
Universidade de Aveiro
2021

Marco António
Gomes Silva

Navegação Multi-Objetivo de um Robô Móvel
Usando Aprendizagem por Reforço Hierárquica

Multi-Goal Navigation of a Mobile Robot Using
Hierarchical Reinforcement Learning

Universidade de Aveiro
2021

Marco António
Gomes Silva

Navegação Multi-Objetivo de um Robô Móvel
Usando Aprendizagem por Reforço Hierárquica

Multi-Goal Navigation of a Mobile Robot Using
Hierarchical Reinforcement Learning

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de Com-
putadores e Telemática, realizada sob a orientação científica do Dr. Filipe
Miguel Teixeira Pereira da Silva, Professor Auxiliar do Departamento de
Eletrónica, Telecomunicações e Informática da Universidade de Aveiro

o júri / the jury

presidente / president Professor Doutor Joaquim João Estrela Ribeiro Silvestre Madeira
Professor Auxiliar do Departamento de Eletrónica, Telecomunicações e Informática
da Universidade de Aveiro

vogais / examiners committee Professor Doutor João Paulo Morais Ferreira
Professor Adjunto do Instituto Superior de Engenharia de Coimbra (arguente)

Professor Doutor Filipe Miguel Teixeira Pereira da Silva
Professor Auxiliar do Departamento de Eletrónica, Telecomunicações e Informática
da Universidade de Aveiro (orientador)

agradecimentos /
acknowledgements

Queria agradecer ao Professor Filipe Silva pelo excelente acompanhamento
e pelo tempo despendido durante a realização desta dissertação.

Desejo também agradecer aos meus pais e irmã, e a todos os meus amigos
pelo apoio durante todos estes anos.

Finalmente, quero dar um especial agradecimento à minha namorada por
estar sempre presente e por me puxar para cima nos momentos mais difíceis.

I would like to thank Professor Filipe Silva for the excellent support and for
the time spent on this dissertation.

I also want to thank my parents and sister, and all my friends for their
support over the years.

Finally, a special thanks to my girlfriend for always being there and for pulling
me up in the toughest times.

Palavras-Chave Robótica Móvel; Representação Topológica; Navegação Multi-Objetivo;
Aprendizagem Por Reforço; Estrutura Hierárquica; Ambiente Tipo Labirinto

Resumo Atualmente, há um crescente interesse no desenvolvimento de tecnologias
de navegação autónoma para aplicações em ambientes domésticos, urbanos
e industriais. Ferramentas de Aprendizagem Automática, como redes neu-
rais, aprendizagem por reforço e aprendizagem profunda têm sido a escolha
principal para resolver muitos problemas associados à navegação autónoma
de robôs móveis. Esta dissertação tem como foco principal a solução do
problema de navegação de robôs móveis em ambientes tipo labirínto com
múltiplos objetivos. O ponto central aqui é aplicar uma estrutura hierárquica
de algoritmos de aprendizagem por reforço (Q-Learning e R-Learning) a um
robô num ambiente contínuo para que ele possa navegar num labirinto.
Tanto o espaço de estados quanto o espaço de ações são obtidos através
da discretização dos dados recolhidos pelo robô para evitar que estes se-
jam demasiado extensos. A implementação é feita com uma abordagem
hierárquica, que é uma estrutura que permite dividir a complexidade do
problema em vários subproblemas mais fáceis, ficando com um conjunto de
tarefas de baixo-nível seguido por um de alto-nível. O desempenho do robô
é avaliado em dois ambientes tipo labirinto, mostrando que a abordagem
hierárquica é uma solução bastante viável para reduzir a complexidade do
problema. Além disso, dois cenários diferentes são apresentados: uma situ-
ação de multi-objetivo onde o robô navega por múltiplos objetivos usando a
representação topológica do ambiente e a experiência memorizada durante
a aprendizagem e uma situação de comportamento dinâmico onde o robô
deve adaptar suas políticas de acordo com os mudanças que acontecem no
ambiente (como caminhos bloqueados). No final, ambos os cenários foram
realizados com sucesso e concluiu-se que uma abordagem hierárquica tem
muitas vantagens quando comparada a uma abordagem de aprendizagem
por reforço clássica.

Keywords Mobile Robotics; Topological Representation; Multi-goal Navigation; Rein-
forcement Learning; Hierarchical Structure; Maze-Like Environment

Abstract Currently, there is a growing interest in the development of autonomous
navigation technologies for applications in domestic, urban and industrial
environments. Machine Learning tools such as neural networks, reinforce-
ment learning and deep learning have been the main choice to solve many
problems associated with autonomous mobile robot navigation. This dis-
sertation mainly focus on solving the problem of mobile robot navigation
in maze-like environments with multiple goals. The center point here is
to apply a hierarchical structure of reinforcement learning algorithms (Q-
Learning and R-Learning) to a robot in a continuous environment so that
it can navigate in a maze. Both the state-space and the action-space are
obtained by discretizing the data collected by the robot in order to prevent
them from being too large. The implementation is done with a hierarchical
approach, which is a structure that allows to split the complexity of the
problem into many easier sub-problems, ending up with a set of lower-level
tasks followed by a higher-level one. The robot performance is evaluated
in two maze-like environments, showing that the hierarchical approach is a
very feasible solution to reduce the complexity of the problem. Besides that,
two more scenarios are presented: a multi-goal situation where the robot
navigates across multiple goals relying on the topological representation of
the environment and the experience memorized during learning and a dy-
namic behaviour situation where the robot must adapt its policies according
to the changes that happen in the environment (such as blocked paths). In
the end, both scenarios were successfully accomplished and it has been con-
cluded that a hierarchical approach has many advantages when compared to
a classic reinforcement learning approach.

Contents

Contents i

List of Figures iii

List of Tables v

Acronyms vii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Document Outline . 2

2 Background 5
2.1 Reinforcement Learning . 5

2.1.1 Elements of Reinforcement Learning . 5
2.1.2 Learning Methods . 7
2.1.3 Q-Learning Application Example - GridWorld 11

2.2 Hierarchical Reinforcement Learning . 17
2.2.1 Options . 18
2.2.2 Hierarchies of Abstract Machines . 19
2.2.3 MAXQ . 20

2.3 Mobile Robot Navigation . 21
2.3.1 Mobile Robots . 21
2.3.2 Reinforcement Learning in Mobile Robotics 23

2.4 Final Remarks . 26

3 Low-Level Exploratory Behaviour 27
3.1 Programming Environment and Software Tools 27

3.1.1 Webots Robot Simulator . 28
3.1.2 Mobile Robot and Environment . 28

3.2 State-Action Discretization . 30
3.3 R-Learning Algorithm . 31
3.4 Reward Specification . 33

3.4.1 Corridor . 34
3.4.2 Corner . 36
3.4.3 Doors . 39

i

3.5 Performance Evaluation . 41
3.6 Final Remarks . 48

4 Hierarchical Robot Navigation Approach 49
4.1 Hierarchical Decomposition . 49
4.2 Higher-Level Reinforcement Learning (RL) Problem 51

4.2.1 RL Problem Formulation . 51
4.2.2 Learning Evaluation . 53
4.2.3 Execution for a Single Goal . 54

4.3 Multi-Goal Navigation . 56
4.4 Dynamic Behaviour . 59
4.5 Final Remarks . 61

5 Conclusions and Future Work 63
5.1 Final Conclusions . 63
5.2 Future Work . 64

References 65

Appendices 69

A Sensor Values Conversion to Distances 70

B Artificial Neural Network for Robot Localization 74
B.1 Simulation Environment and Data Extraction 74

B.1.1 Data Pre-processing . 76
B.2 Model . 76
B.3 Results . 78

ii

List of Figures

2.1 Agent-Environment interaction. 7
2.2 The 4 mazes used in the agent training. 14
2.3 Hyperparameters evaluation. 15
2.4 Heat maps in Maze A. 16
2.5 Final result of the agent training. 17
2.6 Unmanned Ground Vehicles (UGVs). 22
2.7 Unmanned Aerial Vehicles (UAVs). 22
2.8 Autonomous Underwater Vehicles (AUVs). 23

3.1 Robots analyzed. 29
3.2 Example of environment. 30
3.3 Corridor reward function representation. 34
3.4 Three possible scenarios. 35
3.5 Corridor maze. 35
3.6 Corridor special situations. 36
3.7 Corner sections and axis transformation. 37
3.8 Corner reward function representation. 38
3.9 Types of doors. 40
3.10 Four-way symmetry in Front-Left-Right door. 40
3.11 Robot convergence to center of corridor. 41
3.12 Robot deviation from center of corridor. 42
3.13 Corner trajectories with training. 42
3.14 Corner trajectories with table transformation. 43
3.15 Maze in T-shape to evaluate performance on doors. 44
3.16 Robot trajectory on maze with all doors combined. 44
3.17 Robot trajectories in each door. 45
3.18 Maze for low-level evaluation. 46
3.19 Actions on doors evaluation. 47

4.1 The hierarchical approach focuses on a sequence of sub-policies that appear
both during training and execution. 50

4.2 Mazes used to train and evaluate high-level performance (Maze 1 on the left;
Maze 2 on the right). 52

4.3 Most visited states on Maze 1 (left) and Maze 2 (right). 53
4.4 Steps per episode on Maze 1 (left) and Maze 2 (right). 54
4.5 Reward sum per episode on Maze 1 (left) and Maze 2 (right). 54

iii

4.6 Superposition of the robot’s trajectories to four different starting positions in
Maze 1 (top) and Maze 2 (bottom). 55

4.7 Multi-goal trajectories w/o action to invert direction (top) and with (bottom). . 58
4.8 Top right corner blocked maze 2. 60
4.9 Robot normal trajectories (top) and adaptation to blocked path (bottom). . . . 61

A.1 Webots equations. 70
A.2 Raw voltage relation to theoretical distance. 71
A.3 Curve linearization. 72
A.4 Equation validation. 72
A.5 System of 3 equations vs Webots equations. 73

B.1 1 square meter arena in Webots Simulator where data were collected. 75
B.2 Neural networks using dropout stochastic regularization. 77
B.3 Analysis of two implemented models. 78
B.4 Accuracy and Loss with final model configuration, 1500 epochs and adaptive

learning rate. 79

iv

List of Tables

3.1 Webots vs Gazebo main aspects. 28
3.2 Sensors discretization levels. 31
3.3 Actions discretization (wheel rotation speed in rad/s). 31
3.4 Robot low-level efficiency. 46

v

vi

Acronyms

ACM Adjoining Cell Mapping.

AdaGrad Adaptive Gradient Algorithm.

AI Artificial Intelligence.

ANN Artificial Neural Network.

API Application Programming Interface.

AUV Autonomous Underwater Vehicle.

DP Dynamic Programming.

EPFL École Polytechnique Fédérale de Lausanne.

GPI Generalized Policy Iteration.

HAM Hierarchy of Abstract Machine.

HRL Hierarchical Reinforcement Learning.

HSMQ Hierarchical Semi-Markov Q-Learning.

IDE Integrated Development Environment.

LEDs Light Emitting Diodes.

MCQ-L Modified Connectionist Q-Learning.

MDP Markov Decision Process.

ML Machine Learning.

MSE Mean Squared Error.

ODE Open Dynamics Engine.

OS Operating System.

OSFR Open Source Robotics Foundation.

vii

ReLU Rectified Linear Unit.

RL Reinforcement Learning.

RMSProp Root Mean Square Propagation.

ROV Remotely Operated Underwater Vehicle.

SARSA State-Action-Reward-State-Action.

SLAM Simultaneous Localization And Mapping.

SMDP Semi-Markov Decision Process.

TCP/IP Transmission Control Protocol/Internet Protocol.

TD Temporal-Difference.

UAS Unmanned Aerial System.

UAV Unmanned Aerial Vehicle.

UGV Unmanned Ground Vehicle.

UUV Unmanned Underwater Vehicle.

viii

Chapter 1

Introduction

1.1 Motivation

In recent decades, there has been an exponential growth in technology applications in
domestic, urban and industrial environments which allows for automation of multiple tasks
that previously required human intelligence and intervention. With this evolution, terms
such as Artificial Intelligence (AI) and Machine Learning (ML) started to emerge to improve,
even more, the efficiency and effectiveness of agents spread through all human environments,
even though many times they go unnoticed. Nowadays there are self-driving vehicles, robots
that perform tasks more quickly and effectively than any human ever could and even mobile
robots that navigate autonomously across real environments without colliding with any type
of obstacles whatsoever.

Most studied tasks in AI relate to areas such as autonomous driving, medicine, voice,
image and handwriting recognition and many others as this theme is continuously growing
and spreading. AI’s first appearance goes as far back as 1943, when Warren McCulloch and
Walter Pitts proposed the first mathematical model for building a neural network [1]. A
few years later, in 1950, Alan Turing proposed that machines could make decisions and solve
problems the same way humans can [2] and came up with the famous Turing Test, a method
to determine if a machine is intelligent. More than 70 years later, AI is present in everyday
life and continues to expand in a way that its direction cannot be predicted and only time will
tell where it is heading to.

In this dissertation, the application of ML to a mobile robot is explored. ML is the branch
of AI that studies computer algorithms that improve automatically through experience and
by the use of data [3]. These algorithms create models based on acquired data (training
data) in order to make decisions or predictions without being explicitly programmed to do
so. Currently, ML is split into three different categories: Supervised Learning, Unsupervised
Learning and Reinforcement Learning.

The context of this dissertation comes up with the interest of using a mobile robot to
perform tasks involving navigation in an environment. Having a robot going from point A
to point B is interesting, however, the ability to travel between multiple goals, that is, going
from A to B and from B to C and so on, can be much more useful to some applications.
Taking as an example mobile robots in industrial environments. Large companies, usually,
have multiple mobile robots transporting and delivering cargo between storages. These tend
to be guided with lines drawn on the floor or multiple beacons for self-localization with almost

1

no intelligence. This type of guidance tends to be very restrictive and can lead to many
failures such as the wear of the lines, obstacles placed on the path or beacon failure, failures
that those mobile robots cannot overcome most times. Implementing an AI solves these
situations as the robot can safely travel between the desired points without any kind of physical
guidance, with the exception of the sensors built to it, being able to adapt when obstacles
are encountered. In these situations, multi-goal knowledge is very important since it allows
the robot to travel between many predefined positions in the same environment instead of
being capable of reaching just one position from every location in the maze, as in single-goal
implementations.

1.2 Objectives

In this work, the navigation problem is formulated as a RL problem. The main concept
underlying the work is the hierarchical learning structure in which the navigation task is
decomposed into simpler subtasks. On the one hand, the low-level tasks allow the robot to
be able to explore the environment, being easily reused in similar environments. Reward
shaping is used aiming to engineer a reward function able to provide frequent feedback about
the desired behaviors. On the other hand, the high-level problem involves making decisions
in specific locations in the environment until reaching the final goal. The knowledge about
the interconnectivity of locations forms an experience-dependent topological graph of the
environment. Such a map would endow the robot with planning capabilities to robustly reach
previously visited locations. The proper exploration of the environment allows the robot to
memorize previous experiences.

The proposed approach emphasizes this topological view as being the key element to tackle
the problem of multi-goal navigation, as well as to address the robot’s behaviour in a dynamic
environment. Maze-like environments represent a common way of limiting the problem to a
manageable form. However, the ideas explored in this dissertation can be adapted to more
realistic situations such as navigating in a building or in a more complex environment like
a city without an initial map. Therefore, the main objectives of this dissertation are the
following:

1. To provide the robot with elementary functionalities so that it is able to safely explore
maze-like environments composed of corridors, 90-degree corners and T-junctions.

2. To conceive and develop a hierarchical structure to solve the problem of navigating in a
maze-like environment resorting to its topological representation.

3. To evaluate the proposed approach in two scenarios: autonomous navigation among
multiple goals and in dynamic environments.

1.3 Document Outline

This remainder of the dissertation is organized as follows:

• Chapter 2 presents a theoretical framework on RL and its key elements, with a demon-
stration of the application of a RL algorithm (Q-Learning) in a classic GridWorld prob-
lem. Alongside this, there is a summary on some previously done work in RL and
Hierarchical Reinforcement Learning (HRL) with a focus on mobile robot navigation.

2

• Chapter 3 starts with a description of the experimental setup (Integrated Development
Environments (IDEs), Operating System (OS), Robot Simulators and Robots) followed
by a specification of the methodologies on the implementation of the lower-level tasks as
well as a discussion and analysis of the results obtained by the robot when performing
these tasks.

• Chapter 4 describes how the HRL approach is decomposed in this problem and how the
high-level methodologies are implemented, followed by an interpretation of the results
obtained when integrating those tasks with the lower-level ones. The multi-goal and
dynamic behaviour scenarios are presented in this chapter as well, with a discussion on
the robot performance in the end.

• Chapter 5 discusses the main contributions of the work, some of the limitations, and it
presents some guidelines on the future work.

3

4

Chapter 2

Background

2.1 Reinforcement Learning

RL can be seen as the mimic, on a very smaller scale, of human learning from birth. At
birth, a human has no knowledge whatsoever and does not know how to behave and what
to do. However, over the years the humans start to understand how to eat by themselves
and how to perform some other tasks, all learned with experience. Similarly to humans, a
robot can also learn with experience when RL is applied to it, requiring only a way to collect
information from the environment, like sensors, and some metrics to reward or punish each
taken action.

RL belongs to the class of semi-supervised learning methodologies and is the segment of
Machine Learning in which the agent is not presented with any type of previously collected
data whatsoever. Instead, the agent should learn with practice, like in the real world, where
no one tells it which action is best in a state and so it takes one of the available actions and
interprets its value according to the produced reward, either good or bad. Usually, the main
purpose of an agent is to achieve an objective while using the minimum number of actions
possible, consequently obtaining the highest sum of rewards. The reward can either be just a
static number or can be variable depending on the situation, giving RL the amplitude to be
applied to various numbers of situations and environments.

During the learning, it is expected that the agent fails many times in the initial phase,
however as the number of interactions with the environment increases and the agent starts
to learn the best actions for some states, its behaviour starts to improve as well. In the end
of the learning process, the agent is able to perform the desired tasks without any errors by
following the policy which dictates the best action for each moment.

Most of the information presented below about reinforcement learning and everything
related to it is based on both versions of the book by Richard S. Sutton and Andrew G. Barto
[4, 5], together with some points from the dissertation written by Diogo Vidal e Silva [6].

2.1.1 Elements of Reinforcement Learning

RL is a methodology composed of many elements, from which the agent and the environ-
ment stand out. However, these two alone do not result in a learning process and so they
need four more elements beyond them: a policy, a reward, a value function and a model of
the environment (only in some cases, which are addressed below).

5

• Policy: Element that defines the way the agent behaves in a given time. It dictates
the relationship between the states of the environment and the actions the agent takes.
It can be a simple function or a lookup table, but, in more complex situations it may
involve complex functions. Is considered the core of what the agent learns.

• Reward: This element determines the objective of a RL problem. Every action the
agent takes results in a reward that has been previously defined or is computed in
real-time according to some environment parameters. The main goal of the agent is to
maximize this reward, consequently being able to distinguish the good from the bad
actions, that is, the ones that take the agent to the highest reward states from the ones
that take it to the lowest reward ones. This element causes the main impact on the
policy since if an action selected by the policy results in a low reward, the policy will be
updated and changed so that some other action is selected in the same state.

• Value Function of a state: It is the total aggregated sum of rewards the agent can
expect to get in the future if it starts from that state. Is used to indicate the long-term
desirability of a set of states since, even if a state has a low immediate reward, it can
still have a high value if it is followed by higher reward states.

• Environment model: The last of the elements is a representation of the environment
which mimics its behaviour when some action is performed. It allows the agent to infer
how the environment will react and so help it to predict the next reward if an action is
taken and hence, base the current action on the predicted reaction of the environment.
This element is just used in model-based methods, which will be explained below.

Markov Decision Process

The Markov Decision Process (MDP) is one of the most popular mechanisms to solve
reinforcement learning problems. It decomposes scenarios as a set of states, connected through
actions and associated with specific rewards. The agent travels from state to state by selecting
actions that result in the corresponding rewards. Is represented by a 4-tuple (S,A, Pa, Ra),
where:

• S: set of states, called state-space.

• A: set of actions, called action-space (As when there are different action-spaces for
different states).

• Pa(s, s′) = Pr(st+1 = s′|st = s, at = a): probability that action a in state s at time t
will lead to state s′ at time t+ 1.

• Ra(s, s′): immediate reward received after transitioning from state s to state s′, after
performing action a.

The goal of a MDP is to help the agent to find the best policy in a target environment: a
function π that specifies the action π(s) that the agent will choose when in state s. From all
policies, the one that maximizes the value of all states at the same time is considered to be
the optimal policy.

In the end, the MDP constitutes an interaction between the agent and the environment
using only three variables: action performed by the agent, reward resulting from the transition
to a new state and, lastly, the possible next states, as is represented in Figure 2.1 [5].

6

Figure 2.1: Agent-Environment interaction.

Policy and Value Function

A policy dictates the action the agent chooses at the moment. This function gives the
probabilities, for each state, of selecting each one of the possible actions and is constantly
changing during the learning phase until the agent reaches an optimal policy.

The value function of a state is obtained under a certain policy π, using Equation 2.1
where rt is the reward in step t and γ ∈ [0, 1) is the discount factor. Designated as vπ(s), the
state-value function for policy π is the expected sum of rewards starting in the state s and
following the policy π until reaching the goal. Roughly, the value function estimates "how
good" being in a state is. It should be noted that, here, the notion of "how good" is defined
in terms of future rewards that the agent expects. Of course, these rewards are obtained
according to the taken actions and might not match what is expected.

vπ(s) = Eπ
[
Gt|St = s

]
= Eπ

[∞∑
k=0

γkRt+k+1|St = s

]
, for all s ∈ S (2.1)

Similarly, in Equation 2.2, there is the value function of an action, denoted qπ(s, a), which
defines the expected reward for taking action a in state s and, thereafter, following policy
π. Following the thoughts of the state-value function, this function is called the action-value
function for policy π.

qπ(s, a) = Eπ
[
Gt|St = s,At = a

]
= Eπ

[∞∑
k=0

γkRt+k+1|St = s,At = a

]
(2.2)

2.1.2 Learning Methods

As said in Section 2.1.1, the main objective in RL is to achieve an optimal policy. If all the
elements that compose a MDP were known then it would be possible to compute the solution
before any actual execution of any action. However, what distinguishes a RL problem from a
path planning solution is the fact that the agent does not know all those elements, especially
how the environment will react to a transition between states, that is, the probability given by
Pa(s, s

′) = Pr(st+1 = s′|st = s, at = a) as well as the immediate reward from that transition,
given by Ra(s, s′).

Two approaches can be used when solving this problem, a model-based one and a model-
free one. In the model-based one, the agent acquires information about the probability of each
transition and generates a model of the environment, which is used during the agent training
to achieve the optimal policy. Contrasting the model-free methods, in the model-based ones
the interaction with the actual environment is very small, since that after the creation of the

7

model the whole learning can be done in a simulated environment. Even though this process
speeds up the learning, this method may not be convenient since a simulated environment
requires highly computational processing and can introduce some errors in the learning when
not modeled correctly.

Opposingly to the model-based approach, model-free methods, as the name suggests, do
not require any model of the environment to work as the agent will learn the optimal policy
solely by its interaction with the real environment. In these approaches, the agent performs
each action and receives the immediate reward from the environment, being it positive or
negative. Through the learning, the robot will explore the environment and learn the best
action to take according to the state it currently is in, always trying to maximize the cumulative
sum of rewards.

Inside the category of model-free methods, there are two main divisions: Monte Carlo
Methods and Temporal Difference learning, both of which are explained below, alongside
Dynamic Programming (DP), a model-based method, as it is important to understand the
other two.

Dynamic Programming Method

DP is a collection of algorithms that can be used to compute and obtain optimal policies
as a MDP, when given a perfect model of the environment. Taking into consideration the
assumption of a perfect model and the need for great computational expense, DP algorithms
have a very limited utility in RL. Beyond that, DP requires finite state and action spaces,
however, it can provide solutions for some special cases in continuous spaces. Although all of
that, DP provides an essential foundation for the rest of the methods approached below.

Monte Carlo Method

Unlike DP algorithms, Monte Carlo methods only require experience obtained while inter-
acting with the environment during the learning process. This type of learning is striking, as
the agent does not need any prior knowledge whatsoever about the environment. The agent
learning is split into episodes, being each one the full iteration from a starting state until a
goal state, and only then the value function and policy are estimated.

These methods follow the Generalized Policy Iteration (GPI) and, in order to improve
policy, calculate the average of the value functions starting in the same state, instead of
resorting to a template. To obtain an optimal policy, the agent has to start each episode in a
random position, and so this can only be performed in a simulated environment since if it were
performed in a real environment, moving the agent to a random position in every iteration
would be very difficult. These starts in random positions allow the agent to obtain enough
information for all state-action pairs and learn more.

For a learning problem in a real environment where those random starts are not possible,
two different solutions were created: On-Policy Monte Carlo and Off-Policy Monte Carlo.
With both methods very similar, the real difference between them is that, for the On-Policy
one, the agent is constantly exploring the best policy it can get, while for the Off-Policy, the
agent explores an optimal policy different from the one it is currently using.

8

Temporal-Difference Learning

Temporal-Difference (TD) learning is the central idea to reinforcement learning. TD is
the combination of Monte Carlo methods with Dynamic Programming ideas. As in Monte
Carlo, TD can learn just from raw experience while interacting with the environment without
the need for a model. Like DP, TD methods update estimates based in part of other learned
estimates, without waiting for a final outcome, that is, the end of an episode.

The agent chooses an action by following a policy interacting with the environment and,
when in the next state, updates the value of the current state taking into account the learning
rate factor, α, as in Equation 2.3.

V (st)← V (st) + α
[
rt+1 + γ ∗ V (st+1 − V (s)

]
(2.3)

This is the methodology of RL behind Q-Learning and State-Action-Reward-State-Action
(SARSA), two very simple yet effective algorithms.

Q-Learning

Q-Learning is a very famous and discussed model-free off -policy TD algorithm. Its first
appearance goes back to 1989 in Chris Watkins [7] Ph.D. Thesis and three years later, Watkins
himself, together with Peter Dayan [8], proved the convergence of the Q-Learning algorithm.

This algorithm allows an agent to learn by its experience, that is, without having any
idea about the environment behaviour, the agent takes actions and learns from the respective
consequences, through Equation 2.4.

Q(St, At)← Q(St, At) + α ∗ [Rt+1 + γ ∗maxaQ(St+1, a)−Q(St, At)] (2.4)

The learned action-value function Q, will directly approximate Q∗, the optimal action-
value function, independently of the policy the agent is following. This approximation dramat-
ically simplifies the analysis of the algorithm and enables early convergence proofs. However,
the policy still has an effect since it determines which state-action pairs are visited and up-
dated. For that reason, the only requirement to achieve convergence is that all pairs continue
to be visited, a requirement that is needed throughout most of the methods in RL. To fulfill
this, methods such as ε-greedy or Softmax can be used to balance exploration and exploitation
when choosing actions.

As can be seen in Equation 2.4, this algorithm relies on two hyperparameters: learning
rate α and discount factor γ. These two, together with ε in the case of using an ε-greedy
approach, and the reward function are all the parameters that must be defined a priori to the
learning and are all explained in detail in Section 2.1.3.

A pseudo-code procedure to implement the Q-Learning algorithm is shown in Algorithm 1.

9

Algorithm 1 Q-Learning algorithm.
1: Algorithm parameters: α ∈ (0, 1], γ ∈ (0, 1], small ε > 0, max_episodes
2: Define R, reward function
3: Initialize Q(s,a) for all states and actions available
4: while nr_episodes < max episodes do
5: Obtain state s
6: while s is not goal do
7: Choose an action a from state s using policy derived from Q (e.g. ε-greedy)
8: Perform action a and observe R and next state s′

9: Q(s, a)← Q(s, a) + α ∗ [R+ γ ∗maxa′Q(s′, a′)−Q(s, a)]
10: s← s′

SARSA

SARSA, in opposition to Q-Learning, is a model-free on-policy TD method, first intro-
duced in 1994 as Modified Connectionist Q-Learning (MCQ-L) by Rummery and Niranjan in
a technical note [9], to which was given the name of SARSA later by Richard Sutton. This
name simply reflects how the algorithm works when updating the Q-value function as it de-
pends on the current state of the agent, S1, the current action, A1, the reward, R, the next
state, S2, and the next action A2, resulting in the acronym (S1, A1, R, S2, A2).

While Q-Learning updates an estimate of the optimal state-action value function Q∗ based
on the maximum reward for the available actions, SARSA learns the Q-values associated with
the policy the agent is currently following, dropping the maxa′Q(St+1, a) present in the Q-
Learning equation and ending up with Equation 2.5.

Q(St, At)← Q(St, At) + α ∗ [Rt+1 + γ ∗Q(St+1, At+1)−Q(St, At)] (2.5)

In all on-policy methods, Qπ is continuously estimated for the behaviour policy π, which
changes at the same time so that the best action can be chosen. SARSA convergence properties
depend on the nature of the policy’s dependence on Q. For example, ε-greedy or ε-soft policies
could be used. The probability of convergence is 1 to an optimal policy and action-value
function, if it is guaranteed that all state-action pairs are visited an infinite number of times
and the policy converges in the limit to the greedy policy.

A pseudo-code procedure to implement the SARSA algorithm is shown in Algorithm 2.

Algorithm 2 SARSA algorithm.
1: Algorithm parameters: α ∈ (0, 1], γ ∈ (0, 1], small ε > 0, max_episodes
2: Define R, reward function
3: Initialize Q(s,a) for all states and actions available
4: while nr_episodes < max episodes do
5: Obtain state s
6: while s is not goal do
7: Choose an action a from state s using policy derived from Q (e.g. ε-greedy)
8: Perform action a and observe R and next state s′

9: Choose an action a′ from state s′ using policy derived from Q (e.g. ε-greedy)
10: Q(s, a)← Q(s, a) + α ∗ [R+ γ ∗Q(s′, a′)−Q(s, a)]
11: s← s′; a← a′

10

2.1.3 Q-Learning Application Example - GridWorld

Gridworld is a 2D maze of customizable size, built, as the name suggests, in the form of a
grid where the agent aims to achieve a goal cell, from any initial position, in the least number
of iterations possible by following the optimal path. On its way, there are multiple obstacles
making the arrival to the destination even harder.

Hyperparameters

During the learning phase, for each state, the agent wants the action that offers the best
reward. However, to achieve this, the agent needs to take all the actions so that it knows
which one is the best, this is the exploration phase where it searches all possible scenarios.
In the next step, after having all the information about all the actions it can take at each
step, the agent can choose which action provides the best reward for each state and so, goes
into exploitation. In RL a trade-off between both exploration and exploitation is necessary
in order for the agent to discover new states that otherwise may not be selected during the
exploitation process.

RL, as explained in Subsection 2.1.2, has two different methods: a model-free one where
the agent uses only its actions and rewards to choose the next action to take and a model-
based one where the agent uses its actions and reward alongside a model of the environment
behaviour to choose the next action. To solve this problem a model-free method is sufficient
enough and so the Q-Learning algorithm is used. In order to achieve an optimal policy, this
algorithm has some hyperparameters that need to be carefully chosen: learning rate, discount
factor and action selection probability, that is, exploration probability.

The learning rate, or α, dictates how important the new Q-Value is in comparison with
the previous one. It is a positive small value, usually between 0 and 1, and should be set with
discretion. When it is equal to 0, the agent discards all the new values and, consequently, does
not learn anything since the old values are never updated. Therefore, the higher the learning
rate is the faster the learning process will be. Although that, a higher learning rate may cause
the agent to not converge correctly as it will give too much importance to newer Q-values
compared to the ones already learned. For that reason, using a lower value, closer to zero, is
recommended even if the learning is more time-consuming since the agent convergence will be
more accurate. With this in mind, it is common to set a learning rate value like 0.1, 0.2 or
0.3.

The discount factor, or γ, is used to define the importance of future rewards. Similarly to
the learning rate, it is usually a value between 0 and 1. When it is 0, the agent completely
discards the future reward and only takes into consideration the reward obtained for the
current state. This is used in problems where the actions only need to have short-term
influence and impact the instant in which they are taken. In this problem that is not the case
as the agent needs to learn an entire path and so actions should have a long-term impact. For
that reason, a value closer to 1 is preferable, in order to give weight to the reward of the next
state when the values are updated. Typically this value ranges anywhere from 0.8 to 0.99.

When choosing an action, there must be a trade-off between exploitation and exploration,
since that if the chosen action is always random, the agent never acts according to the knowl-
edge it obtains by exploiting the environment and if the action is always the one with the
highest value, the agent will always follow the same path and never find new ones. The most
common methods for choosing which action to take are ε-greedy and Softmax. In the ε-

11

greedy strategy, there is a balance between exploration and exploitation using epsilon (ε) to
define how often the agent takes a random action or the highest valued one. The larger the
epsilon, the greater is the probability of taking a random action, and consequently, the higher
the agent exploration rate. Therefore if the epsilon has a low value, the agent will privilege
the exploitation to the exploration. The ε is a value between 0 and 1 and having a lower
epsilon is equivalent to a higher exploitation rate, whereby the agent chooses the action with
the highest value with probability 1-ε and a random action with probability ε, allowing it to
have a good balance between exploration and exploitation.

However, it should be noted that this strategy has a problem. When the agent is exploring,
the chosen action may be the worst possible or one of the best. A solution to this is to vary
the probability of each action, giving a higher probability to the best actions and lower to
the worst ones, using a graded function. This is the Softmax [10] strategy and uses the
Boltzmann distribution function to assign the probability π(St, a) to the actions as shown in
Equation 2.6.

π(St, a) =
e
Qt(a)
τ∑n

b=1 e
Qt(b)
τ

(2.6)

In this equation, there is a positive parameter called temperature represented with τ . This
defines how the probabilities of the actions are distributed. When the temperature is high,
all the actions have equivalent probabilities, otherwise, the probabilities are different. Even
though this is the best of both methods, the temperature value is very difficult to define in
order to get the best results and, for that reason, the ε-greedy approach is used in this problem
since ε is very easy to define and gives good results as well [11].

Algorithm Implementation

The Q-Learning algorithm uses TD learning to estimate the value of performing a certain
action in a certain state and has the advantage of being a very simple algorithm that converges
really fast when its hyperparameters are well defined. In each iteration, a state-action pair is
visited and consequently updated using the next equation:

Qnew(st, at)← Q(st, at) + α ∗ [r + γ ∗maxa′Q(st+1, a
′)−Q(st, at)] (2.7)

Where:

• α is the learning rate.

• r is the reward according to the action taken at the current state.

• γ is the discount factor.

• maxa′Q(st+1, a
′) is the maximum reward that can be obtained from all the actions in

the state st+1.

Algorithm 3 is a pseudo-code representation of the Q-Learning implementation in this
problem, specifying, as well, how all the data for the metrics shown below are collected.

12

Algorithm 3 Q-Learning used in this implementation.
1: Define hyperparameters and max episodes (500 was used in this experiment)
2: Initialize rewardSum, paths, statesList and VisitedCells
3: Initialize Q-table with zeros for each state-action
4: while episode count < max episodes do
5: if state = goal then
6: VisitedCells[state] = VisitedCells[state] + 1
7: paths[episode count] = statesList
8: rewardSum[episode count] = rewardSum[episode count] + reward, r
9: Update Q-table in goal position and all actions with reward, r

10: Choose random initial position for next episode
11: episode count = episode count + 1
12: Clear statesList
13: else
14: Choose action, at, from a state, st, using the ε-greedy approach
15: Update statesList with new state-action pair
16: VisitedCells[state] = VisitedCells[state] + 1
17: Take choosen action and get the reward, r and next state, st+1

18: rewardSum[episode count] = rewardSum[episode count] + reward, r
19: Qnew(st, at)← Q(st, at) + α ∗ [r + γ ∗maxa′Q(st+1, a

′)−Q(st, at)]
20: Update Q-table in position state-action with Qnew(st, at)

Problem Approach

In this problem, 4 different mazes, shown in Figure 2.2, all with the same size (10*10 cells),
are used in order to test the agent in different levels of difficulty. Actions that allow diagonal
movement are not considered and so there are only 4 possible actions (up, down, left and
right). Since each environment has a size of 10*10, the Q(s,a) table has 100 different states,
each one with 4 possible actions.

Every time the agent reaches the goal, it is randomly deployed in a different cell of the
environment and searches for the goal all over again. To ensure that every cell is visited, the
initial position, in each episode, is always different from the previous ones until the agent has
started once on all of the available cells. Only after that, it starts repeating them.

The Q-learning equation uses a reward to update the Q-value of each state-action pair.
This reward is given to the agent each time it takes an action and, therefore, dictates how the
agent converges. In this approach, the only time the agent gets a positive reward is when it
reaches the goal, when it is given +100 points. When it decides to take an action that will
lead to hitting a wall or obstacle a reward of -10 points is given. For every action, the agent
takes a penalty reward of -1 point, assuring that it tries to reach the goal in the minimum
possible steps and so, finds the optimal path.

When it comes to choosing the best value for each of the hyperparameters, many execu-
tions with different combinations of the learning rate, α = [0.1, 0.2, 0.3], the discount factor,
γ = [0.8, 0.9, 0.99], and the exploration rate, ε = [0.1, 0.2, 0.3], were performed. In order to
make this comparison, some information has been collected from each execution and shown
in the graphs from Figure 2.3 and the heat maps from Figure 2.4.

13

(a) (b)

(c) (d)

Figure 2.2: The 4 mazes used in the agent training.

14

The top graphs from Figure 2.3 show the number of steps the agent requires, in each
episode, to reach from the start position to the goal state. Although it always starts in
random positions of the environment, it is noticeable that the required number of iterations
decreases as the episodes increase, which means the agent is learning over time. In the bottom
ones it is shown the sum of all the rewards the agent took in every iteration for each episode.
Initially, the agent has no idea where to go since it has not learned anything yet and so, this
sum is extremely negative. With the increase of episodes, it is clear an increase in this sum
since the agent is learning which is the best policy to follow.

From the analysis of both images and the comparison with other hyperparameter config-
urations, it can be concluded that, when the agent has a higher learning rate and discount
factor it converges faster than with low ones and, with the increase of the ε, as expected, the
agent does more exploration and so the convergence takes longer and is more uncertain. This
can be seen when, comparing Figure 2.3a, where both the reward sum and the number of
steps are very uncertain, to Figure 2.3b, where the convergence curve can clearly be seen.

(a) α = 0.1, λ = 0.8 and ε = 0.3. (b) α = 0.3, λ = 0.99 and ε = 0.1.

Figure 2.3: Hyperparameters evaluation.

Figure 2.4 presents the agent footprint ranging from purple to yellow, on Maze A (Fig-
ure 2.2a), with four different hyperparameter configurations, where the number in each cell is
the number of visits by the agent during the whole learning phase. Obviously, the agent never
goes through obstacles and so each one of them has a total of zero visits. Looking at each
footprint it can be noticed that the agent explores the map and takes actions in very different
ways according to the hyperparameter configurations. In the cases where the learning rate,
α, and discount factor, γ are both low the agent visits the cells much more often which means
that the agent is learning much slower and giving less value to the expected reward for the
next state. It should also be noted that increasing the learning rate, α and the discount fac-
tor, γ, makes the agent perform a more uniform exploration through the whole map, despite
the value of the ε being 0.1, 0.2 or 0.3. With all this in mind, the final hyperparameters
configuration for this problem is α = 0.3, γ = 0.99 and ε = 0.1.

15

(a) α = 0.1, γ = 0.8, ε = 0.1 (b) α = 0.1, γ = 0.8, ε = 0.3

(c) α = 0.3, γ = 0.99, ε = 0.1 (d) α = 0.3, γ = 0.99, ε = 0.3

Figure 2.4: Heat maps in Maze A.

With all the hyperparameters well defined, the agent is trained in the four mazes from
Figure 2.2 and the results are presented in Figure 2.5, where the best action for each state is
indicated. When looking at each maze result, it can be seen that whatever state the agent
starts in, it will always reach the goal and will never get stuck in two cells. However, it should
be noted that, for some positions, the final path is not optimal but still very close to optimal.
An adaptation of the reward function or extending the learning phase with more episodes
could lead to better results.

16

(a) (b)

(c) (d)

Figure 2.5: Final result of the agent training.

2.2 Hierarchical Reinforcement Learning

HRL, as the name suggests, is an area of RL where a problem is decomposed into a
hierarchy of sub-problems or sub-tasks in a way that higher-level sub-tasks invoke lower-level
ones as if they were atomic. This decomposition can have multiple levels and the sub-tasks
can be RL problems as well.

A classic RL problem introduces a range of problems when applied in a real-world situation
as, for instance, the curse of dimensionality, where the agent has to deal with the exponential
increase of states and actions, consequently increasing the amount of time needed for learning.

17

Another problem happens when the agent is presented with a continuous state-space, meaning
it will not visit every state in the environment and, consequently, will not find an optimal
policy.

Applying a HRL can help to solve some of the problems of RL, creating sub-tasks and
decreasing the state and action spaces to just the necessary for each sub-task. Besides this,
HRL has some benefits on top of classic RL, such as

• Reduces problem complexity, since one task is divided into multiple smaller ones.

• Reduces computational complexity, since one sub-task can be reused multiple times.

• Value functions from one sub-task can help accelerate the learning process of another
one or can be transformed in order to perform other tasks.

• State-space can be trimmed to just the necessary states for a sub-task, ignoring every-
thing else.

From all the higher-level tasks, the ones which are formulated as RL problems are, usually,
defined as Semi-Markov Decision Process (SMDP) since their actions will invoke sub-tasks
which execute for an extended period of time. In contrast to MDPs, where the state transitions
occur at discrete time steps, SMDPs generalize MDPs by allowing the state transitions to
occur in continuous irregular times [12]. SMDPs can model either continuous-time events or
discrete-time ones, considering always that the system is in a state for a random period of
time and transits to another state instantaneously at the end of that time.

Instead of a random period of time, Options can be used, a partial policy that is defined
with a subset of the state-space and a termination condition. With this framework, the wait
time for each option will be the amount of time needed to complete the partial policy and not
a random period.

On pair with options, Hierarchy of Abstract Machine (HAM) and MAXQ are two other
known approaches when it comes to HRL [13], all explained in more detail below.

2.2.1 Options

Probably the most well-known framework in HRL and is represented in the format of
Equation 2.8, with:

• Io: Initiation set.

• πo : S ×A→ [0, 1]: Option policy.

• βo : S → [0, 1]: Termination condition.

o =< Io, πo, βo > (2.8)

For an option to be used, the agent must be in a state that belongs to the Initiation set,
and if so, the policy πo will be followed until a termination condition is met. When the agent
is in a state s that belongs to Io, the next action a will be taken with probability π(s, a) and,
in the next state s′, the called option could terminate with probability β or continue. Only
after ending one option, the agent can select another one.

18

When using this framework, if the action-space is built by primitive actions and options,
an algorithm will converge to an optimal policy [14], in any other case, the algorithm will still
converge, however to a hierarchically optimal policy, that is, the achieved policy will be the
best according to the given hierarchy, as the tasks will not only depend on the policies of its
sub-tasks but on the context as well.

With this in mind, the final result of this framework is a structure composed of two levels:

• Bottom level sub-policy: given the environment states, the sub-policy outputs actions
and runs until termination.

• Top level policy of sub-policies: given the environment states, the policy outputs sub-
policies and runs until termination.

2.2.2 Hierarchies of Abstract Machines

In 1998, Parr and Russel [15] developed a new approach to structure MDPs hierarchically,
called HAMs. As in the Options framework, HAMs use the theory of SMDPs, however with an
emphasis on simplifying complex MDPs resorting to restricting the range of realizable policies
instead of expanding the set of actions.

HAMs are an aggregation of non-deterministic state-machines, that is, machines where
the optimal action is yet to be learned or decided, in which, the transition between states,
can invoke lower-level machines. As the optimal action is yet to be determined, the learning
algorithm still has to discover which lower-level sub-task to take at each time step.

HAMs are defined by a set of states, a transition function that determines the next machine
state after an action or call state, and a start function that defines the initial state of the
machine. A state can be of four types:

• Action state, that executes an action in the environment.

• Call state, that executes another machine as its subroutine.

• Choice state, that, non-deterministically, select the next machine state.

• Stop state, that halts the execution of the machine and returns control to the previous
call state.

HAMs, in a RL context, have the advantage that the effort required to obtain a solution
typically scales very badly with the size of the problem. Alongside this, HAM constraints can
focus the exploration of the state-space to important sub-spaces, resulting in the reduction of
the blind-search that agents must perform while learning about a new environment. As the
state-space where the agent is effectively operating is reduced, the HAM-model learning rate
will be faster as well as its policy iteration.

The authors from [15], introduced a new variation of the Q-Learning algorithm called
HAMQ-Learning which learns in the reduced state-space. In this variation, the agent keeps
track of the current environment state: t, the current machine state: n, the environment state
and machine state at the previous choice point: sc and mc, respectively, the choice made at
the previous choice point: a, and, finally, the total accumulated reward as well as the discount
since the previous choice point: rc and βc, respectively. Alongside all these variables, there is
an extended Q-table: Q([s,m], a), which is indexed with an environment-state/machine-state
pair together with an action taken at a choice point.

19

For each transition from state s to t with reward r and discount β, the algorithm updates
rc ← rc + βcr and βc ← ββc. In conjunction with this, the Q-table is updated resorting to
Equation 2.9 and, after that, rc ← 0, βc ← 1.

Q([sc,mc], a)← Q([sc,mc], a) + α[rc + βcV ([t, n])−Q([sc,mc], a) (2.9)

In some experiments where the exploration was done according to a Boltzman distribution
with a temperature parameter for each state and an inverse decay applied to alpha, the authors
of [15] concluded that the HAMQ-Learning learned much faster than regular Q-Learning: Q-
Learning required 9,000,000 iterations to reach the level that HAMQ-Learning achieved in just
270,000. Even after 20,000,000 iterations, Q-Learning did not achieve the levels of performance
of HAMQ-Learning.

2.2.3 MAXQ

In MAXQ, each main task can be decomposed into a set of sub-tasks and each one of
those can be decomposed, until the point where each existing sub-task is composed of a set of
primitive tasks. Having this hierarchy well defined, the goal is to obtain, recursively, an optimal
policy resorting to Hierarchical Semi-Markov Q-Learning (HSMQ), an algorithm developed
by T. Dietterich [16], that is applied simultaneously to each task within the task hierarchy.
For each sub-task p, there is its own Q function, Q(p, s, a), which is the total expected reward
of performing sub-task p in state s, executing action a and, thereafter, following the optimal
policy.

While the HSMQ algorithm treats the HRL problem as a collection of independent Q-
Learning problems, it lacks representational decomposition of the value function, which is
represented and learned independently. The MAXQ framework allows this decomposition of
value functions and so, the Q-value of a state-action pair is decomposed into the sum of two
components, as stated in Equation 2.10, where V (a, s) is the total expected reward when
executing the action a in state s and C(p, s, a) the total expected reward for completing the
parent-task, denoted by p, after taking action a, where a can be either a primitive task or a
sequence of tasks.

Q(p, s, a) = V (a, s) + C(p, s, a) (2.10)

Equation 2.10 shows how the Q-Value of a parent-task is related to the value function of
a child-task. When applied recursively, it shows that the Q-value of the root task can be
decomposed into a sum of Q-values of all its descendant tasks:

V (p, s) = maxa[V (a, s) + C(p, s, a)] (2.11)

MAXQ combined with Q-Learning introduced the MAXQQ-Learning algorithm, and this,
when compared with the traditional Q-Learning, shows much faster convergence to an optimal
policy, with and without state abstraction, because of the support for reusing and sharing sub-
tasks that MAXQ entails with it [17].

20

2.3 Mobile Robot Navigation

Robotics has become a very challenging and famous case of study. Initially people thought
it would be possible to have a robot doing activities a human does on a daily basis, however,
today it is still impossible to have a robot performing many mundane tasks fully autonomously.
ML is the main technique used nowadays when it comes to the process of teaching a task to
a robot in order to increase its level of autonomy. Currently, it is already possible to buy cars
with auto-pilot integrated [18] thanks to ML together with Computer Vision. Robots using
ML can learn through data, as in Supervised and Unsupervised Learning, or can learn through
what is called trial-and-error experience, in RL.

In [19], Leonard and Durrant-Whyte stated that the problem of navigation can be sum-
marized into three questions:

• Where am I?: addresses the problem of localization. How can a robot find where it is
in a given environment, based on the information it can collect and on what it knows it
has done before.

• Where am I going?: addresses the problem of having an objective. The robot must
know that the finish point exists and where it is.

• How should I get there?: addresses the problem of path planning. The robot knows
where the objective is but needs to know what actions/steps it should take at each
moment in order to reach the final destination from its current position.

2.3.1 Mobile Robots

Robots are machines capable of carrying out a complex task or set of tasks. Some are
guided through external controllers and others have embedded systems to control them. They
can be of many shapes and usually are designed with a specific task in mind rather than
aesthetics.

Mobile robots are robots that have locomotion capabilities and so can move around in their
environment and are not fixed on a physical location. They can be autonomous mobile robots
which are capable of navigating an uncontrolled environment without the need for a physical
guidance or might need to rely on guidance devices that allow them to travel predefined routes
in controlled environments.

Inside mobile robots there are three main categories:

• UGVs - Unmanned Ground Vehicles are vehicles that operate on the ground without
an onboard human presence. Can be used for many applications where human presence
might be inconvenient, dangerous or impossible. Generally, they have a set of sensors and
can be controlled remotely through a human or autonomously based on the information
collected about the environment. They can be either wheeled, tracked or legged robots.
Figure 2.6 shows two very famous UGVs: Spot by Boston Dynamics [20] on the left and
Gladiator Tactical UGV [21] on the right.

21

(a) Boston Dynamics Spot. (b) Gladiator TUGV.

Figure 2.6: UGVs.

• UAVs - Unmanned Aerial Vehicles, commonly known as drones, are aircrafts without
any human pilot, crew or passengers on board and are part of Unmanned Aerial System
(UAS) which includes a ground-based controller and a system of communication with
the UAV. They can be operated under human remote control or with multiple degrees
of autonomy from autopilot assistance up to fully autonomous piloting without human
intervention. Figure 2.7 shows two examples of UAVs: General Atomics MQ-9 Reaper
[22] on the left and a consumer drone from DJI [23] on the right.

(a) General Atomics MQ-9 Reaper. (b) DJI Drone.

Figure 2.7: UAVs.

• AUVs - Autonomous Underwater Vehicles are robots that travel underwater without
requiring input from an operator. Together with Remotely Operated Underwater Vehi-
cles (ROVs), these robots constitute the undersea system called Unmanned Underwater
Vehicles (UUVs).Figure 2.8 shows two examples of AUVs: MiniU Pluto Plus [24] on the
left and Phantom by Dynautics Ltd [25] on the right.

22

(a) MiniU Pluto Plus. (b) Phantom AUV.

Figure 2.8: AUVs.

2.3.2 Reinforcement Learning in Mobile Robotics

As said in Subsection 2.3.1, some robots operate completely autonomously, however, for
them to have this ability they must learn how to perform the tasks they are designed for. When
it comes to ML, they can learn from three categories as stated earlier. Since the algorithms
developed in this dissertation will rely on RL and HRL techniques, some work that is related
to what will be done here, in certain aspects, is summarized below.

The authors of [26] use Q-Learning to help a mobile robot move out of an unknown maze.
The robot is placed in the center of a spiral maze and, using sonar sensors, must learn how
to reach the exit without hitting any obstacle whatsoever. The world states are defined as a
3-element vector with left, right and front distances as well as their relative amplitudes. Along
with this, the robot can only perform three actions: move forward 10 cm and turn 15 degrees
to the left or right. In order to prevent hitting walls, every time one or more of the measured
distances is less than 17 cm the robot will move backwards 10 cm. So that the world states are
distinguished more effectively, they are split into two categories: health states and sub-health
ones, where the first indicate that obstacles are still very far and the last that they are too
close. In this problem the reward is defined by the user in a table and will vary according to
each state: if it is a healthy one, the result is a positive reward, if it is a sub-healthy one, the
result is a negative reward. With everything defined and after training the robot, the authors
concluded that the Q-Learning algorithm converges fairly quickly, in just under 300 steps.

As in the previous example, in [27] the authors use Q-Learning as well, however, with
a different approach. Here the algorithm will learn the shortest path, avoiding obstacles,
from the current position of the robot to a goal state by analyzing captured images of the
environment. The vision-based obstacle detection algorithm, developed in OpenCV with edge
detection algorithms, allows the creation of a grid map which is then given to the Q-Learning
algorithm and so, the problem can now be treated and solved as a Gridworld problem. Two
action-spaces were used in this problem: one with 4 actions (up, down, left and right) and
another with 8 (the previous 4 plus diagonals). The state-space always depends on the image
size and number of obstacles present. The reward developed can be split into three parts:
one where the agent reaches out of the image and gets the worst reward possible, another
that happens when the agent reaches the goal and gets the best reward and, finally, a living
penalty that happens in every move where the agent gets a very small negative reward.

Two approaches to solve RL problems with Q-Learning have been discussed already, how-

23

ever, when it comes to continuous non-linear environments, this might not be the best option.
In [28], Tomás Martínez-Marín developed a new algorithm which incorporates the adjoining
property, a mechanism to select the state transitions that will be learned by the robot and
allows to overcome some limitations of RL techniques when applied to continuous non-linear
systems, such as nonholonomic vehicles. The author used a method based on the Adjoining
Cell Mapping (ACM) technique, which creates a cell mapping where only transitions between
adjoining cells are allowed [29]. While the Q-Learning algorithm transitions are evaluated at
fixed sample times, the transitions of the RL algorithm developed by the author have to satisfy
the adjoining distance condition that had been previously defined. In the end, the new RL
approach was successfully employed for optimal motion planning of a real robot, in contrast
with conventional RL algorithms such as Q-Learning, since it does not need to use function
interpolation to find a close to optimal behaviour in continuous state-spaces. Alongside that,
this approach is robust to noise and changes in the vehicle parameters, since the robot model
is estimated on-line updating the optimal motion law in real time.

Moving to a more complex approach, the authors of [30] propose a HRL architecture in
order to solve a robot navigation problem. The proposed HRL consists of two layers: one for
movement planning and another for the movement execution itself. In the first one discrete
RL is applied in order to generate navigation trajectories based on movement primitives. With
those defined, the policy for the movement execution can be learned with the application of
continuous RL. For this work, 8 different primitive actions were defined: forward, backward,
left and right both with 0.25-meter and 1-meter displacements. For the movement planning
layer the defined reward was 1 in the goal and 0 in any other state, however, to avoid the risk
of collision, a penalty was defined for moving directly along walls. Alongside this, a bigger
reward was given to actions with 1-meter displacement compared to the ones with 0.25 meters
only. For the movement execution layer, the reward was set based on the robot X and Y
positions, together with its yaw θ. In the end, the authors concluded that, for all primitives
actions, sufficiently accurate policies could be learned. The navigation policy could be learned
within a few seconds, taking just 2.5 seconds on a map with 1000 cells.

Usually, developers resort to Q-Learning algorithms in problems where the robot must
navigate in static environments since dynamic ones make the problem much more complex as
it will have an infinite state-space. However, the authors of [31] proposed an application of
Q-Learning for solving this by limiting the number of states through a new definition of the
state-space. With this limitation, the Q-table size can be reduced and hence, the navigation
algorithm can perform faster. So that this approach could work, some assumptions had to
be made among which, the robot knowing its position and velocity at each instant as well as
the position and velocity of its goal and obstacles, if dynamic. It is assumed as well that the
robot’s speed is always higher than its target’s and obstacles’ speeds. In order to overcome
the problem of the infinite state-space, the robot is considered the center of the universe
and everything around it can be split into four different regions as if it were a 2D cartesian
coordinate system. Thus, each state is defined by the region containing the goal, the region
containing the closest obstacle and the angle formed between straight lines from the robot to
the goal and obstacle. The action-space is defined with only three actions: move forward, turn
left and turn right. To define a reward the states are split into four categories: Safe states,
Non-Safe states, Winning state, which happens when the robot reaches the goal and, finally,
Failure states, which happen when the robot collides with obstacles. With this classification,
the authors defined the reward as being 1 when going from Non-Safe to Safe state, -1 for the
opposite as well as when transitioning between Non-Safe states and getting closer to obstacles,

24

0 when traveling between Non-Safe states and getting away from obstacles, 2 when reaches the
Winning state and, lastly, -2 when reaches Failure states. In the end, the authors concluded
that the performance of Q-Learning, when compared to the potential field method in dynamic
environments, resulted in much slower learning since approximately half the time was needed
by the robot to reach the target using the potential field method.

With the objective of having a mobile robot navigating between multiple goals, the authors
of [32] presented a new algorithm, called GM-Sarsa(O), in order to find approximate solutions
to multi-goal RL problems modeled as MDPs and coupled by the requirement of sharing
actions. In contrast to other algorithms that find optimal policies for each goal in isolation,
their approach finds good policies taking into account the composite task. Given that SARSA
is an on-policy method, the value updates are based on the actions that are actually taken and
not on the best possible actions, and so, unlike the Q-learning algorithm, it does not suffer
from positive bias which is a problem when trying to find a good policy for multiple goals
in an environment. In the end, the authors concluded that some empirical results showed
that their approach performed better than some other algorithms (Negotiated-W, GM-Q and
Top-Q), however they did not prove convergence for their algorithm.

The authors of [33] are the ones that have a closer multi-goal implementation to the one of
this dissertation. In their paper, it is proposed a two-stage framework for visual navigation in
which the experience of the agent during exploration of one goal is shared to learn to navigate
to other goals. They developed a deep neural network for estimating the position of the
robot in the environment using ground-truth information provided by a classical Simultaneous
Localization And Mapping (SLAM) approach. A multi-goal Q-function learns to navigate in
the environment using a discretized map previously provided. However, their learning process
begins in a 2D simulator and then is deployed in a 3D simulator where the robot resorts to
the developed deep neural network to estimate its position and location. The authors focus
more in the deep neural network and so compare multiple architectures to select the best
one. After that, a comparison between the multi-goal RL method and traditional RL is done,
showing significant improvement when the multi-goal method is used. The study done around
the deep neural network showed that this type of network can learn and generalize in different
environments using camera images with high accuracy in position and orientation.

In order to recognize certain places in the environment the mobile robot must have some
sort of vision recognition system. Since vision-based navigation has been researched exten-
sively in multiple articles, the authors of [34] have written a survey where many pieces of work
related to this theme are summarized. In this survey two major approaches are dealt with:
map-based navigation and map-less navigation, in which the map-based navigation is subdi-
vided in metric map-based navigation and topological navigation. Alongside this, the authors
explore both indoor and outdoor environments, where the outdoor ones can be structured
environments (road exploring) or unstructured ones (random exploration). Different types of
vehicles were considered in this research as well. When it comes to ground vehicles in the map
building category, multiple strategies with different configurations of sensors (single camera,
omnidirectional camera, stereo cameras...) were analyzed, going from a visual SLAM with
landmarks and tracking [35] to 3D construction of occupancy grids [36], topological maps [37]
and visual sonars [38]. In the map-less category, again with multiple configurations of sen-
sors, strategies like optical flow [39] and appearance-based methods [40] were reviewed. In the
end, there are multiple techniques with the most varied configurations of sensory vision that
can be applied together with this dissertation’s algorithms in order to go from simulation to
real-world environments.

25

2.4 Final Remarks

In Subsection 2.3.2 a few articles involving different areas of mobile robot navigation and
RL have been analyzed and presented. As can be understood, they all discuss work in part
similar to the one developed in this dissertation, however, none of them have a work that fully
matches the one developed here. Some articles discuss the advantages of HRL, others the use
of Q-Learning or similar algorithms either in static or dynamic environments with discrete
or continuous state-spaces while a couple of other articles approach the multi-goal problem,
but none of those brings up a work of a HRL implementation with a multi-goal solution
in a continuous environment with dynamic behaviour. Although that, it should be noted
that some work discussed in the previous section is not implemented in this dissertation but
is very important when transferring the developed algorithms from simulation to real-world
environments, as is the case of the visual recognition and map building systems from [34].

Some articles present more in-depth work than the one developed here, as is the case of
[33], where the authors developed and implemented a deep neural network for localization
together with multi-goal navigation.

26

Chapter 3

Low-Level Exploratory Behaviour

This chapter describes the developments carried out to provide a simulated robot with
an exploratory behaviour inside a maze-like environment made up of corridors, corners and
doors. The exploratory behaviour defined in the scope of this work differs from navigation
in that there is no specification of a goal location. The objective is to learn a set of low-
level functionalities allowing the robot to pass through a corridor, corner or door, regardless
of the specific robot’s location in the maze. For example, if the robot learns the policy to
cross a corridor, then it can be used in any other corridor because they are all identical. In
this context, Section 3.1 describes the programming environment and software, followed by a
discussion about the two robots used. Section 3.2 provides an insight on how the state and
action spaces are discretized. Section 3.3 presents an overview on the algorithm used to train
the robot. Section 3.4 specifies how the rewards for each task have been done. Section 3.5
reports the robot behaviour and discusses the main results achieved and the implications for
the objectives to be obtained. Finally, Section 3.6 summarizes the work done in this chapter.

3.1 Programming Environment and Software Tools

This dissertation has been developed in Elementary OS 5.1.7 Hera, a Linux OS based
on Ubuntu 18.04.4 LTS. All the algorithms were developed in the Microsoft Visual Studio
Code IDE, using Python version 3.6.9, an interpreted high-level general-purpose programming
language, together with some libraries such as Matplotlib [41] and Keras [42].

An important part of the development of this dissertation is the simulator used. Using a
robot simulator software brings many benefits to the world of robotics, such as allowing to
save time and speed up the execution and iteration processes, be able to test code in a safe
environment and easily make small adjustments to it, and the ability to simulate complex
environments and train machine learning algorithms quicker than in the real world resorting
to the process speed up. Even though there are many benefits, there are also some drawbacks
as well. Simulator will never, at least for now, fully replicate the complexity of the real world
and they still need powerful computers to simulate complex 3D environments fast.

Two very famous robot simulators are compared in Table 3.1: the Webots Robot Simulator
from Cyberbotics Ltd [43] and the Gazebo Simulator from Open Source Robotics Foundation
(OSFR) [44], both with their advantages and disadvantages. Taking into account these two
simulators and the very complete comparison between them in [45], it can be concluded that
both simulators have very similar features and any of them would be a good choice. How-

27

ever, the Webots Robot Simulator is the only one that include a python external Application
Programming Interface (API), making it the natural choice for this work.

Developers Platforms
Supported

Main Programming
Language Extensibility External

APIs

Webots Cyberbotics Ltd Linux, macOS,
Windows C++ API, PROTOs,

Plugins(C/C++)

C, C++,
Python, Java,
Matlab, ROS

Gazebo OSFR Linux, macOS,
Windows C++ Plugins(C++) C++

Table 3.1: Webots vs Gazebo main aspects.

3.1.1 Webots Robot Simulator

Webots is a cross-platform, user-friendly robot simulator that was released by the Swiss
company Cyberbotics and runs in Linux, macOS and Windows. It has support for the most
common programming languages in robotics such as C/C++, URBI, MATLAB and Python.
Besides this, the simulator can be controlled externally using the provided API or any stan-
dard Transmission Control Protocol/Internet Protocol (TCP/IP) network. It uses a fork of
Open Dynamics Engine (ODE) to simulate physics in realistic 3D environments and supports
accurate modeling of collisions and contact points, allowing for tests in a wide range of sce-
narios using virtual robots. This simulator also has an interesting library of robot models and
more can be imported from most modeling software like Solidworks, AutoCAD or Blender,
as well as maps and terrains to create accurate 3D representations of the world in the test-
ing environment. Notwithstanding, with the increasing complexity of the environment, more
powerful computers are required to perform the simulation smoothly.

To control each physics step, that is, the speed of the simulation, Webots has the basic-
TimeStep parameter. This represents, in milliseconds, the duration of a simulation step, i.e.,
the time interval between two computations of the position, speed, collisions, etc. of every
simulated object. To obtain a quicker simulation, this parameter can be increased, with the
cost of decreasing the precision of the simulation compared to the real world. Webots doc-
umentation recommends a value between 8 and 16 for regular use of the simulator, so 16 is
used. Besides this, each robot controller has a parameter that defines its own simulation step,
usually named TIME_STEP, and should be a multiple of the basicTimeStep value.

3.1.2 Mobile Robot and Environment

During the initial phase of development, two mobile robots from the Webots library were
analysed: the Khepera-IV and the E-puck. Taking advantage of its Linux Core, the KTeam’s
Khepera-IV robot embeds a standard Linux OS, providing a well-known C/C++ environ-
ment for application development, as well as a python one. This allows almost any existing
library to be easily ported to its system which enables the development of portable embedded
algorithms and applications. It is considered the new standard tool for robotic experiments
and demonstrations, such as navigation, AI, control, real-time programming or advanced elec-
tronics demonstrations. The robot is equipped with two brushed motors with incremental
encoders, 5 built-in ultrasonic sensors plus 12 infrared ones (four of which directed to the
ground with short-range), a 752×480 color camera, 3-axis accelerometer and gyroscope, and 3

28

RGB Light Emitting Diodes (LEDs) on top. In terms of dimensions, the robot has a diameter
of 140.80 mm, a separation between wheels of 105.40 mm, and a height of 57.70 mm.

The GCTronic E-puck is the one used on the following experiments and is a miniature
mobile robot originally developed for teaching purposes at École Polytechnique Fédérale de
Lausanne (EPFL) by the designers of the successful Khepera robot. The hardware and soft-
ware are fully open source, providing low-level access to every electronic device and offering
unlimited extension possibilities. It has two wheel motors capable of a maximum speed of 6.14
rad/s, 8 infrared sensors for proximity and light measurements, an accelerometer, a gyroscope,
a camera with resolution 640×480, surrounding LEDs, bluetooth communication and support
for ground sensors modules. The diameter is 71 mm, the separation between wheels is 52 mm
and the height is 50 mm.

Two versions of this robot are illustrated in Figure 3.1. Figure 3.1a is the original robot
version, while Figure 3.1b is a modified version which includes a belt of six extra infrared
sensors attached onto the top of the robot. The orientation of the sensors follows the structure
proposed in [6]: one sensor facing backward and five facing forward and sides 45 degree apart.
Each Sharp infrared sensor, model GP2Y0A41SK0F, is able to measure between 4 and 30
cm [46], distances a lot farther than the original infrared sensors built into the E-puck robot
which can only measure up to 4 cm.

(a) GCTronic’s E-puck. (b) GCTronic’s E-puck with 6 Sharp
sensors.

(c) K-Team’s Khepera-IV.

Figure 3.1: Robots analyzed.

All maze-like environments to be created consist of corridors, corners, and doors. The

29

corridors must all be 30 cm wide, the corners are characterized by their orientation at 90-degree
angles, and the doors are points that allow access to new corridors by turning left, right or
moving forward. There is a transition region between doors called junction, always placed at
90-degree angles as well (i.e., T-junction). Figure 3.2 presents an example of an environment
respecting all the above rules, where each junction is labeled for better identification.

Figure 3.2: Example of environment.

3.2 State-Action Discretization

The task of navigating in a maze can be very complex for a robot to understand, however,
to travel through a maze it just needs to know how to behave in three main situations:
corridors, corners and doors. These behaviours can be isolated and turned into low-level tasks
so that the robot can perform each situation independently, ending up with a task to move
forward in a corridor, another two to turn in corners to the right and left and, finally, three
more for actions on doors.

The robot’s state is represented by the distance measured provided by the 6 IR-sensors
installed on-board. The 6-dimensional state defines the robot’s local position and orientation
relative to the corridor boundaries. The robot’s actions will be the speed commands to be
sent to the right and left wheels. The first step was to reduce the dimensionality of states
and actions through a manual discretization process. The main challenge is to find the right
number of regions for each dimension such that the robot achieves a good performance, and,
at the same time, learns quickly. This work follows the experience reported in [6], however
with different levels of discretization. In that work 4-dimensional states were used instead of
6 and action discretization was done based on linear and angular velocities instead of direct
speed application to the wheels.

The exploratory behaviour defined in the scope of this work differs from navigation in
that there is no specification of a goal location. Instead, the objective is to train the robot
so that it always follows the middle of the corridors, having a safe behaviour in corners and

30

doors. Learning this lower layer of functionality can be compared to a scenario in which a car
driver learns basic skills on a road (intersection, roundabout, among others) and applies them
regardless of the actual location on that road and regardless of the specific road the driver is
on.

After a conversion using the equation developed in Appendix A, the voltage of the infrared
sensors can be used as distance between 4 and 30 cm. If it was considered that each centimeter
change was a new state, then each one of the six sensors would have 27 different states which
would correspond to a total of 276 = 387420489 states. This would create an excessively big
state-space table and so, the distances were discretized into 6 levels, as shown in Table 3.2,
shrinking the table size to just 66 = 46656 states. In this experiment, the robot does not have
access to its global position, it can only estimate its local position related to the maze walls,
which increases the difficulty relatively to the Gridworld experiment where the agent knew its
global position at each step.

With the state-space well defined, it is still missing the possible actions the robot can take
in each state. Considering that the robot must be able to go forward, turn left or right in
corners or doors and compensate for eventual approximations to walls, nine different actions,
seen in Table 3.3, are contemplated and used across all low-level tasks.

Measure Distances (cm) Level
4 ≤ d < 6 1
6 ≤ d < 10 2
10 ≤ d < 15 3
15 ≤ d < 20 4
20 ≤ d < 25 5

d ≥ 25 6

Table 3.2: Sensors discretization levels.

Actions Front
(F)

Light Left
(LL)

Light Right
(LR)

Mid Left
(ML)

Mid Right
(MR)

Left
(L)

Right
(R)

Hard Left
(HL)

Hard Right
(HR)

Speed
(Left, Right) (2,2) (1.5,2) (2,1.5) (1,2) (2,1) (0,2) (2,0) (-2,2) (2,-2)

Table 3.3: Actions discretization (wheel rotation speed in rad/s).

With both state and action spaces specified, it is time to move to the learning phase. As
the problem happens in a continuous environment, in contrast to what was presented in the
GridWorld experiment, the algorithm used is not the Q-Learning, but instead R-Learning,
which will be explained in the following section.

3.3 R-Learning Algorithm

Most works in RL focus on finite horizons and the better studied discounted framework
such as Q-learning, where long-term rewards are attenuated based on the delay in their occur-
rence. Similar derivations exist for the average-reward case. For example, the average-reward
algorithm proposed by Schwartz [47], so-called R-learning, is more appropriate for undis-
counted continuing tasks such as those to be addressed in the simulated environment. This

31

is an off-policy method where the training is not split into episodes with finite returns. In-
stead, R-learning is a method for optimizing the average reward which is updated for every
non-exploratory action, aiming to obtain the maximum reward in each time-step (near-term
and far-future reward are the same). Likely to Q-Learning, R-Learning uses the action-value
representation, where Rπ(x, a) represents the average adjusted value of performing an action
a in a state x and then, following the policy π. Thus, R-Learning has four major steps that
are described in Algorithm 4, where x is the current state, y the next state, a the action and
ρ the average reward.

In this version of the R-Learning algorithm, there are two hyperparameters, 0 ≤ α ≤ 1 and
0 ≤ β ≤ 1, where the first is the learning rate controlling how quickly errors in the estimated
rewards are corrected and the second is the learning rate for updating ρ. Note that, just as a
matter of preference, the hyperparameters are switched when compared to the original article
[47], that is, where should be an α is a β and vice-versa. According to the sensitive analysis
made in [47], these hyperparameters have four main properties:

• More exploration is better than less: Higher values of exploration generally produce
better results than lower values.

• Slow decay of α is better than fast decay, however, in this experiment, no decay is
considered.

• Low values of β are better than high values: values such as 0.05 produce better perfor-
mance than values like 0.5.

• High values of α are better than low values, however, this may depend on the particular
experiment being made.

Before starting the training itself, it is necessary to initialize the R-Table for each state-
action pair, as if it were a Q-Table, and fill all states with their reward, obtained from the
reward functions explained in Section 3.4. As in Q-Learning, every time the robot is in a state
and performs an action, the corresponding state-action pair is updated, but now resorting
to the equation presented in Algorithm 4. If the action taken is non-exploratory, then the
average reward, ρ, is updated as well.

Algorithm 4 R-Learning used in this experiment.
1: Define hyperparameters α and β
2: Initialize R-Table with zeros for each state-action and ρ with zero
3: while True do
4: reward = RewardTable[y]
5: Rt+1(x, a)← Rt(x, a) ∗ (1− α) + α ∗ [reward− ρt +maxaεARt(y, a)]
6: if Non-exploratory action then
7: ρt+1 ← Rt ∗ (1− β) + β ∗ [reward+maxaεARt(y, a)−maxaεARt(x, a)]

8: Update R-Table in position state-action with Rt+1(s, a)
9: Set next state as current state, x = y

32

3.4 Reward Specification

In the RL framework, the specification of the desired robot’s behaviour is done implicitly
through the reward function. During training, the robot must observe variation in the reward
signal in order to be able to improve the policy. The main difference to the gridworld problem
(Subsection 2.1.3) is the way the reward is defined. As the robot does not have a predefined
goal, the reward must adjust to the state it is in, instead of always being the same and only
changing when in a goal state or a wall has been hit. For that reason, each low-level task has
a reward function which returns different values according to the local position of the robot
in the maze where the training is performed. This function is one of the major aspects of
RL since it dictates how good or bad an action is in a given state whereby, learning how to
complete a task successfully depends majorly on this reward and so, they must be carefully
designed so that the robot can achieve an optimal (or close to optimal) policy.

Unlike the experiment from Subsection 2.1.3 and as stated in Section 3.3, the robot does
not have a goal and the training is not split into episodes, but instead, its objective is to
complete each task successfully and obtain the max reward possible in every time-step. With
this in mind, it is not possible to define a sparse reward since the robot will never achieve a
goal state, whereby each reward function must take into consideration other features than a
final objective, in order to shape the primary reward to appropriately distinguish good from
bad actions in every state and fill the gap of the sparse reward. For that reason, instead of
relying on a reward function encoding success or failure, this work adopts a process known as
reward shaping [48, 49] in which intermediate rewards are used to guide the learning process
to a good solution (close to the desired behaviour). Depending on the desired task to be
fulfilled, this reward shaping will consider different features such as the robot orientation or
its distance to the walls.

During the training the robot does not know its local position, it only understands that
it is in a specific state according to the measures obtained from the sensors, however, all the
reward functions depend on its local position in the environment. With this in mind, before
the training, a table with 46656 states is created and filled with the appropriate reward the
robot should get in each state, so that when training it can access a reward based on the
sensors’ state instead of needing to know its local position in the maze.

The first approach to fill this table was to obtain the robot position and orientation based
on geometric calculations with the measured distances obtained from the sensors. This cal-
culations were previously made in a Matlab Simulator where the sensors had no noise and so
it worked perfectly. However, when it was adapted to python to work together with Webots
Simulator, even after some adjusts and trials it was not possible to obtain accurate positions
and orientations based just on the sensors’ measurements since most of the calculations relied
on sines and cosines and a small variance in the measured distances could change the obtained
angle, ending up with an incorrect position of the robot which would change the reward for
that state. For that reason, another way to fulfill the reward table has been done.

Resorting to the Webots Simulator Supervisor mode, the robot controller can know its
current position and use it instead of trying to calculate it. It should be noted that this function
is only available in Webots Simulator and it works as a God Mode or human intervention, but
since this mode is just necessary to fill the reward table and is not related to the actual
training of the robot, this is not a problem and after successfully training the robot in the
environment, it should work in a real version of the robot as fine as in the simulator. The
following subsections explain how the reward functions for each low-level task are defined.

33

3.4.1 Corridor

The task of going through a corridor is the most basic one. Here the only goal of the
robot is to go forward and be as much aligned with the center of the corridor as possible. To
accomplish this, only the robot orientation and horizontal displacement, that is, its distance to
the walls need to be considered. With this in mind, and after some trials with other rewards,
the best reward achieved can be visualized in Figure 3.3.

Figure 3.3: Corridor reward function representation.

As can be seen in Equation 3.1, the reward is calculated using two equations, one considered
when the robot is centered or turned facing the center of the corridor and the other when it
is moving away from the center. To better understand these equations, Figure 3.4 shows the
three possible situations where the robot can be. In Figure 3.4a the robot is aligned with
the corridor and centered, which means it is in the best scenario possible where it just needs
to go forward, and so has the maximum reward of all states since both its x and θ values
are zero. However, in Figure 3.4b and Figure 3.4c, the scenarios are a little different. In the
first one, the robot orientation allows it to get closer to the center of the corridor just by
going forward and when reached the center can correct its orientation to keep itself aligned
with the corridor, but, in the second situation, it needs to correct itself first in order to move
towards the center of the corridor and, after that, the scenario changes to one similar to the
previously mentioned. Alongside the robot orientation, the horizontal displacement is even
more important since it defines if the robot is too close to a wall or in a safe position in the
corridor and, because of that, it has much more importance in the calculation of the reward.

{
−400 ∗ (4 ∗ x2 + 0.02 ∗ θ2) + 15, if (x ≥ 0 ∧ θ ≥ 0) ∨ (x ≤ 0 ∧ θ ≤ 0)

−400 ∗ (4 ∗ x2 + 0.03 ∗ θ2)− 10, else
(3.1)

34

(a) Robot centered with corri-
dor.

(b) Robot getting closer to cen-
ter.

(c) Robot moving away.

Figure 3.4: Three possible scenarios.

With the reward function defined, the 30 cm wide corridor from Figure 3.5 was created
and used to fill the reward table with a resolution of 1 centimeter and 1 degree, that is, the
robot is put in 23 positions on the corridor (from -11 to 11 centimeters so that it does not hit
walls) and rotated 360 degrees (from -180 to 180 degrees), however, in this case a conversion
is made to keep the orientation between -90 and 90 degrees since, even though the orientation
is not the same, the state is because of the symmetry of the corridor walls. An example can
be seen in Figure 3.6b, where the left robot’s position is (-0.07, 160) and the right one is (0.07,
20) and both measure the same state (when placed alone, otherwise one would detect the
other).

Besides this, dead-ends are considered as well and so, the robot goes through those same
positions but at some distances from a wall in its back, as can be seen in Figure 3.6a. In these
cases, since there is an extra wall, the symmetry ceases to exist and so the 360 degrees are
considered. This allows the robot to turn around when it reaches a dead-end and to fill more
states in the reward table that could be essential later.

Even though the table is constituted by 46656 states, almost 43000 states are left unfilled,
which means almost 92% of the table, and so, the table size is not worrisome, as it can be
trimmed to just the filled states after training. During training those states are never achieved
by the robot and so they are just left with a very low reward.

Figure 3.5: Corridor maze.

35

(a) Robot at 180 degrees facing Dead-end. (b) Corridor position symmetry. Left: (-0.07, 160)
and Right: (0.07,20) result in the same state.

Figure 3.6: Corridor special situations.

3.4.2 Corner

When solving the task of turning in a corner, two different approaches were considered: one
where a new reward function is developed and the robot trained just like in the corridor and
other where a corner is considered to be the begin of a new corridor and so, a transformation
of the already trained table from the corridor is done in order to obtain the table for the robot
to turn in a corner.

While in a corridor there are just two variables that need to be considered, however, for the
robot to be able to do a corner there are three different variables present: X, Y and θ. Taking
as an example the corner to the right from Figure 3.7a, the goal here is to get around in the
best way possible. Being the local axis represented in the middle of the corner, in this first
approach, a reward function is designed considering the three variables previously mentioned
and is split in three main sections the robot can go through when getting across a corner:

• Section 1 - Corner entrance. Equation 3.1, from corridor, is used as this is part of it.

• Section 2 - Most of the area of the corner. The robot should go through this zone while
crossing the corner. Uses the Equation 3.2.

• Section 3 - Danger zone. This section, composed of two areas in the corner, is the one
to be avoided and uses the Equation 3.3 which results in very low rewards.

In Figure 3.8 can be seen a graphical representation of the composition of those three
rewards into one. As it is composed by three variables it results in a four-dimensional plot
which cannot be fully represented in the three-dimensional world and so, four angles are
considered for demonstration purpose only:

• Figure 3.8a mimics a situation seen in the corridor reward as well. When y ≥ 0, the
robot is moving closer to the center and so gets a higher reward, however, if it passes

36

to a position with y < 0, the reward decreases a lot as it starts moving away from the
center.

• Figure 3.8b represents one of the worst situations since the robot is facing the opposite
direction to the corner. This is a good representation of the separations between Sections
2 and 3. The reward is almost always the same in the whole Section 2 since the best
action is to turn around and so the robot position is not very important.

• Figure 3.8c represents the situation where the reward is the best. This is the case where
the robot is turned 90 degrees to the right and all it needs to do is go forward and so,
it increases as the x value increases.

• Figure 3.8d results in a similar graph as Figure 3.8b since that only when angles are
between 0 and -180 degrees the robot is considered to be in a good orientation when in
a corner to the right.

{
(−400 ∗ ((x− 0.11)2 + 2 ∗ y2) + 10) + (|θ| ∗ 180/π)/20, Section 2 moving to center
(−400 ∗ ((x− 0.11)2 + 2 ∗ y2)− 8) + (|θ| ∗ 180/π)/10, Section 2 moving away

(3.2)

(−500∗(2∗x2+2∗y2)−40)−(θ∗180/π), if (x ≤ −0.07∨y ≤ −0.07∨(x ≥ 0.1∧y ≥ 0.1))∧θ > 0
(3.3)

(a) Right Corner. (b) Axis transformation from corridor to corner.

Figure 3.7: Corner sections and axis transformation.

37

(a) Reward for θ = −45◦. (b) Reward for θ = 45◦.

(c) Reward for θ = −90◦. (d) Reward for θ = 90◦.

Figure 3.8: Corner reward function representation.

For the second approach it is considered that a corner is the junction of two corridors. With
this in mind, the table from the corridor can be transformed to suit the corner, assuming it is
just the beginning of a new corridor and so it is just necessary to convert the corridor states to
match the corner ones. A visual representation of this transformation is shown in Figure 3.7b,
where the local axis x1 and y1 are transformed to match x2 and y2. The y1 component makes
no difference to the state along the corridor but does make in the dead-ends. So that the robot
moves away from the walls, this component is considered and the transformation is made as
if the robot was moving away from a dead-end. In order to fill the table for the corner to the
right the Algorithm 5 has been developed.

38

Algorithm 5 Algorithm used to transform corridor table to right corner table.
1: Load corridor R-table
2: for p in Corner Positions do
3: if robot inside corner then
4: θ = θ + π

2
5: Transform current position to match a 90-degree corridor: P = (y, x, θ)
6: else . Robot is in Section 1 - Corner entrance
7: Cut θ to −90 ≤ θ ≤ 90 . Symmetric positions. Subsection 3.4.1, Figure 3.6b
8: P = (x, y, θ)
9: Obtain corridor state in position P

10: Select the best action for that state
11: Select the Q-value of that action in that state
12: Read current state from sensors
13: Add the corridor Q-value to the corner table in the corresponding state and action

3.4.3 Doors

For the tasks of crossing doors, only the approach of transforming the corridor table is
done here, following the same idea as the second approach for solving the problem of crossing
a corner. At first, four different types of doors were considered:

• Front-Right door: Figure 3.9a, is a door where the robot can either turn right or go
forward.

• Front-Left door: Figure 3.9b, is the symmetric door to the Front-Right one.

• Left-Right door: Figure 3.9c, is a door where the robot cannot go forward but can go
left or right.

• Front-Left-Right door: Figure 3.9d, is a door where the robot has the three options: go
forward, turn left or turn right.

However, analyzing each door, some situations have to be discussed. Firstly, the Front-
Left-Right door has a problem which is the 4-way symmetry inside it. Since the robot sensors
can just measure up to 30 cm and this door can be split into four equal triangles, as can be
seen in Figure 3.10, the robot cannot understand where it is and so cannot perform very well
in some situations, so this type of door has been discarded.

The other three types of door are considered and have some interesting aspects as well.
When comparing the Front-Left and Front-Right doors, it can be seen that the actions of
turning left and turning right are symmetric, and so only one of the actions is considered
when creating a new table from the corridor and then symmetry is applied to that table in
order to generate the symmetric one to use on the other door.

The same happens to the Left-Right door. Even though there is just one of these doors,
it is symmetric in its actions and, for that reason, just the table to turn right is created from
the corridor table, being the table to turn left generated with symmetry.

Having already the tables to turn left or right in all the considered doors, there are just
missing the ones where the chosen action is to go forward. At first two tables have been
created, one for the Front-Right door and another for the Front-Left but, since the doors are

39

symmetric, all the new states from each door will be symmetric as well, and so, they can be
together in the same table without conflict, resulting in just one table to move forward in both
doors and corridor.

(a) Front-Right door. (b) Front-Left door.

(c) Left-Right door. (d) Front-Left-Right door.

Figure 3.9: Types of doors.

Figure 3.10: Four-way symmetry in Front-Left-Right door.

40

3.5 Performance Evaluation

After having the corridor reward table filled, the robot is trained in the environment from
Figure 3.5 and, using the Webots Simulator Fast Mode. Given that after some time the robot
is almost always in the center of the corridor, and so that it can converge from multiple
positions, using the Supervisor mode from Webots the robot is placed in random positions
and orientations in the corridor every time it reaches the center.

After approximately 17500 hours of training, in Fast Mode which is equivalent to approxi-
mately 215 real hours, the robot achieves a very good policy where it can converge from every
position to the middle of the corridor easily. It should be noted that this amount of training
was not done all at once. After each piece of training in which the results proved to not be
satisfactory, the R-Table was loaded and a new piece of training was performed until reaching
the desired results, presented below.

To demonstrate its convergence, the robot is placed in 6 different positions (from -9 to
9 cm away from the center) with 8 different angles (from -60 to 60 degrees) and always
converges in a space of about 30 cm, as shown in Figure 3.11. In Figure 3.12 is exposed
the behaviour of the robot when crossing the corridor. As can be noticed the robot is never
fully aligned with the center of the corridor and always 1 cm away. This happens because of
the discretization applied to the sensors, since their readings in the center and up to 1 cm
away result in exactly the same state. The presence of sensor noise and wheel friction and
slipperiness has an impact on the robot behaviour as well, however, this is most noticed when
it turns around after reaching the end of the corridor. As witnessed in the same image, the
robot does not always take the same path when turning back which happens because it does
not reach the corridor end through the same position every time and so chooses different paths
when turning. Nonetheless, it is acknowledged that with more training focused on corridor
dead-ends, the robot would perform even better when reaching them.

Figure 3.11: Robot convergence to center of corridor.

41

Figure 3.12: Robot deviation from center of corridor.

As stated in Section 3.4, two approaches have been done when solving the problem of
turning in a corner. For the first approach, even though multiple pieces of training were
performed over extended periods and various reward functions were specified, the robot was
never able to solve the corner situation. In Figure 3.13 is demonstrated the path the robot
follows as it tries to turn both left and right corners and, as is observable, none of them is
complete with a good trajectory. Figure 3.13b shows a trajectory to the left where the robot
made a few corners but, as it is perceptible looking at the top-right corner, it failed and
wandered randomly until figuring out it was in a corridor and changing to the corridor task.
The same way in the bottom-left corner the robot simply did not stop turning until it hit a
wall. From Figure 3.13a it is clear that the robot cannot perform corners to the right with
the trained table.

(a) Corner to the right. (b) Corner to the left.

Figure 3.13: Corner trajectories with training.

42

Moving to the second approach, after transforming the corridor table into the correspond-
ing one for the right corner, an evaluation of the robot behaviour has been done. Assuming
that a corner is just the beginning of a new corridor, together with the convergence capacity
of the robot in corridors, can make it perform the task of crossing a corner fairly well. The
resulting trajectory of the robot crossing multiple times a corner to the right is shown in
Figure 3.14a. As can be noticed, the robot follows a very good trajectory given that no more
training was performed besides the already done in the corridor.

It can be perceived that the left corner is symmetric to the right one and, with the good
performance obtained in the right corner, the table for the left one is obtained resorting just
to this symmetry. In Figure 3.14b is presented the trajectory performed by the robot doing
the left corner and, as can be observed, it is identical to the one performed in the right one.
Instead of generating a new table to perform a corner to the left, the symmetry could be
applied directly to each state the robot is in, executing the symmetric action of the obtained.
Although this eliminates an entire table, it would add extra computational weight to the
algorithm.

(a) Corner to the right. (b) Corner to the left.

Figure 3.14: Corner trajectories with table transformation.

Lastly, there are the tables to cross the doors. With all of them fulfilled, the behaviour
of the robot is evaluated in the maze from Figure 3.15 by repeatedly performing actions in
doors, resulting in the trajectories from Figure 3.17. Each sub-figure represents an action that
the robot is able to perform and, as can be verified, it goes through every considered door
multiple times with some robustness.

At first, one table per action was used and so, six tables, just for the doors were necessary.
These, together with the ones to move in a corridor and cross corners, make up a total of
9 tables for the robot’s exploratory behaviour. However, given that the same action in all
the doors and corner (turn right for example) is performed similarly, all the tables for that
action were joined into one, ending up with just three tables: one to move forward in doors
and corridors, one to turn right in doors and right corners and, finally, one to cross doors and
corners to the left. With these tree tables, a new evaluation has been made in a maze that
could represent all the three types of doors and the resulting trajectories are demonstrated in
Figure 3.16. The robot performs a good trajectory across all the maze multiple times, whereby
these are the final tables used to perform the low-level tasks.

43

Figure 3.15: Maze in T-shape to evaluate performance on doors.

Figure 3.16: Robot trajectory on maze with all doors combined.

44

(a) Turn right on Front-Right door. (b) Turn left on Front-Left door.

(c) Turn right on Left-Right door. (d) Turn left on Left-Right door.

(e) Go forward on Front-Right door. (f) Go forward on Front-Left door.

Figure 3.17: Robot trajectories in each door.

Doing a deeper analysis of the robot’s behaviour it is concluded that it explores very
efficiently any type of maze that is constituted by 30 cm wide corridors, 90-degree corners and
the three types of doors referred above. To evaluate this efficiency, the robot is placed in the

45

maze from Figure 3.18 and evaluated for each one of the actions on the doors independently,
while performing corners to both directions and moving in a corridor. The Figure 3.19 presents
the trajectories made by the robot when performing 500 laps. The robot is not 100% efficient
and sometimes can fail when turning left or right in a door. Looking at Figure 3.19b it can
be seen that the right action has the highest fail rate, with 7% of fails. The average error
for each action is presented in Table 3.4. For the 500 laps, the action of going forward never
failed and the one of turning left failed just 0.8%. When analyzing the three images from
Figure 3.19 it can be seen that the robot does not perform the same trajectory every time,
being the ones with the most divergences the trajectories when turning right on doors. The
behaviour difference between left and right actions has no other justification than sensor noise
and wheel slippery since the table for the left actions is obtained with symmetry from the one
for the right actions. Although that, it should be remembered that for all these tasks there
was just one learning phase, in a corridor, whereby the final results are very interesting given
the amount of training and the low error percentage.

Figure 3.18: Maze for low-level evaluation.

Action on Door Fail Rate
Forward 0.0%
Left 0.8%
Right 7.0%

Table 3.4: Robot low-level efficiency.

46

(a) Left action on door.

(b) Right action on door.

(c) Forward action on door.

Figure 3.19: Actions on doors evaluation.

47

There is a need to mention that, even though the robot performs good trajectories across
all the tasks, particular situations can happen in T-junctions where the robot struggles to
get out of a door and stays there stuck in-between two states for some time before finally
being able to continue on its path. This situation does not translate into a huge problem or
disadvantage but is something to be taken into consideration. In the other two lower-level
tasks (corridor and corners) no particular situations were found whatsoever.

3.6 Final Remarks

The reward specification for the task of moving forward in a corridor resorting to reward
shaping allowed to take into consideration multiple variables (robot position and orientation)
which, together with the action of placing the robot in multiple positions in the corridor during
the learning phase allowed it to learn how to converge from every point to the center of the
corridor. This ability ended up being very important when solving the remaining tasks as this
convergence enabled the robot to be able to cross corners and doors with just the learning
phase from the corridor.

The exploratory behaviour of the robot ended-up being very efficient and successful when
it is placed in an environment that follows the rules and constraints stated earlier. Despite
that, the robot is just endowed of wandering safely in a maze without any type of objective
whatsoever. For that reason, the next chapter is introduced, in which a hierarchical approach
will give the robot one or multiple objectives in a maze so that it navigates to them.

48

Chapter 4

Hierarchical Robot Navigation
Approach

This chapter proposes a HRL approach to the navigation problem of a mobile robot in a
maze where it learns to achieve goal locations based on task decomposition and the concept of
topological navigation. Section 4.1 describes the hierarchical structure and the assumptions of
the work carried out. Section 4.2 provides an insight on the RL algorithm that allows the robot
to navigate to a specific goal location, as well as results obtained in two mazes of different
complexity. Section 4.3 proposes a solution to the problem of multi-goal navigation based on
the extraction of a topological map of the environment. Section 4.4 outlines an approach to
solve the navigation problem in a dynamic environment where obstacles can appear and block
paths. Finally, Section 4.5 summarizes the main results achieved and the implications for the
objectives to be attained.

4.1 Hierarchical Decomposition

In HRL, the task is decomposed into a hierarchy of sub-tasks where policies at the top of the
hierarchy call upon policies from a lower level. The hierarchical decomposition allows to reduce
the original problem to a smaller set of related problems, being a promising solution to scale
RL techniques to complex domains. In the context of this work, it is assumed the robot system
is endowed with visual information provided by a camera that would allow the observation
of the environment to detect locations. Visual information enables the representation of the
environment through metric, topological and semantic maps, being commonly used in tasks
such as path-planning, localization, and obstacle avoidance. The idea behind the work is to
develop a navigation system that can automatically extract topological information about the
environment and navigate to a goal location using RL. The challenges of visual navigation will
not be addressed in this dissertation; however, it is assumed that the robot is able to recognize
the target locations (goals), as well as each of the doors defined in the environment.

Having this assumption in mind, this section formalizes the hierarchical approach for
solving the navigation task in a maze-like environment. The simulator resources are used to
emulate the visual information and, in this way, to extract a graph-based representation of
the environment where the nodes correspond to junctions and the edges encode the adjacency
relations. In practice, the robot should detect some environmental cue that could distinguish
one node from the other, regardless of the arrival point. The design is reduced to T-junctions

49

of identical geometry, i.e., 3-way intersection points where a decision is required. The edges are
associated with intermediate policies to leave the transition region (e.g., turning left, turning
right, or going straight ahead), followed by the primitive actions to cross a new corridor. These
simpler problems were solved separately in the previous chapter and the results need to be
recombined to find a solution to the original one.

Figure 4.1 provides an intuitive description of the HRL approach applied to the simulated
navigation problem. Once learnt, the execution of the higher-level policy will determine the
action to leave the T-junction at the current node. Control is passed to the sub-task that
leads the robot out of the junction through a region of transition to the next corridor. When
leaving the intersection, the IR-sensors are used to trigger control for the sub-task Corridor.
These IR-sensors are used in the same way whenever the robot is in a corridor and reaches
a corner, however, these situations do not require intervention of the higher-level and are
performed autonomously. The visual detection of a new door terminates the corridor sub-
task and passes the control back to the higher-level that chooses the next action to leave
the T-junction. This process is repeated until the robot recognizes the goal location. This
hierarchical decomposition divided the lower-level sub-tasks in the three categories presented
below:

• Automatic Actions: actions performed by the robot without the intervention of the
high-level layer.

• Actions on Doors: actions dependent on high-level intervention for decision making
on doors.

• Invert Direction: action only invoked by the high-level that allows the robot to invert
its direction whenever necessary.

Figure 4.1: The hierarchical approach focuses on a sequence of sub-policies that appear both
during training and execution.

50

The hierarchical structure provides multiple benefits, namely it allows to abstract actions
at the top levels like "move left to the next node". These abstract actions skip over large parts of
the state-space terminating in a small subset of states, requiring less effort to learn a policy. At
the same time, it also provides temporal abstraction at the higher-levels of the hierarchy. For
the higher-level, the low-level policies are viewed as temporally extended actions, because once
they are invoked tend to persist for multiple time-steps until the robot recognize a new door.
This is a core concept of HRL that results in multi-step value bootstrapping when temporal
difference algorithms are used. Another potential benefit of HRL is to make exploration
easier by reducing the number of steps required to explore the state-space. Moreover, the
hierarchical approach can provide effective solutions when transferring knowledge between
mazes of varying design and complexity since it just requires training the higher-level policies,
while reusing the low-level learned behaviours.

4.2 Higher-Level RL Problem

4.2.1 RL Problem Formulation

Unlike the discretization on the lower-level, the top-level RL problem is represented as a
MDP with discrete states and actions. In this case, the states are associated with the doors
that allow access to the T-junctions (three doors for each junction). Therefore, the possible
actions to leave a junction will depend on the arrival point. This information is not available
initially and it should be extracted from the environment through exploration. Given the
specified hierarchy, the higher-level task is learned using standard off-policy Q-learning. In
the end, the learned policy makes decisions about the actions to take in each door and the
optimal sequence of doors/junctions the robot must follow to accomplish a specific goal.

In contrast to the low-level, here the table size will depend on the maze. Taking as an
example the mazes from Figure 4.2, with the increasing number of T-junctions, the number of
states will increase as well. In Figure 4.2a there are four T-junctions, but since each junction
is composed by three doors, each associated to a state representing the sides from where the
robot can come from, this first maze has a total of 4∗3 = 12 states. The maze from Figure 4.2b
is somewhat more complex and has more junctions, and so the number of states increases.
Here, there are a total of eleven junctions, whereby there are 11 ∗ 3 = 33 states. This is a
bigger table compared to the one from maze 1 but nothing compared to the ones used in
low-level.

As there is a need to identify each door so that the robot knows where it is on a T-junction
and since a visual system is not implemented, the Supervisor mode has been used once again
to obtain the exact position of the robot in the maze. With these coordinates and a text-file
containing a configuration with each door coordinates and orientation, as well as the goal
position, it is possible to determine each state and choose the adequate action. This is a
simple approach to emulate the information that otherwise would be provided by the vision
system.

When creating the new maps some constraints have to be fulfilled. After every corner or
T-junction, there must be a segment of a corridor since the robot is not capable of detecting
two junctions or corners in a row and will only detect them when coming from a corridor.
Given the symmetry presented in the corridor, explained in Subsection 3.4.1, the robot will
not know which direction it is going until it reaches a door, that is, a state and, only after
that, it will follow the best path to the goal.

51

So that the robot learns multiple paths to a goal, as in GridWorld, it is placed in different
positions in the maze, however, these positions must be carefully selected because they must
be in a corridor as the robot is not capable of detecting a T-junction or corner when it has
surpassed the respective entrance and so, it would not know how to react in that situation.
Finally, the last constraint to fulfill is the fact that the goal should not be very close to a wall
since the robot learned in the low-level to move away from walls and dead-ends and so if the
goal is too close to one wall, the robot might move away and never be able to reach it.

Figure 4.2: Mazes used to train and evaluate high-level performance (Maze 1 on the left; Maze
2 on the right).

Having already approached the hyperparameters in Section 2.1.3, in this problem the same
values are used without further research, with the exception of the ε used in the ε-greedy. This
value is set a bit higher from its original value of 0.1, being used here with a value of 0.3.

When it comes to the number of episodes, the type of maze where the robot is going to
learn is the main factor to dictate how many are needed. In a more complex maze, that
is, with more doors, the robot will need more episodes to reach an optimal policy. A good
example of this is both mazes developed for the experiment. While in maze 1 the robot is
trained with just 300 episodes and reaches optimal paths for all the starting positions defined,
in maze 2 the robot needs 500 episodes to be able to perform the best path.

Finally, the last hyperparameter to be considered is the reward. Here the main aspect
that counts is the amount of time the robot spends between two states since this is what
dictates how a path is shorter than another. For example, a path can have many more doors,
consequently, many more high-level states, and be shorter than another that consists of just
one door and a very long corridor. With that in mind, the reward for each state is calculated
using Equation 4.1. When the robot reaches the goal it gets a very high reward, however, in
any other state, it will depend on the amount of time spent performing low-level tasks.{

100, if state = goal

−500 ∗ (timeBetweenStates3600), else
(4.1)

52

4.2.2 Learning Evaluation

During the learning, some metrics are collected so that an analysis on the algorithm per-
formance is done after finishing this phase. In Figure 4.3 are presented the number of visits to
each state. In both mazes all states are visited multiple times, meaning the robot did explore
the entire maze while learning. Although that, the most visited one is the goal which means
that the exploration rate was not very high and, consequently, the robot did not wander a
lot through the maze. If the rate was higher then probably some other state would have
been more visited since the robot would have spent more time exploring. In the end it was
concluded that this was not necessary as the robot visited all states in both mazes and proved
to have a good behaviour as will be presented below.

Figure 4.3: Most visited states on Maze 1 (left) and Maze 2 (right).

The plots from Figure 4.4 and Figure 4.5 are correlated with each other. As the reward
for each higher-level action is calculated based on the time spent performing lower-level tasks,
if the robot does not follow the best policy it will perform more steps than strictly necessary
whereby it will spend more time in lower-level tasks which, in the end, translates into a lower
reward. This way, the higher the number of steps, the worst the reward will possibly be. It
should be noted that this relation might not happen since, as mentioned earlier, a path can

53

have many higher-level states and be shorter than another that consists of just one door and
a very long corridor. Looking at both images from Figure 4.4, it can be concluded that the
robot converges to the best path after some iterations. Since the exploratory rate is never
zero, the robot will follow some policies different from the optimal in some iterations, which
in the plots translate as the spikes in the number of steps. In Figure 4.5 are presented the
reward sums for each iteration performed in both mazes. These plots show that this reward
tends to stabilize in high values, meaning the robot is achieving the best sum of rewards it
can when starting from its current position and navigating to the goal.

Some particular situations can occur, as mentioned in Section 3.5, and the robot might
take longer to perform the desired lower-level task, consequently reflecting on the reward of
a higher-level state and on the reward sum of the respective iteration, whereby, although its
occurrence is very rare it should be taken into consideration. Not all starting positions are
at the same distance of the goal and that is shown clearly in Figure 4.4a where it can be
seen that the starting position three (in blue) requires the least high-level decisions and the
starting position four (in cyan) requires the most.

Figure 4.4: Steps per episode on Maze 1 (left) and Maze 2 (right).

Figure 4.5: Reward sum per episode on Maze 1 (left) and Maze 2 (right).

4.2.3 Execution for a Single Goal

After the learning phase, the robot performance is visually analyzed by collecting its
trajectories in the two mazes. Figure 4.6 presents ten runs for each starting position in both
mazes, where each position is represented by different colors. The robot performs all the runs
very robustly in both mazes. Looking at Maze 2, to solve the situation of starting in a position
facing backwards the goal, the robot opts to go to a dead-end and turn back, being this the

54

shortest path it can perform with the abilities and information it has. In the next section,
where a multi-goal implementation is discussed, this situation is resolved as the robot will
always start from another goal, that is, a known position, whereby it can invert its direction,
using the action specified below, and reach directly the goal. For Maze 1, as there are no
dead-ends nearby, the solution found by the robot is to use the middle block as if it were a
roundabout. In this maze, there are other situations where inverting the direction would have
been the best option for the robot (e.g. starting position three) but, as stated before, the
robot starts navigating in the lower-level until reaching a door, from where it will follow the
optimal path to the goal.

Figure 4.6: Superposition of the robot’s trajectories to four different starting positions in Maze
1 (top) and Maze 2 (bottom).

55

In order to solve the situation that happens in starting position four from Figure 4.6b,
an action for inverting the robot direction has been developed and used in Section 4.3. With
this, the robot can rotate by itself a desired amplitude. As the objective here is to invert
its direction, the robot will always rotate 180 degrees. To perform this task there is no
need for training or reward specification as it is only based on mathematical equations. The
final equation shown in Equation 4.4 is used to determine how long the robot must apply
symmetrical speeds to the wheels in order to rotate the desired amplitude. Equation 4.2 and
Equation 4.3 can be related to each other, reaching Equation 4.4, since wheelSpeedRight and
wheelSpeedLeft are symmetric and can be used as 2 ∗ wheelSpeedRight.

Knowing the duration that the robot has to apply the defined speed to the wheels (sym-
metrically to each wheel), it can now perform the rotation of ∆θ at a speed of wheelSpeed.
It should be noted that this is considered an atomic action (is performed from start to finish
without any interruption) and is controlled by the higher-level. This action must only be
performed while the robot is in a corridor and never in a corner or T-junction as it might lead
to errors since both situations are detected while the robot is approaching them and never
when it is already performing them.

w = wheelRadius ∗ wheelSpeedRight− wheelSpeedLeft
axleLength

(4.2)

∆θ

∆t
= w (4.3)

∆θ

∆t
= wheelRadius ∗ wheelSpeedRight− wheelSpeedLeft

axleLength

∆t =
∆θ

wheelRadius ∗ wheelSpeedRight−wheelSpeedLeftaxleLength

∆t =
∆θ ∗ axleLength

wheelRadius ∗ (wheelSpeedRight− wheelSpeedLeft)

∆t =
∆θ ∗ axleLength

wheelRadius ∗ (wheelSpeedRight+ wheelSpeedRight)

∆t =
∆θ ∗ axleLength

wheelRadius ∗ 2 ∗ wheelSpeedRight

(4.4)

4.3 Multi-Goal Navigation

When thinking about a real-world application, the robot’s ability to navigate to a single
goal will not be of much use. Being able to go to a desired position and from there to another
and so on is much more interesting and useful than just being able to go to one position in
an entire maze. One approach to implement multiple goals could be having as many learning
phases as goals and, consequently, one Q-Table per goal which would allow to create one table
with the combination of all the others. Even though this could be achievable in small and
simple environments, it would be impracticable in very large and complex ones with many
goals and states, since with the increment of states both the Q-Table size and the learning
time would exponentially increase. Alongside this, deducing a table from multiple others
might bring some problems as there is no guarantee the optimal policies will be kept for any
situation.

56

With this in mind, Algorithm 6 has been created for the robot to be able to save all the
necessary information, during the learning phase, so that it can travel between multiple goals,
in the same maze, resorting just to one data structure. Here, the robot learns the same way
as explained in Section 4.2, but keeps a sense of the states it went through and, when it finds
a goal that is not the starting one, the robot saves the path created, being able to navigate
between those two goals whenever necessary after the learning is over. As this is all performed
in the learning phase, the robot, in the beginning, has very exploratory actions which can lead
to paths far from the optimal ones for some cases but, as the robot learns, the size of these
paths starts to decrease and get closer to optimal. As the algorithm relies in the exploratory
side of the robot during the learning phase, its starting positions must be carefully assigned
in order for the robot to be able to explore the entire maze while learning how to achieve one
goal. Therefore, if the full exploration of the maze is not guaranteed, the algorithm might
not find the optimal paths between goals or might not find some of the goals at all. After the
learning phase, some paths can be obtained by reverting others, that is, paths going from the
finishGoal to the startGoal can be used to obtain the desired path from the startGoal to the
finishGoal.

Algorithm 6 Multi-Goal algorithm to save information and train high-level to one goal.
1: Define hyperparameters and max episodes (600 was used in this experiment)
2: Define a few starting positions (other goals preferably) as well as the final goal
3: Initialize pathsList, an empty list to save paths between goals
4: Initialize statesList, an empty list to save all states for each path
5: Initialize Q-table with zeros for each state-action
6: while episode count < max episodes do
7: if state = finalGoal then
8: if (startGoal, finishGoal) not in pathsList then
9: pathsList[(startGoal, finishGoal)] = statesList

10: else
11: if len(pathsList[(startGoal, finishGoal)]) > len(statesList) then
12: pathsList[(startGoal, finishGoal)] = statesList
13: Update Q-table in goal position with reward, r
14: Choose starting position for next episode from the ones defined before
15: episode count = episode count + 1
16: Clear statesList
17: else if state = otherGoal then
18: if (startGoal, otherGoal) not in pathsList then
19: pathsList[(startGoal, otherGoal)] = statesPath
20: else
21: if len(pathsList[(startGoal, otherGoal)]) > len(statesList) then
22: pathsList[(startGoal, otherGoal)] = statesList
23: Update Q-table in goal position and all actions with reward, r
24: startGoal = otherGoal
25: Clear statesList
26: else
27: Update Q-table using Q-Learning algorithm
28: Add state-action pair to statesList

57

It should be noted that all the goals are detected the same way doors are, using visual
information (as explained in Section 4.2). However, as each goal is in a corridor and the
robot cannot distinguish between the two orientations, explained in more detail in Subsec-
tion 3.4.1, each goal is represented by two states, one facing each way of the corridor. For this
experiment, four different starting positions that matched four goals were considered: home,
library, college and restaurant, from which the robot learned how to reach the fifth goal in the
environment: gym. These strategic positions allowed the robot to explore the entire maze and
find connections between all the goals.

After ending the learning phase, the performance is evaluated by making the journey from
home to the library, from there to a gym, then to a restaurant and, finally, returning home.
As a pair of goals can have multiple paths between them, only the shorter is considered from
both the reverse paths and the ones in the correct direction, retrieving just the best of all.
When reversing a path, Algorithm 7 is used since the robot detects T-junctions by each door
and so both the state and action must be converted to the corresponding ones. For example:
If the robot reaches Front-Left door in Junction 1 and turns left, the reverse action and state
will be turning right in Left-Right door of that same junction.

Figure 4.7a presents the trajectories between those goals, each represented by the color
of the goal the robot starts from. It is clearly perceptible that the robot does not execute
the best policy in some paths, such as the path between restaurant and home, in blue. This
situation results from the lack of ability for the robot to turn back, that is, rotate 180 degrees
and go in the opposite direction. To solve this, the high-level action for inverting direction is
used, while Algorithm 7 is upgraded to Algorithm 8. The robot is trained one more time and
evaluated in the same conditions as before (see Figure 4.7b).

Figure 4.7: Multi-goal trajectories w/o action to invert direction (top) and with (bottom).

58

Comparing the two figures, without and with the reverse action, it can be perceived that
not only the blue path between the restaurant and home, but also the cyan path between the
library and the gym changed. In short, the robot opted to turn back and followed a shorter
path to the desired goal.

Algorithm 7 Reverse path from finishState to startState.
1: Create newPath, an empty dictionary
2: newPath[finishState] = go forward . finishState is the starting goal
3: newPath[startState] = stop wheels . startState is the final goal
4: for (state, action) in path do
5: if state != startState and state != finishState then
6: newState, newAction = invertedStateAction(state, action) . Invert state and

action as stated in the text above
7: if newState not in newPath then
8: newPath[newState] = newAction

Algorithm 8 Reverse path from finishState to startState, with invert direction action.
1: Create newPath, an empty dictionary
2: newPath[finishState] = go forward . finishState is the starting goal
3: newPath[finishState180] = invert direction . finishState180 is the starting goal in wrong

direction
4: newPath[startState] = stop robot motors . startState is the final goal
5: newPath[startState180] = stop robot motors . startState180 is the final goal as well
6: for (state, action) in path do
7: if state != startState and state != startState180 and state != finishState and state !=

finishState180 then
8: newState, newAction = invertedStateAction(state, action) . Invert state and

action as stated in the text above
9: if newState not in newPath then

10: newPath[newState] = newAction

4.4 Dynamic Behaviour

With the robot capable of completing the objectives and navigate between multiple goals
in the maze, it is important if it can adapt its knowledge about the environment and change
behaviour according to changes in the environment. Considering that the maze is not fully
static and objects can appear and block the optimal path, the robot must adapt and priv-
ilege another path while that one is blocked. In order to do this, the more complex maze
(Figure 4.2b) is considered, as it is simpler to demonstrate this problem since there are more
places where to block the robot.

While going from a goal to another the robot goes through multiple junctions and doors.
The robot will detect if a path has been blocked if it ends up in the same T-junction it lastly
went through. For that, each junction must be labeled in order for the robot to be able to
identify it independently the door it came from. With this in mind, each junction is labeled
with a number and each door from that junction has a label composed by two letters (the

59

first letter of each possible actions that can be chosen in that door) together with the number
associated to the junction. Therefore, if the robot reaches a door in T-junction number four
where it can go (f)orward or (r)ight, then it is in the door with label fr4. This theory is applied
to all T-junctions in the maze, with each door represented by frX, flX and lrX, where X is the
number of the junction. Having these labels, the robot is capable of checking if it went back
to the same T-junction or not by isolating the numbers at the end of each door label. Once
again, the visual system is not implemented whereby these information is kept in a text-file
and accessed the same way as each high-level state. In the real robot, the visual system should
be capable of providing similar information whenever the robot reached a T-junction.

When the robot identifies a blocked path it needs to learn that that path it was following is
blocked and so it should choose any other action available in the state prior to the blocking. To
do this, the previously obtained Q-Table is updated, only in the state that leads to the blocked
path so that the robot prioritizes another action and follows a different path from that state
on. Depending on the discrepancy between the Q-Values of each action, this update could
take more than one episode and, since these type of obstacles are considered dynamic, the
robot does not discard the actions that lead to blocking states entirely, and so, a percentage of
exploration is enabled, for that state only, so that the robot, sometime in the future, explores
the blocked path and verifies if it is still blocked or is available again. For the robot to continue
this exploration in a different execution, the information about the blocked doors is saved in
a file, like a memory of what happened, and so, the robot will always seek for that blocked
path and verify if it eventually becomes available.

Figure 4.8 provides a visual representation of maze 2 (Figure 4.2b) with a wall blocking
the top corner (highlighted with a red rectangle). Figure 4.9a shows the initial trajectories
the robot uses to reach the goal without any blocked paths. In Figure 4.9b it is demonstrated
what happens to the trajectories when the top corner is blocked. As can be seen, the robot
followed the same trajectories and just adapted the actions in the state that led to the blocked
path so that it could reach the goal from another path.

Figure 4.8: Top right corner blocked maze 2.

60

Figure 4.9: Robot normal trajectories (top) and adaptation to blocked path (bottom).

4.5 Final Remarks

The HRL approach discussed in this chapter allowed for a simplification of the whole
problem into a set of smaller problems. This has the advantage of creating a more generalized
approach to the problem to be solved since only the high-level must be trained whenever a
new maze is used, respecting the conditions for good working of the low-level tasks such as
the width of the corridor and having only 90-degree corners and doors.

The dynamic behaviour developed, even though not integrated with the multi-goal, worked
very well (demonstrated in Section 4.4) and acts as a proof of concept whereby the technique
implemented can be used for the robot to adapt to blocked paths in the environment.

The multi-goal implementation can easily be escalated to larger mazes with more goals,
however it must be assured that the robot always visits every goal, when exploring the map,
in order to create paths between all of them. The developed algorithm relies on a graph-like
structure where each pair of goals has a set of decisions on all doors the robot must pass when
going from the starting goal to the finish goal. The implementation of the task for the robot
to be able to do 180-degree rotations gave it the ability to perform much shorter paths in some

61

situations when compared to the performance without this task (demonstrated in Figure 4.7).
Even though no vision system is actually implemented, there are many solutions for this,

such as image recognition or bar-code reading to detect each door and goal. Another approach
could be done using a similar Artificial Neural Network (ANN) to the one from Appendix B.
The work described there was supposed to be implemented into the HRL problem in order
for the robot to create a metric map of the unknown environment resorting just to its sensors
and so be able to know where it was in each moment. However, given some time constraints it
was not possible to accomplish what was previously foreseen. Despite that, a proof of concept
using the Khepera-IV (Subsection 3.1.2) had already been done and so is explained in the
appendix mentioned above (Appendix B).

62

Chapter 5

Conclusions and Future Work

5.1 Final Conclusions

The main focus of this dissertation was the navigation of a small omnidirectional mobile
robot across multiple goals in a maze-like environment resorting to a hierarchical decomposi-
tion of the problem into smaller sub-problems. To solve this problem of navigation, a HRL
framework has been used within a robot simulator that mimics real-world constraints such as
wheel slippery and sensor noise. So that the robot had some self-awareness about its surround-
ing environment, 6 IR-sensors have been used with adequate voltage-to-distance conversion.
Experimental validation within two different mazes was done proving that a hierarchical ap-
proach is very robust for these types of problems.

With this in mind, this dissertation provides the following contributions:

• Elementary functionalities were developed for the robot to be able to explore maze-like
environments composed of 30 cm wide corridors, 90-degree corners and T-junctions.

• An hierarchical approach has been developed to solve the problem of navigation in a
maze-like environment resorting to its topological representation. This approach allowed
for faster learning of the higher-level decisions and to overcome some of the RL weak-
nesses, such as learning inefficiency and data complexity.. The results obtained in the
simulation show that this learning approach for mobile robot navigation in maze-like en-
vironments is very effective and easier to adapt than classic RL as only the higher-level
must be adapted in the new environments.

• The robot can navigate between multiple goals in a maze resorting just to the topolog-
ical representation of the environment alongside the experience memorized during the
learning.

• When navigating a dynamic environment the robot is endowed with the ability to adapt.
If the optimal path gets blocked the robot can adapt its behaviour to choose another
path, with sporadic verifications to the blocked one to check if it is still unavailable.

While developing this dissertation some limitations were encountered:

• Even though the simulator allows the replication of real-world environments, when test-
ing the developed HRL approach in a real mobile robot, first it is necessary to implement
a vision system to detect each door and goal. In simulation this emulated using the global

63

coordinates of the robot together with a text-file with the topological representation of
the environment.

• When training the low-level tasks, mainly the corridor, several hours were needed (200+
hours), whereby, even with an hierarchical approach there is a need for a simulator to
speed up the process and then transfer the learning to the real robot.

• Given the distance measurement constraints from the sensors used, everything is pre-
pared to work with corridors exactly 30 cm wide and 90-degree corners and junctions.
In order to have different sizes, some modifications are mandatory, mainly to the dis-
cretization of the sensors, so that each level has the correct equivalence between a 30 cm
wide corridors and the one created. Even though not tested, after this modification to
the discretization table everything should work the same way, always taking into account
the maximum distance measurement of the sensors (30 cm).

5.2 Future Work

AI is a very large and continuously evolving area whereby there is a lot of work that can
be improved here. Future work related to this dissertation can either be the continuation
of the work already done and its improvement or take an approach into a new direction of
investigation:

• Improvement of the low-level tasks (specially on doors) and respective rewards as well
as implementation of new tasks.

• Implementation of reliable methods to track and detect doors and goals in real environ-
ments.

• Evaluate the R-Learning algorithm performance when compared to others and the im-
pact of the hyperparameters on the learning.

• Evaluate the performance and advantages of the HRL approach when compared to other
approaches.

• Improve the multi-goal algorithm to ensure connections between all goals exist and the
shortest path is chosen.

• Join the dynamic behaviour algorithm with the multi-goal implementation.

• Implement the ANN in order to create a metric map of the environment and self-localize
the robot.

• Evolve the entire work developed in this dissertation to a more abstract level so that the
used algorithms can be applied in more generalized and complex environments as well
as to different robots.

64

References

[1] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 1943.

[2] Allan M Turing. Computer Machinery and Intelligence. Mind, LIX(236), 1950.

[3] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[4] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. IEEE Transac-
tions on Neural Networks, 9(5), 1998.

[5] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning, Second Edition: An
Introduction - Complete Draft. The MIT Press, 2018.

[6] Diogo Vidal e Silva. Mobile robot navigation using reinforcement learning. Technical
report, University of Aveiro, 07 2019.

[7] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King’s College, Oxford,
1989.

[8] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine Learning,
8(3–4):279–292, May 1992.

[9] G. Rummery and Mahesan Niranjan. On-line q-learning using connectionist systems.
Technical Report CUED/F-INFENG/TR 166, 11 1994.

[10] John Bridle. Training stochastic model recognition algorithms as networks can lead
to maximum mutual information estimation of parameters. In D. Touretzky, editor,
Advances in Neural Information Processing Systems, volume 2, pages 211–217. Morgan-
Kaufmann, 1990.

[11] Arryon D. Tijsma, Madalina M. Drugan, and Marco A. Wiering. Comparing exploration
strategies for q-learning in random stochastic mazes. In 2016 IEEE Symposium Series
on Computational Intelligence (SSCI), pages 1–8, 2016.

[12] Arash Khodadadi, Pegah Fakhari, and Jerome Busemeyer. Learning to maximize reward
rate: A model based on semi-markov decision processes. Frontiers in neuroscience, 8:101,
05 2014.

[13] Yannis Flet-Berliac. The promise of hierarchical reinforcement learning. The Gradient,
2019.

65

[14] Laurence A. Baxter and Martin L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Technometrics, 37(3), 1995.

[15] Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. In
Advances in Neural Information Processing Systems, 1998.

[16] Thomas G. Dietterich. An overview of MAXQ hierarchical reinforcement learning. In
Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science),
volume 1864, 2000.

[17] Thomas G. Dietterich. Hierarchical Reinforcement Learning with the MAXQ Value Func-
tion Decomposition. Journal of Artificial Intelligence Research, 13, 2000.

[18] Shantanu Ingle and Madhuri Phute. Tesla Autopilot : Semi Autonomous Driving, an
Uptick for Future Autonomy. International Research Journal of Engineering and Tech-
nology, 3(9), 2016.

[19] John J. Leonard and Hugh F. Durrant-Whyte. Mobile Robot Localization by Tracking
Geometric Beacons. IEEE Transactions on Robotics and Automation, 7(3), 1991.

[20] Spot | Boston Dynamics, 2021.

[21] Wikipedia contributors. Gladiator tactical unmanned ground vehicle — Wikipedia, the
free encyclopedia, 2021. [Online; accessed 21-June-2021].

[22] Wikipedia contributors. General atomics mq-9 reaper —Wikipedia, the free encyclopedia,
2021. [Online; accessed 21-June-2021].

[23] Phantom 4 - DJI, 2021.

[24] Wikipedia contributors. Pluto plus — Wikipedia, the free encyclopedia, 2019. [Online;
accessed 21-June-2021].

[25] FIZZ Marketing & Communicatie". Phantom AUV, 2021.

[26] Bashan Zuo, Jiaxin Chen, Larry Wang, and Ying Wang. A reinforcement learning based
robotic navigation system. In Conference Proceedings - IEEE International Conference
on Systems, Man and Cybernetics, volume 2014-Janua, 2014.

[27] V. Madhu Babu, U. Vamshi Krishna, and S. K. Shahensha. An autonomous path finding
robot using Q-learning. In Proceedings of the 10th International Conference on Intelligent
Systems and Control, ISCO 2016, 2016.

[28] T. Martinez-Marin. On-line optimal motion planning for nonholonomic mobile robots.
In Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006.
ICRA 2006., pages 512–517, 2006.

[29] P. J. Zufiria and R. S. Guttalu. The adjoining cell mapping and its recursive unraveling,
part i: Description of adaptive and recursive algorithms. Nonlinear Dynamics, 4:207–226,
1993.

66

[30] B. Bischoff, D. Nguyen-Tuong, I. H. Lee, F. Streichert, and A. Knoll. Hierarchical rein-
forcement learning for robot navigation. In ESANN 2013 proceedings, 21st European Sym-
posium on Artificial Neural Networks, Computational Intelligence and Machine Learning,
2013.

[31] Mohammad Abdel Kareem Jaradat, Mohammad Al-Rousan, and Lara Quadan. Re-
inforcement based mobile robot navigation in dynamic environment. Robotics and
Computer-Integrated Manufacturing, 27(1), 2011.

[32] Nathan Sprague and Dana Ballard. Multiple-goal reinforcement learning with modular
sarsa(O). In IJCAI International Joint Conference on Artificial Intelligence, 2003.

[33] Amirhossein Shantia, Rik Timmers, Yiebo Chong, Cornel Kuiper, Francesco Bidoia, Lam-
bert Schomaker, and Marco Wiering. Two-stage visual navigation by deep neural networks
and multi-goal reinforcement learning. Robotics and Autonomous Systems, 138:103731,
2021.

[34] Francisco Bonin-Font, Alberto Ortiz, and Gabriel Oliver. Visual navigation for mobile
robots: A survey. Journal of Intelligent and Robotic Systems, 53:263–296, 11 2008.

[35] R. Sim and G. Dudek. Learning generative models of scene features. In Proceedings of the
2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
CVPR 2001, volume 1, pages I–I, 2001.

[36] A. Hilton. Scene modelling from sparse 3d data. Image and Vision Computing,
23(10):900–920, 2005.

[37] N. Winters, J. Gaspar, G. Lacey, and J. Santos-Victor. Omni-directional vision for
robot navigation. In Proceedings IEEE Workshop on Omnidirectional Vision (Cat.
No.PR00704), pages 21–28, 2000.

[38] Martin C. Martin. Evolving visual sonar: Depth from monocular images. Pattern Recog-
nition Letters, 27(11):1174–1180, 2006. Evolutionary Computer Vision and Image Un-
derstanding.

[39] José Santos-Victor and Giulio Sandini. Visual-based obstacle detection a purposive ap-
proach using the normal flow. In INTELLIGENT AUTONOMOUS SYSTEMS. IOS.
Press, 1995.

[40] Hideo Morita, Michael Hild, Jun Miura, and Yoshiaki Shirai. Panoramic view-based
navigation in outdoor environments based on support vector learning. In 2006 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2302–2307, 2006.

[41] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engi-
neering, 9(3):90–95, 2007.

[42] François Chollet et al. Keras. https://keras.io, 2015.

[43] Webots. http://www.cyberbotics.com. Open-source Mobile Robot Simulation Software.

[44] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-
robot simulator. In 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (IEEE Cat. No.04CH37566), volume 3, pages 2149–2154 vol.3, 2004.

67

https://keras.io

[45] Wikipedia contributors. Robotics simulator — Wikipedia, the free encyclopedia, 2021.
[Online; accessed 25-January-2021].

[46] Sharp. Sharp GP2Y0A41SK0F Datasheet, 2011.

[47] S Mahadevan. Average reward reinforcement learning: Foundations, algorithms, and
empirical results. Machine Learning, 22(1-3):159–195, 1996.

[48] Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward trans-
formations: Theory and application to reward shaping. In In Proceedings of the Sixteenth
International Conference on Machine Learning, pages 278–287. Morgan Kaufmann, 1999.

[49] Adam Daniel Laud. Theory and Application of Reward Shaping in Reinforcement Learn-
ing. PhD thesis, University of Illinois, USA, 2004. AAI3130966.

[50] Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller,
Olivier Grisel, Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler,
Robert Layton, Jake VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API
design for machine learning software: experiences from the scikit-learn project. In ECML
PKDD Workshop: Languages for Data Mining and Machine Learning, pages 108–122,
2013.

[51] J. Heaton. Artificial Intelligence for Humans: Deep learning and neural networks. Arti-
ficial Intelligence for Humans. Heaton Research, Incorporated., 2015.

[52] J. Brownlee. Difference Between a Batch and an Epoch in a Neural Network, 10 2019.

[53] D. Gupta. Fundamentals of Deep Learning – Activation Functions and When to Use
Them?, 07 2020.

[54] S. Doshi. Various Optimization Algorithms For Training Neural Network, 08 2020.

[55] J. Brownlee. Understand the Impact of Learning Rate on Neural Network Performance,
09 2020.

[56] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[57] J. Brownlee. How to Avoid Overfitting in Deep Learning Neural Networks, 08 2019.

68

Appendices

69

Appendix A

Sensor Values Conversion to Distances

As said in Subsection 3.1.2 the Sharp sensor model attached to the E-puck is able to
read values between 4 and 30 centimeters, however, these data are given in voltage and have
to be converted. The Webots documentation already has an equation (Equation A.1) that
represents this conversion but it could introduce some errors given the deviations it has, as
can be seen in Figure A.1.

Figure A.1: Webots equations.

In order to compute a better equation, firstly it is necessary to get voltages and the
theoretical distance associated with those. To accomplish this, 26 samples have been captured
(one per centimeter) to generate the equation and 26 more for validation, giving the relation
shown in Figure A.2.

As can be perceived, there is no linear relation between the voltage and the distance and
so, Equation A.2 is used to reverse the theoretical distances in order to make the curve look
more like a straight line. Here multiple values are considered for the k constant and, in the
end, three are used: k = 0.7, k = 1.2 and k = 1.4, resulting in the curves from Figure A.3.

distance =
0.1594 ∗ voltage(−0.8533) − 0.02916

100
(A.1)

1

distance+ k
(A.2)

70

Figure A.2: Raw voltage relation to theoretical distance.

After having a good approximation to a straight line, the least-squares method from poly-
nomial regression is used with each curve and three equations are obtained: Equation A.3 for
k = 0.7, Equation A.4 for k = 1.2 and Equation A.5 for k = 1.4. The three are then validated,
using the validation data which produces the results from Figure A.4. Looking at these equa-
tions, the one in Figure A.4c is the most linear, however, when examined in more carefully,
there are some points where the estimation deviates too much from the real value, points in
which it does not happen in other equations. Therefore, in order to overcome this problem
and minimize the conversion error, the system with three equations from Equation A.6 has
been created with some rounding, considering just the range where each equation produces
the best estimation. In Figure A.5 the final result, obtained with the system of equations, is
compared to the Webots equation, and can be concluded that the system is much less prone
to errors.

distance =
13.045778715415159

voltage− 0.028295530064741125
− 0.7 (A.3)

distance =
14.483674005107527

voltage+ 0.02681880954262667
− 1.2 (A.4)

distance =
15.065187821049603

voltage+ 0.04822905725919005
− 1.4 (A.5)

15.06519

voltage+0.04823 − 1.4, if voltage ≤ 0.48
14.48367

voltage+0.02682 − 1.2, if voltage > 0.48 ∧ voltage ≤ 0.53
13.04578

voltage−0.02830 − 0.7, else
(A.6)

71

(a) k = 0.7. (b) k = 1.2.

(c) k = 1.4.

Figure A.3: Curve linearization.

(a) k = 0.7. (b) k = 1.2.

(c) k = 1.4.

Figure A.4: Equation validation.

72

Figure A.5: System of 3 equations vs Webots equations.

73

Appendix B

Artificial Neural Network for Robot
Localization

ANN, or Neural Network, is the component of AI that is meant to simulate the function
of a human brain. An ANN is a collection of nodes, called artificial neurons, or only neurons,
linked together, where each connection can transmit a signal to other neurons. The one that
receives the signal, processes it and can signal more neurons connected to it. Those connections
between neurons are the edges, and both neurons and edges typically have weights that are
adjusted as the learning proceeds. These weights can increase or decrease the strength of
the signals that are sent. Neurons are, usually, aggregated into layers, and each layer can
perform different transformations to the signals received in the input. A signal travels from
the input layer (first layer) to the output layer (last layer) crossing, sometimes, multiple layers
in-between.

In order to determine the current position and orientation of a robot in an arena using
only the available sensors, an ANN has been developed. The robot used for this problem has
a total of 8 infrared and 5 ultrasonic sensors. Its position and orientation are represented only
in a 2d plan, that is, are represented by two coordinates and an angle.

B.1 Simulation Environment and Data Extraction

In order to train an ANN, it is necessary a huge data set with thousands of data to provide
all the possible situations to the algorithms and have a good result in the end. To collect these
data a simple simulation environment has been developed in the Webots Simulator, being this
a 1-meter wide square arena as can be seen in Figure B.1. The data is collected using the
Khepera-IV robot, seen in Figure 3.1c and with a controller developed in Python language.
This controller makes the robot wander randomly across the entire arena in order to make
the data set as random as possible and, at the same time, collects data from the 8 infrared
sensors and 5 ultrasonic ones and saves it in a file with CSV format. The random wander is
achieved by using the front and side sensors to keep the robot moving in different directions
whenever it is very close to a wall, without ever hitting one.

74

Figure B.1: 1 square meter arena in Webots Simulator where data were collected.

75

B.1.1 Data Pre-processing

To perform the training of this ANN, firstly were collected about 25 thousand rows of data,
but, seeing that it was not enough, more were collected to a total of 59 thousand rows of data.
Since the original resolution of each type of sensor used is different, the data are preprocessed
using the scikit-learn [50] library, transforming all the data to the same resolution, improving
the results in the training and testing.

That same training and testing are done with different subsets of the original data set. To
do this, the data are sliced into 3 subsets, for training, validation and testing, again using the
scikit-learn library. Initially, the original data set is sliced into two, one with 80% of the data
and another one with 20%, being this last one corresponding to the testing data set, with
a total close to 11 thousand rows of data. The remaining 80% is then sliced into two more
subsets with, again, 80% and 20%, giving rise to the training data set, with more than 37
thousand rows, and the validation one, with more than 9 thousand rows, corresponding this
two to 64% and 16% of the original data set, respectively.

B.2 Model

The model for this ANN has been developed using the Keras [42] library. As said before, an
ANN is a collection of nodes organized in layers. The input and output layers size must match
the number of features and the number of results that those features produce, respectively. In
this case, the number of features used changed when constructing the network and so the input
layer has a size of both 10 or 13 nodes, being this equal to the number of sensors in the robot.
When using 10 input nodes, the rear sensors of the robot are discarded, and with 13 all the
sensors, except the ground ones, are taken into account, however, for this particular problem,
this specification does not affect the performance, and using either 10 or 13 sensors produces
good results whereby, all the features are used, being the final input layer constituted by 13
nodes. On the other hand, the output layer has only 3 nodes, being these the position and
orientation of the robot. Since the output layer is not expected to be a classification between
classes, but the values themselves of the robot position and orientation, this ANN is called a
regression neural network.

The real challenge is to determine the number of hidden layers and how many nodes each
one should have, being the hidden layers the ones between the input and output layers. In the
beginning, a small configuration with just one layer and with the number of hidden neurons
equal to 2/3 the size of the input layer, plus the size of the output layer [51] was used. However
when training the results were not satisfactory at all, and so, the number of hidden layers and
nodes has been increased reaching a final model configuration of 8 hidden layers with 250, 220,
200, 180, 160, 140, 120 and 100 nodes, which is a considerable size already and considerably
complex, resulting in more interesting results.

From the beginning of the model creation to the end, the implementation suffered many
changes in the hyperparameters such as the number of epochs and batch_size, as well as the
activation function, optimizer and learning rate. The number of epochs defines the number of
times that the learning algorithm goes through the entire data set, the batch_size defines how
many samples are used before updating the internal parameters, such as the weights, being a
sample equal to one row of data [52]. The activation function is a function that is applied to
the output of a layer that serves as the input of another layer, and provides the non-linearity
that distinguishes an ANN from a simple logistic regression model [53]. The optimizer is the

76

method that ties together the loss function and model parameters and updates the model in
response to the output of that loss function, that is, the optimizer molds the model into its
most accurate possible form [54]. Finally, the learning rate defines how quickly the model
adapts to the problem, but it should noted that, adapting too quickly, that is, having a higher
learning rate, might make the model converge to a suboptimal solution [55].

Initially learning rate was static however, Keras library allows to configure adaptive learn-
ing rates, which are functions that change the learning rate as the model evolves. This way,
the ReduceLROnPlateau function is used, which is a technique to alter this hyperparameter
when the model reaches a plateau, that is, if the model loss does not change in a defined
number of epochs then it means that it reached its best configuration or a plateau [55]. De-
creasing the learning rate, guarantees that the model keeps learning, at a slower pace than
before, and surpasses that plateau. If the loss does not change even though the learning rate
has decreased then it means that the model reached its optimal solution.

As mentioned earlier, the ANN model has been developed using the Keras library, but this
has many different configurations for the hidden layers and respective nodes. In this model,
only Core layers are used, more specifically, Dense layers. Those are fully connected layers,
which means that each node from one layer connects to all the nodes from the next layer. For
the model developed, the kernel_initializer, which is the parameter that defines the initial
weights of each connection between layers, is set to he_uniform, that is, the weights matrix is
initialized with a uniform distribution in-between two limits defined by the number of input
units in the weight tensor. The activation function is defined specifically for each layer, being
the Rectified Linear Unit (ReLU) function the one chosen, as it is the most used in regression
neural networks. After the construction of the network, the optimizer and loss function must
defined in order for the model to be compiled. The chosen optimizer is the Adam optimization,
which is a stochastic gradient descent method that is based on adaptive estimation of first-
order and second-order moments and that realizes the benefits of both Adaptive Gradient
Algorithm (AdaGrad) and Root Mean Square Propagation (RMSProp), being effective and
fast as presented in Figure B.2 [56]. The loss function used in the model is the Mean Squared
Error (MSE), which is a regression metric that computes the average of the squares of the
errors, that is, the average squared difference between the estimated values (the ones predicted
by the ANN) and the actual values (the ones from the data set).

Figure B.2: Neural networks using dropout stochastic regularization.

77

B.3 Results

As said in Section B.2, with the initial network the results were not satisfactory at all
even with a huge number of epochs. In Figure B.3a, it can be seen that, even though training
accuracy and loss were reasonable, the test accuracy and loss were very low and high respec-
tively, which is the opposite of what is intended. This could mean that an overfitting error has
happened, which occurs when the model is too closely fit to a limited set of data. To resolve
this there are many solutions, for example, using fewer features or training more data [57]. In
this case more data were collected ending up with more than double the data than previously.
With this, the model was trained again and the overfitting error has been corrected, achieving
results more interesting, with both training and test accuracy over 80%, as well as, a loss value
close to zero, which can be seen in Figure B.3b. In order to increase the learning performance,
the same data set is tested in the same model but with an adaptive learning rate, allowing it
to adapt if the model reaches a plateau during the training. With this modification there is
an increase in learning performance which makes possible to lower the number of epochs and
still achieve better results, as demonstrated in Figure B.4, where the training is done with
just 1500 epochs, with the same model of the Figure B.3b, but with an adaptive learning rate.
Comparing both figures the model accuracy increased faster with the adaptive learning rate
and achieved higher results than the model with a static learning. This is justified because,
using the static learning rate, the model is learning at a very low rhythm from the beginning
to the end of the training, while with the adaptive one, the learning rate starts higher and
goes down when a plateau is reached, until it hits a minimum value of 0.00001, allowing the
network to learning at a faster pace in the begin and slowly decreasing the pace during the
training originating better results.

(a) Model Accuracy and Loss. Model configuration:
6 hidden layers with 100 nodes each, lr 0.0001.

(b) Model Accuracy and Loss. Model configuration:
8 hidden layers with 250, 220, 200, 180, 160, 140,
120 and 100 nodes, lr 0.001.

Figure B.3: Analysis of two implemented models.

78

Figure B.4: Accuracy and Loss with final model configuration, 1500 epochs and adaptive
learning rate.

79

80

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Objectives
	Document Outline

	Background
	Reinforcement Learning
	Elements of Reinforcement Learning
	Learning Methods
	Q-Learning Application Example - GridWorld

	Hierarchical Reinforcement Learning
	Options
	Hierarchies of Abstract Machines
	MAXQ

	Mobile Robot Navigation
	Mobile Robots
	Reinforcement Learning in Mobile Robotics

	Final Remarks

	Low-Level Exploratory Behaviour
	Programming Environment and Software Tools
	Webots Robot Simulator
	Mobile Robot and Environment

	State-Action Discretization
	R-Learning Algorithm
	Reward Specification
	Corridor
	Corner
	Doors

	Performance Evaluation
	Final Remarks

	Hierarchical Robot Navigation Approach
	Hierarchical Decomposition
	Higher-Level RL Problem
	RL Problem Formulation
	Learning Evaluation
	Execution for a Single Goal

	Multi-Goal Navigation
	Dynamic Behaviour
	Final Remarks

	Conclusions and Future Work
	Final Conclusions
	Future Work

	References
	Appendices
	Sensor Values Conversion to Distances
	Artificial Neural Network for Robot Localization
	Simulation Environment and Data Extraction
	Data Pre-processing

	Model
	Results

