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émanant des établissements d’enseignement et de
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A Shape Tracking Algorithm for Visual Servoing

Peihua Li∗, François Chaumette and Omar Tahri
IRISA/INRIA Rennes

Campus de Beaulieu, 35 042 Rennes-cedex, France
Firstname.Name@irisa.fr

Abstract— The paper contributes to presenting both an
accurate and robust shape tracking algorithm and a novel
visual servoing method. Two steps are involved in the tracking
algorithm. Firstly the object shape is assumed to vary under
an af£ne model, and the edge detection is performed along
the normal lines to the contour. As a result it is possible to
use a Kalman £lter to perform ef£cient tracking. The second
step concerns image matching based on perspective model,
which is achieved iteratively by searching locally along the
normal lines also. As to visual servoing we propose to control
the translations of the robot with the normalized zeroth and
£rst order image moments, and to control the orientation with
rotation axis and angle extracted from a Homography matrix.
Two experiments demonstrate that the tracking algorithm is
accurate and robust enough to be used in visual servoing, and
the novel visual servoing method is superior to traditional
ones.

Index Terms— Object tracking, Kalman £lter, Visual ser-
voing.

I. INTRODUCTION

Visual servoing is usually concerned with the issue of
controlling the six degree of freedom (d.o.f) of the robot
to a desired position, provided the visual information as
a feedback achieved from a camera usually installed on
the end effector of the robot [1]. Embedded in the control
system, the visual information is required to be accurate,
robust and in real-time. How to get this knowledge from
image sequences captured by a camera is a dif£cult and
challenging problem, in which visual tracking is generally
regarded as being playing an important role [2], [3]. These
works are, however, either interested in simple image
features such as corners, lines or regions, or have an
assumption that the 3D structure of the object is known. In
contrast, we consider in this paper realistic planar objects
having natural shapes. To track objects robustly in complex
background, non-linear £ltering algorithms, say, particle
£lter [4] or unscented particle £lter [5] are good choices.
Unfortunately they are not £t for visual servoing task, due
to their computational ef£ciency and large tracking errors.

When we have got knowledge of the interested object,
either by tracking technology or binary image, another
issue is how to develop visual features, the derivative of
which, the so-called interaction matrix, establishes links
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between image and velocity screw of the robot. The closed-
form interaction matrix related to structured visual features,
such as points, straight lines, cylinders, etc. are derived
in [6]. Recently image moments related to objects with
natural shapes are proposed to control six d.o.f robot
[8], [9], which has advantage of decoupling the system.
Malis et al. [10] proposes 2 1/2D method to overcome
the disadvantages of 2D and 3D visual servoing while
combining their respective advantages. Unfortunately, all of
these works have the assumption that the images captured
are binary and object shapes can be achieved accurately.
These are generally not cases in real-world. When we use
tracking technology to achieve object shapes, the tracking
errors usually exist, especially when the background is
complex. It is well known that the higher image moments
are sensitive to noise and errors, so moments based visual
servoing will probably not work when the background
becomes challenging. For 2 1/2D method, four of six visual
features are related to 3D of the object, although the whole
object generally will not go out of the view of the camera,
part of it may do. Then occlusions may occur, which is
a threat to tracking algorithms and thus not desirable in
visual servoing.

Our paper has contributions on both aspects discussed
above. For the tracking aspect, we develop Kalman £lter
and image matching to track object accurately and robustly.
The Kalman £lter based tracking is developed on the
basis of the work introduced in [7]. The shape of the
object is described with B-Spline curves. We £rst assume
that the shape of the object varies during visual servoing
process according to an af£ne model, which leads to a six
dimensional linear system whatever the number of control
points may be. However, the af£ne model is not accurate
and to overcome this, we introduce image matching based
on perspective model on the basis of tracking result. This
issue concerns matching of the desired curve and the
current curve and is a nonlinear problem. For ef£ciency
we simplify it as a linear one, according to local search
of the edge points along normal lines to the contour. The
image matching will in general converge during within less
than ten iterations in less than 10 milliseconds.

For the development of visual features, we propose a new
strategy, using the normalized zeroth and the £rst image
moments to control the translation of the camera, while
using rotation vector extracted from Homography matrix
to control the orientation of the camera. With this strategy,



we have seen a signi£cant improvement of visual servoing
performance over classical 2 1/2D method. On the one
hand, the lower moments are not sensitive to errors; on
the other hand, using three 2D visual features to control
translation we avoid the occlusion which may occur in
classical 2 1/2D while maintaining its advantage.

A similar work to ours is described in [11], which
is also concerned with visual servoing with respect to
planar objects. The differences are, however, signi£cant
in tracking algorithm, image matching method and visual
servoing.

The remainder of the paper is organized as follows.
In Section 2, we describe shape tracking based on af£ne
model, involving shape representation, motion model and
measurement model, and image matching based on per-
spective model and local search along normal lines. Section
3 introduces the improved 2 1/2D visual servoing method,
using the normalized low order image moments and ro-
tation matrix extracted from a homography matrix. Two
experiments are given to demonstrate the effectiveness of
the tracking algorithm and the new visual servoing method
in Section 4, comparisons between visual servoing based
on image moments and classic 2 1/2D method being also
made. The concluding remarks are given at last.

II. TRACKING ALGORITHM BASED ON KALMAN

FILTER AND IMAGE MATCHING

A. Shape representation with B-Spline curves

The desired shape of the object (the desired curve) is
parameterized as a B-spline curve as follows

r∗(s) = H∗(s)Q∗ (1)

that is:
[

x∗(s)
y∗(s)

]

=

[

B∗(s) 0
0 B∗(s)

] [

Qx
∗

Q
y
∗

]

where B∗(s) = [b0(s) · · · bNB−1(s)], for 0 ≤ s ≤ L,
bi(s) is the ith B-spline basis function, Qx

∗ is a column
vector consisting of x coordinates of all the control points
and so is Q

y
∗, and L is the number of spans. We assume

that, at the £rst step of tracking, the shape of the object at
the current time step (the current curve) varies under af£ne
model as below

r(s) = Ar∗(s) + t (2)

that is:
[

x(s)
y(s)

]

=

[

a1 a2

a3 a4

] [

x∗(s)
y∗(s)

]

+

[

a5

a6

]

Combining Eqs. (1) and (2), and note that
∑NB−1

i=0 bi(s) =
1 for all s, we get the following equation

Q = WX + Q∗ (3)

where Q is a vector containing the x and y co-
ordinates of the control points of the current curve,

W =

[

1 0 Qx
∗ 0 0 Q

y
∗

0 1 0 Q
y
∗ Qx

∗ 0

]

and X =
[

a5 a6 a1 − 1 a4 − 1 a3 a2

]

.

B. Motion Model, Measurement Model and Kalman Filter

The motion equation of the system is modelled as the
multi-dimensional second order auto-regression (AR) pro-
cess, which generally can be seen as the discretized form
of a continuous stochastic second order dynamic system.
This multi-dimensional AR process may be regarded as
the direct extension of a 1D AR process, which has the
following form

xk = a1xk−1 + a0xk−2 + b0ν (4)

where a1 = − exp(−2βτ), a0 = 2 exp(−βτ) cos(ωτ),

b0 =
√

1− a2
1 − a2

0 − 2
a1a

2

0

1−a1

, ν is one dimensional
Gaussian i.i.d. noise, β, ω and τ are the damping co-
ef£cient, the oscillation period and the sampling period
of the corresponding continuous system. It is desirable,
in practice, to model the translation and the shape vari-
ations of the contour separately, so the 1D AR process
is extended respectively to two complementary subspaces
of the shape space: translation subspace and deformation
subspace. Then the multi-dimensional motion model can
be represented as below

Xk = A1Xk−1 + A0Xk−2 + B0V (5)

where V is multi-dimensional Gaussian i.i.d.
The normals of a £nite number of sample points on

the contour are searched for features. The length of these
normals, termed measurement lines, are determined by
the covariance of the Kalman £lter and thus vary adap-
tively. A 1D Canny edge detector is applied to each
measurement line and the points of local maximum are
adopted as detected features. The measurement procedure
involves computing measurement lines, discretising these
lines, extracting grey-level values from images, and make
convolutions with 1D Canny kernel. The measurement
equation can be described as below

υk = H(X̂k −Xk) + ωk (6)

where X̂k is the prediction using Equ. (5), υk is the innova-
tion, H =

[

n̂(s)>
⊗

B∗(s) O
]

W, n̂(s) is the normal to
the contour represented by X̂k and ωk is Gaussian whose
variance is σ2.

Now that we have motion model (5) and measurement
model (6), a set of Kalman prediction equation and update
equation can be computed iteratively to estimate the current
system state when each new frame is available.

C. Image Matching

The tracking algorithm based on af£ne model and edge
detection along normal lines to the contour are very stable
when the perspective effects are not strong. Yet the tracking



behavior becomes instable when the af£ne model assump-
tion is violated. In addition, even if the tracking succeeds,
the visual servoing based on a tracking using an af£ne
model will not be able to control the 6 robot d.o.fs, since
the af£ne model allows to control correctly only 4 robot
d.o.fs. We turn to image matching under full perspective
model to achieve more accurate tracking results. The image
matching between the desired curve r∗(s) and the current
curve rk(s) is an optimization problem as follows

arg min
A,t

‖r∗(s)− r′k(s)‖ (7)

where ‖ • ‖ denotes L2 norm, and r′k(s) satis£es the
following equation,

r′k(s) =
Ark(s) + t

a7xk(s) + a8yk(s) + 1

For the computational ef£ciency, we do not solve the non-
linear optimization problem described by Eq. (7). Instead,
we consider the following equation

xk(si) =
a1x∗(si) + a2y∗(si) + a5

a7x∗(si) + a8y∗(si) + 1
(8)

yk(si) =
a3x∗(si) + a4y∗(si) + a6

a7x∗(si) + a8y∗(si) + 1
(9)

where (xk(si), yk(si)) and (x∗(si), y∗(si)) are respectively
the sampled points on the current curve and the desired
curve. We can arrange the above equation, and get the
following linear equation

[

x∗(si) y∗(si) 0 0 1 0 −x∗(si)xk(si)
0 0 x∗(si) y∗(si) 0 1 −x∗(si)yk(si)

−y∗(si)xk(si)
−y∗(si)xk(si)

]

a =

[

xk(si)
yk(si)

]

i = 1, · · · , Ns (10)

where a =
[

a1 a2 a3 a4 a5 a6 a7 a8

]T
, and

Ns is the number of the sampled points. The image
matching algorithm is described as follows.

1 Sample the desired curve to obtain
(x∗(si), y∗(si)), i = 1 · · ·Ns. Given the initial
value of a1, · · · , a6 from the tracking result, and set
a7 = a8 = 0.

2 Compute the corresponding points of the desired
curve on the current curve according to Equ. (8)
and (9), and £t these points to get a B-spline curve r ′k.

3 Re-sample the curve r′k to get new sample points
(x′k(si), y

′
k(si)). Search along the normal lines as

described in subsection II-B, obtaining the detected
points (xk(si), yk(si)).

4 Calculate the vector a according to Eq. (10) with the
Penrose-Moore generalized inverse of matrix.

5 Compute the norm ‖r′(s)−rk(s)‖. If it is less than a
pre-de£ned threshold or maximum iteration number
reaches, end the iteration; otherwise, go to step 2.

Fig. 1 shows two typical image matching results for a book
and a leaf, in which Fig. 1.a and Fig. 1.c demonstrate the
tracking result with af£ne model and Fig. 1.b and 1.d are
corresponding matching results using the full perspective
model. Matching errors versus iteration numbers are shown
in Fig. 1.e and 1.f for the book and the leaf respectively. We
can see that in both cases the matching algorithm converges
within 10 iterations.

III. AN IMPROVED VISUAL SERVOING METHOD

Our strategy consists in a novel combination of 2D and
3D knowledge of the object. More speci£cally, we use the
zeroth and £rst moments (2D) to control the translation of
the robot, and rotation matrix extracted from homography
matrix (3D) to control the orientation of the robot. Our
idea is very simple: if we can well control the translation
of the robot, then the object will be kept within the £eld of
view of the camera. Compared with the classical 2 1/2D
visual servoing, the advantages are signi£cant. First, we
avoid the situations that the object is out of the view, which
often occurs with 2 1/2D method, although not signi£cantly
like 3D visual servoing. Second, the interaction matrix
with respect to moments have nice decoupling properties,
in contrast with the interaction matrix with respect to the
reference point adopted in [10], [11].

We consider that the planar closed object is parallel to
the image plane for the desired con£guration. The zeroth
and the £rst moments are the area a, and the coordinates
xc and yc of the centroid of the object. Furthermore, de£ne

sa = Z∗

√

a∗
a
, sx = saxc, sy = sayc (11)

where a∗ is the area of the desired curve, and Z∗ is the
desired depth between the camera and the object. The
interaction matrix LT related to these normalized features
is given as below [9]




−1 0 0 saε11 −sa(1 + ε12) sy
0 −1 0 sa(1 + ε21) −saε11 −sy
0 0 −1 −3sy/2 3sx/2 0





(12)
where ε11 = n11 − xcyc/2, ε12 = n20 − x2

c/2, and
ε21 = n02−y

2
c , and n11 and n02 are the normalized central

moments of order two. We thus obtain the same dynamics
for the three features and the three translational d.o.f, which
leads to an adequate robot translational trajectory. Notice
that the three translations are decoupled.

We control the orientation of the robot with the rotation
vector extracted from homography matrix. Let K be the
intrinsic matrix of the camera, then the pixel coordinates
p is related to the normalized coordinates m with the
following equation

p = Km (13)

In section II-C, we have achieved the vector a from which
we get immediately the homography matrix G expressed



(a) (b)

(c) (d)

e

f

Fig. 1. Image matching for a book and a leaf. Tracking results for
the two cases are shown in (a) and (c) respectively, and results after
image matching in (b) and (d). Matching error versus iteration number
are illustrated in (e) for the book and (f) for the leaf. We can see that in
both cases the matching algorithm converges within 10 iterations.

in pixels. Assuming the camera calibration is known, the
Euclidean homography matrix H is calculated as below

H = K−1GK (14)

The rotation matrix R between the desired view and the
current view can be achieved from matrix H as introduced
in [12]. The multiplication of rotation axis u and the
rotation angle θ obtained from R is selected as visual
features to control the rotation of the camera [10], the
interaction matrix of which has the following form

Lω =
[

03 I3 −
θ
2 [u]× + (1− sinc(θ)

sinc2 θ

2

)[u]2×

]

(15)

where sinc(θ) = sin(θ)/θ, and [u]× is the antisymmetric
matrix of the vector u.

Now we have six visual features

s = (sx, sy, sa,uθ) (16)

and its interaction matrix has the form Ls = (LT,Lω). In
this paper, the classical control law as below is used

ve = −λL−1
s e (17)

where ve is the camera kinematic screw sent to the low
level robot controller, λ is a positive gain, and L−1

s is the
inversive of the interaction matrix computed for the desired
value, and e =

[

sx − sx∗ sy − sy∗ sa − sa∗ uθ
]

is
the error of the visual features between the desired curve
and the current curve, where sx∗, sy∗ and sa∗ are the
coordinates of the centroid of and area of the desired curve.

IV. EXPERIMENTS

To demonstrate the effectiveness of our framework, we
make experiments with a six d.o.f eye-in-hand robot. The
program is developed under Linux with C++. The tracking
algorithm is initialized manually in the £rst frame.

The £rst experiment is concerned with visual servoing
with respect to a book. The desired image and the initial
image are given in Fig. 2.a and 2.b. Figs. 2.e and 2.h,
Figs. 2.f and 2.i, and Figs. 2.g and 2.j show, during visual
servoing process, the variations of the visual feature errors
and the velocity of the robot, based on the image mo-
ments [9], 2 1/2D, and our proposed method respectively.
Although the robot converges to the desired position with
all of the three methods, it is very clear that the new
method demonstrates better behavior than the other two,
in the sense that in the former case both the feature errors
and the speed of the robot decrease exponentially and is
very smooth. We can also note that partial occlusions occur
with 2 1/2D method during frame 20 to frame 71. Two
typical frames (38 and 56) are shown in Fig 2.c and 2.d
respectively, where red lines indicate the tracking result.

The second experiment is more challenging in two
aspects. Firstly, the background is cluttered and shadows
affect the accurateness of the edge detection while making
measurement (both in tracking and in image matching), the



(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Fig. 2. Tracking and visual servoing with a book with the desired image (a) and the initial image (b). Shown in (c) and (d) are tracking results of
frame 38 and 58 with 2 1/2D method, note the occlusion of the object. Feature errors (unit: m2 for s1 and s2, m for s3, and rad for s4, s5, and s6)
versus frame numbers are plotted based on image moments (e), 2 1/2D (g) and the new method (i). Camera velocity (cm/s and dg/s) versus frame
number are illustrated based on image moments (f), 2 1/2D (h) and the new method (j).

tracking errors thus become larger than in the previous ex-
periment. Also both the translation and rotation of camera
are large between the desired and the initial position, as
demonstrated in Fig. 3.a and 3.b. In this complex situation,
visual servoing based on image moments fails to converge,
as presented by Fig. 3.e and 3.h. It is due to the fact that
higher order moments are not computed with suf£cient
accuracy. We also note that, during visual servoing process,
an occlusion occurs and is considerable from frame 68 to
306 when using 2 1/2D method. Two typical frames are
shown in Fig. 3.c and 3.d. Despite the severe occlusion,
it converges thanks to the robustness of our tracking
algorithm to occlusion. In contrast, our proposed method
behaves very well, reaching the desired position smoothly
without any occlusion occurrence. From Fig. 3.g and 3.j,
we can see clearly that the visual features and the speed of
the robot based on the new method decrease exponentially
and is very smooth, better than those based on 2 1/2D

method.

V. CONCLUSIONS

In the paper, we £rstly present a novel shape tracking
algorithm. Kalman £lter is used to locate object sequen-
tially under af£ne model, followed by an image matching
approach to get more accurate tracking results under full
perspective model. The two stage tracking algorithm is
necessary for robust and accurate tracking. One could think
that under af£ne model, we can control the six d.o.f of
the robot, which is wrong. The second stage overcomes
the effect of strong perspective effects. On the basis of
the novel tracking algorithm, we secondly propose an
improvement strategy for visual servoing, in which the
control of the translation and rotation are decoupled, and
translation is controlled with the normalized zeroth and £rst
order image moments and orientation with rotation matrix.
Two experiments show that our tracking is accurate enough
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Fig. 3. Tracking and visual servoing with a leaf with the desired image (a) and the initial image (b). Feature errors (unit: m2 for s1 and s2, m for s3,
and rad for s4, s5, and s6) versus frame numbers are plotted based on image moments (e), 2 1/2D (g) and the new method (i). Camera velocity (cm/s
and dg/s) versus frame number are illustrated based on image moments (f), 2 1/2D (h) and the new method (j). Shown in (c) and (d) are tracking
results of frame 38 and 58 with 2 1/2D method, note the occlusion of the object is considerable.

for visual servoing in complex situations and robust to large
occlusions. In addition, comparisons demonstrate that the
new visual servoing method is better than the state of the
art.
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