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Abstract

We apply optimal control theory to a generalized SEIR-type model. The proposed system has three 
controls, representing social distancing, preventive means, and treatment measures to combat the spread 
of the COVID-19 pandemic. We analyze such optimal control problem with respect to real data 
transmission in Italy. Our results show the appropriateness of the model, in particular with respect to the 
number of quarantined/hospitalized (confirmed and infected) and recovered individuals. Considering the 
Pontryagin controls, we show how in a perfect world one could have drastically diminish the number of 
susceptible, exposed, infected, quarantined/hospitalized, and death individuals, by increasing the 
population of insusceptible/protected.

Keywords: Analysis of the spread of COVID-19; Control system; Mathematical modeling; Optimal 
control; Pontryagin extremals.

1. Introduction
A severe outbreak of respiratory illness started in Wuhan, a city of eleven million people in central 
China, in December 2019. The causative agent was the novel severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), which was identified and isolated from a single patient in early January 
2020 and subsequently verified in sixteen additional patients. The virus is believed to have a zoonotic 
origin. In particular, the Huanan Seafood Market, a live animal and seafood wholesale market in Wuhan, 
was regarded as a primary source of this epidemic, as it is found that 55% of the first four hundred 
twentyfive confirmed cases were linked to the marketplace. Meanwhile, recent comparisons of the 
genetic sequences of this virus and bat coronaviruses show a 96% similarity (Lu et al., 2020).

Multiple mathematical models were already presented to predict the dynamics of this pandemic at a 
regional and global level, and some of these models were implemented, following different methods, to 
evaluate a strategy for preventive measures: in (Bagal et al., 2020), the classical susceptible–infected–
recovered (SIR) modeling approach (Kermack & McKendrick, 1927) was employed to study the param-
eters of this model for India while considering different governmental lockdown measures; in (Lauer et 
al., 2020), the length of the incubation period of COVID-19 is estimated using confirmed COVID-19 
cases reported between January 4 and February 24, 2020, from fifty provinces, regions, and counties 
from China; in (Lin et al., 2020) a model of the outbreak in Wuhan, with individual reaction and gov-
ernmental action (holiday extension, city lockdown, hospitalization and quarantine) is analyzed in the 
light of the 1918 influenza pandemic in London; in (Moussaoui & Auger, 2020), susceptible–exposed–
infectious–recovered (SEIR) modeling is considered to forecast the COVID-19 outbreak in Algeria by



using real data from March 1 to April 10, 2020; in (Zhao et al., 2020), a modified SEIR model is con-
sidered under three intervention scenarios (suppression, mitigation, mildness) and simulated to predict
and investigate the realities in several African countries: South Africa, Egypt, Algeria, Nigeria, Senegal
and Kenya. The list of such studies is long: see, e.g., (Lemos-Paião et al., 2020) for a new compart-
mental epidemiological model for COVID-19 with a case study of Portugal; (Ndaı̈rou et al., 2021) for a
fractional (non-integer order) model applied to COVID-19 in Galicia, Spain and Portugal; (Zine et al.,
2020) for a stochastic time-delayed COVID-19 model with application to the Moroccan deconfinement
strategy; etc.

In (Peng et al., 2020), a mathematical system, generalizing the SEIR model, is presented to analyze
the COVID-19 epidemic based on a dynamic mechanism that incorporates the intrinsic impact of hidden
latent and infectious cases on the entire process of the virus transmission. The authors of (Peng et al.,
2020) validate their model by analyzing data correlation on public data of the National Health Com-
mission of China from January 20 to February 9, 2020, and produce reliable estimates and predictions,
revealing key parameters of the COVID-19 epidemic. Here, we modify the model analyzed in (Peng
et al., 2020) in order to consider optimal control problems. More precisely, we introduce three control
variables and combine them with the main parameters of the model of (Peng et al., 2020). Secondly,
we analyze a concrete optimal control problem, solving it analytically through the celebrated Pontryagin
minimum principle (Pontryagin et al., 1962). Moreover, we perform numerical simulations of the spread
of COVID-19 in Italy from September 1 to November 30, 2020. The model of (Peng et al., 2020) has
shown to be a good model to describe the reality of China. Its weakness is that it just tries to describe
a reality but without controlling it. Our main purpose and contribution here is to include control mea-
sures that allow us to interfere with reality. Moreover, we want to illustrate the validity of the model
in a different context. For this reason, we have considered real data of COVID-19 from Italy instead of
China.

The paper is organized as follows. In Section 2, we recall the generalized SEIR model of (Peng et
al., 2020). Our original results begin with Section 3, where we introduce a generalized SEIR control
system. An optimal control problem is posed and solved analytically in Section 4. Then, in Section 5,
we estimate the parameters of the model using real data of COVID-19 from Italy, and we illustrate the
usefulness of the proposed optimal control problem through numerical simulations. Our results show
that the generalized SEIR model of (Peng et al., 2020), originally considered for China, is also effective
with respect to Italy, being able to model well available real data, while our optimal control approach
shows clearly the positive and crucial effects of social distancing, preventive means, and treatment in the
combat of COVID-19. We end with Section 6 of conclusions.

2. A generalized SEIR-type model

The classical SEIR model consists of four compartments: susceptible individuals S(t), exposed individ-
uals E(t), infected individuals I(t), recovered individuals R(t). This SEIR model is too simplistic to
describe COVID-19 epidemic and new classes need to be included, e.g., Deaths and Quarantined indi-
viduals, in order to describe the reality. A generalized SEIR-type model for COVID-19 is proposed by
Peng et al. (Peng et al., 2020), being expressed by a seven-dimensional dynamical system as follows:

Ṡ(t) = −βS(t)I(t)

N
− αS(t),

Ė(t) =
βS(t)I(t)

N
− γE(t),

İ(t) = γE(t)− δI(t),

Q̇(t) = δI(t)− λ(t)Q(t)− κ(t)Q(t),

Ṙ(t) = λ(t)Q(t),

Ḋ(t) = κ(t)Q(t),

Ṗ (t) = αS(t),

(1)
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subject to fixed initial conditions

S(0) = S0, E(0) = E0, I(0) = I0, Q(0) = Q0, R(0) = R0, D(0) = D0, P (0) = P0. (2)

Here, the population is divided into susceptible individuals S(t), exposed individualsE(t), infected indi-
viduals I(t), quarantined/hospitalized individuals (confirmed and infected) Q(t), recovered individuals
R(t), death individuals D(t), and insusceptible individuals (protected population) P (t). It follows from
(1) that

Ṡ(t) + Ė(t) + İ(t) + Q̇(t) + Ṙ(t) + Ḋ(t) + Ṗ (t) = 0,

so that
S(t) + E(t) + I(t) +Q(t) +R(t) +D(t) + P (t)

is constant along time t. This constant will be denoted by N , being determined by the initial conditions
(2):

N := S0 + E0 + I0 +Q0 +R0 +D0 + P0.

The constant parameters α, β, γ and δ represent, respectively, the protection rate, infection rate, inverse
of the average latent time, and the rate at which infectious people enter in quarantine, and they have the
dimension of time−1 (day−1). The recovery and mortality rates, respectively λ and κ, are time-dependent
analytical functions defined by

λ(t) :=
λ1

1 + e−λ2(t−λ3)
(3)

and
κ(t) :=

κ1

eκ2(t−κ3) + e−κ2(t−κ3)
, (4)

where the parameters λ1, λ2, λ3, κ1, κ2 and κ3 are determined empirically from real data. Note that λ1,
λ2, κ1 and κ2 have the dimension of time−1 (day−1), while λ3 and κ3 have the dimension of time (day).

Remark 1 The basic reproduction number is usually computed for autonomous systems, when the right-
hand side of the system does not depend explicitly on time t (Barril et al., 2021; van den Driessche &
Watmough, 2002). Here, system (1) depends on (3) and, therefore, it is a non-autonomous system. In this
case, we are not aware of a valid method to compute the basic reproduction number.

3. Formulation of the Problem

We introduce three time-dependent controls to model (1) of (Peng et al., 2020):

− control u1(t), representing the effect of social distancing;

− control u2(t), representing the effect of preventive means;

− control u3(t), representing the effect of treatment.

Mathematically, we have the control system

Ṡ(t) = −βu1(t)S(t)I(t)

N
− (α+ u2(t))S(t),

Ė(t) =
βu1(t)S(t)I(t)

N
− γE(t),

İ(t) = γE(t)− δI(t),

Q̇(t) = δI(t)− (λ(t) + u3(t))Q(t)− κ(t)Q(t),

Ṙ(t) = (λ(t) + u3(t))Q(t),

Ḋ(t) = κ(t)Q(t),

Ṗ (t) = (α+ u2(t))S(t),

(5)
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Fig. 1. Schematic diagram of the generalized SEIR-type control system (5).

subject to initial conditions (2). We call (5) the generalized SEIR-type control model. A schematic
diagram of our control system is given in Figure 1.

4. Optimal Control

We consider the generalized SEIR control model (5) and formulate an optimal control problem to deter-
mine the strategy u(t) = (u1(t), u2(t), u3(t)), over a fixed interval of time [0, tf ], that minimizes the
cost functional

J(u) =

tf∫
0

(
w1
βu1S(t)I(t)

N
− w2R(t)− w3P (t) + v1

u2
1

2
+ v2

u2
2

2
+ v3

u2
3

2

)
dt, (6)

where tf represents the final time of the period under study and the constants w1, w2, w3, v1, v2 and
v3 represent the weights associated with the total number of new infections, the number of recovered
individuals, the number of insusceptible individuals, and the costs associated with the controls u1, u2

and u3, respectively. The controls u are Lebesgue measurable and bounded:

u(t) ∈ Γ :=
{
µ = (µ1, µ2, µ3) ∈ R3 : uimin ≤ µi ≤ uimax, i = 1, 2, 3

}
. (7)

The intervals [uimin, uimax] also translate the fact that there are limitations to the effects of social dis-
tancing, the preventive means and the treatment rate. Let

x(t) = (x1(t), . . . , x7(t))

= (S(t), E(t), I(t), Q(t), R(t), D(t), P (t)) ∈ R7.

The optimal control problem consists to find the optimal trajectory x̃ associated with the optimal control
ũ ∈ L1, ũ(t) ∈ Γ, satisfying the control system (5), the initial conditions

x(0) = (S0, E0, I0, Q0, R0, D0, P0) (8)

and giving minimum value to (6).
The existence of an optimal control ũ and associated optimal trajectory x̃ comes from the convexity

of the integrand of the cost functional (6) with respect to control u and the Lipschitz property of the state
system with respect to state variables x (see (Cesari, 1983) for existence results of optimal solutions).

According to the Pontryagin Minimum Principle (Pontryagin et al., 1962), if ũ ∈ L1 is optimal for
problem (5)–(8) and fixed final time tf , then there existsψ ∈ AC([0, tf ];R7), ψ(t) = (ψ1(t), . . . , ψ7(t)),
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called the adjoint vector, such that 
ẋ =

∂H

∂ψ
,

ψ̇ = −∂H
∂x

,

where the Hamiltonian H is defined by

H(x, u, ψ) =
w1u1βx1x3

N
− w2x5 − w3x7 +

3∑
i=1

vi
u2
i

2
+ ψT

(
Ax+

(
2∑
i=1

biΛixΦi + f(x)TΦ3

)
u

)

with

f(x) = (f1(x) f2(x) 0 0 0 0 0),

f1(x) =
−βx1x3

N
,

f2(x) =
βx1x3

N
,

b1 = (−1 0 0 0 0 0 0)T ,

b2 = (0 0 0 − 1 1 0 0)T ,

Λ1 = (1 0 0 0 0 0 0),

Λ2 = (0 0 0 1 0 0 0),

Φ1 = (0 1 0),

Φ2 = (0 0 1),

Φ3 = (1 0 0),

A =



−α 0 0 0 0 0 0
0 −γ 0 0 0 0 0
0 γ −δ 0 0 0 0
0 0 δ −λ(t)− κ(t) 0 0 0
0 0 0 λ(t) 0 0 0
0 0 0 κ(t) 0 0 0
α 0 0 0 0 0 0


.

The minimality condition

H(x̃(t), ũ(t), ψ̃(t)) = min
u∈Γ

H(x̃(t), u, ψ̃(t)) (9)

holds almost everywhere on [0, tf ]. Moreover, the transversality conditions

ψ̃i(tf ) = 0, i = 1, . . . , 7,

hold. Solving the minimality condition (9) on the interior of the set of admissible controls Γ gives

ũ(t) =

βx̃1(t)x̃3(t)
(
ψ̃1(t)− ψ̃2(t)− w1

)
Nv1

,
x̃1(t)

(
ψ̃1(t)− ψ̃7(t)

)
v2

,
x̃4(t)

(
ψ̃4(t)− ψ̃5(t)

)
v3

 ,
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where the adjoint functions satisfy

˙̃
ψ1 = − ũ1βx̃3

N2
(x̃2 + x̃3 + x̃4 + x̃5 + x̃6 + x̃7)

(
w1 − ψ̃1 + ψ̃2

)
+ (α+ ũ2)(ψ̃1 − ψ̃7),

˙̃
ψ2 =

ũ1βx̃1x̃3

(
w1 − ψ̃1 + ψ̃2

)
N2

+ γ(ψ̃2 − ψ̃3),

˙̃
ψ3 = − ũ1βx̃1

N2
(x̃2 + x̃3 + x̃4 + x̃5 + x̃6 + x̃7)

(
w1 − ψ̃1 + ψ̃2

)
+ δ(ψ̃3 − ψ̃4),

˙̃
ψ4 =

ũ1βx̃1x̃3

(
w1 − ψ̃1 + ψ̃2

)
N2

+ κ(t)(ψ̃4 − ψ̃6) + (λ(t) + ũ3) (ψ̃4 − ψ̃5),

˙̃
ψ5 =

ũ1βx̃1x̃3(w1 − ψ̃1 + ψ̃2)

N2
+ w2,

˙̃
ψ6 =

ũ1βx̃1x̃3(w1 − ψ̃1 + ψ̃2)

N2
,

˙̃
ψ7 =

ũ1βx̃1x̃3(w1 − ψ̃1 + ψ̃2)

N2
+ w3.

(10)

Note that we have obtained an analytical explicit expression for the controls ũ1(t), ũ2(t) and ũ3(t),

ũ1(t) =
βx̃1(t)x̃3(t)

(
ψ̃1(t)− ψ̃2(t)− w1

)
Nv1

,

ũ2(t) =
x̃1(t)

(
ψ̃1(t)− ψ̃7(t)

)
v2

,

ũ3(t) =
x̃4(t)

(
ψ̃4(t)− ψ̃5(t)

)
v3

,

(11)

but we do not have the controls in open-loop (because they depend on the state variables x̃ and adjoint
variables ψ̃). To plot ũ(t) as a function of t we need to solve numerically system (5) and (10) to know the
expressions for x̃ and ψ̃ and be able to obtain the controls ui, i = 1, 2, 3, in agreement with (11). This is
done numerically in next section. For more on numerical approaches to solve optimal control problems,
we refer the reader to (Alipour, 2017; Zaitri et al., 2019) and references therein.

5. Numerical Results

Now, our aim is to find optimal controls to limit the spread of the epidemic of COVID-19 in Italy,
by reducing the number of new infections and by increasing insusceptible individuals and the per-
centage of those recovered, while reducing the cost during the period of three months starting from
September 1, 2020. All numerical computations were performed in the numeric computing environ-
ment MATLAB R2019b using the medium order method and numerical interpolation (Shampine &
Reichelt, 1997). The rest of the preliminary conditions and real data were taken and computed from the
database https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-
regioni/dpc-covid19-ita-regioni.csv. We now summarize the real data for COVID-19
pandemic in Italy, for September and October 2020.

In Tables 1 and 2, we show the real data R(t) of recovered individuals from COVID-19 in Italy,
September (Table 1) and October (Table 2) 2020, versus the number R(t) of recovered individuals pre-
dicted by SEIR-type model (1) of (Peng et al., 2020) and the controlled model (5). We also indicate the
improvement one could have done by introducing suitable controls, as explained in Section 3, and using
the theory of optimal control as in Section 4. For that, we give in Tables 1 and 2 the percentage of rel-
ative error ηR between real data and the one predicted by model (1); and the improvement IR (increase
of recovered individuals with respect to real data in September and up to 14-Oct-2020; and decrease of
recovered from 15-Oct-2020 on, because of a drastic reduction on the number of infected and susceptible
individuals) by introducing controls u1, u2 and u3, as in (5), in an optimal control way.
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Table 1. Recovered individuals R(t), Sept. 2020.

Day Real (1) (5) ηR IR
01 207944 207944 207944 0% 0%
05 209610 207996 236134 0.77% 12.65%
10 211885 209176 238769 1.27% 12.68%
15 214645 211897 240170 1.28% 11.89%
20 218351 214873 241363 1.59% 10.53%
25 222716 218150 242306 2.05% 8.79%
30 227704 221973 243000 2.51% 6.71%

Table 2. Recovered individuals R(t), Oct. 2020.

Day Real (1) (5) ηR IR
01 222832 224334 243132 0.67% 9.11%
05 232681 226703 243647 2.56% 4.71%
10 238525 232871 244263 2.37% 2.40%
15 245964 241255 244857 1.91% 0.45%
20 255005 252990 245433 0.79% 3.75%
25 266203 269718 245994 1.32% 7.59%
29 279282 288247 246401 3.21% 11.77%

In Tables 3 and 4, we give real data of death individuals D(t) from COVID-19 in Italy, September
(Table 3) and October (Table 4) 2020, versus the numberD(t) of death individuals predicted by the SEIR-
type model (1) of (Peng et al., 2020) and our controlled model (5). We also indicate the improvement
one could have done by introducing suitable controls, as explained in Section 3, and using the theory of
optimal control as in Section 4: we show the percentage of relative error ηD between real data and the
one predicted by model (1); and the improvement ID (decrease of death individuals with respect to real
data) by introducing controls u1, u2 and u3, as in (5), in an optimal control way.

In Tables 5 and 6, we show the real data Q(t) of quarantined individuals from COVID-19 in Italy,
September (Table 5) and October (Table 6) 2020, versus the number Q(t) of quarantined individuals
predicted by the SEIR-type model (1) of (Peng et al., 2020) and the one predicted by our model (5). We
also indicate the improvement one could have done by introducing suitable controls, as explained in Sec-
tion 3, and using the theory of optimal control: we give the percentage of relative error ηQ between real
data and the one predicted by model (1); and the improvement IQ (decrease of quarantined individuals
with respect to real data) by introducing controls u1, u2 and u3 in an optimal control way.

The parameters α, β, γ, δ, (κ1, κ2, κ3) and (λ1, λ2, λ3) were fitted in the least square sense.

Table 3. Death individuals D(t), Sept. 2020.

Day Real (1) (5) ηD ID
01 35491 35491 35491 0% 0%
05 35541 35510 35495 0.08% 0.12%
10 35597 35538 35496 0.16% 0.28%
15 35645 35570 35496 0.21% 0.41%
20 35724 35606 35496 0.33% 0.63%
25 35818 35648 35496 0.47% 0.89%
30 35918 35702 35497 0.60% 1.17%
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Table 4. Death individuals D(t), Oct. 2020.

Day Real (1) (5) ηD ID
01 35941 35715 35497 0% 0%
05 36030 35773 35497 0.71% 1.47%
10 36166 35870 35497 0.81% 1.84%
15 36427 36008 35497 1.15% 2.55%
20 36832 36206 35497 1.69% 3.62%
25 37479 36491 35497 2.63% 5.28%
29 38321 37003 35498 3.43% 7.36%

Table 5. Quarantined individuals Q(t), Sept. 2020.

Day Real (1) (5) ηQ IQ
01 26754 26754 26754 0 % 0 %
05 31194 29264 1023 06.18% 96.69%
10 35708 31105 337 12.89% 99.05%
15 39712 32183 228 18.95% 99.42%
20 44098 34808 176 21.06% 99.60%
25 47718 39848 149 16.49% 99.68%
30 51263 48428 134 05.53% 99.73%

Table 6. Quarantined individuals Q(t), Oct. 2020.

Day Real (1) (5) ηQ IQ
01 52647 50023 130 04.98% 99.75%
05 58903 62193 124 05.58% 99.78%
10 74829 83557 119 11.63% 99.84%
15 99266 116035 116 16.89% 99.88%
20 142739 164668 112 15.36% 99.92%
25 222241 236520 109 06.42% 99.95%
29 299191 317055 107 05.97% 99.96%
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Fig. 2. The recovery and mortality rates (3) and (4) for the case of Italy (Section 5).

In Figure 2, we plot functions λ(t) (3) and κ(t) (4) by considering the initial guess α = 0.06, β = 1,
γ = 5, δ = 0.5, (λ1, λ2, λ3) = (0.01, 0.1, 10) and (κ1, κ2, κ3) = (0.001, 0.001, 10), respectively.

The parameters of the generalized SEIR model (1) were computed simultaneously by the nonlinear
least-squares solver (Cheynet, 2020). These parameters, during the period under study, were found as fol-
lows: α = 1.1775× 10−7, β = 3.97, γ = 0.0048, δ = 0.1432, (λ1, λ2, λ3) = (0.0181, 0.8111, 6.9882)
and (κ1, κ2, κ3) = (0.00062, 0.0233, 54.0351). For the optimal control problem of Section 4, we further
fixed wi = vi = 1, u1 min = 0.1, ujmin = 0, uimax = 1, i = 1, 2, 3, j = 2, 3.

In Figures 3 and 4, we present plots with the numerical solutions to the nonlinear differential equa-
tions of the generalized SEIR model (1), in red color; to the nonlinear differential equations of the gener-
alized SEIR control system (5) under optimal controls, in the sense of Section 4, in green color; and the
real data of the quarantined cases, the number of recovered individuals, and the number of deaths from
September 1 to October 31, 2020, in orange. The computed optimal controls for Italy from September 1
to November 30, 2020, which give rise to the green curves in the plots of Figures 3 and 4, are shown in
Figure 5. The obtained simulations allow us to predict the results of the decisions taken in Italy, as well
to give the best decisions for Italy, according to our generalized SEIR control system and optimal control
problem.

The orange curves in Figures 3e and 3f and Figure 4 represent the real data on quarantine, recovered,
and death cases in Italy from September 1 to October 31, 2020. The red curves simulate what happens
from the beginning of September to the end of November following the generalized SEIR model (1),
when the number of quarantined, recovered, and deaths increase, and reach, respectively, two million
three hundred eighty-eight thousand (2388000), nine hundred six thousand three hundred (906300), and
forty-five thousand seven hundred (45700) cases.

The red curves in Figures 3c, 3d and 3a simulate what happens from the beginning of September to
the end of November, according with the generalized SEIR model, when the number of infected, exposed
and insusceptible cases reach, respectively, one million one hundred forty-six thousand (1146000), forty-
one million two hundred fifty thousand (41250000) and five hundred twenty-eight (528) cases.

The green curves in Figures 3 and 4 show what happens from September 1 to November 30, 2020,
under optimal control measures, when the number of infected (Figure 3c) and recovered (Figure 3f)
cases increase and reach six hundred and fifty (650) and two hundred forty-nine thousand four hundred
(249400) cases, respectively, while the number of exposed (Figure 3d), insusceptible (Figure 3a), and
quarantined (Figure 3e) cases reach eighteen thousand four hundred ninety (18490), sixty million one
hundred eighty thousand (60180000), and one hundred twenty-eight (128) cases, respectively.

Deaths remain stable during the entire period, precisely, thirty-five thousand five hundred (35500)
cases (Figure 4).
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Fig. 3. Predictions for Italy from the generalized SEIR model (1), in red, the generalized SEIR control
system (5) under optimal controls, in green, between Sept. 1 and Nov. 30, 2020, versus available real
data of quarantined and recovered from Sept. 1 to Oct. 31, 2020, in orange.
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Fig. 5. The Pontryagin extremal controls of the optimal control problem of Section 4 for the case of Italy
between Sept. 1 and Nov. 30, 2020.
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The curves in Figure 5 show the optimal controls that need to be implemented in order to reduce the
overall burden of COVID-19 in Italy and obtain the best possible situation given by the green curves in
Figures 3 and 4, which take into account the cost reduction resulting from the controls u1, u2 and u3.
The effect of social distancing is equal to the minimum value of its constraint (u1 = 0.1), see Figure 5a,
and this corresponds to the application of social distancing among the entire population. The effect of
preventive measures is equal to the maximum value of its constraint until September 19 (u2 = 1), see
Figure 5b, then decreases gradually until it reaches zero (u2 = 0) on November 30, 2020, see Figure 5c.
The effect of treatment takes the maximum value of its constraint until November 29, 2020 (u3 = 1),
then decreases to zero on November 30, 2020 (u3 = 0), meaning a decrease in the pressure on the health
sector. Note that by taking preventive measures (u1, u2, u3), we limit the spread of COVID-19 and we
have better results. This means that, with the help of optimal control theory, what happened in Italy
would have been less dramatic.

6. Conclusion

Recent results have shown how the theory of optimal control is an important tool to combat COVID-19
in a community: in (Silva et al., 2021) for a controlled sanitary deconfinement in Portugal; in (Zamir
et al., 2021) from a more theoretical point of view; here for the case of Italy. We proposed a simple
SEIR-type control system, showing its effectiveness with respect to real data from Italy in the period
from September 1 to November 30, 2020. While the real data is consistent with the generalized SEIR
model (1), because the goal of this model is to describe well the COVID-19 reality, our new SEIR
control system (5) simulates what would happen if we took into account the values of the three control
functions, as described in Section 3. In agreement, the situations obtained with controls are better than
the situations obtained without controls. More precisely, by considering the proposed controls, we show
how optimal control theory could have drastically diminish the burden of COVID-19 in the period under
study while taking into account the resulting cost reduction. In concrete, if it would have been possible to
implement optimally, in the sense of optimal control theory and Pontryagin’s optimality conditions, the
control measures of social distancing as in Figure 5a, preventive means as in Figure 5b, and treatment
as in Figure 5c, then it would have been possible to decrease significantly the number of deaths (cf.
Figure 4 and Tables 3 and 4, which account a decrease of 7.36% of deaths in Italy by the end of October
2020 under optimal control) with much less quarantined individuals (see Figure 3e and Tables 5 and
6, which account a decrease of 99.96% of quarantined individuals in Italy by the end of October 2020
under optimal control theory). Thus, one can say that the approach proposed by the theory of optimal
control is very effective, simultaneously from health and economical points of view, being far from
trivial. Note that by following Pontryagin’s minimum priciple one obtains an increase on the number of
recovered individuals in a first period, up to 14-Oct-2020, and, after this date, a decrease on the number of
recovered (cf. Figure 3f and Tables 1 and 2), caused by the drastic reduction on the number of susceptible
and infected (see Figures 3b and 3c, respectively).

While our aim here was to study the effect of controls, guided by application of the Pontryagin
minimum principle and showing how they can help to decrease the spread of COVID-19, other aspects
remain open for further research. In particular, it remains open the theoretical study of the stability of the
models. In this direction, the recent results of (Boukhouima et al., 2021; Ndaı̈rou & Torres, 2021) may
be useful.
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