine natural. *Drug Discovery Today*, 8(12), 536–544.
- Helynck, G., Dubertret, C., Mayaux, J. F., & Leboul, J. (1993). Isolation of RP 71955, a new Anti-Hiv-1 peptide secondary metabolite. *Journal of Antibiotics*, 46(11), 1756–1757. https://doi.org/10.7164/antibiotics.46.1756
- Henson, M. W., Pitre, D. M., Weckhorst, J. L., Lanclos, V. C., Webber, A. T., & Thrash, J. C. (2016). Artificial Seawater Media Facilitate Cultivating Members of the Microbial Majority from the Gulf of Mexico. *MSphere*, 3(4), 1–10. https://doi.org/10.1128/msphere.00415-18
- Hirsch, P. (1972). Two Identical Genera of Budding and Stalked Bacteria: Planctomyces Gimesi 1924 and Blastocaulis Henrici and Johnson 1935. International Journal of Systematic Bacteriology, 22(2), 107–111.
- Hong, W.-H., Chang, T., & E.Daly, R. (1986). Vidarabine. Analytical Profiles of Drug Susbstances, 15, 647–672.
- Hudson, J., Kumar, V., & Egan, S. (2019). Comparative genome analysis provides novel insight into the interaction of *Aquimarina* sp. AD1, BL5 and AD10 with their macroalgal host. *Marine Genomics*, 46(August), 8–15. https://doi.org/10.1016/j.margen.2019.02.005
- Ikeda, Y., Furumai, T., & Igarashi, Y. (2005). Nocardimicins G, H and I, siderophores with muscarinic M3 receptor binding inhibitory activity from *Nocardia nova* JCM 6044. *Journal of Antibiotics*, 58(9), 566–572. https://doi.org/10.1038/ja.2005.77
- Interagency Coordination Group on Antimicrobial Resistance. (2019). *No time to wait: Securing the future from drug-resistant infections* (Issue April).
- Irschik, H., Gerth, K., Reichenbach, H., Höfle, G., & Kohl, W. (1983). The myxopyronins,
new inhibitors of bacterial rna synthesis from *Myxococcus fulvus* (myxobacterales). *Journal of Antibiotics*, *36*(12), 1651–1658. https://doi.org/10.7164/antibiotics.36.1651

- Izumi, H., Sagulenko, E., Webb, R. I., & Fuerst, J. A. (2013). Isolation and diversity of planctomycetes from the sponge *Niphates* sp., seawater, and sediment of Moreton Bay, Australia. *Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology*, 104(4), 533–546. https://doi.org/10.1007/s10482-013-0003-5
- Jermy, A. (2010). Evolution: Bacterial endocytosis uncovered. *Nature Reviews*. *Microbiology*, 8(8), 534. https://doi.org/10.1038/nrmicro2408
- Jeske, O., Jogler, M., Sikorski, J., & Jogler, C. (2013). From genome mining to phenotypic microarrays: *Planctomycetes* as source for novel bioactive molecules. *Antonie Van Leeuwenhoek*, 104, 551–567. https://doi.org/10.1007/s10482-013-0007-1
- Jeske, O., Schu, M., Schumann, P., Schneider, A., Boedeker, C., Jogler, M., Bollschweiler, D., Rohde, M., Mayer, C., Engelhardt, H., Spring, S., & Jogler, C. (2015). *Planctomycetes* do possess a peptidoglycan cell wall. *Nature*, *May.* https://doi.org/10.1038/ncomms8116
- Jeske, O., Surup, F., Ketteniß, M., Rast, P., Förster, B., Jogler, M., Wink, J., Jogler, C., & Devos, D. P. (2016). Developing Techniques for the Utilization of *Planctomycetes* As Producers of Bioactive Molecules General Cultivation of Microorganisms. *Front Microbiol.*, 7(August), 1–14. https://doi.org/10.3389/fmicb.2016.01242
- Jiménez, C. (2018). Marine Natural Products in Medicinal Chemistry. ACS Medicinal Chemistry Letters, 9, 959–961. https://doi.org/10.1021/acsmedchemlett.8b00368
- Jogler, C., Glo, F. O., & Kolter, R. (2011). Characterization of *Planctomyces limnophilus* and Development of Genetic Tools for Its Manipulation Establish It as a Model Species for the Phylum *Planctomycetes* □ †. *Applied and Environmental Microbiology*, 77(16), 5826–5829. https://doi.org/10.1128/AEM.05132-11
- Joint, I., Mühling, M., & Querellou, J. (2010). Culturing marine bacteria an essential prerequisite for biodiscovery. *Microbial Biotechonology*, *3*(5), 564–575. https://doi.org/10.1111/j.1751-7915.2010.00188.x
- Kallscheuer, N., Jeske, O., Sandargo, B., Boedeker, C., Wiegand, S., Bartling, P., Jogler, M., Rohde, M., Petersen, J., Medema, M. H., Surup, F., & Jogler, C. (2020). The planctomycete *Stieleria maiorica* Mal15T employs stieleriacines to alter the species composition in marine biofilms. *Communications Biology*, 3(1), 1–8.

https://doi.org/10.1038/s42003-020-0993-2

- Kaur, T., Kaur, A., Sharma, V., & Manhas, R. K. (2016). Purification and characterization of a new antifungal compound 10-(2,2-dimethyl-cyclohexyl)-6,9-dihydroxy-4,9-dimethyl-dec-2-enoic Acid Methyl Ester from *Streptomyces hydrogenans* Strain DH16. *Frontiers in Microbiology*, 7(JUN), 1004. https://doi.org/10.3389/fmicb.2016.01004
- Keatinge-Clay, A. T. (2012). The structures of type I polyketide synthases. *Natural Product Reports*, 29(512), 1050–1073. https://doi.org/10.1039/c2np20019h
- Keller-Costa, T., Silva, R., & Lago-lestón, A. (2016). Genomic Insights into Aquimarina sp. Strain EL33, a Bacterial Symbiont of the Gorgonian Coral Eunicella labiata. Genome Announcements, 4(4), 2–3. https://doi.org/10.1128/genomeA.00855-16.Copyright
- Kim, T. K., Garson, M. J., & Fuerst, J. A. (2005). Marine actinomycetes related to the ' Salinospora ' group from the Great Barrier Reef sponge Pseudoceratina clavata. Environmental Microbiology, 7(4), 509–518. https://doi.org/10.1111/j.1462-2920.2004.00716.x
- Komaki, H., Sakurai, K., Hosoyama, A., Kimura, A., Igarashi, Y., & Tamura, T. (2018). Diversity of nonribosomal peptide synthetase and polyketide synthase gene clusters among taxonomically close *Streptomyces* strains. *Scientific Reports*, 8(1), 1–11. https://doi.org/10.1038/s41598-018-24921-y
- König, E., SchlesneR, H., & Hirsch, P. (1984). Cell wall studies on budding bacteria of the *Planctomyces/Pasteuria* group and on a *Prosthecomicrobium* sp. *Archives of Microbiology Volume*, 138(1984), 200–205.
- Kulkarni, M., Gorthi, S., Banerjee, G., & Chattopadhyay, P. (2017). Production, characterization and optimization of actinomycin D from *Streptomyces hydrogenans* IB310, a(n antagonistic bacterium against phytopathogens. *Biocatalysis and Agricultural Biotechnology*, 10(February), 69–74. https://doi.org/10.1016/j.bcab.2017.02.009
- Lage, O. M., & Bondoso, J. (2011). *Planctomycetes* diversity associated with macroalgae. *FEMS Microbiology Ecology*, 78(2), 366–375. https://doi.org/10.1111/j.1574-6941.2011.01168.x
- Lage, O. M., & Bondoso, J. (2014). *Planctomycetes* and macroalgae, a striking association. *Frontiers in Microbiology*, 5(June), 267. https://doi.org/10.3389/fmicb.2014.00267
- Lang, A. S., Zhaxybayeva, O., & Beatty, J. T. (2012). Gene transfer agents : phage-like

elements of genetic exchange. *Nature Reviews Microbiology*, *10*(July), 472–482. https://doi.org/10.1038/nrmicro2802

- Lauritano, C., Andersen, J. H., Hansen, E., Albrigtsen, M., Escalera, L., Esposito, F., Helland, K., Hanssen, K., Romano, G., & Ianora, A. (2016). Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities. *Frontiers in Marine Science*, 3(May), 68. https://doi.org/10.3389/fmars.2016.00068
- Lee, C.-M., Kim, S.-Y., Yoon, S.-H., Kim, J.-B., Yeo, Y.-S., Sim, J.-S., Hahn, B.-S., & Kim, D.-G. (2019). Characterization of a novel antibacterial N-acyl amino acid synthase from soil metagenome. *Journal of Biotechnology*, 294(March), 19–25. https://doi.org/10.1016/j.jbiotec.2019.01.017
- Li, Y., Lai, Y. M., Lu, Y., Yang, Y. L., & Chen, S. (2014). Analysis of the biosynthesis of antibacterial cyclic dipeptides in *Nocardiopsis alba*. Archives of Microbiology, 196(11), 765–774. https://doi.org/10.1007/s00203-014-1015-x
- Lindsay, M. R., Webb, R. I., Strous, M., Jetten, M. S. M., Butler, M. K., Forde, R. J., & Fuerst, J. A. (2001). Cell compartmentalisation in *Planctomycetes*: novel types of structural organisation for the bacterial cell. *Archives of Microbiology*, 175(6), 413– 429. https://doi.org/10.1007/s002030100280
- Lobanovska, M., & Pilla, G. (2017). Penicillin 's Discovery and Antibiotic Resistance: Lessons for the Future ? *Yale J Biol Med*, *90*, 135–145.
- Lockhart, S. R., Etienne, K. A., Vallabhaneni, S., Farooqi, J., Chowdhary, A., Govender, N. P., Colombo, A. L., Calvo, B., Cuomo, C. A., Desjardins, C. A., Berkow, E. L., Castanheira, M., Magobo, R. E., Jabeen, K., Asghar, R. J., Meis, J. F., Jackson, B., Chiller, T., & Litvintseva, A. P. (2017). Simultaneous Emergence of Multidrug-Resistant *Candida auris* on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. *Clinical Infectious Diseases*, 64(2), 134–140. https://doi.org/10.1093/cid/ciw691
- Lockhart, S. R., & Guarner, J. (2019). Emerging and reemerging fungal infections. *Seminars in Diagnostic Pathology*, *36*(3), 177–181. https://doi.org/10.1053/j.semdp.2019.04.010
- Lonhienne, T. G. A., Sagulenko, E., Webb, R. I., Lee, K., Franke, J., & Devos, D. P. (2010). Endocytosis-like protein uptake in the bacterium *Gemmata obscuriglobus*. *Proceedings* of the National Academy of Sciences of the United States of America, 107(29), 12883–

12888. https://doi.org/10.1073/pnas.1001085107

- Lovering, A. L., Safadi, S. S., & Strynadka, N. C. J. (2012). Structural Perspective of Peptidoglycan Biosynthesis and Assembly. *Annual Review of Biochemistry*, 81, 451– 478. https://doi.org/10.1146/annurev-biochem-061809-112742
- Lukoseviciute, L., Lebedeva, J., & Kuisiene, N. (2021). Diversity of Polyketide Synthases and Nonribosomal Peptide Synthetases Revealed Through Metagenomic Analysis of a Deep Oligotrophic Cave. *Microbial Ecology*, 81(1), 110–121. https://doi.org/10.1007/s00248-020-01554-1
- Ma, L. F., Chen, M. J., Liang, D. E., Shi, L. M., Ying, Y. M., Shan, W. G., Li, G. Q., & Zhan, Z. J. (2020). *Streptomyces albogriseolus* SY67903 Produces Eunicellin Diterpenoids Structurally Similar to Terpenes of the Gorgonian *Muricella sibogae*, the Bacterial Source. *Journal of Natural Products*, 83(5), 1641–1645. https://doi.org/10.1021/acs.jnatprod.0c00147
- Ma, L., Xing, D., Wang, H., Wang, X., & Xue, D. (2009). Effect of culture conditions on cell growth and lipid accumulation of oleaginous microorganism. *Chinese Journal of Biotechnology*, 25(1), 55–59.
- Machado, H., Sonnenschein, E. C., Melchiorsen, J., & Gram, L. (2015). Genome mining reveals unlocked bioactive potential of marine Gram-negative bacteria. *BMC Genomics*, 16(1), 1–12. https://doi.org/10.1186/s12864-015-1365-z
- Machushynets, N. V., Wu, C., Elsayed, S. S., Hankemeier, T., & van Wezel, G. P. (2019).
  Discovery of novel glycerolated quinazolinones from *Streptomyces* sp. MBT27. *Journal of Industrial Microbiology and Biotechnology*, 46(3–4), 483–492.
  https://doi.org/10.1007/s10295-019-02140-2
- Mansson, M., Gram, L., & Larsen, T. O. (2011). Production of bioactive secondary metabolites by marine Vibrionaceae. *Marine Drugs*, 9(9), 1440–1468. https://doi.org/10.3390/md9091440
- Marahiel, M. A., Stachelhaus, T., & Mootz, H. D. (1997). Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis. *Chemical Reviews*, 97(7), 2651–2674.
- Mariappan, A., Makarewicz, O., Chen, X. H., & Borriss, R. (2012). Two-component response regulator DegU controls the expression of bacilysin in plant-growthpromoting bacterium *Bacillus amyloliquefaciens* FZB42. *Journal of Molecular Microbiology and Biotechnology*, 22(2), 114–125. https://doi.org/10.1159/000338804

- Mauger, A. B., & Lackner, H. (2005). The Actinomycins. In Anticancer Agents from Natural Products. http://dx.doi.org/10.1201/9781420039658.ch15
- Mearns-Spragg, A., Bregu, M., Boyd, K. G., & Burgess, J. G. (1998). Cross-species, induction and enhancement of antimicrobial activity produced by epibiotic bacteria from marine algae and invertebrates, after exposure to terrestrial bacteria. *Letters in Applied Microbiology*, 27(3), 142–146. https://doi.org/10.1046/j.1472-765X.1998.00416.x
- Miao, L., Kwong, T. F. N., & Qian, P. Y. (2006). Effect of culture conditions on mycelial growth, antibacterial activity, and metabolite profiles of the marine-derived fungus *Arthrinium* c.f. saccharicola. Applied Microbiology and Biotechnology, 72(5), 1063– 1073. https://doi.org/10.1007/s00253-006-0376-8
- Mille-lindblom, C., Fischer, H., & Tranvik, L. J. (2006). Antagonism between bacteria and fungi : substrate competition and a possible tradeoff between fungal growth and tolerance towards bacteria. *Oikos*, *113*(2), 233–242.
- Miller, B. R., & Gulick, A. M. (2016). Structural Biology of Nonribosomal Peptide Synthetases. In Nonribosomal Peptide and Polyketide Biosynthesis (pp. 3–29). https://doi.org/10.1007/978-1-4939-3375-4
- Molinski, T. F., Dalisay, D. S., Lievens, S. L., & Saludes, J. P. (2008). Drug development from marine natural products. *Nature Reviews Drug Discovery*, 8(December), pages69–85. https://doi.org/10.1038/nrd2487
- Montinari, M. R., Minelli, S., & Caterina, R. De. (2019). The first 3500 years of aspirin history from its roots – A concise summary. *Vascular Pharmacology*, 113(February), 1–8. https://doi.org/10.1016/j.vph.2018.10.008
- Moyne, A. L., Shelby, R., Cleveland, T. E., & Tuzun, S. (2001). Bacillomycin D: An iturin with antifungal activity against *Aspergillus flavus*. *Journal of Applied Microbiology*, 90(4), 622–629. https://doi.org/10.1046/j.1365-2672.2001.01290.x
- Munita, J. M., Arias, C. A., Unit, A. R., & Santiago, A. De. (2016). Mechanisms of Antibiotic Resistance. *Microbiol Spectr*, 4(2), 1–37. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015.Mechanisms
- Murray, P. R., Baron, E. J., Jorgensen, J. H., Landry, M. L., & Pfaller, M. A. (2007). *Manual of clinical microbiology*.
- Ng, Y. K., Hodson, M. P., Hewavitharana, A. K., Bose, U., Shaw, P. N., & Fuerst, J. A.

(2014). Effects of salinity on antibiotic production in sponge-derived *Salinispora* actinobacteria. *Journal of Applied Microbiology*, *117*(1), 109–125. https://doi.org/10.1111/jam.12507

- Nielsen, A., Mansson, M., Bojer, M. S., Gram, L., Larsen, T. O., Novick, R. P., Frees, D., Frøkiær, H., & Ingmer, H. (2014). Solonamide B inhibits quorum sensing and reduces *Staphylococcus aureus* mediated killing of human neutrophils. *PLoS ONE*, 9(1), 1–10. https://doi.org/10.1371/journal.pone.0084992
- Norrby, R., Nord, C. E., & Finch, R. (2005). Lack of development of new antimicrobial drugs : a potential serious threat to public health. *The Lancet Infectious Diseases*, 5(2), 115–119.
- Offret, C., Desriac, F., Le Chevalier, P., Mounier, J., Jégou, C., & Fleury, Y. (2016). Spotlight on antimicrobial metabolites from the marine bacteria *Pseudoalteromonas*: Chemodiversity and ecological significance. *Marine Drugs*, 14(7), 129. https://doi.org/10.3390/md14070129
- Oku, N., Gustafson, K. R., Cartner, L. K., Wilson, J. A., Shigematsu, N., Hess, S., Pannell, L. K., Boyd, M. R., & McMahon, J. B. (2004). Neamphamide A, a new HIV-inhibitory depsipeptide from the Papua New Guinea marine sponge *Neamphius huxleyi*. *Journal* of Natural Products, 67(8), 1407–1411. https://doi.org/10.1021/np040003f
- Overy, D., Correa, H., Roullier, C., Chi, W. C., Pang, K. L., Rateb, M., Ebel, R., Shang, Z., Capon, R., Bills, G., & Kerr, R. (2017). Does osmotic stress affect natural product expression in fungi? *Marine Drugs*, 15(8). https://doi.org/10.3390/md15080254
- Pagès, J., James, C. E., & Winterhalter, M. (2008). The porin and the permeating antibiotic : a selective diffusion barrier in Gram-negative bacteria. *Nature Reviews Microbiology*, 6(December), 893–903. https://doi.org/10.1038/nrmicro1994
- Pan, R., Bai, X., Chen, J., Zhang, H., & Wang, H. (2019). Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: A literature review. *Frontiers in Microbiology*, 10(FEB), 1–20. https://doi.org/10.3389/fmicb.2019.00294
- Panter, F., Garcia, R., Thewes, A., Zaburannyi, N., Bunk, B., Overmann, J., Gutierrez, M. V., Krug, D., & Müller, R. (2019). Production of a Dibrominated Aromatic Secondary Metabolite by a Planctomycete Implies Complex Interaction with a Macroalgal Host. *ACS Chemical Biology*, *14*(2713–2719). https://doi.org/10.1021/acschembio.9b00641

Petersen, L.-E., Kellermann, M. Y., & Schupp, P. (2018). Secondary Metabolites of Marine

Microbes: From Natural Products Chemistry to Chemical Ecology. In *YOUMARES 9 - The Oceans: Our Research, Our Future* (pp. 159–180). https://doi.org/10.1007/978-3-030-20389-4\_3

- Pfaller, M. A. (2012). Antifungal Drug Resistance : Mechanisms , Epidemiology , and Consequences for Treatment. *The American Journal of Medicine*, 125(1), S3–S13. https://doi.org/10.1016/j.amjmed.2011.11.001
- Pohlmann, J., Lampe, T., Shimada, M., Nell, P. G., Pernerstorfer, J., Svenstrup, N., Brunner, N. A., Schiffer, G., & Freiberg, C. (2005). Pyrrolidinedione derivatives as antibacterial agents with a novel mode of action. *Bioorganic and Medicinal Chemistry Letters*, 15(4), 1189–1192. https://doi.org/10.1016/j.bmcl.2004.12.002
- Pollet, T., Humbert, J. F., & Tadonléké, R. D. (2014). *Planctomycetes* in lakes: Poor or strong competitors for phosphorus? *Applied and Environmental Microbiology*, 80(3), 819–828. https://doi.org/10.1128/AEM.02824-13
- Potterat, O., Stephan, H., Metzger, J. W., Gnau, V., Zähner, H., & Jung, G. (1994). Aborycin

  A Tricyclic 21-Peptide Antibiotic Isolated from *Streptomyces griseoflavus*. *European Journal of Organic Chemistry*, 1994(7), 741–743.
  https://doi.org/10.1002/jlac.199419940716
- Prakash, O., Shouche, Y., Jangid, K., & Kostka, J. E. (2013). Microbial cultivation and the role of microbial resource centers in the omics era. *Applied Microbiology and Biotechnology*, 97, 51–62. https://doi.org/10.1007/s00253-012-4533-y
- Ranson, H. J., LaPorte, J., Spinard, E., Chistoserdov, A. Y., Gomez-Chiarri, M., Nelson, D.
  R., & Rowley, D. C. (2018). Draft genome sequence of the putative marine pathogen *Aquimarina* sp. strain I32.4. *Genome Announcements*, 6(17), 7–8. https://doi.org/10.1128/genomeA.00313-18
- Redondo-blanco, S., Fernández, J., Gutiérrez-del-río, I., Villar, C. J., & Lombó, F. (2017).
  New Insights toward Colorectal Cancer Chemotherapy Using Natural Bioactive Compounds. *Frontiers in Pharmacology*, 8(March), 1–22. https://doi.org/10.3389/fphar.2017.00109
- Reen, F. J., Romano, S., Dobson, A. D. W., & O'Gara, F. (2015). The sound of silence: Activating silent biosynthetic gene clusters in marine microorganisms. *Marine Drugs*, 13(8), 4754–4783. https://doi.org/10.3390/md13084754

Rigali, S., Titgemeyer, F., Barends, S., Mulder, S., Thomae, A. W., Hopwood, D. A., & van

Wezel, G. P. (2008). Feast or famine: The global regulator DasR links nutrient stress to antibiotic production by *Streptomyces*. *EMBO Reports*, *9*(7), 670–675. https://doi.org/10.1038/embor.2008.83

- Rinehart, K. L., Gloer, J. B., & Cook, J. C. (1981). Structures of the Didemnins, Antiviral and Cytotoxic Depsipeptides from a Caribbean Tunicate. *Journal of the American Chemical Society*, 103(7), 1857–1859.
- Rivas-Marín, E., Canosa, I., Santero, E., Devos, D. P., & Robb, F. T. (2016). Development of Genetic Tools for the Manipulation of the *Planctomycetes*. *Frontiers in Microbiology*, 7(June), 1–10. https://doi.org/10.3389/fmicb.2016.00914
- Rivas-marin, E., Peeters, S. H., Fernández, L. C., Jogler, C., Niftrik, L. Van, Wiegand, S., & Devos, D. P. (2020). Non-essentiality of canonical cell division genes in the planctomycete *Planctopirus limnophila*. *Scientific Reports*, 10(66), 1–8. https://doi.org/10.1038/s41598-019-56978-8
- Rivas-Marin, E., Stettner, S., Gottshall, E. Y., Santana-molina, C., Helling, M., Basile, F., Ward, N. L., & Devos, D. P. (2019). Essentiality of sterol synthesis genes in the planctomycete bacterium *Gemmata obscuriglobus*. *Nature Communications*, *10*(2916). https://doi.org/10.1038/s41467-019-10983-7
- Rodrigues, L., Banat, I. M., Teixeira, J., & Oliveira, R. (2006). Biosurfactants: Potential applications in medicine. *Journal of Antimicrobial Chemotherapy*, 57(4), 609–618. https://doi.org/10.1093/jac/dkl024
- Rodríguez, L., Rodríguez, D., Olano, C., Braña, A. F., Méndez, C., & Salas, J. A. (2001). Functional analysis of OleY L-oleandrosyl 3-O-methyltransferase of the oleandomycin biosynthetic pathway in *Streptomyces antibioticus*. *Journal of Bacteriology*, *183*(18), 5358–5363. https://doi.org/10.1128/JB.183.18.5358-5363.2001
- Romanenko, L. A., Kurilenko, V. V., Chernysheva, N. Y., Guzev, K. V., & Mikhailov, V. V. (2020). The Biodiversity and Antimicrobial Activity of Bacteria Isolated from the Bottom Sediments of the Chukchi Sea. *Russian Journal of Marine Biology*, 46(5), 351–359. https://doi.org/10.1134/S1063074020050089
- Romano, G., Costantini, M., Sansone, C., Lauritano, C., Ruocco, N., & Ianora, A. (2016).
   Marine microorganisms as a promising and sustainable source of bioactive molecules.
   Marine Environmental Research, 128(July), 58–69.
   https://doi.org/10.1016/j.marenvres.2016.05.002

- Romano, S. (2018). Ecology and biotechnological potential of bacteria belonging to the genus *Pseudovibrio*. *Applied and Environmental Microbiology*, 84(8), 1–16. https://doi.org/10.1128/AEM.02516-17
- Romano, S., Jackson, S. A., Patry, S., & Dobson, A. D. W. (2018). Extending the "one strain many compounds" (OSMAC) principle to marine microorganisms. *Marine Drugs*, 16(7), 1–29. https://doi.org/10.3390/md16070244
- Roongsawang, N., Washio, K., & Morikawa, M. (2011). Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. *International Journal of Molecular Sciences*, 12(1), 141–172. https://doi.org/10.3390/ijms12010141
- Ross, A. C., Gulland, L. E. S., Dorrestein, P. C., & Moore, B. S. (2015). Targeted capture and heterologous expression of the *Pseudoalteromonas alterochromide* gene cluster in *Escherichia coli* represents a promising natural product exploratory platform. ACS *Synthetic Biology*, 4(4), 414–420. https://doi.org/10.1021/sb500280q
- Rossolini, G. M., Arena, F., Pecile, P., & Pollini, S. (2014). Update on the antibiotic resistance crisis. *Current Opinion in Pharmacology*, 18, 56–60. https://doi.org/10.1016/j.coph.2014.09.006
- Roy, R. N., Laskar, S., & Sen, S. K. (2006). Dibutyl phthalate, the bioactive compound produced by *Streptomyces albidoflavus* 321.2. *Microbiological Research*, 161(2), 121– 126. https://doi.org/10.1016/j.micres.2005.06.007
- Salazar, G., & Sunagawa, S. (2017). Marine microbial diversity. *Current Biology*, 27(11), R489–R494. https://doi.org/10.1016/j.cub.2017.01.017
- Sánchez, S., Chávez, A., Forero, A., García-Huante, Y., Romero, A., Sánchez, M., Rocha, D., Sánchez, B., Valos, M., Guzmán-Trampe, S., Rodríguez-Sanoja, R., Langley, E., & Ruiz, B. (2010). Carbon source regulation of antibiotic production. *Journal of Antibiotics*, 63(8), 442–459. https://doi.org/10.1038/ja.2010.78
- Sanchez, S., & Demain, A. L. (2002). Metabolic regulation of fermentation processes. *Enzyme and Microbial Technology*, 31(7), 895–906. https://doi.org/10.1016/S0141-0229(02)00172-2
- Santos, J. D., Vitorino, I., Cruz, M. de la, Díaz, C., Cautain, B., Annang, F., Pérez-Moreno, G., Gonzalez, I., Tormo, J. R., Martin, J., Vicente, M. F., & Lage, O. M. (2020).
  Diketopiperazines and other bioactive compounds from bacterial symbionts of marine sponges. *Antonie van Leeuwenhoek*, 113(7), 875–887. https://doi.org/10.1007/s10482-

020-01398-2

- Shao, M., Ma, J., Li, Q., & Ju, J. (2019). Identification of the anti-infective aborycin biosynthetic gene cluster from deep-sea-derived *Streptomyces* sp. SCSIO ZS0098 enables production in a heterologous host. *Marine Drugs*, 17(2), 1–9. https://doi.org/10.3390/md17020127
- Shen, B. (2000). Biosynthesis of Aromatic Polyketides. In *Biosynthesis* (Vol. 209, pp. 1–51).
- Shimizu, Y., Ogata, H., & Goto, S. (2016). Type III Polyketide Synthases: Functional Classification and Phylogenomics Authors: *ChemBioChem*, *18*(1), 50–65.
- Shin, D., Byun, W. S., Moon, K., Kwon, Y., Bae, M., Um, S., Lee, S. K., & Oh, D. C. (2018). Coculture of marine *Streptomyces* sp. with *Bacillus* sp. produces a new piperazic acidbearing cyclic peptide. *Frontiers in Chemistry*, 6(OCT), 1–12. https://doi.org/10.3389/fchem.2018.00498
- Shiratori, T., Suzuki, S., Kakizawa, Y., & Ishida, K. (2019). Phagocytosis-like cell engulfment by a planctomycete bacterium. *Nature Communications*, 2019, 1–11. https://doi.org/10.1038/s41467-019-13499-2
- Siek, T. J. (1978). Effective use of organic solvents to remove drugs from biologic specimens. *Clinical Toxicology*, 13(2), 205–230. https://doi.org/10.3109/15563657808988234
- Singh, M., McKenzie, K., & Ma, X. (2017). Effect of dimethyl sulfoxide on in vitro proliferation of skin fibroblast cells. *Journal of Pharmaceutical Sciences*, 8, 78–82. https://doi.org/10.1002/jps.2600650210
- Singh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M., & Tripathi, C. K. M. (2017). Strategies for fermentation medium optimization: An in-depth review. *Frontiers in Microbiology*, 7(JAN), 2087. https://doi.org/10.3389/fmicb.2016.02087
- Slightom, R. N., & Buchan, A. (2009). Surface colonization by marine roseobacters: Integrating genotype and phenotype. *Applied and Environmental Microbiology*, 75(19), 6027–6037. https://doi.org/10.1128/AEM.01508-09
- Solanki, R., Khanna, M., & Lal, R. (2008). Bioactive compounds from marine *Actinomycetes. Indian Journal of Microbiology*, *48*(4), 410–431.
- Spízek, J., Novotná, J., Rezanka, T., & Demain, A. L. (2010). Do we need new antibiotics? The search for new targets and new compounds. *Journal of Industrial Microbiology* &

Biotechnology, 37, 1241–1248. https://doi.org/10.1007/s10295-010-0849-8

- Stincone, P., & Brandelli, A. (2020). Marine bacteria as source of antimicrobial compounds.
   *Critical Reviews in Biotechnology*, 40(1), 1–14.
   https://doi.org/10.1080/07388551.2019.1710457
- Sun, Y., Tomura, T., Sato, J., Iizuka, T., Fudou, R., & Ojika, M. (2016). Isolation and Biosynthetic Analysis of Haliamide, a New PKS-NRPS Hybrid Metabolite from the Marine Myxobacterium *Haliangium ochraceum*. *Molecules*, 21(1), 59. https://doi.org/10.3390/molecules21010059
- Swann, J. P. (1983). The Search for Synthetic Penicillin during World War II. The British Journal for the History of Science, 16(2), 154–190. https://doi.org/10.1017/S0007087400026789
- Takacsová, M., Conková, M., Martinková, M., & Gonda, J. (2016). Convenient approach to an advanced intermediate for salinosporamide A synthesis. *Tetrahedron : Asymmetry*, 27(7–8), 369–376. https://doi.org/10.1016/j.tetasy.2016.03.003
- Takahashi, Y., & Omura, S. (2003). Isolation of new actinomycete strains for the screening of new bioactive compounds. *The Journal of General and Applied Microbiology*, 49(3), 141–154.
- Tambadou, F., Lanneluc, I., Sablé, S., Klein, G. L., Doghri, I., Sopéna, V., Didelot, S., Barthélémy, C., Thiéry, V., & Chevrot, R. (2014). Novel nonribosomal peptide synthetase (NRPS) genes sequenced from intertidal mudflat bacteria. *FEMS Microbiology Letters*, 357(2), 123–130. https://doi.org/10.1111/1574-6968.12532
- Thirumurugan, D., Vijayakumar, R., Vadivalagan, C., Karthika, P., & Alam Khan, M. K. (2018). Isolation, structure elucidation and antibacterial activity of methyl-4,8-dimethylundecanate from the marine actinobacterium *Streptomyces albogriseolus* ECR64. *Microbial Pathogenesis*, *121*(May), 166–172. https://doi.org/10.1016/j.micpath.2018.05.025
- Timmery, S., Modrie, P., Minet, O., & Mahillon, J. (2009). Plasmid Capture by the Bacillus thuringiensis Conjugative Plasmid pXO16 □. Journal of Bacteriology, 191(7), 2197– 2205. https://doi.org/10.1128/JB.01700-08
- Toda, M., Williams, S. R., Berkow, E. L., Farley, M. M., Harrison, L. H., Bonner, L., Marceaux, K. M., Hollick, R., Zhang, A. Y., Schaffner, W., Shawn R. Lockhart, Jackson, B. R., & Vallabhaneni, S. (2019). Population-Based Active Surveillance for

Culture-Confirmed Candidemia — Four Sites, United States, 2012 – 2016. *Morbidity and Mortality Weekly Report*, 68(8), 1–15.

- Vardanyan, R., & Hruby, V. (2016). Chapter 30 Antibiotics. In Synthesis of Best-Seller Drugs. https://doi.org/10.1016/B978-0-12-411492-0.00030-4
- Varijakzhan, D., Loh, J. Y., Yap, W. S., Yusoff, K., Seboussi, R., Lim, S. H. E., Lai, K. S., & Chong, C. M. (2021). Bioactive compounds from marine sponges: Fundamentals and applications. *Marine Drugs*, 19(5), 246. https://doi.org/10.3390/md19050246
- Ventola, C. (2015). The antibiotic resistance crisis: part 1: causes and threats. *PT*, *April*, 277–283. https://doi.org/10.5796/electrochemistry.82.749
- Wagner, M., & Horn, M. (2006). The *Planctomycetes*, *Verrucomicrobia*, *Chlamydiae* and sister phyla comprise a superphylum with biotechnological and medical relevance. *Curr Opin Biotechnol*, 241–249. https://doi.org/10.1016/j.copbio.2006.05.005
- Walsh, C. T. (2008). The Chemical Versatility of Natural-Product Assembly Lines. *Accounts* of Chemical Research, 41(1), 4–10.
- Wang, F., Huang, L., Gao, B., & Zhang, C. (2018). Optimum production conditions, purification, identification, and antioxidant activity of violaxanthin from microalga *Eustigmatos* cf. *Polyphem* (eustigmatophyceae). *Marine Drugs*, 16(6), 190. https://doi.org/10.3390/md16060190
- Wang, L., Yun, B. S., George, N. P., Wendt-Pienkowski, E., Galm, U., Oh, T. J., Coughlin, J. M., Zhang, G., Tao, M., & Shen, B. (2007). Glycopeptide antitumor antibiotic zorbamycin from *Streptomyces flavoviridis* ATCC 21892: Strain improvement and structure elucidation. *Journal of Natural Products*, 70(3), 402–406. https://doi.org/10.1021/np060592k
- Wang, X., Li, M., Yan, Q., Chen, X., Geng, J., Xie, Z., & Shen, P. (2007). Across Genus Plasmid Transformation Between *Bacillus subtilis* and *Escherichia coli* and the Effect of *Escherichia coli* on the Transforming Ability of Free Plasmid DNA. *Current Microbiology*, 54, 450–456. https://doi.org/10.1007/s00284-006-0617-1
- Wang, X., Luo, C., Liu, Y., Nie, Y., Liu, Y., Zhang, R., & Chen, Z. (2010). Three nonaspartate amino acid mutations in the ComA response regulator receiver motif severely decrease surfactin production, competence development, and spore formation in *Bacillus subtilis*. In *Journal of Microbiology and Biotechnology* (Vol. 20, Issue 2, pp. 301–310). https://doi.org/10.4014/jmb.0906.06025

- Wang, Y., Zheng, J., Liu, P., Wang, W., & Zhu, W. (2011). Three new compounds from Aspergillus terreus PT06-2 grown in a high salt medium. Marine Drugs, 9(8), 1368– 1378. https://doi.org/10.3390/md9081368
- WHO. (2018). Global Antimicrobial Resistance Surveillance System (GLASS) Report.
- Wiegand, S., Jogler, M., & Jogler, C. (2018). On the maverick *Planctomycetes. FEMS Microbiology Reviews*, July 2018. https://doi.org/10.1093/femsre/fuy029
- Wiese, J., Abdelmohsen, U. R., Motiei, A., & Hentschel, U. (2018). Bacicyclin, a new antibacterial cyclic hexapeptide from *Bacillus* sp. strain BC028 isolated from *Mytilus edulis. Bioorganic & Medicinal Chemistry Letters*, 28(4), 558–561. https://doi.org/10.1016/j.bmcl.2018.01.062
- Williams, S. T., & Davies, F. L. (1965). Use of Antibiotics for Selective Isolation and Enumeration of Actinomycetes in Soil. Journal of General Microbiology, 38(2), 251– 261. https://doi.org/10.1099/00221287-38-2-251
- Willyard, C. (2017). Drug-resistant bacteria ranked. *Nature*, 543(February).
- Wise, A. A., Liu, Z., & Binns, A. N. (2006). Three Methods for the Introduction of Foreign DNA into Agrobacterium. Agrobacterium Protocols, 343, 43–54.
- Xiong, Z., Wang, J., Hao, Y., & Wang, Y. (2013). Recent Advances in the Discovery and Development of Marine Microbial Natural Products. *Marine Drugs*, 11, 700–717. https://doi.org/10.3390/md11030700
- Yamaguchi, H., Nakayama, Y., Takeda, K., & Tawara, K. (1957). A new antibiotic, Althiomycin. *The Journal of Antibiotics*, *X*(5), 195–200.
- Yan, L. L., Han, N. N., Zhang, Y. Q., Yu, L. Y., Chen, J., Wei, Y. Z., Li, Q. P., Tao, L., Zheng, G. H., Yang, S. E., Jiang, C. X., Zhang, X. De, Huang, Q., Habdin, X., Hu, Q. B., Li, Z., Liu, S. W., Zhang, Z. Z., He, Q. Y., ... Sun, C. H. (2010). Antimycin A 18 produced by an endophytic *Streptomyces albidoflavus* isolated from a mangrove plant. *Journal of Antibiotics*, 63(5), 259–261. https://doi.org/10.1038/ja.2010.21
- Younis, K. M., Usup, G., & Ahmad, A. (2016). Secondary metabolites produced by marine Streptomyces as antibiofilm and quorum-sensing inhibitor of uropathogen Proteus mirabilis. Environmental Science and Pollution Research International, 23(5), 4756– 4767. https://doi.org/10.1007/s11356-015-5687-9
- Zhang, Q., Li, S., Chen, Y., Tian, X., Zhang, H., Zhang, G., Zhu, Y., Zhang, S., Zhang, W.,& Zhang, C. (2013). New diketopiperazine derivatives from a deep-sea-derived

Nocardiopsis alba SCSIO 03039. Journal of Antibiotics, 66(1), 31–36. https://doi.org/10.1038/ja.2012.88

Zhou, H., Yang, X., Li, F., Yi, X., Yu, L., Gao, C., & Huang, R. (2017). A New Diketopiperazine of *Nocardiopsis alba* Isolated from *Anthogorgia caerulea*. *Chemistry* of Natural Compounds, 53(2), 338–340. https://doi.org/10.1007/s10600-017-1983-6

## 6. Annexes

| Strain designation | Taxon                                         | Phylum         | NRPS          | PKS-I         |
|--------------------|-----------------------------------------------|----------------|---------------|---------------|
| ABPL45_1           | 99.92% Streptomyces antimycoticus NBRC 12839  | Actinobacteria | Non amplified | Non amplified |
| ABPP45_1           | 98.79% Sporosarcina aquimarina SW28(T)        | Firmicutes     | Non amplified | Non amplified |
| ICM_A1             | 100% Hirschia litorea strain M-M23            | Proteobacteria | Non amplified | Non amplified |
| ICM_A11            | 99.77% Streptomyces xiamenensis MCCC1A01550   | Actinobacteria | Non amplified | Non amplified |
| ICM_A11.2          | 100% Staphylococcus epidermidis strain 3039   | Firmicutes     | Amplified     | Non amplified |
| ICM_A5             | 99.9% Tritonibacter mobilis                   | Proteobacteria | Amplified     | Amplified     |
| ICM_D7A.1          | 99.92% Streptomyces lienomycini LMG 20091     | Actinobacteria | Non amplified | Non amplified |
| ICM_D7A.2          | 99.92% Streptomyces lienomycini LMG 20092     | Actinobacteria | Non amplified | Non amplified |
| ICM_D7A.3          | 100% Streptomyces hydrogenans NBRC 13475      | Actinobacteria | Non amplified | Amplified     |
| ICM_D7A.4          | 100% Streptomyces rubrogriseus LMG 20318      | Actinobacteria | Non amplified | Non amplified |
| ICM_G4             | 99.9% Novipirellula caenicola                 | Planctomycetes | Non amplified | Amplified     |
| ICM_H10            | 96.7% Rubinisphaera italica                   | Planctomycetes | Non amplified | Amplified     |
| ICM_H12            | 99.04 % Erythrobacter lutimaris strain S-5    | Proteobacteria | Amplified     | Amplified     |
| ICM_H5             | 99.9% Novipirellula caenicola                 | Planctomycetes | Non amplified | Amplified     |
| M600PL15_2         | 99.92% Dermacoccus nishinomiyaensis DSM 20448 | Actinobacteria | Non amplified | Non amplified |
| M600PL45_2         | 98.52% Streptomyces nanshensis SCSIO 01066    | Actinobacteria | Non amplified | Non amplified |
| M600PL45_3         | 98.52% Streptomyces nanshensis SCSIO 01066    | Actinobacteria | Non amplified | Non amplified |
| M600PP15_1         | 99.53% Qipengyuania aquimaris SW-110          | Proteobacteria | Non amplified | Amplified     |
| MAPL30_1           | 100% Micromonospora matsumotoense DSM 44100   | Actinobacteria | Non amplified | Non amplified |
| MEMO13_5           | 98.62 % Tenacibaculum gallaicum strain A37.1  | Bacteroidetes  | Amplified     | Non amplified |
| MEMO17_8           | 99.9% Novipirellula caenicola                 | Planctomycetes | Non amplified | Amplified     |
| MEMO26_1           | 99.92% Rhodopirellula baltica SH 1            | Planctomycetes | Non amplified | Non amplified |
| MEMO3_10.2         | 99.92% Rhodopirellula baltica SH 1            | Planctomycetes | Non amplified | Non amplified |
| MEMO3_5            | 100% Rhodopirellula baltica SH 1              | Planctomycetes | Non amplified | Non amplified |

Supplementary Table 1 – NRPS and PKS-I amplification results for the strains used in this study.

| MEMO3_5.2    | 99.92% Rhodopirellula baltica SH 1                  | Planctomycetes | Non amplified | Non amplified |
|--------------|-----------------------------------------------------|----------------|---------------|---------------|
| MEMO3_6      | 99.82% Rhodopirellula baltica SH1                   | Planctomycetes | Non amplified | Amplified     |
| MEMO4_5      | 99.92% Hellea balneolensis DSM 19091                | Proteobacteria | Amplified     | Amplified     |
| PMI12_1B     | 99.91% Sphingorhabdus sp. Alg231_15                 | Proteobacteria | Amplified     | Non amplified |
| PMI12_2      | 100% Altererythrobacter ishigakiensis strain H93616 | Proteobacteria | Non amplified | Amplified     |
| PMI18_1      | 100% Algihabitans albus HHTR 118                    | Proteobacteria | Non amplified | Non amplified |
| PMI25_3      | 99.68% Vibrio coralliirubri strain DS1904-S1125     | Proteobacteria | Non amplified | Non amplified |
| PMI29_1      | 99.4% Erythrobacter sp. B809                        | Proteobacteria | Non amplified | Amplified     |
| PMI30_1      | 98.64% Roseobacter cerasinus                        | Proteobacteria | Amplified     | Non amplified |
| PMI30_4      | 99.83% Vibrio sp. strain 6c                         | Proteobacteria | Non amplified | Amplified     |
| PMI30_9      | 98.62% Roseobacter cerasinus                        | Proteobacteria | Amplified     | Non amplified |
| PMI36_2      | 99.84% Denitrobaculum tricleocarpae                 | Proteobacteria | Non amplified | Non amplified |
| PMI37_3A     | 99.90% Sphingopyxis ummariensis strain 258-LNR4     | Proteobacteria | Amplified     | Non amplified |
| PMI37_4      | 100% Paracoccus lutimaris strain HDM-25             | Proteobacteria | Amplified     | Amplified     |
| PMI38_1      | 100% Algihabitans albus strain HHTR118              | Proteobacteria | Non amplified | Amplified     |
| PMI41_5      | 100% Ochrobactrum sp. strain FA75                   | Proteobacteria | Amplified     | Amplified     |
| PMI41_6      | 100% Staphylococcus hominis strain FDAARGOS_748     | Firmicutes     | Amplified     | Non amplified |
| PMI45_2      | 99.91% Sphingopyxis ummariensis strain 258-LNR4     | Proteobacteria | Amplified     | Non amplified |
| PMIC_1A1     | 99.06% Aquimarina muelleri KMM 6020                 | Bacteroidetes  | Amplified     | Amplified     |
| PMIC_1A10A   | 100% Microbacterium flavum YM18-098                 | Actinobacteria | Non amplified | Amplified     |
| PMIC_1A10B   | 99.82% Nocardia nova NBRC 15556                     | Actinobacteria | Non amplified | Amplified     |
| PMIC_1A11B.1 | 99.92% Nocardiopsis alba DSM 43377                  | Actinobacteria | Non amplified | Non amplified |
| PMIC_1A11B.2 | 100% Nocardiopsis alba DSM 43377                    | Actinobacteria | Non amplified | Amplified     |
| PMIC_1A11C   | 100% Bacillus mycoides DSM 2048                     | Firmicutes     | Non amplified | Non amplified |
| PMIC_1A3A.1  | 99.85% Streptomyces xiamenensis MCCC 1A01550        | Actinobacteria | Non amplified | Non amplified |
| PMIC_1A3A.2  | 99.82% Streptomyces xiamenensis MCCC 1A01550        | Actinobacteria | Non amplified | Non amplified |
| PMIC_1A3A.3  | 99.82% Streptomyces xiamenensis MCCC 1A01550        | Actinobacteria | Non amplified | Non amplified |
| PMIC_1A3B.1  | 100% Streptomyces albogriseolus NRRL B-1305         | Actinobacteria | Non amplified | Non amplified |
| PMIC_1A3B.2  | 100% Streptomyces albogriseolus NRRL B-1305         | Actinobacteria | Non amplified | Non amplified |

| PMIC_1A3C    | 100.00% Streptomyces albogriseolus NRRL B-1305  | Actinobacteria | Non amplified | Non amplified |
|--------------|-------------------------------------------------|----------------|---------------|---------------|
| PMIC_1A8A    | 100% Phaeobacter porticola P97                  | Proteobacteria | Non amplified | Non amplified |
| PMIC_1A8B    | 99.43% Streptomyces flavoviridis NBRC 12772     | Actinobacteria | Non amplified | Amplified     |
| PMIC_1A8C    | 99.66% Streptomyces albogriseolus NRRL B-1305   | Actinobacteria | Non amplified | Amplified     |
| PMIC_1B2     | 99.92% Catalinimonas alkaloidigena CNU-914      | Bacteroidetes  | Amplified     | Amplified     |
| PMIC_1B3A.1  | 99.52% Streptomyces xiamenensis MCCC 1A01550    | Actinobacteria | Non amplified | Amplified     |
| PMIC_1B3A.2  | 99.54% Streptomyces xiamenensis MCCC 1A01550    | Actinobacteria | Non amplified | Non amplified |
| PMIC_1B3A.3  | 99.55% Streptomyces xiamenensis MCCC 1A01550    | Actinobacteria | Non amplified | Amplified     |
| PMIC_1B3B    | 100% Pseudoalteromonas carrageenovora IAM 12662 | Proteobacteria | Amplified     | Non amplified |
| PMIC_1B5B.1  | 100% Pseudoalteromonas tetraodonis GFC          | Proteobacteria | Amplified     | Amplified     |
| PMIC_1B5B.2  | 100% Pseudoalteromonas tetraodonis GFC          | Proteobacteria | Amplified     | Amplified     |
| PMIC_1B9A    | 99.46% Bacillus horikoshii DSM 8719             | Firmicutes     | Non amplified | Non amplified |
| PMIC_1B9B.1  | 100% Bacillus aryabhattai B8W22                 | Firmicutes     | Non amplified | Non amplified |
| PMIC_1B9B.2  | 100% Bacillus aryabhattai B8W22                 | Firmicutes     | Non amplified | Non amplified |
| PMIC_1C10    | 100% Pseudoalteromonas carrageenovora IAM12662  | Proteobacteria | Amplified     | Amplified     |
| PMIC_1C10    | 100% Pseudoalteromonas carrageenovora IAM12662  | Proteobacteria | Non amplified | Non amplified |
| PMIC_1C11A   | 100% Dietzia maris DSM 43672                    | Actinobacteria | Non amplified | Non amplified |
| PMIC_1C11B   | 100% Marinobacter litoralis SW-45               | Proteobacteria | Amplified     | Amplified     |
| PMIC_1C12A   | 99.67% Streptomyces albidoflavus DSM 40455      | Actinobacteria | Amplified     | Non amplified |
| PMIC_1C12B   | 99.68% Streptomyces albidoflavus DSM 40455      | Actinobacteria | Non amplified | Non amplified |
| PMIC_1C1B    | 98.48% Microbacterium diaminobutyricum RZ63     | Actinobacteria | Non amplified | Non amplified |
| PMIC_1C5B.1  | 100% Dietzia maris DSM 43672                    | Actinobacteria | Non amplified | Non amplified |
| PMIC_1C5B.2  | 99.35% Psychrobacter cryohalolentis K5          | Proteobacteria | Non amplified | Non amplified |
| PMIC_1C7A    | 99.92% Microbacterium phyllosphaerae DSM 13468  | Actinobacteria | Non amplified | Non amplified |
| PMIC_1C8A    | 99.69% Streptomyces ardesiacus NRRL B-1773      | Actinobacteria | Non amplified | Amplified     |
| PMIC_1D11A.1 | 99.85% Streptomyces hydrogenans NBRC 13475      | Actinobacteria | Non amplified | Non amplified |
| PMIC_1D11A.2 | 99.84% Streptomyces hydrogenans NBRC 13475      | Actinobacteria | Non amplified | Non amplified |
| PMIC_1D11B   | 99.84% Nocardiopsis prasina DSM 43845           | Actinobacteria | Non amplified | Non amplified |
| PMIC_1D12    | 100% Bacillus toyonensis BCT-7112               | Firmicutes     | Amplified     | Non amplified |

| PMIC_1D1B.1  | 100% Sulfitobacter pontiacus DSM 10014       | Proteobacteria | Amplified     | Non amplified |
|--------------|----------------------------------------------|----------------|---------------|---------------|
| PMIC_1D2B.1  | 99.85% Cobetia marina JCM 21022              | Proteobacteria | Amplified     | Amplified     |
| PMIC_1D2B.2  | 100% Pseudoalteromonas atlantica NBRC 103033 | Proteobacteria | Amplified     | Non amplified |
| PMIC_1D2B.3  | 100% Cobetia marina JCM 21022                | Proteobacteria | Non amplified | Amplified     |
| PMIC_1D8B    | 100% Corynebacterium marinum DSM 44953       | Actinobacteria | Non amplified | Non amplified |
| PMIC_1D8D.1  | 100% Psychrobacter nivimaris 88/2-7          | Proteobacteria | Non amplified | Amplified     |
| PMIC_1D9A    | 99.80% Streptomyces griseoflavus LMG 19344   | Actinobacteria | Non amplified | Amplified     |
| PMIC_1D9B    | 99.75% Streptomyces griseoflavus LMG 19344   | Actinobacteria | Non amplified | Amplified     |
| PMIC_1E10A   | 99.71% Bacillus licheniformis ATCC 14580     | Firmicutes     | Non amplified | Non amplified |
| PMIC_1E10C   | 99.69% Rhodococcus coprophilus NBRC 100603   | Actinobacteria | Non amplified | Amplified     |
| PMIC_1E11A.1 | 100% Bacillus aryabhattai B8W22              | Firmicutes     | Non amplified | Non amplified |
| PMIC_1E11B.1 | 100% Bacillus aryabhattai B8W22              | Firmicutes     | Non amplified | Non amplified |
| PMIC_1E11B.2 | 99.59% Arenibacter aquaticus GUO666          | Bacteroidetes  | Non amplified | Amplified     |
| PMIC_1E12A   | 99.44% Micromonospora citrea DSM 43903       | Actinobacteria | Non amplified | Non amplified |
| PMIC_1E12B   | 100% Arthrobacter gandavensis R 5812         | Actinobacteria | Non amplified | Amplified     |
| PMIC_1E1A.1  | 99.52% Aquimarina algiphila 9Alg 151         | Bacteroidetes  | Non amplified | Non amplified |
| PMIC_1E1A.2  | 99.91% Aquimarina amphilecti 92V             | Bacteroidetes  | Non amplified | Non amplified |
| PMIC_1E1A.3  | 100% Marinobacter litoralis SW-45            | Proteobacteria | Amplified     | Non amplified |
| PMIC_1E1B.1  | 100% Bacillus aryabhattai B8W22              | Firmicutes     | Non amplified | Amplified     |
| PMIC_1E1B.2  | 100% Bacillus aryabhattai B8W22              | Firmicutes     | Non amplified | Non amplified |
| PMIC_1E8A    | 99.33% Limimaricola cinnabarinus LL-001      | Proteobacteria | Non amplified | Non amplified |
| PMIC_1E8C    | 99.35% Limimaricola cinnabarinus LL-001      | Proteobacteria | Non amplified | Non amplified |
| PMIC_1E9A    | 99.82% Streptomyces xiamenensis MCCC1A01550  | Actinobacteria | Non amplified | Non amplified |
| PMIC_1E9A    | 99.82% Streptomyces xiamenensis MCCC1A01550  | Actinobacteria | Non amplified | Non amplified |
| PMIC_1E9B    | 100% Rhodococcus erythropolis NBRC 15567     | Actinobacteria | Amplified     | Amplified     |
| PMIC_1E9C    | 99.84% Streptomyces xiamenensis MCCC 1A01550 | Actinobacteria | Non amplified | Non amplified |
| PMIC_1E9D    | 99.81% Streptomyces xiamenensis MCCC 1A01550 | Actinobacteria | Non amplified | Non amplified |
| PMIC_1F10B.1 | 100% Arthrobacter gandavensis R 5812         | Actinobacteria | Non amplified | Non amplified |
| PMIC_1F10B.2 | 99.93% Bacillus megaterium NBRC 15308        | Firmicutes     | Non amplified | Non amplified |

| PMIC_1F10B.3 | 99.92% Bacillus megaterium NBRC 15308         | Firmicutes     | Non amplified | Non amplified |
|--------------|-----------------------------------------------|----------------|---------------|---------------|
| PMIC_1F10C.1 | 100% Arthrobacter gandavensis R 5812          | Actinobacteria | Non amplified | Amplified     |
| PMIC_1F10C.2 | 99.92% Bacillus megaterium NBRC 15308         | Firmicutes     | Non amplified | Non amplified |
| PMIC_1F12A   | 100% Streptomyces setonii NRRL ISP-5322       | Actinobacteria | Non amplified | Non amplified |
| PMIC_1F12B   | 100% Streptomyces setonii NRRL ISP-5322       | Actinobacteria | Non amplified | Amplified     |
| PMIC_1F6A.1  | 99.77 Nocardiopsis alba DSM 43377             | Actinobacteria | Non amplified | Non amplified |
| PMIC_1F6A.2  | 99.76 Nocardiopsis alba DSM 43377             | Actinobacteria | Non amplified | Non amplified |
| PMIC_1F6A3   | 99.76% Nocardiopsis alba DSM 43377            | Actinobacteria | Non amplified | Amplified     |
| PMIC_1F6B    | 100% Pseudoalteromonas neustonica PAMC28425   | Proteobacteria | Amplified     | Amplified     |
| PMIC_1H7A    | 100% Kocuria polaris CMS 76or                 | Actinobacteria | Amplified     | Non amplified |
| PMIC_1H7B    | 99.09% Pseudoalteromonas prydzensis MB8-11    | Proteobacteria | Non amplified | Non amplified |
| PMIC_1H8A    | 99.30% Limimaricola soesokkakensis CECT 8367  | Proteobacteria | Non amplified | Non amplified |
| PMIC_111A    | 100% Streptomyces hydrogenans NBRC 13475      | Actinobacteria | Non amplified | Amplified     |
| PMIC_111B    | 100% Streptomyces hydrogenans NBRC 13475      | Actinobacteria | Non amplified | Amplified     |
| PMIC_2A10A   | 99.85% Fictibacillus phosphorivorans Ca7      | Firmicutes     | Amplified     | Non amplified |
| PMIC_2A10B.1 | 100% Bacillus megaterium NBRC 15308           | Firmicutes     | Non amplified | Non amplified |
| PMIC_2A10B.3 | 100% Bacillus aryabhattai B8W22               | Firmicutes     | Non amplified | Non amplified |
| PMIC_2A11A.1 | 99.92% Nocardiopsis alba DSM 43377            | Actinobacteria | Non amplified | Amplified     |
| PMIC_2A11A.2 | 100% Nocardiopsis alba DSM 43377              | Actinobacteria | Non amplified | Non amplified |
| PMIC_2A11B.1 | 100% Nocardiopsis alba DSM 43377              | Actinobacteria | Non amplified | Amplified     |
| PMIC_2A11B.2 | 100% Nocardiopsis alba DSM 43377              | Actinobacteria | Non amplified | Amplified     |
| PMIC_2A11B.3 | 100% Nocardiopsis alba DSM 43377              | Actinobacteria | Non amplified | Amplified     |
| PMIC_2A11C   | 100% Bacillus mycoides DSM 2048               | Firmicutes     | Non amplified | Non amplified |
| PMIC_2A12A.1 | 99.68% Streptomyces albidoflavus DSM 40455    | Actinobacteria | Non amplified | Non amplified |
| PMIC_2A12A.2 | 99.69% Streptomyces albidoflavus DSM 40455    | Actinobacteria | Non amplified | Non amplified |
| PMIC_2A12B.1 | 99.77% Streptomyces albogriseolus NRRL B-1305 | Actinobacteria | Non amplified | Non amplified |
| PMIC_2A12B.1 | 99.77% Streptomyces albogriseolus NRRL B-1305 | Actinobacteria | Non amplified | Non amplified |
| PMIC_2A12B.2 | 99.76% Streptomyces albogriseolus NRRL B-1305 | Actinobacteria | Non amplified | Non amplified |
| PMIC_2A12B.2 | 99.76% Streptomyces albogriseolus NRRL B-1305 | Actinobacteria | Non amplified | Non amplified |

| PMIC_2B1A    | 99.85% Nocardiopsis prasina DSM 43845           | Actinobacteria | Non amplified | Amplified     |
|--------------|-------------------------------------------------|----------------|---------------|---------------|
| PMIC_2B1C    | 99.82% Nocardiopsis prasina DSM 43845           | Actinobacteria | Non amplified | Amplified     |
| PMIC_2B1D    | 99.85% Nocardiopsis prasina DSM 43845           | Actinobacteria | Non amplified | Amplified     |
| PMIC_2B9A    | 100% Bacillus horikoshii DSM 8719               | Firmicutes     | Amplified     | Non amplified |
| PMIC_2B9A.2  | 100% Bacillus horikoshii DSM 8719               | Firmicutes     | Non amplified | Non amplified |
| PMIC_2B9A.3  | 100% Bacillus horikoshii DSM 8719               | Firmicutes     | Non amplified | Non amplified |
| PMIC_2C11    | 100% Alkalihalobacillus algicola KMM 3737       | Firmicutes     | Amplified     | Non amplified |
| PMIC_2C12    | 99.69% Streptomyces albidoflavus DSM 40455      | Actinobacteria | Non amplified | Amplified     |
| PMIC_2C2A    | 99.84% Streptomyces xiamenensis MCCC1A01550     | Actinobacteria | Non amplified | Non amplified |
| PMIC_2C2B    | 99.81% Streptomyces xiamenensis MCCC1A01550     | Actinobacteria | Non amplified | Non amplified |
| PMIC_2C3A    | 100% Pseudoalteromonas carrageenovora IAM 12662 | Proteobacteria | Amplified     | Non amplified |
| PMIC_2C3B.1  | 99.11% Nocardiopsis umidischolae 66/93          | Actinobacteria | Non amplified | Non amplified |
| PMIC_2C3B.2  | 99.11% Nocardiopsis umidischolae 66/93          | Actinobacteria | Non amplified | Amplified     |
| PMIC_2C3B.3  | 99.19% Nocardiopsis umidischolae 66/93          | Actinobacteria | Non amplified | Amplified     |
| PMIC_2C3B.4  | 99.2% Nocardiopsis umidischolae 66/93           | Actinobacteria | Non amplified | Amplified     |
| PMIC_2C5A    | 99.93% Vibrio toranzoniae Vb 10.8               | Proteobacteria | Amplified     | Non amplified |
| PMIC_2C8A    | 99.69% Streptomyces ardesiacus NRRL B-1773      | Actinobacteria | Non amplified | Amplified     |
| PMIC_2C8B    | 99.7% Streptomyces ardesiacus NRRL B-1773       | Actinobacteria | Amplified     | Amplified     |
| PMIC_2C8C    | 99.57% Streptomyces hydrogenans NBRC 13475      | Actinobacteria | Non amplified | Amplified     |
| PMIC_2C8D    | 99.13% Pseudoalteromonas prydzensis MB8-11      | Proteobacteria | Non amplified | Non amplified |
| PMIC_2D10A   | 99.84% Nocardiopsis prasina DSM 43845           | Actinobacteria | Non amplified | Amplified     |
| PMIC_2D10B.1 | 99.75% Nocardiopsis prasina DSM 43845           | Actinobacteria | Non amplified | Amplified     |
| PMIC_2D10B.2 | 99.84% Nocardiopsis prasina DSM 43845           | Actinobacteria | Non amplified | Amplified     |
| PMIC_2D10C   | 99.84% Nocardiopsis prasina DSM 43845           | Actinobacteria | Non amplified | Amplified     |
| PMIC_2D11A.1 | 99.77% Streptomyces hydrogenans NBRC 13475      | Actinobacteria | Non amplified | Non amplified |
| PMIC_2D11A.2 | 99.69% Streptomyces hydrogenans NBRC 13475      | Actinobacteria | Non amplified | Amplified     |
| PMIC_2D11B   | 99.84% Streptomyces hydrogenans NBRC 13475      | Actinobacteria | Non amplified | Non amplified |
| PMIC_2D11C   | 99.70% Streptomyces hydrogenans NBRC 13475      | Actinobacteria | Amplified     | Amplified     |
| PMIC_2D1A    | 100% Sulfitobacter pontiacus DSM 10014          | Proteobacteria | Non amplified | Non amplified |

| PMIC_2D8A   | 100% Streptomyces ardesiacus NRRL B-1773               | Actinobacteria | Non amplified | Amplified     |
|-------------|--------------------------------------------------------|----------------|---------------|---------------|
| PMIC_2D8B   | 100% Streptomyces ardesiacus NRRL B-1774               | Actinobacteria | Non amplified | Amplified     |
| PMIC_2D8E   | 100% Psychrobacter nivimaris 88/2-7                    | Proteobacteria | Non amplified | Non amplified |
| PMIC_2E10   | 99.69% Rhodococcus coprophilus NBRC 100603             | Actinobacteria | Amplified     | Amplified     |
| PMIC_2E5A   | 99.67% Tenacibaculum gallaicum A37.1                   | Bacteroidetes  | Non amplified | Non amplified |
| PMIC_2E5B   | 100% Sulfitobacter pontiacus DSM 10014                 | Proteobacteria | Non amplified | Amplified     |
| PMIC_2E9A.1 | 99.84% Streptomyces xiamenensis MCCC 1A01550           | Actinobacteria | Non amplified | Non amplified |
| PMIC_2E9A.2 | 99.85% Streptomyces xiamenensis MCCC 1A01550           | Actinobacteria | Non amplified | Non amplified |
| PMIC_2E9A.3 | 99.85% Streptomyces xiamenensis MCCC 1A01550           | Actinobacteria | Non amplified | Non amplified |
| PMIC_2E9B.1 | 100% Rhodococcus erythropolis NBRC 15567               | Actinobacteria | Non amplified | Non amplified |
| PMIC_2E9B.2 | 100% Psychrobacter nivimaris 88/2-7                    | Proteobacteria | Amplified     | Non amplified |
| PMIC_2E9C   | 99.76% Rhodococcus qingshengii JCM 15477               | Actinobacteria | Amplified     | Non amplified |
| PMIC_2F12A  | 99.82% Nocardiopsis prasina DSM 43845                  | Actinobacteria | Non amplified | Amplified     |
| PMIC_2F12B  | 100% Streptomyces setonii NRRL ISP-5322                | Actinobacteria | Non amplified | Amplified     |
| PMIC_2F12C  | 100% Streptomyces setonii NRRL ISP-5322                | Actinobacteria | Non amplified | Non amplified |
| PMIC_2F12E  | 99.23% Henriciella algicola CCUG 67844                 | Proteobacteria | Non amplified | Non amplified |
| PMIC_2F6A   | 99.76% Nocardiopsis alba DSM 43377                     | Actinobacteria | Non amplified | Amplified     |
| PMIC_2F6B   | 99.76% Nocardiopsis alba DSM 43377                     | Actinobacteria | Non amplified | Amplified     |
| PMIC_2F6C   | 99.77% Nocardiopsis alba DSM 43377                     | Actinobacteria | Non amplified | Amplified     |
| PMIC_2F9    | 100% Arthrobacter gandavensis R 5812                   | Actinobacteria | Non amplified | Non amplified |
| PMIC_2G1A.1 | 100% Tritonibacter mobilis subsp. Pelagius NBRC 102038 | Proteobacteria | Non amplified | Non amplified |
| PMIC_2G1A.2 | 100% Tritonibacter mobilis subsp. Pelagius NBRC 102038 | Proteobacteria | Non amplified | Non amplified |
| PMIC_2G1B   | 100% Tritonibacter mobilis subsp. Pelagius NBRC 102038 | Proteobacteria | Non amplified | Non amplified |
| PMIC_2G2A   | 99.68% Streptomyces ambofaciens ATCC 23877             | Actinobacteria | Non amplified | Non amplified |
| PMIC_2G2B   | 99.74% Arenibacter aquaticus GUO666                    | Bacteroidetes  | Amplified     | Non amplified |
| PMIC_2G8A.1 | 100% Alkalihalobacillus hwajinpoensis SW-72            | Firmicutes     | Non amplified | Non amplified |
| PMIC_2G8A.2 | 99.52% Psychrobacter cryohalolentis K5                 | Proteobacteria | Non amplified | Non amplified |
| PMIC_2G8B   | 99.53% Psychrobacter cryohalolentis K5                 | Proteobacteria | Non amplified | Non amplified |
| PMIC_2G8C   | 99.68% Streptomyces ambofaciens ATCC 23877             | Actinobacteria | Non amplified | Amplified     |

| PMIC_2H10A              | 99.92% Bacillus pumilus ATCC 7061                | Firmicutes     | Amplified     | Non amplified |
|-------------------------|--------------------------------------------------|----------------|---------------|---------------|
| PMIC_2H2A               | 100% Nocardiopsis alba DSM 43377                 | Actinobacteria | Non amplified | Amplified     |
| PMIC_2H2C.1             | 100% Nocardiopsis alba DSM 43377                 | Actinobacteria | Non amplified | Amplified     |
| PMIC_2H2C.2             | 100% Nocardiopsis alba DSM 43377                 | Actinobacteria | Non amplified | Amplified     |
| PMIC_2H3                | 100% Cobetia amphilecti KMM 1561                 | Proteobacteria | Amplified     | Amplified     |
| PMIC_2H5B               | 99.84% Pseudoalteromonas carrageenovora IAM12662 | Proteobacteria | Non amplified | Non amplified |
| PMIC_2H5C               | 99.92% Providencia vermicola OP1                 | Proteobacteria | Amplified     | Non amplified |
| PMIC_2H6                | 99.81% Plantibacter flavus VKM Ac-2504           | Actinobacteria | Non amplified | Amplified     |
| PMO?verde               | 98.01% Aquimarina algiphila strain 9Alg 151      | Bacteroidetes  | Non amplified | Amplified     |
| PMO_112_11.3<br>Laranja | 100% Rubinisphaera brasiliensis DSM 5305         | Planctomycetes | Non amplified | Amplified     |
| PMO100_1.1              | 100% Algihabitans albus strainHHTR118            | Proteobacteria | Non amplified | Non amplified |
| PMO102_1.1              | 99.2% Sphingopyxis litoris strain FR1093         | Proteobacteria | Amplified     | Non amplified |
| PMO102_6.2              | 98.4% Sphingopyxis litoris strain FR1093         | Proteobacteria | Amplified     | Non amplified |
| PMO107_3                | 99.3% Labrenzia alba strain 50M6                 | Proteobacteria | Amplified     | Non amplified |
| PMO107_8.1              | 100% Vibrio cyclitrophicus strain LMG 21359      | Proteobacteria | Non amplified | Non amplified |
| PMO108_1.1.laranja      | 100% Shewanella colwelliana strain ATCC 39565    | Proteobacteria | Non amplified | Non amplified |
| PMO110_1.1              | 100% Algihabitans albus strainHHTR118            | Proteobacteria | Non amplified | Amplified     |
| PMO110_11               | 98.46% Litoreibacter meonggei strain MA1-1       | Proteobacteria | Non amplified | Non amplified |
| PMO110_18.1             | 100% Pelagicola litoralis strain CL-ES2          | Proteobacteria | Non amplified | Amplified     |
| PMO110_18.2             | 100% Pelagicola litoralis strain CL-ES2          | Proteobacteria | Amplified     | Non amplified |
| PMO110_3.2              | 100% Amphritea ceti strain RA1                   | Proteobacteria | Non amplified | Non amplified |
| PMO111_13.1             | 99.41% Roseovarius aestuarii strain SMK-122      | Proteobacteria | Non amplified | Amplified     |
| PMO111_2.1              | 98.96% Ruegeria faecimaris strain HD-28          | Proteobacteria | Non amplified | Non amplified |
| PMO111_27.1             | 99.43% Roseovarius aestuarii strain SMK-122      | Proteobacteria | Non amplified | Non amplified |
| PMO111_4.3.1.rosa       | 98.65% Roseobacter cerasinus strain AI77         | Proteobacteria | Amplified     | Amplified     |
| PMO111_5.1.1            | 98.76% Roseovarius aestuarii strain SMK-122      | Proteobacteria | Amplified     | Non amplified |
| PMO111_6.1              | 99.39% Roseovarius aestuarii strain SMK-122      | Proteobacteria | Non amplified | Amplified     |
| PMO111_7.1              | 99.44% Roseovarius aestuarii strain SMK-122      | Proteobacteria | Amplified     | Non amplified |
| PMO111_8.5.1            | 98.86% Roseovarius aestuarii strain SMK-122      | Proteobacteria | Non amplified | Non amplified |

| PMO112_8.2    | 98.38% Erythrobacter longus strain DSM 6997                       | Proteobacteria | Non amplified | Non amplified |
|---------------|-------------------------------------------------------------------|----------------|---------------|---------------|
| PMO113_2      | 99.06% Pseudoalteromonas prydzensis strain MB8-11                 | Proteobacteria | Non amplified | Non amplified |
| PMO113_7      | 93.54% Fodinicurvata halophila strain BA45AL                      | Proteobacteria | Non amplified | Non amplified |
| PMO113_9      | 100% Pseudoalteromonas arctica A 37-1-2                           | Proteobacteria | Amplified     | Non amplified |
| PMO114_1.a    | 98.77% Sphingopyxis litoris strain FR1093                         | Proteobacteria | Non amplified | Non amplified |
| PMO114_12     | 99.83% Kiloniella spongiaestrain JCM 19930                        | Proteobacteria | Non amplified | Non amplified |
| PMO114_13     | 99.14% Sphingopyxis litoris strain FR1093                         | Proteobacteria | Non amplified | Non amplified |
| PMO114_16.1   | 99.27% Sphingopyxis litoris strain FR1093                         | Proteobacteria | Amplified     | Non amplified |
| PMO114_18     | 98.64% Roseobacter cerasinus strain AI77                          | Proteobacteria | Amplified     | Non amplified |
| PMO114_2.a    | 98.61% Flagellimonas aquimarina sp. strain ECD12                  | Bacteroidetes  | Non amplified | Non amplified |
| PMO114_2T     | 94.61% Alteromonas alba strain 190                                | Proteobacteria | Amplified     | Amplified     |
| PMO114_7.2    | 99.38% Aquimarina algiphila strain 9Alg 151                       | Bacteroidetes  | Non amplified | Non amplified |
| PMO114_8.v    | 98.75% Erythrobacter aquimaris strain SW-110                      | Proteobacteria | Non amplified | Amplified     |
| PMO115_16.1   | 98.48% Sphingopyxis litoris strain FR1093                         | Proteobacteria | Amplified     | Non amplified |
| PMO115_17.2.1 | 100% Maribacter dokdonensis strain DSW-8                          | Bacteroidetes  | Non amplified | Amplified     |
| PMO115_3.2    | 100% Pseudoalteromonas carrageenovora IAM 12662 strain ATCC43555T | Proteobacteria | Amplified     | Non amplified |
| PMO115_5.1    | 99.92% Cellulophaga lytica strain DSM 7489                        | Bacteroidetes  | Non amplified | Amplified     |
| PMO117_1.2    | 100% Pseudoalteromonas carrageenovora IAM 12662 strain ATCC43555T | Proteobacteria | Non amplified | Amplified     |
| PMO117_3.1    | 99.46% Labrenzia alba strain 50M6                                 | Proteobacteria | Non amplified | Amplified     |
| PMO117_4.3    | 99.44% Labrenzia alba strain 50M6                                 | Proteobacteria | Non amplified | Non amplified |
| PMO117_7      | 100% Cellulophaga fucicola strain cfHf10-1                        | Bacteroidetes  | Non amplified | Non amplified |
| PMO117_8.1    | 99.44% Labrenzia alba strain 50M6                                 | Proteobacteria | Amplified     | Non amplified |
| PMO118_11.2   | 99.84% Kiloniella spongiae strain JCM 19930                       | Proteobacteria | Non amplified | Amplified     |
| PMO118_11.3   | 99.55% Granulosicoccus undariae strain W-BA3                      | Proteobacteria | Non amplified | Non amplified |
| PMO118_13.2   | 99.68% Denitrobaculum tricleocarpae                               | Proteobacteria | Non amplified | Non amplified |
| PMO118_2.2    | 100% Kiloniella spongiae strain JCM 19930                         | Proteobacteria | Non amplified | Non amplified |
| PMO118_9.1    | 100% Kiloniella spongiaestrain JCM 19930                          | Proteobacteria | Amplified     | Non amplified |
| PMO119_11     | 92.33% Inquilinus ginsengisoli strain Gsoil 080                   | Proteobacteria | Non amplified | Amplified     |
| PMO119_6.1.2  | 93.56% Fodinicurvata halophila strain BA45AL                      | Proteobacteria | Non amplified | Non amplified |

| PMO119_7.1    | 99.92% Pelagibius litoralis strain CL-UU02         | Proteobacteria | Amplified     | Non amplified |
|---------------|----------------------------------------------------|----------------|---------------|---------------|
| PMO119_7.2    | 99.92% Pelagibius litoralis strain CL-UU02         | Proteobacteria | Non amplified | Non amplified |
| PMO120_1      | 99.84% Citrobacter murliniae strain CIP 104556     | Proteobacteria | Amplified     | Non amplified |
| PMO121_14     | 96.2% Aquimarina algiphila strain 9Alg 151         | Bacteroidetes  | Non amplified | Non amplified |
| PMO121_15.2   | 98.21% Jannaschia seosinensis strain CL-SP26       | Proteobacteria | Non amplified | Non amplified |
| PMO121_15.5   | 98.16% Jannaschia seosinensis strain CL-SP26       | Proteobacteria | Non amplified | Non amplified |
| PMO122_2.a    | 98.78% Yoonia maritima strain KMM 9530             | Proteobacteria | Non amplified | Non amplified |
| PMO122_3.1    | 99.66% Brevundimonas vesicularis strain NBRC 12165 | Proteobacteria | Non amplified | Amplified     |
| PMO122_4.1    | 99.67% Brevundimonas vesicularis strain NBRC 12165 | Proteobacteria | Non amplified | Amplified     |
| PMO122_5.1    | 99.92% Paracoccus mutanolyticus strain RSP-02      | Proteobacteria | Non amplified | Non amplified |
| PMO122_6.rosa | 99.67% Pseudomonas caeni strain HY-14              | Proteobacteria | Non amplified | Non amplified |
| PMO123_1      | 98.46% Sphingopyxis litoris strain FR1093          | Proteobacteria | Amplified     | Non amplified |
| PMO123_2      | 98.44% Sphingopyxis litoris strain FR1093          | Proteobacteria | Non amplified | Amplified     |
| PMO123_3.2    | 98% Pyruvatibacter mobilis strain CGMCC 1.15125    | Proteobacteria | Non amplified | Non amplified |
| PMO124_1      | 100% Acinetobacter johnsonii strain HAMBI 1969     | Proteobacteria | Non amplified | Amplified     |
| PMO124_2.1    | 99.52% Vibrio splendidus strain LMG 4042           | Proteobacteria | Non amplified | Non amplified |
| PMO126_2      | 99.84% Kiloniella spongiae strain JCM 19930        | Proteobacteria | Amplified     | Non amplified |
| PMO127_3      | 95.45% Tepidicaulis marinus strain MA2             | Proteobacteria | Non amplified | Amplified     |
| PMO128_2.1    | 93.38% Fodinicurvata halophila strain BA45AL       | Proteobacteria | Non amplified | Amplified     |
| PMO128_3      | 100% Algihabitans albus strain HHTR118             | Proteobacteria | Non amplified | Amplified     |
| PMO131_14.1   | 98.6% Roseobacter cerasinus strain AI77            | Proteobacteria | Non amplified | Amplified     |
| PMO131_17.1   | 99.27% Roseovarius aestuarii strain SMK-122        | Proteobacteria | Non amplified | Amplified     |
| PMO132_19.1   | 99.83% Kiloniella spongiae strain JCM 19930        | Proteobacteria | Amplified     | Amplified     |
| PMO132_2      | 100% Ruegeria meonggei strain MA-E2-3              | Proteobacteria | Non amplified | Non amplified |
| PMO132_20.1   | 99.84% Kiloniella spongiae strain JCM 19930        | Proteobacteria | Non amplified | Non amplified |
| PMO132_20.2.3 | 100% Aquimarina macrocephali JAMB N27              | Bacteroidetes  | Amplified     | Non amplified |
| PMO132_3      | 99.79% Kiloniella spongiae strain JCM 19930        | Proteobacteria | Non amplified | Non amplified |
| PMO132_8.1    | 98.34% Roseobacter cerasinus strain AI77           | Proteobacteria | Non amplified | Non amplified |
| PMO133_10.1   | 95.95% Aliiglaciecola litoralis strain Sd 2-38     | Proteobacteria | Amplified     | Amplified     |

| PMO133_6.2    | 99.39% Aquimarina algiphila strain 9Alg 151        | Bacteroidetes  | Non amplified | Amplified     |
|---------------|----------------------------------------------------|----------------|---------------|---------------|
| PMO135_10     | 99.5% Thalassospira lohafexi strain 139Z-12        | Proteobacteria | Amplified     | Amplified     |
| PMO135_5.1    | 100% Ruegeria meonggei strain MA-E2-3              | Proteobacteria | Non amplified | Amplified     |
| PMO135_6      | 99.84% Kiloniella spongiae strain JCM 19930        | Proteobacteria | Non amplified | Non amplified |
| PMO135_8      | 99.67% Kiloniella spongiae strain JCM 19930        | Proteobacteria | Non amplified | Non amplified |
| PMO135_9      | 99.43% Labrenzia alba strain 50M6                  | Proteobacteria | Amplified     | Amplified     |
| PMO136_11     | 100% Vibrio atlanticus strain DS1904-S1116         | Proteobacteria | Amplified     | Non amplified |
| PMO136_9.1    | 100% Kiloniella spongiae strain JCM 19930          | Proteobacteria | Non amplified | Non amplified |
| PMO138_12     | 94.67% Methylotenera mobilis JLW8                  | Proteobacteria | Amplified     | Non amplified |
| PMO138_15.2   | 94.82% Methylotenera versatilis strain 301         | Proteobacteria | Amplified     | Non amplified |
| PMO138_17     | 94.3% Methylotenera mobilis JLW8                   | Proteobacteria | Amplified     | Non amplified |
| PMO138_18     | 93.88% Methylotenera mobilis JLW8                  | Proteobacteria | Amplified     | Non amplified |
| PMO138_2      | 94.9% Methylotenera versatilis strain 301          | Proteobacteria | Non amplified | Non amplified |
| PMO138_4.1    | 98.79% Sulfitobacter marinus strain SW-265         | Proteobacteria | Amplified     | Amplified     |
| PMO138_9.1    | 99.75% Pseudomonas nitrititolerans strain GL14     | Proteobacteria | Non amplified | Non amplified |
| PMO139_11.2   | 97.61% Thalassobius gelatinovorus strain NBRC15761 | Proteobacteria | Non amplified | Amplified     |
| PMO139_12.5.a | 98.76% Roseobacter cerasinus strain AI77           | Proteobacteria | Non amplified | Non amplified |
| PMO139_21.1   | 99.44% Labrenzia alba strain 50M6                  | Proteobacteria | Non amplified | Non amplified |
| PMO139_7.1    | 98.46% Erythrobacter longus strain DSM 6997        | Proteobacteria | Amplified     | Non amplified |
| PMO140_12     | 98.14% Sulfitobacter marinus strain SW-265         | Proteobacteria | Amplified     | Amplified     |
| PMO140_13     | 97.3% Defluviimonas aestuarii strain BS14          | Proteobacteria | Non amplified | Non amplified |
| PMO140_15.2   | 98.45% Erythrobacter longus strain DSM 6997        | Proteobacteria | Non amplified | Non amplified |
| PMO140_2.rosa | 97.48% Jannaschia seosinensis strain CL-SP26       | Proteobacteria | Non amplified | Non amplified |
| PMO140_4      | 100% Microbulbifer echini strain AM134             | Proteobacteria | Non amplified | Non amplified |
| PMO140_9.1.2  | 99.2% Sphingopyxis litoris strain FR1093           | Proteobacteria | Non amplified | Non amplified |
| PMO141_1.v    | 100% Pseudoalteromonas translucida KMM 520         | Proteobacteria | Non amplified | Amplified     |
| PMO85_2       | 97.94% Microbulbifer echini strain AM134           | Proteobacteria | Non amplified | Non amplified |
| PMO85_3.1     | 100% Pseudoalteromonas translucida KMM 520         | Proteobacteria | Non amplified | Non amplified |
| PMO86_4       | 100% Colwellia meonggei strain MA1-3               | Proteobacteria | Non amplified | Amplified     |

| PMO87_15.4.1 | 99.37% Mycolicibacterium frederiksbergense strain DSM 44346       | Actinobacteria | Non amplified | Non amplified |
|--------------|-------------------------------------------------------------------|----------------|---------------|---------------|
| PMO87_18.1.3 | 99.68% Denitrobaculum tricleocarpaestrain R148                    | Proteobacteria | Non amplified | Non amplified |
| PMO87_21     | 96.19% Aliiglaciecola litoralis strain Sd 2-38                    | Proteobacteria | Non amplified | Non amplified |
| PMO87_22     | 99.92% Zobellia russellii strain KMM 3677                         | Bacteroidetes  | Amplified     | Amplified     |
| PMO87_4.a    | 95.6% Aliiglaciecola litoralis strain Sd 2-38                     | Proteobacteria | Non amplified | Non amplified |
| PMO87_5.2    | 100% Pseudoalteromonas carrageenovora IAM 12662 strain ATCC43555T | Proteobacteria | Amplified     | Amplified     |
| PMO88_1      | 99.7% Pseudoalteromonas arctica A 37-1-2                          | Proteobacteria | Non amplified | Non amplified |
| PMO90_13     | 98.1% Sneathiella aquamaris 216LB-ZA1-12                          | Proteobacteria | Amplified     | Amplified     |
| PMO90_19.1   | 99.15% Aquimarina algiphila strain 9Alg 151                       | Bacteroidetes  | Amplified     | Non amplified |
| PMO94_4      | 99.86% Brevundimonas bullata strain NBRC 13290                    | Proteobacteria | Non amplified | Non amplified |
| PMO94_5      | 99.35% Pseudomonas caeni strain HY-14                             | Proteobacteria | Non amplified | Non amplified |
| PMO95_10     | 99.27% Sphingopyxis litoris strain FR1093                         | Proteobacteria | Non amplified | Non amplified |
| PMO95_11     | 99.06% Sphingopyxis litoris strain FR1093                         | Proteobacteria | Non amplified | Amplified     |
| PMO95_13.2   | 99.28% Sphingopyxis litoris strain FR1093                         | Proteobacteria | Amplified     | Amplified     |
| PMO95_8.1    | 99.2% Sphingopyxis litoris strain FR1093                          | Proteobacteria | Non amplified | Non amplified |
| PMO96_5.1    | 99.33% Sphingopyxis litoris strain FR1093                         | Proteobacteria | Non amplified | Non amplified |
| R2APL15_2    | 100% Actinomadura maheshkhaliensis 13-12-50                       | Actinobacteria | Non amplified | Non amplified |
| R2APL30_1.2  | 100% Streptomyces diastaticus NBRC 3714                           | Actinobacteria | Non amplified | Non amplified |
| R2APL45_1    | 98.34% Streptomyces marinus DSM 41970                             | Actinobacteria | Non amplified | Non amplified |

Supplementary Table 2 – Initial antimicrobial assay results from each replicate for the selected strains extracts against *E. coli* ATCC 25922 and *S. aureus* ATCC 29213. The growth inhibition values that were considered bioactive are highlighted in emerald green.

|                    |                                              |                | E. coli acti | vity (%)    |        | S. aureus activity (%) |             |                                                                                                                                                                                                                                                    |        |  |
|--------------------|----------------------------------------------|----------------|--------------|-------------|--------|------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
| Strain designation | Taxon                                        | Replicate<br>1 | Replicate 2  | Replicate 3 | Mean   | Replicate<br>1         | Replicate 2 | tivity (%)<br>Replicate<br>3<br>5.664<br>8.587<br>25.709<br>7.160<br>6.290<br>9.318<br>7.995<br>7.752<br>5.629<br>3.089<br>9.875<br>1.975<br>16.591<br>22.577<br>3.889<br>9.353<br>12.450<br>6.638<br>18.192<br>4.272<br>31.660<br>9.109<br>40.047 | Mean   |  |
| PMIC_111A          | 100% Streptomyces hydrogenans NBRC 13475     | 99.676         | 79.031       | 62.022      | 80.243 | -12.187                | 42.209      | 5.664                                                                                                                                                                                                                                              | 11.895 |  |
| PMIC_2C12          | 99.69% Streptomyces albidoflavus DSM 40455   | 76.640         | 55.800       | 62.093      | 64.844 | -1.522                 | 32.218      | 8.587                                                                                                                                                                                                                                              | 13.095 |  |
| PMIC_2H2A          | 100% Nocardiopsis alba DSM 43377             | 24.332         | 31.674       | 23.973      | 26.660 | 12.322                 | 42.288      | 25.709                                                                                                                                                                                                                                             | 26.773 |  |
| PMIC_2C3B.2        | 99.11% Nocardiopsis umidischolae 66/93       | 28.947         | 43.376       | 51.930      | 41.418 | -2.330                 | 18.994      | 7.160                                                                                                                                                                                                                                              | 7.942  |  |
| PMIC_2A11A.1       | 99.92% Nocardiopsis alba DSM 43377           | 31.498         | 38.464       | 48.935      | 39.632 | 14.530                 | 36.829      | 6.290                                                                                                                                                                                                                                              | 19.216 |  |
| PMIC_2C8C          | 99.57% Streptomyces hydrogenans NBRC 13475   | 31.457         | 43.550       | 34.350      | 36.452 | -0.875                 | 38.366      | 9.318                                                                                                                                                                                                                                              | 15.603 |  |
| PMIC_1B3A.1        | 99.52% Streptomyces xiamenensis MCCC 1A01550 | 25.506         | 32.946       | 29.821      | 29.424 | -0.229                 | 38.684      | 7.995                                                                                                                                                                                                                                              | 15.484 |  |
| PMIC_1C8A          | 99.69% Streptomyces ardesiacus NRRL B-1773   | 31.255         | 37.337       | 33.316      | 33.969 | 5.373                  | 23.791      | 7.752                                                                                                                                                                                                                                              | 12.305 |  |
| PMIC_1F10B         | 100% Arthrobacter gandavensis R 5812         | 26.721         | 36.528       | 29.215      | 30.821 | 5.535                  | 29.356      | 5.629                                                                                                                                                                                                                                              | 13.507 |  |
| PMIC_1D9A          | 99.80% Streptomyces griseoflavus LMG 19344   | 29.757         | 32.454       | 28.002      | 30.071 | -9.386                 | 20.770      | 3.089                                                                                                                                                                                                                                              | 4.824  |  |
| PMIC_1A11B.2       | 100% Nocardiopsis alba DSM 43377             | 71.093         | 99.863       | 57.921      | 76.292 | -0.768                 | 43.772      | 9.875                                                                                                                                                                                                                                              | 17.627 |  |
| PMIC_1D9B          | 99.75% Streptomyces griseoflavus LMG 19344   | 63.036         | 75.650       | 55.140      | 64.609 | -15.904                | 43.428      | 1.975                                                                                                                                                                                                                                              | 9.833  |  |
| Culture medium     | N/A                                          | 22.470         | 61.579       | 38.665      | 40.904 | -24.791                | 12.104      | 16.591                                                                                                                                                                                                                                             | 1.301  |  |
| PMO107_3           | 99.3% Labrenzia alba strain 50M6             | 9.352          | 29.450       | 26.255      | 21.686 | -18.274                | 7.599       | 22.577                                                                                                                                                                                                                                             | 3.967  |  |
| PMO123_2           | 98.44% Sphingopyxis litoris strain FR1093    | 5.182          | 30.779       | 21.655      | 19.205 | -10.302                | 35.478      | 3.889                                                                                                                                                                                                                                              | 9.688  |  |
| PMIC_2D8A          | 100% Streptomyces ardesiacus NRRL B-1773     | 14.008         | 29.883       | 18.481      | 20.791 | -12.510                | 34.497      | 9.353                                                                                                                                                                                                                                              | 10.447 |  |
| PMIC_2D10A         | 99.84% Nocardiopsis prasina DSM 43845        | 12.510         | 23.266       | 24.080      | 19.952 | -10.840                | 43.110      | 12.450                                                                                                                                                                                                                                             | 14.907 |  |
| PMIC_1C11B         | 100% Marinobacter litoralis SW-45            | 5.182          | 20.724       | 22.760      | 16.222 | -6.639                 | 48.198      | 6.638                                                                                                                                                                                                                                              | 16.066 |  |
| PMIC_2B1A          | 99.85% Nocardiopsis prasina DSM 43845        | 11.619         | 18.903       | 11.884      | 14.136 | -21.290                | 13.191      | 18.192                                                                                                                                                                                                                                             | 3.364  |  |
| PMIC_2C8B          | 99.7% Streptomyces ardesiacus NRRL B-1773    | 7.814          | 15.552       | 8.746       | 10.704 | -19.459                | 9.295       | 4.272                                                                                                                                                                                                                                              | -1.964 |  |
| PMIC_1E10C         | 99.69% Rhodococcus coprophilus NBRC 100603   | 101.134        | 98.794       | 60.096      | 86.675 | -53.717                | 71.810      | 31.660                                                                                                                                                                                                                                             | 16.584 |  |
| PMIC_1E11B.2       | 99.59% Arenibacter aquaticus GUO666          | 65.547         | 73.252       | 56.102      | 64.967 | 13.614                 | 35.716      | 9.109                                                                                                                                                                                                                                              | 19.480 |  |
| PMIC_1D12          | 100% Bacillus toyonensis BCT-7112            | 36.640         | 56.320       | 47.330      | 46.763 | 11.945                 | 38.101      | 40.047                                                                                                                                                                                                                                             | 30.031 |  |

| PMIC_1B5B.1  | 100% Pseudoalteromonas tetraodonis GFC          | 11.700  | 29.421 | 30.213 | 23.778 | 1.064   | 28.217  | 12.833  | 14.038  |
|--------------|-------------------------------------------------|---------|--------|--------|--------|---------|---------|---------|---------|
| PMIC_1B3B    | 100% Pseudoalteromonas carrageenovora IAM 12662 | -1.336  | 20.406 | 8.175  | 9.082  | 18.139  | 30.522  | 2.149   | 16.937  |
| PMIC_1B2     | 99.92% Catalinimonas alkaloidigena CNU-914      | 4.737   | 15.118 | 14.273 | 11.376 | 28.858  | 32.404  | 11.998  | 24.420  |
| PMI30_9      | 98.62% Roseobacter cerasinus                    | -4.534  | 4.428  | 17.054 | 5.649  | -44.129 | 18.835  | 24.700  | -0.198  |
| PMO136_11    | 100% Vibrio atlanticus strain DS1904-S1116      | -1.296  | 16.939 | 4.288  | 6.644  | -25.653 | 6.566   | 0.409   | -6.226  |
| PMO90_13     | 98.1% Sneathiella aquamaris 216LB-ZA1-12        | -7.571  | 10.958 | 11.171 | 4.853  | -38.527 | 22.704  | 30.407  | 4.862   |
| PMIC_1A8C    | 99.66% Streptomyces albogriseolus NRRL B-1305   | -7.247  | 1.307  | 11.884 | 1.981  | -26.784 | 47.138  | 99.487  | 39.947  |
| PMIC_2A11B.1 | 100.00% Nocardiopsis alba DSM 43377             | 99.069  | 78.713 | 55.247 | 77.676 | -59.803 | 20.955  | 14.016  | -8.277  |
| PMIC_1A10B   | 99.82% Nocardia nova NBRC 15556                 | 53.036  | 67.155 | 31.746 | 50.646 | -53.178 | 20.028  | -4.846  | -12.665 |
| PMIC_2G8C    | 99.68% Streptomyces ambofaciens ATCC 23877      | 29.393  | 44.936 | 18.338 | 30.889 | 1.764   | 4.048   | 30.198  | 12.003  |
| PMIC_2C5A    | 99.93% Vibrio toranzoniae Vb 10.8               | -20.121 | 16.303 | 2.683  | -0.378 | -29.370 | -0.272  | 26.649  | -0.998  |
| PMIC_1E9B    | 100% Rhodococcus erythropolis NBRC 15567        | -10.486 | 17.632 | 19.515 | 8.887  | -35.672 | -5.254  | 38.307  | -0.873  |
| PMIC_1H7A    | 100% Kocuria polaris CMS 76or                   | -12.632 | 13.240 | 5.037  | 1.882  | -41.058 | -12.170 | 4.411   | -16.273 |
| PMIC_1C12A   | 99.67% Streptomyces albidoflavus DSM 40455      | -16.194 | 13.732 | 8.175  | 1.904  | -59.157 | -12.170 | 16.626  | -18.234 |
| MEMO17_8     | 99.9% Novipirellula caenicola                   | -23.360 | 11.622 | 3.147  | -2.864 | -55.386 | 8.924   | 13.285  | -11.059 |
| PMIC_2E9B.2  | 100% Psychrobacter nivimaris 88/2-7             | -16.640 | 4.023  | 0.401  | -4.072 | -41.382 | 0.470   | 0.896   | -13.338 |
| PMIC_2G2B    | 99.74% Arenibacter aquaticus GUO666             | -16.478 | 5.121  | 9.281  | -0.692 | -63.843 | -0.537  | 12.346  | -17.345 |
| PMIC_2C11    | 100% Alkalihalobacillus algicola KMM 3737       | -16.194 | -1.033 | 21.013 | 1.262  | -90.183 | 1.265   | -21.794 | -36.904 |
| PMIC_1E1B.1  | 100% Bacillus aryabhattai B8W22                 | -3.279  | 6.393  | 15.343 | 6.152  | -14.449 | 36.458  | 9.074   | 10.361  |
| PMO114_2T    | 94.61% Alteromonas alba strain 190              | -10.081 | 18.961 | 36.703 | 15.195 | -14.449 | 10.249  | 15.269  | 3.690   |
| PMI12_1B     | 99.91% Sphingorhabdus sp. Alg231_15             | -17.935 | 12.836 | 14.630 | 3.177  | -38.096 | -19.511 | 11.406  | -15.400 |
| PMI29_1      | 99.4% Erythrobacter sp. B809                    | -17.126 | 18.210 | 7.640  | 2.908  | -32.709 | -16.039 | 13.459  | -11.763 |
| PMI41_5      | 100% Ochrobactrum sp. strain FA75               | -14.980 | 17.054 | 7.676  | 3.250  | -20.644 | -10.342 | 5.803   | -8.394  |
| PMIC_2H10A   | 99.92% Bacillus pumilus ATCC 7061               | -15.344 | 14.425 | 10.172 | 3.084  | -39.119 | -9.229  | 2.462   | -15.295 |
| PMIC_2E9C    | 99.76% Rhodococcus qingshengii JCM 15477        | -14.494 | 13.992 | 10.172 | 3.223  | -42.567 | 2.564   | 5.490   | -11.504 |
| PMI45_2      | 99.91% Sphingopyxis ummariensis strain 258-LNR4 | -20.526 | 10.264 | 15.878 | 1.872  | -36.911 | 4.869   | 14.329  | -5.904  |
| PMIC_1D2B.3  | 100% Cobetia marina JCM 21022                   | -12.591 | 4.688  | 9.780  | 0.626  | -59.588 | -1.994  | -7.908  | -23.164 |
| PMIC_1C10    | 100% Pseudoalteromonas carrageenovora IAM12662  | -14.696 | 4.630  | 2.398  | -2.556 | -87.759 | 7.944   | -3.802  | -27.873 |
| PMIC_1A10A   | 100% Microbacterium flavum YM18-098             | -24.980 | 6.624  | 8.853  | -3.168 | -41.543 | -11.375 | -7.352  | -20.090 |

| PMIC_1D8D.1  | 100% Psychrobacter nivimaris 88/2-7                 | -21.781 | 11.536 | 25.684 | 5.146  | -28.023 | -2.206  | 3.541   | -8.896  |
|--------------|-----------------------------------------------------|---------|--------|--------|--------|---------|---------|---------|---------|
| PMIC_2H6     | 99.81% Plantibacter flavus VKM Ac-2504              | -40.405 | 13.789 | 16.555 | -3.353 | -18.597 | -11.720 | 0.792   | -9.842  |
| PMIC_2H5C    | 99.92% Providencia vermicola OP1                    | -12.996 | 14.801 | 7.212  | 3.006  | -33.625 | -5.969  | 1.418   | -12.725 |
| PMIC_1D1B.1  | 100% Sulfitobacter pontiacus DSM 10014              | 3.077   | 20.666 | 19.765 | 14.503 | -19.513 | 21.538  | 10.571  | 4.199   |
| PMO114_18    | 98.64% Roseobacter cerasinus strain AI77            | -10.810 | 14.396 | 16.234 | 6.607  | -32.332 | 6.566   | 5.942   | -6.608  |
| PMI30_4      | 99.83% Vibrio sp. strain 6c                         | -6.478  | 9.918  | 9.566  | 4.335  | -45.960 | 30.920  | 7.439   | -2.534  |
| PMI37_3A     | 99.90% Sphingopyxis ummariensis strain 258-LNR4     | -1.538  | 18.528 | 13.595 | 10.195 | -34.864 | 16.901  | 6.151   | -3.937  |
| PMI37_4      | 100% Paracoccus lutimaris strain HDM-25             | -8.664  | -1.986 | 11.064 | 0.138  | -43.105 | 17.431  | 3.889   | -7.262  |
| PMI41_6      | 100% Staphylococcus hominis strain FDAARGOS_748     | -29.879 | 2.983  | 14.915 | -3.993 | -34.595 | 33.172  | 2.671   | 0.416   |
| PMIC_1E1A.3  | 100% Marinobacter litoralis SW-45                   | 9.879   | 7.028  | 12.240 | 9.716  | -44.937 | 35.557  | 1.801   | -2.526  |
| PMIC_1F10C.1 | 100% Arthrobacter gandavensis R 5812                | 4.413   | -6.754 | 7.462  | 1.707  | -11.163 | 14.781  | 5.037   | 2.885   |
| MEMO4_5      | 99.92% Hellea balneolensis DSM 19091                | 6.073   | 15.061 | 17.554 | 12.896 | -14.126 | 12.581  | 3.263   | 0.573   |
| PMI38_1      | 100% Algihabitans albus strain HHTR118              | -11.741 | 16.505 | 10.921 | 5.228  | -31.901 | 6.460   | 7.995   | -5.815  |
| ICM_H12      | 99.04 % Erythrobacter lutimaris strain S-5          | -9.676  | 9.889  | 6.820  | 2.344  | -34.756 | -2.418  | -0.322  | -12.499 |
| ICM_G4       | 99.9% Novipirellula caenicola                       | -13.036 | 16.881 | 13.274 | 5.706  | -31.093 | 8.606   | 3.645   | -6.281  |
| ICM_H5       | 99.9% Novipirellula caenicola                       | -6.923  | 18.557 | 18.624 | 10.086 | -41.058 | 10.037  | 2.427   | -9.531  |
| PMI12_2      | 100% Altererythrobacter ishigakiensis strain H93616 | 0.081   | 7.057  | 11.313 | 6.150  | -30.178 | 19.259  | 5.420   | -1.833  |
| ICM_A5       | 99.9% Tritonibacter mobilis                         | 0.567   | 3.532  | 13.453 | 5.851  | -18.489 | 17.510  | 2.323   | 0.448   |
| PMO135_10    | 99.5% Thalassospira lohafexi strain 139Z-12         | -25.668 | 18.672 | 15.271 | 2.759  | -15.203 | 25.593  | -1.714  | 2.892   |
| PMIC_2E10    | 99.69% Rhodococcus coprophilus NBRC 100603          | 45.466  | 20.117 | 6.356  | 23.980 | -21.290 | 9.375   | -16.469 | -9.462  |
| PMIC_2D8B    | 100% Streptomyces ardesiacus NRRL B-1774            | 44.332  | 17.690 | 13.809 | 25.277 | -26.892 | 14.330  | 0.235   | -4.109  |
| PMIC_2A10A   | 99.85% Fictibacillus phosphorivorans Ca7            | 2.955   | 26.618 | 22.724 | 17.433 | -18.597 | 10.461  | 7.334   | -0.267  |
| PMIC_2H3     | 100% Cobetia amphilecti KMM 1561                    | 30.081  | 31.588 | 15.628 | 25.766 | -8.363  | 24.904  | 15.025  | 10.522  |
| PMIC_1H8A    | 99.30% Limimaricola soesokkakensis CECT 8367        | 34.251  | 27.803 | 19.693 | 27.249 | -24.737 | 24.029  | 30.442  | 9.911   |
| PMIC_2C3A    | 100% Pseudoalteromonas carrageenovora IAM 12662     | 30.891  | 19.713 | 16.377 | 22.327 | -13.156 | 28.058  | 30.164  | 15.022  |
| PMIC_2F12A   | 99.82% Nocardiopsis prasina DSM 43845               | -34.089 | 13.240 | 4.609  | -5.413 | -3.515  | 24.718  | 30.616  | 17.273  |
| PMIC_2B9A.2  | 100% Bacillus horikoshii DSM 8719                   | 47.976  | 13.038 | 6.606  | 22.540 | -4.592  | 20.902  | 59.118  | 25.143  |
| PMIC_2D11C   | 99.70% Streptomyces hydrogenans NBRC 13475          | 22.632  | 27.572 | 13.916 | 21.373 | -3.784  | 22.386  | 59.605  | 26.069  |
| PMIC_2A12B.1 | 99.77% Streptomyces albogriseolus NRRL B-1305       | 74.192  | 57.456 | 36.532 | 56.060 | 89.206  | 89.203  | 83.691  | 87.367  |

| PMIC_2F6A              | 99.76% Nocardiopsis alba DSM 43377           | 75.025 | 26.233 | 34.401 | 45.220 | 27.562  | 19.226  | 45.700 | 30.829 |
|------------------------|----------------------------------------------|--------|--------|--------|--------|---------|---------|--------|--------|
| PMIC_2A11B.2           | 100% Nocardiopsis alba DSM 43377             | 15.983 | 11.647 | 10.935 | 12.855 | 29.817  | -14.051 | -3.131 | 4.211  |
| PMO112_11.1<br>Laranja | 100% Rubinisphaera brasiliensis DSM 5305     | -3.504 | 34.665 | 11.234 | 14.132 | 2.394   | 7.045   | 18.582 | 9.341  |
| PMIC_2C2B              | 99.81% Streptomyces xiamenensis MCCC1A01550  | 58.145 | 25.159 | 24.049 | 35.784 | 11.383  | 17.435  | 27.674 | 18.831 |
| PMIC_2F6B              | 99.76% Nocardiopsis alba DSM 43377           | 14.099 | 14.480 | 18.424 | 15.668 | -13.491 | -14.887 | 31.235 | 0.952  |
| PMIC_2B1C              | 99.82% Nocardiopsis prasina DSM 43845        | 0.226  | 24.605 | 13.697 | 12.843 | 35.112  | 2.985   | 12.955 | 17.017 |
| R2APL15_2              | 100% Actinomadura maheshkhaliensis 13-12-50  | 7.036  | 43.749 | 19.389 | 23.391 | 8.735   | 31.963  | 34.223 | 24.974 |
| PMIC_2D11C             | 99.70% Streptomyces hydrogenans NBRC 13475   | 56.805 | 55.177 | 30.174 | 47.385 | 6.480   | -3.543  | 20.140 | 7.692  |
| PMIC_2H2C.2            | 100% Nocardiopsis alba DSM 43377             | 40.143 | 32.419 | 27.744 | 33.435 | 55.965  | 44.701  | 55.238 | 51.968 |
| PMIC_2F6C              | 99.77% Nocardiopsis alba DSM 43377           | 10.405 | 39.386 | 8.272  | 19.354 | 51.389  | 0.557   | 3.958  | 18.635 |
| ABPL45_1               | 99.92% Streptomyces antimycoticus NBRC 12839 | 18.627 | 41.600 | 19.289 | 26.506 | 24.261  | 46.890  | 39.819 | 36.990 |
| PMIC_1F6A.3            | 99.76% Nocardiopsis alba DSM 43377           | 33.007 | 57.423 | 33.769 | 41.400 | 7.591   | 27.625  | 31.966 | 22.394 |
| PMIC_2C8A              | 99.69% Streptomyces ardesiacus NRRL B-1773   | 45.105 | 21.382 | 32.870 | 33.119 | 22.038  | 25.873  | 47.767 | 31.893 |
| UC8                    | Roseimaritima ulvae UC8                      | 58.145 | 61.004 | 45.519 | 54.890 | 51.422  | 50.234  | 43.125 | 48.260 |
| MAPL30_1               | 100% Micromonospora matsumotoense DSM 44100  | 7.869  | 33.200 | 19.189 | 20.086 | 31.517  | -8.956  | 35.654 | 19.405 |
| PMIC_2D11A.2           | 99.69% Streptomyces hydrogenans NBRC 13475   | 40.614 | 61.981 | 35.633 | 46.076 | 11.677  | 43.387  | 40.168 | 31.744 |
| PMIC_2D10B.1           | 99.75% Nocardiopsis prasina DSM 43845        | 43.765 | 37.303 | 25.747 | 35.605 | 17.364  | 8.598   | 40.677 | 22.213 |
| UC8 1:10               | Roseimaritima ulvae UC8                      | 33.514 | 14.252 | 28.044 | 25.270 | 48.578  | -1.552  | 26.053 | 24.360 |
| ABPP45_1               | 98.79% Sporosarcina aquimarina SW28(T)       | 17.142 | 37.856 | 13.731 | 22.910 | 17.723  | -0.199  | 26.403 | 14.642 |
| PMIC_111B              | 100% Streptomyces hydrogenans NBRC 13475     | 35.978 | 34.014 | 20.454 | 30.149 | 25.633  | 20.340  | 33.810 | 26.595 |
| PMIC_2B1D              | 99.85% Nocardiopsis prasina DSM 43845        | 33.188 | 54.753 | 27.345 | 38.429 | 55.671  | 48.363  | 44.238 | 49.424 |
| PMO128_3               | 100% Algihabitans albus strain HHTR118       | 6.855  | 24.345 | 60.930 | 30.710 | -14.831 | -13.335 | 17.183 | -3.661 |
| PMIC_2C3B.4            | 99.2% Nocardiopsis umidischolae 66/93        | 16.816 | 19.038 | 14.962 | 16.939 | 23.803  | 0.279   | 16.547 | 13.543 |
| PMIC_2D10C             | 99.84% Nocardiopsis prasina DSM 43845        | 48.836 | 54.330 | 29.109 | 44.092 | 33.739  | 37.695  | 36.894 | 36.109 |
| PMO138_17              | 94.3% Methylotenera mobilis JLW8             | 57.675 | 63.739 | 84.863 | 68.759 | 18.443  | 35.148  | 45.700 | 33.097 |
| PMIC_2C3B.3            | 99.19% Nocardiopsis umidischolae 66/93       | 41.846 | 45.865 | 29.708 | 39.140 | 17.004  | 25.197  | 27.039 | 23.080 |
| PMIC_2F12B             | 100% Streptomyces setonii NRRL ISP-5322      | 10.006 | 49.935 | 25.481 | 28.474 | 43.283  | 42.512  | 36.576 | 40.790 |
| PMO90_19.1             | 99.15% Aquimarina algiphila strain 9Alg 151  | 61.224 | 60.711 | 90.322 | 70.753 | 24.882  | 19.266  | 47.735 | 30.627 |
| PMIC_2H2C.1            | 100% Nocardiopsis alba DSM 43377             | 44.272 | 41.665 | 30.207 | 38.715 | 56.880  | 37.536  | 51.168 | 48.528 |

| PMIC_2D10B.2     | 99.84% Nocardiopsis prasina DSM 43845       | -2.526  | 42.447  | 19.389  | 19.770 | 20.404  | -22.450 | 24.400  | 7.451   |
|------------------|---------------------------------------------|---------|---------|---------|--------|---------|---------|---------|---------|
| PMIC_1A8B        | 99.43% Streptomyces flavoviridis NBRC 12772 | 73.286  | 68.004  | 86.261  | 75.851 | 100.025 | 101.343 | 100.827 | 100.732 |
| PMIC_2A11B.3     | 100% Nocardiopsis alba DSM 43377            | 45.069  | 41.568  | 25.647  | 37.428 | 24.195  | 17.076  | 26.435  | 22.569  |
| PMIC_2D8B        | 100% Streptomyces ardesiacus NRRL B-1774    | 1.784   | 47.461  | 33.636  | 27.627 | 32.987  | 36.302  | 15.912  | 28.400  |
| Culture medium 2 | N/A                                         | 78.538  | 89.492  | 96.646  | 88.226 | 14.259  | -12.061 | 49.324  | 17.174  |
| PMIC_1E12B       | 100% Arthrobacter gandavensis R 5812        | 73.963  | 77.901  | 42.607  | 64.824 | 38.520  | 39.586  | 40.711  | 39.606  |
| PMIC_1F6A.3      | 99.76% Nocardiopsis alba DSM 43377          | 70.939  | 99.657  | 67.085  | 79.227 | 32.828  | 30.738  | 36.590  | 33.386  |
| PMIC_1F12B       | 100% Streptomyces setonii NRRL ISP-5322     | 69.211  | 58.630  | 58.381  | 62.074 | 42.033  | 16.847  | 5.780   | 21.553  |
| Culture medium 2 | N/A                                         | -15.892 | -1.916  | -29.418 | 15.742 | 20.509  | 35.254  | 18.435  | 24.732  |
| Culture medium 3 | N/A                                         | -1.087  | -6.992  | -22.957 | 10.345 | 15.872  | -11.415 | -14.748 | -3.430  |
| M600PL45_2       | 98.52% Streptomyces nanshensis SCSIO 01066  | -10.041 | -19.023 | -2.357  | 10.473 | 59.763  | 62.210  | 25.219  | 49.064  |

Supplementary Table 3 – OSMAC approach results for the antimicrobial assays from each replicate for the selected strains extracts against *E. coli* ATCC 25922 and *S. aureus* ATCC 29213 The growth inhibition values highlighted in emerald green were considered to be bioactive.

| Strain<br>designation                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Culture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E. coli activity (%) |                |                |         | S. aureus activity (%)                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|----------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| designation                                                                | Taxon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | medium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Replicate<br>1       | Replicate<br>2 | Replicate<br>3 | Mean    | Replicate<br>1                                                                                                                                                                                                                                                                                                                                                                           | Replicate<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Replicate<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mean    |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M607 1:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 95.397               | 74.637         | 101.184        | 90.406  | 37.092                                                                                                                                                                                                                                                                                                                                                                                   | 62.757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48.284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 49.378  |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72.033               | 71.384         | 63.284         | 68.900  | 44.405                                                                                                                                                                                                                                                                                                                                                                                   | 37.520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 37.169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39.698  |
| PMIC_2A12B.1                                                               | 99.77% Streptomyces albogriseolus NRRL<br>B-1305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Culture<br>medium         Culture<br>l         Replicate<br>l         Replicate l         Replicate l | -9.978               | -2.258         |                |         |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
|                                                                            | TaxonCulture<br>mediumReplicate<br>1A12B.199.77% Streptomyces albogriseolus NRRL<br>B-1305M607 1:1095.397GGY72.033M60060.464MA81.157M60060.464MA81.157M60773.499M607 1:10100.546GGY91.063MA99.82% Nocardia nova NBRC 15556M60092.041MA78.615M60782.949MA78.615M60782.949MA78.615M60074.379MA69.621M60760.269MA69.621M607100.448CGY79.723M607100.448CGY79.723M607100.448CGY79.723M607100.448CGY79.723M607100.448CGY79.723M607100.448CGY79.723M607100.448CGY79.723M607100.448CGY60.008M60760.008MA63.332M607110MA55.739CGY55.739TEIOC99.69% Rhodococcus coprophilus NBRCM607110M60050.916M60750.916 | 68.591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24.147               | 57.965         | 27.112         | 30.664  | -4.756                                                                                                                                                                                                                                                                                                                                                                                   | 17.673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 73.499               | 68.591         | 10.748         | 50.946  | 32.102                                                                                                                                                                                                                                                                                                                                                                                   | 25.180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ite       Replicate       I         3       48.284       4         37.169       3         -9.978       -         -4.756       1         20.160       2         26.016       2         15.983       6         27.695       2         -9.493       -         25.084       3         19.937       2         22.958       2         -52.611       -         20.608       2         40.787       4         31.947       3         26.464       3         18.818       2         14.677       2         -4.345       7                                                                                                                                                                                                                                                                                                                  | 25.814  |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M607 1:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.546              | 100.854        | 101.750        | 101.050 | 34.578                                                                                                                                                                                                                                                                                                                                                                                   | 25.865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26.016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28.820  |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91.063               | 99.343         | 70.674         | 87.027  | -3.552                                                                                                                                                                                                                                                                                                                                                                                   | 6.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.181   |
| PMIC_1A10B                                                                 | 99.82% Nocardia nova NBRC 15556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92.041               | 89.717         | 58.052         | 79.936  | 10.694                                                                                                                                                                                                                                                                                                                                                                                   | 29.424                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22.604  |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78.615               | 79.499         | 4.667          | 54.260  | -56.842                                                                                                                                                                                                                                                                                                                                                                                  | -9.819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -9.493                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -25.385 |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82.949               | 79.499         | 23.405         | 61.951  | 15.646                                                                                                                                                                                                                                                                                                                                                                                   | 31.807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 33.663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.039  |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M607 1:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 99.927               | 76.969         | 102.316        | 93.071  | 26.807                                                                                                                                                                                                                                                                                                                                                                                   | 37.651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.464  |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88.358               | 58.768         | 63.956         | 70.361  | 44.062                                                                                                                                                                                                                                                                                                                                                                                   | 31.252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25.084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33.466  |
| Strain<br>designationPMIC_2A12B.1PMIC_1A10BPMIC_1F12BPMIC_2H2C.2PMIC_1E10C | 100% Streptomyces setonii NRRL ISP-<br>5322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74.379               | 53.248         | 31.006         | 52.878  | 15.989                                                                                                                                                                                                                                                                                                                                                                                   | 29.913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.946  |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 69.621               | 58.242         | 18.208         | 48.690  | 15.913                                                                                                                                                                                                                                                                                                                                                                                   | 31.056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23.309  |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60.269               | 58.242         | 7.919          | 42.144  | -2.638                                                                                                                                                                                                                                                                                                                                                                                   | 10.129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -52.611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -15.040 |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M607 1:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100.448              | 72.205         | 102.245        | 91.633  | 1           37.092           44.405           -7.514           27.112           32.102           34.578           -3.552           10.694           -56.842           15.646           26.807           44.062           15.913           -2.638           21.893           36.749           37.701           25.588           20.255           17.741           15.265           10.389 | 36.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20.608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.467  |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79.723               | 56.041         | 68.552         | 68.105  | 36.749                                                                                                                                                                                                                                                                                                                                                                                   | 45.976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41.071  |
| PMIC_2H2C.2                                                                | 100% Nocardiopsis alba DSM 43377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72.945               | 61.462         | 29.627         | 54.678  | 37.701                                                                                                                                                                                                                                                                                                                                                                                   | 42.287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.258  |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 63.332               | 51.737         | 17.147         | 44.072  | 25.588                                                                                                                                                                                                                                                                                                                                                                                   | 37.520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31.947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.685  |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60.008               | 51.737         | 17.005         | 42.917  | 20.255                                                                                                                                                                                                                                                                                                                                                                                   | S. alreas activity (%)           Replicate<br>2         Replicate<br>3         N           62.757         48.284         49           37.520         37.169         39           10.717         -9.978         -2           30.664         -4.756         17           25.180         20.160         25           25.865         26.016         28           6.113         15.983         6.           29.424         27.695         22           -9.819         -9.493         -2           31.807         33.663         27           37.651         29.933         31           31.252         25.084         33           29.913         19.937         21           31.056         22.958         23           10.129         -52.611         -1           36.900         20.608         26           45.976         40.489         41           42.287         40.787         40           37.520         31.947         31           45.846         26.464         30           35.007         18.818         23           33.113         14.677 | 30.855                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M607 1:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 55.739               | 23.975         | 13.753         | 31.156  | 17.741                                                                                                                                                                                                                                                                                                                                                                                   | 35.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18.818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23.855  |
| PMIC_1A10B<br>PMIC_1F12B<br>PMIC_2H2C.2<br>PMIC_1E10C                      | 99.69% <i>Rhodococcus coprophilus</i> NBRC 100603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54.110               | 39.548         | 5.586          | 33.081  | 15.265                                                                                                                                                                                                                                                                                                                                                                                   | 33.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.019  |
|                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50.916               | 74.111         | 18.490         | 47.839  | 10.389                                                                                                                                                                                                                                                                                                                                                                                   | 16.854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Replicate       Replicate         3       37.169       3         7       48.284       4         0       37.169       3         7       -9.978       -         4       -4.756       1         0       20.160       2         5       26.016       2         4       27.695       2         0       -9.493       -         7       33.663       2         0       -9.493       -         7       33.663       2         1       29.933       3         2       25.084       3         3       19.937       2         6       22.958       2         9       -52.611       -         0       20.608       2         6       40.489       4         7       40.787       2         0       31.947       3         6       26.464       3         7       18.818       2         3       14.677       2         4       -4.345       7 | 7.633   |

|                                                                    | 1                                             | MA        | 52,187 | 59.885 | 15.980  | 42.684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.932  | 27.236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.729  | 19.299  |
|--------------------------------------------------------------------|-----------------------------------------------|-----------|--------|--------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
|                                                                    |                                               | M607      | 56.782 | 59.885 | 18.101  | 44.923                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.779  | 33.374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23.219  | 24.791  |
|                                                                    |                                               | M607 1:10 | 26.672 | 22.661 | 16.652  | 21.995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.798  | 27.138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.542  | 19.826  |
|                                                                    |                                               | CGY       | -6.534 | 17.142 | -10.748 | -0.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -27.664 | 5.787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -24.002 | -15.293 |
| PMIC_2C12                                                          | 99.69% Streptomyces albidoflavus DSM          | M600      | 20.481 | 57.848 | 14.672  | 42.684       13.932       27.236       14         44.923       17.779       33.374       2         21.995       15.798       27.138       14         -0.047       -27.664       5.787       -2         31.000       -6.866       13.198       -3         32.219       -5.000       -4.954       -1         35.407       -45.834       14.047       -1         14.691       -44.920       37.651       -2         15.935       -25.683       23.351       -7         26.113       -6.218       35.757       -1         21.423       -37.758       -2.506       -0         53.680       19.341       98.996       1         52.014       15.341       23.645       1         49.699       15.189       20.380       7         44.926       29.702       19.564       8         43.996       23.531       21.523       -0         57.235       17.513       29.718       3         98.283       90.414       90.772       9         54.167       15.379       31.448       3         43.173       4.295       3.861 <t< td=""><td>-33.999</td><td>-9.222</td></t<> | -33.999 | -9.222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |
|                                                                    | 40455                                         | MA        | 27.031 | 60.575 | 9.051   | 32.219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -5.000  | 32 $27.236$ $16.729$ $79$ $33.374$ $23.219$ $98$ $27.138$ $16.542$ $664$ $5.787$ $-24.002$ $66$ $13.198$ $-33.999$ $00$ $-4.954$ $-1.250$ $834$ $14.047$ $-12.104$ $920$ $37.651$ $-29.373$ $683$ $23.351$ $-7.255$ $911$ $37.259$ $-57.796$ $18$ $35.757$ $-1.175$ $758$ $-2.506$ $-0.205$ $411$ $98.996$ $101.250$ $341$ $23.645$ $12.104$ $89$ $20.380$ $7.292$ $'02$ $19.564$ $8.038$ $i31$ $21.523$ $-0.727$ $i13$ $29.718$ $36.199$ $114$ $90.772$ $91.985$ $379$ $31.448$ $34.931$ $95$ $3.861$ $6.621$ $292$ $24.527$ $42.018$ $99$ $32.003$ $25.196$ $369$ $47.902$ $33.215$ $037$ $29.456$ $17.251$ $074$ $36.900$ $-5.987$ $993$ $32.427$ $29.336$ $894$ $77.155$ $89.053$ | -3.734  |         |
|                                                                    |                                               | M607      | 38.892 | 60.575 | 6.753   | 35.407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -45.834 | 14.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -12.104 | -14.630 |
|                                                                    |                                               | M607 1:10 | 10.802 | 4.493  | 28.779  | 14.691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -44.920 | 37.651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -29.373 | -12.214 |
|                                                                    |                                               | CGY       | 10.933 | 8.731  | 28.142  | 15.935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -25.683 | 23.351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -7.255  | -3.196  |
| PMIC_1F6A.3                                                        | 99.76% Nocardiopsis alba DSM 43377            | M600      | 9.988  | 11.984 | 24.359  | 15.444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -29.911 | 37.259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -57.796 | -16.816 |
|                                                                    |                                               | MA        | 11.193 | 32.320 | 34.824  | 26.113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -6.218  | 35.757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.175  | 9.455   |
|                                                                    |                                               | M607      | 11.585 | 32.320 | 20.364  | 21.423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -37.758 | -2.506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.205  | -13.490 |
| РМІС_1Г6А.3<br>РМІС_1Г6А.3<br>РМІС_111А<br>РМІС_1109В<br>РМІС_1А8В |                                               | M607 1:10 | 75.063 | 63.598 | 22.379  | 53.680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.341  | 98.996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101.250 | 73.196  |
|                                                                    |                                               | CGY       | 72.130 | 66.587 | 17.324  | 52.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.341  | 23.645                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.104  | 17.030  |
|                                                                    | 100% Streptomyces hydrogenans NBRC            | M600      | 72.391 | 57.651 | 19.056  | 49.699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.189  | 20.380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.292   | 14.287  |
|                                                                    | 15775                                         | MA        | 65.776 | 49.273 | 19.728  | 44.926                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29.702  | 19.564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.038   | 19.101  |
|                                                                    |                                               | M607      | 67.373 | 44.641 | 19.975  | 43.996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.531  | 21.523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.727  | 14.776  |
|                                                                    |                                               | M607 1:10 | 76.106 | 75.589 | 20.011  | 57.235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.513  | 29.718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36.199  | 27.810  |
|                                                                    |                                               | CGY       | 99.340 | 99.310 | 96.199  | 98.283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90.414  | 90.772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 91.985  | 91.057  |
| PMIC_1D9B                                                          | 99.75% Streptomyces griseoflavus LMG<br>19344 | M600      | 75.780 | 69.150 | 17.571  | 54.167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15.379  | 31.448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34.931  | 27.253  |
|                                                                    |                                               | MA        | 75.552 | 61.462 | -7.495  | 43.173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.295   | 3.861                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.621   | 4.925   |
|                                                                    |                                               | M607      | 79.984 | 65.602 | 17.324  | 54.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36.292  | 24.527                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 42.018  | 34.279  |
|                                                                    |                                               | M607 1:10 | 61.475 | 47.598 | 13.647  | 40.906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.409   | 32.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25.196  | 19.203  |
|                                                                    |                                               | CGY       | 63.397 | 53.676 | 17.854  | 44.976                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.369  | 47.902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33.215  | 36.495  |
| PMIC_2A11B.1                                                       | 100% Nocardiopsis alba DSM 43377              | M600      | 61.442 | 57.585 | 18.172  | 45.733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11.037  | 29.456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.251  | 19.248  |
|                                                                    |                                               | MA        | 61.181 | 48.715 | 15.238  | 41.711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.074  | 36.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -5.987  | 16.663  |
|                                                                    |                                               | M607      | 63.560 | 49.010 | 16.864  | 43.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.093  | 32.427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29.336  | 28.952  |
| PMIC_1A8B                                                          |                                               | M607 1:10 | 59.943 | 50.390 | 14.955  | 41.763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 65.394  | 77.155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 89.053  | 77.200  |

|                                                   |                                                                                                                                                                                                                           | CGY       | 62.713 | 60.838 | 16.546  | 46.699 | 35.073  | 46.890  | 39.034  | 40.332  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|--------|---------|--------|---------|---------|---------|---------|
|                                                   | 99.43% Streptomyces flavoviridis NBRC 12772         99.59% Arenibacter aquaticus GUO666         100% Arthrobacter gandavensis R 5812         100% Nocardiopsis alba DSM 43377         Roseimaritima ulvae UC8         N/A | M600      | 55.739 | 50.686 | 14.955  | 40.460 | 100.092 | 100.237 | 100.466 | 100.265 |
|                                                   | 12772                                                                                                                                                                                                                     | MA        | 56.130 | 54.037 | 17.112  | 42.426 | 28.483  | 45.062  | 37.915  | 37.153  |
|                                                   |                                                                                                                                                                                                                           | M607      | 56.815 | 48.057 | 12.515  | 39.129 | 100.248 | 100.269 | 100.205 | 100.241 |
|                                                   |                                                                                                                                                                                                                           | M607 1:10 | 39.544 | 59.786 | 17.147  | 38.826 | 11.228  | 14.341  | 14.081  | 13.216  |
|                                                   |                                                                                                                                                                                                                           | CGY       | 28.790 | 24.830 | -22.980 | 10.213 | -17.722 | 8.529   | -19.899 | -9.697  |
| PMIC_1E11B.2                                      | 99.59% Arenibacter aquaticus GUO666                                                                                                                                                                                       | M600      | 12.106 | 29.856 | -25.066 | 5.632  | -23.093 | -6.946  | -31.835 | -20.625 |
|                                                   |                                                                                                                                                                                                                           | MA        | 31.756 | 13.823 | -26.693 | 6.295  | -12.504 | 11.533  | -20.310 | -7.093  |
|                                                   |                                                                                                                                                                                                                           | M607      | 33.906 | 38.957 | -5.515  | 22.449 | 2.009   | 7.484   | -14.640 | -1.715  |
|                                                   |                                                                                                                                                                                                                           | M607 1:10 | 44.106 | 38.004 | -8.344  | 24.589 | -33.454 | 4.938   | 8.933   | -6.528  |
| PMIC_1E12B                                        |                                                                                                                                                                                                                           | CGY       | 42.346 | 42.045 | 5.197   | 29.863 | -17.227 | -9.656  | -4.308  | -10.397 |
| PMIC_1E12B                                        | 100% Arthrobacter gandavensis R 5812                                                                                                                                                                                      | M600      | 13.116 | 31.893 | 3.889   | 16.299 | 4.752   | 17.605  | -11.358 | 3.667   |
|                                                   |                                                                                                                                                                                                                           | MA        | 43.226 | 46.480 | -0.177  | 29.843 | -0.467  | 3.534   | 5.427   | 2.832   |
|                                                   |                                                                                                                                                                                                                           | M607      | 33.222 | 30.119 | -11.278 | 17.354 | -14.713 | 10.292  | -24.897 | -9.773  |
| PMIC_1E11B.2<br>PMIC_1E12B<br>PMIC_1A11B.2<br>UC8 |                                                                                                                                                                                                                           | M607 1:10 | 9.629  | 29.758 | 31.536  | 23.641 | -46.938 | 35.464  | -18.706 | -10.060 |
|                                                   |                                                                                                                                                                                                                           | CGY       | 42.346 | 42.045 | 5.197   | 29.863 | -17.227 | -9.656  | -4.308  | -10.397 |
| PMIC_1A11B.2                                      | 100% Nocardiopsis alba DSM 43377                                                                                                                                                                                          | M600      | 13.116 | 31.893 | 3.889   | 16.299 | 4.752   | 17.605  | -11.358 | 3.667   |
|                                                   |                                                                                                                                                                                                                           | MA        | 43.226 | 46.480 | -0.177  | 29.843 | -0.467  | 3.534   | 5.427   | 2.832   |
|                                                   |                                                                                                                                                                                                                           | M607      | 33.222 | 30.119 | -11.278 | 17.354 | -14.713 | 10.292  | -24.897 | -9.773  |
|                                                   |                                                                                                                                                                                                                           | M607 1:10 | 59.715 | 46.185 | 19.940  | 41.947 | 16.141  | 41.210  | 32.693  | 30.015  |
| UC8                                               | Roseimaritima ulvae UC8                                                                                                                                                                                                   | M607      | 53.230 | 16.386 | 9.652   | 26.423 | 31.607  | -11.876 | 31.388  | 17.039  |
|                                                   |                                                                                                                                                                                                                           | M600      | 28.601 | 17.953 | 7.542   | 18.032 | 15.212  | -20.877 | 26.082  | 6.806   |
|                                                   |                                                                                                                                                                                                                           | M607 1:10 | 43.291 | 0.090  | -16.298 | 9.028  | 34.082  | -7.468  | 17.549  | 14.721  |
|                                                   |                                                                                                                                                                                                                           | CGY       | 34.167 | -7.696 | -26.975 | -0.168 | 14.465  | -12.202 | 15.386  | 5.883   |
| Culture medium                                    | N/A                                                                                                                                                                                                                       | M600      | 43.552 | 15.072 | -12.339 | 15.428 | 12.104  | -1.951  | 20.421  | 10.191  |
|                                                   |                                                                                                                                                                                                                           | MA        | 33.580 | 2.522  | -7.955  | 9.382  | 18.008  | -12.496 | 11.022  | 5.511   |
|                                                   |                                                                                                                                                                                                                           | M607      | 37.328 | 2.522  | -4.737  | 11.704 | 22.312  | 6.374   | 7.367   | 12.018  |