
Universidade de Aveiro
2021

ALEXANDRE
DAVID
BRANDÃO

Front-ends para LiDAR baseados em ADC e TDC

ADC and TDC-based front-ends for LiDAR

“There is always a way if one does not avoid hard work.”

— Demosthenes

Universidade de Aveiro
2021

ALEXANDRE
DAVID
BRANDÃO

Front-ends para LiDAR baseados em ADC e TDC

ADC and TDC-based front-ends for LiDAR

Universidade de Aveiro
Departamento de Eletrónica,
Telecomunicações e Informática

2021

ALEXANDRE
DAVID
BRANDÃO

Front-ends para LiDAR baseados em ADC e TDC

ADC and TDC-based front-ends for LiDAR

Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Mestre em Engenharia Eletrónica e Telecomu-
nicações, realizada sob a orientação científica do Doutor Arnaldo Silva Rodrigues
de Oliveira, Professor Auxiliar do Departamento de Eletrónica, Telecomunicações
e Informática da Universidade de Aveiro, e do Doutor Miguel Vidal Drummond,
Investigador Auxiliar do Instituto de Telecomunicações .

o júri / the jury
presidente / president Prof. Doutor Manuel Alberto Reis de Oliveira Violas

professor Auxiliar do Departamento de Eletrónica, Telecomunicações e Informática da Universi-
dade de Aveiro

vogais / examiners committee Prof. José Carlos dos Santos Alves
professor Associado da Faculdade de Engenharia da Universidade do Porto

Prof. Arnaldo Silva Rodrigues de Oliveira
professor Auxiliar do Departamento de Eletrónica, Telecomunicações e Informática da Univerdade
de Aveiro

agradecimentos /
acknowledgements

Um grande obrigado,
Aos meus pais, por apoiarem-me e sempre ter confiado em mim,
Aos meus avós, por apoiarem-me e sempre ter confiado em mim,
Ao meus irmãos, por serem os meus melhores amigos e um especial agradecimento
ao meu irmão por tudo e principalmente a sua disponibilidade para ajudar,
Ao Reis, Celso, Nuno, Bernardo, Josué, Pedro, Torres, Beatriz, Rios e ao Vala,
por tantos anos de amizade e experiências.

Um especial agradecimento aos meus orientadores Miguel Drummond e Arnaldo
Silva pela confiança, autonomia para explorar o problema, capacidade de motivar
e capacidade de ensinar.

Agradeço ao Daniel Bastos pela paciência e apoio prestado durante todo o
desenvolvimento do projeto.

Agradeço ao Eng.º Pedro Barbosa da Bosch por toda a ajuda prestada, e por ter
gentilmente cedido uma primeira arquitetura de um TDC com base numa TDL
sobre a qual a parte de TDCs desta tese foi elaborada.

Agradeço ao projeto SOFTLI, financiado pela Bosch Car Multi-media no âmbito
do projeto Sensible Car (POCI010247FEDER037902). Este trabalho é financiado
em parte pelo Fundo Europeu de Desenvolvimento Regional (FEDER), através
do Programa Operacional Competitividade e Internacionalização, Programa
Operacional Regional de Lisboa, Programa Operacional Regional do Algarve, na
sua componente FEDER, e pela Fundação para a Ciência e Tecnologia, Projeto
RETIOT, POCI-01-0145-FEDER-016432.

Agradeço ao Instituto de Telecomunicações por ter prestado os seus equipamentos.

Por último, agradeço à Universidade de Aveiro, por me acolher, fazer-me crescer e
ajudar-me ao longos destes árduos 5 anos.

Palavras Chave Conversores tempo para digital, Conversores analógicos para digitais, LiDAR, veícu-
los autônomos

Resumo Os veículos autónomos são uma tecnologia promissora para salvar mais de um
milhão de vidas por ano, colhidas por acidentes rodoviários. Contudo, colocar
veículos autónomos seguros no mercado requer inúmeros desenvolvimentos, a
começar por sensores de visão. O LiDAR é um sensor de visão fundamental para
veículos autónomos, pois permite uma visão 3D de alta resolução. Contudo, o
LiDAR automotivo não é uma tecnologia madura, e portanto requer também
desenvolvimento em vários aspectos.

Esta dissertação visa contribuir para a maturidade do LiDAR, com foco em
arquiteturas de amostragem para front-ends de LiDAR. Foram desenvolvidas duas
arquiteturas. A primeira assenta numa ADC pipelined, por sua vez implementada
numa placa de teste AD-FMCDAQ2-EBZ. A ADC opera em sincronismo com
o pulso emitido, e permite capturar amostras a 1 Gsample/s. A segunda
arquitetura assenta num TDC implementado diretamente numa FPGA. O
TDC baseia-se numa topologia tapped delay line com 45 linhas de atraso, e num
descodificador à base de multiplexers, permitindo uma resolução temporal de 50 ps.

Resultados preliminares mostram que ambas as implementações operam
corretamente, e são adequadas para amostrar pulsos curtos tipicamente associados
a LiDAR. Em termos comparativos, a arquitectura com base numa ADC tem
um consumo de potência considerável e requer uma quantidade significativa
de recursos da FPGA. Contudo, esta permite amostrar a forma de onda de
LiDAR sem nenhuma perda de informação, permitindo assim alcance e precisão
máximos. A arquitectura com base num TDC é exatamente o oposto: tem um
baixo consumo de potência e requer poucos recursos da FPGA. Contudo, permite
capturar apenas uma amostra por pulso.

Keywords Time-to-Digital Converters, Analog-to-Digital Converters, LiDAR, e autonomous
vehicles.

Abstract Autonomous vehicles are a promising technology to save over a million lives each
year that are lost in road accidents. However, bringing safe autonomous vehicles
to market requires massive development, starting with vision sensors. LiDAR is a
fundamental vision sensor for autonomous vehicles, as it enables high resolution
3D vision. However, automotive LiDAR is not yet a mature technology, and, also
requires massive development in many aspects.

This thesis aims to contribute to the maturity of LiDAR, focusing on sam-
pling architectures for LiDAR front-ends. Two architectures were developed.
The first is based on a pipelined ADC, available from an AD-FMCDAQ2-EBZ
board. The ADC is synchronized with the emitted pulse and able to sample
at 1 Gsample/s. The second architecture is based on a TDC that is directly
implemented in an FPGA. It relies on a tapped delay line topology comprising 45
delay elements and on a mux-based decoder, resulting in a resolution of 50 ps.

Preliminary test results show that both implementations operate correctly,
and are both suitable for sampling short pulses typically used by LiDARs. When
comparing both architectures, we conclude that an ADC consumes a significant
amount of power, and uses many FPGA resources. However, it samples the LiDAR
waveform without any loss of information, therefore enabling maximum range and
precision. The TDC is just the opposite: it consumes little power, and uses less
FPGA resources. However, it only captures one sample per pulse.

Contents

Contents i

List of Figures v

List of Tables ix

Glossary xi

1 Introduction 1

1.1 Scope . 2

1.2 Motivation . 4

1.3 Objectives . 5

1.4 Document Stucture . 5

1.5 Contributions . 6

2 Fundamental ADC and TDC concepts 7

2.1 Introduction . 7

2.2 ADC Architectures . 7

2.2.1 SAR . 8

2.2.2 Delta-Sigma A/D . 10

2.2.3 Dual-Slope A/D . 11

2.2.4 Flash A/D . 12

2.2.5 Pipelined A/D . 13

2.2.6 Summary . 14

2.3 TDC Architectures . 15

2.3.1 Time-to-Amplitude Converter (TAC) . 15

2.3.2 Pulse Shrinking . 16

2.3.3 Tapped Delay Line . 17

2.3.4 Vernier Delay Line . 19

2.3.5 Phased Clocks . 20

i

2.3.6 Gated Ring Oscillator . 21

2.3.7 Summary . 22

2.4 Encoding Logic for Thermometer Code . 23

2.4.1 ROM based Thermometer-to-Binary converter 24

2.4.2 Wallace Tree based Thermometer-to-Binary converter 26

2.4.3 Fat-Tree based Thermometer-to-Binary converter 28

2.4.4 Multiplexer Based Thermometer-to-Binary Converter 29

2.4.5 Summary . 32

3 ADC-based front-end 33

3.1 Introduction . 33

3.2 Initial setup . 34

3.3 AD-FMCDAQ2-EBZ Evaluation Board overview . 34

3.3.1 Analog Devices Reference Design overview . 34

3.3.2 AD-FMCDAQ2-EBZ Clocking . 36

3.3.3 Bare Metal AD-FMCDAQ2-EBZ Software . 37

3.4 DAC/ADC Front End implementation . 37

3.4.1 Operating the DAC . 38

3.4.2 Operating the ADC . 42

3.4.3 Python user interface . 46

3.5 Experimental validation . 47

3.5.1 Setup . 47

3.5.2 Results . 47

4 TDC-based front-end 49

4.1 System overview . 49

4.2 Pulse generator . 52

4.3 Tapped delay line . 53

4.3.1 Digital cell . 53

4.3.2 Tapped delay line topology . 54

4.4 Synchronizer . 56

4.5 Re-mapping logic . 58

4.6 Counter . 59

4.7 Counter error . 59

4.8 Thermometer-to-Binary decoder . 61

4.9 Merge . 62

4.10 Summary . 65

5 Implementation of a TDC 67

ii

5.1 Introduction . 67

5.2 Implementation and simulation results . 67

5.2.1 Vivado Design Suite . 67

5.2.2 Module Implementation in VHDL . 68

6 Experimental validation of a TDC 93

6.1 Introduction . 93

6.2 Digital cell delay estimation . 93

6.2.1 Experimental Setup . 93

6.2.2 Results . 94

6.3 Estimation Linearity . 94

6.3.1 Experimental Setup . 94

6.3.2 Results . 97

6.4 Estimation repeatability . 98

6.4.1 Experimental setup . 98

6.4.2 Results . 99

6.5 Resource usage . 99

6.6 Summary . 100

7 Conclusion 101

7.1 Future work . 102

Bibliography 103

Appendix A 109

Appendix B 119

iii

List of Figures

1.1 The 6 levels of a vehicles autonomy ranging from fully manual to the vehicles full autonomy 2

1.2 Some key sensors of an autonomous vehicle . 2

1.4 Illustration of a ToF measuring system. 4

1.5 Left side: ADC-based sampling. Right side: A direct ToF estimation obtained from a TDC. 5

2.1 Conventional ADC architectures comparison. 8

2.2 SAR Block Diagram. 8

2.3 Operation of a 4-bit ADC based on SAR. 9

2.4 Delta-Sigma Block Diagram. 10

2.5 Modulator block diagram from Delta-Sigma architecture seen in the frequency domain . . 10

2.6 Dual-Slope ADC graphical analysis . 11

2.7 Flash ADC Diagram. 12

2.8 Pipelined ADC diagram. 13

2.9 Pipelined ADC operation for a 9-bit ADC. 13

2.10 Single-Slope Analog-To-Time-Interpolation converter. 15

2.11 Single-Slope Analog-To-Time-Interpolation converter graphical illustration. 16

2.12 TDC common architectural block diagram for Pulse Shrinking. 16

2.13 Pulse Shrinking TDC internal architecture. 17

2.14 Tapped Delay Line. 17

2.15 Tapped Delay Line temperature effect of average delay per digital cell. 18

2.16 Coarse counter presence for increasing the dynamic range of the TDL. 18

2.17 Vernier Delay Line concept. 19

2.18 Phased Clocks architecture. 20

2.19 GRO architecture. 21

2.20 Bubble effect. 23

2.21 ROM based encoder circuitry and scheme. 24

2.22 ROM based encoder example. 25

2.23 ROM based encoder example analysis. 25

2.24 Full digital ROM based encoder. 26

v

2.25 3 Bit Wallace Tree Encoder. 27

2.26 4-bit Wallace Tree encoder example. 27

2.27 Fat Tree encoder. 28

2.28 Fat Tree logic analysis. 28

2.29 Standard mux based encoder. 29

2.30 Mux based encoder algorithm. 30

2.31 Mux Based encoder example. 31

3.2 Analog Devices setup for a Xilinx block diagram for the ZC706 35

3.3 AD-FMCDAQ2-EBZ Block Diagram . 36

3.4 Closed loop AD-FMCDAQ2-EBZ. 37

3.5 Sine wave being repeatedly outputted cyclically by the DAC. 37

3.7 From waveform generation to RTL memory block. 39

3.8 First Version of the Memory Buffer operating in cyclic mode. 39

3.9 Short pulses produced by the DAC. The bottom plot is the noise of the effect of disconnecting

the channel 2. 39

3.10 Simplified diagram of the DAC upack block substitution for the new RTL mem_buffer block. 40

3.11 Adding the new updated Register-Transfer Level (RTL) block to the Vivado Reference

Design operating in single-shot. 40

3.12 Block diagram of the insertion of single-shot axi block. 41

3.13 Connecting the new RTL block with the single shot RTL block. 41

3.14 Identified the block involved with the ADC for capturing and storing. 42

3.15 Simplified block diagram of the block design for capturing and storing data. 42

3.16 Sample distribution. 42

3.17 Finite state machine diagram for the ADC. 43

3.18 Memory controller . 44

3.19 Testbench - memory controller in a simulated environment. 45

3.20 Memory controller connected to the BRAM. 46

4.1 System architecture overview. 49

4.2 Simplified RTL block diagram of the system architecture. 51

4.3 Pulse Generator block. 52

4.4 Pulse Generator timing diagram . 52

4.5 TDL block. 53

4.6 Timing resolution expansion. 53

4.7 Digital cell. 54

4.8 Ideal representation of the system sampling the hit signal through the delay line. 55

4.9 Synchronizer block. 56

vi

4.10 Synchronizer datapath. 56

4.11 Tapped delay line states. 57

4.12 Synchronizer timing diagram. 57

4.13 Remapping Logic block. 58

4.14 First and last sampling stages of the hit signal. 58

4.15 Counter block. 59

4.17 Thermometer to Binary Decoder block. 61

4.18 14-bit pipelined mux based encoder with a counter in the final stages. 61

4.19 Merge block. 62

4.20 Observation of System States . 63

4.21 Possible Case Scenarios of the First and Last Piece of the TDL 63

4.22 Fine Measurement Analysis . 64

4.23 System architecture timing diagram. 65

5.2 Vivado 2018.3 Interface with focus on “Flow Navigator”. 68

5.3 System implementation overview. 69

5.4 TDL instantiation module. 70

5.5 CARRY4 Primitive from Zynq 7000 libraries. 71

5.7 TDL and Re-mapping Logic combined. 74

5.8 Re-mapping Logic register datapath structure. 75

5.9 TDL instantiation simulation results. 77

5.10 Counter module. 78

5.11 Counter simulation results. 79

5.12 Counter error module. 80

5.13 Synchronizer module. 81

5.14 Synchronizer - Finite state machine. 81

5.15 Delay line temporal analysis of anomaly detected. 82

5.16 Synchronizer simulations and FSM behavior. 83

5.17 System limitation representing case scenarios where the system may fail to detect. 84

5.18 Thermometer to Binary module. 84

5.19 Pipelined Thermometer to Bin encoder blackbox. 85

5.20 T2B block diagram. 85

5.21 T2B simulation results. 87

5.22 Merge module. 88

5.23 Included counter for timing correction. 88

5.24 TDC simplified RTL view and interface. 89

5.25 Hit signal illustration. 89

5.26 TDC simulation results. 90

vii

5.27 Closing the ZC706 FMC LPC JTAG Chain. 91

6.1 Setup for the number of digital cells estimation necessary to fit one clock cycle. 93

6.2 Visual results of the thermometer code sampled twice. 94

6.4 Vivado - TDC Testing block diagram setup. 96

6.5 Estimated delay as a function of the programmed delay. 97

6.7 Vivado design setup for variance test. 98

1 Vivado DAQ2 reference design. 120

viii

List of Tables

2.1 ADC state of the art architectures performance comparison. 14

2.2 TDC state of the art architectures summary. 22

2.3 Thermometer encoding. 23

3.1 Memory controller actions. 44

3.2 User interface operations. 46

3.3 ADC - FPGA resource usage on the ZC706. 48

4.1 Carry Lookahead Adder truth table. 54

6.1 Base TDC FPGA resource usage on the ZC706. 99

ix

Glossary

AAF Anti-Aliasing Filtering
ADC Analog-to-Digital Converter
AXI Advanced eXtensible Interface
ARM Advanced RISC Machine
AWG Arbitrary Waveform Generator
AV Autonomous Vehicle
BRAM Block Random Access Memory
RCA Ripple Carry Adder
CLB Configurable Logic Block
CSV Comma Separated Value
DAC Digital-to-Analog Converter
DAQ Data Acquisition (System)
DDR Double Data Rate
DLL Delay Locked Loop
DMA Direct Memory Access
DOT Department of Transportation
DDS Direct Digital Synthesis
ENOB Effective Number of Bits
ETH Ethernet
FSM Finite State Machine
FPGA Field Programmable Gate Array
FIFO First In First Out
FMC FPGA Mezzanine Card
GRO Gated Ring Oscillator
HDL Hardware Descriptive Language
HPC High Pin Count
ILA Integrated Logic Analyzer
IP Intellectual Property
I2C Inter-Integrated Circuit
JTAG Joint Test Action Group
LPC Low Pin Count
LiDAR Light Detection And Ranging

LSB Least Significant Bit
LUT Look-Up Table
MCMM Mixed Mode Clock Manager
MSB Most Significant Bit
OS Operating System
PLL Phase Locked Loop
PL Programmable Logic
PRBS Pseudorandom Binary Sequence
PVT Process-Voltage-Temperature
RF Radio Frequency
ROM Read Only Memory
RTL Register-Transfer Level
SAR Successive-Approximation-Register
SONAR Sound Navigation and Ranging
SDK Software Development Kit
SPI Serial Peripheral Interface
SoC System on Chip
SPST Single Pole Single Throw
TDI Test Data in
TDO Test Data out
TDL Tapped Delay Line
TDC Time-to-Digital Converter
ToF Time of Flight
TCL Tool Command Language
UART Universal Asynchronous Receiver

Transmitter
VLSI Very Large-Scale Integration
VDL Vernier Delay Line
VCO Voltage Controlled Oscillator
VHDL Very High Speed Hardware Description

Language

xi

CHAPTER 1
Introduction

Each year approximately 1.35 million people die as a result of traffic accidents. According
to the US Department of Transportation’s National Highway Traffic Safety Administration,
94% of the severe traffic accidents happen because of human errors [1]. The Department of
Transportation (DOT) believes that fully Autonomous Vehicles (AVs) have the potential to
significantly reduce traffic fatalities by up to 90 percent, as it removes human error [2]. This
means that a AVs may be able to save more than 1 million lives every year.

Although, the prospect of fully AV seems very near, it still seems paradoxically impossibly
futuristic as safe AVs are extremely complex to implement. This can be easily observed by
looking to the roadmap towards complete autonomy, shown in figure 1.1.

1

Figure 1.1: The 6 levels of a vehicles autonomy ranging from fully manual to the vehicles full
autonomy reproduced from [3], [4].

1.1 Scope

Levelling up the autonomy of a vehicle requires safe decision-making algorithms, which in turn
require detailed information about the vehicle surroundings. This is why vision sensors are a
fundamental part of an AV. Some key vision sensors are observed in figure 1.2.

Figure 1.2: Some key sensors of an autonomous vehicle reproduced from [4].

2

Just like human senses, sensors must be strategically positioned in an AV to continuously
feed information on the car’s surroundings [5]. However, there is a limit to where sensors can
be placed and there is no sensor that can fit all the requirements. Consequently, multiple
sensors are required to complement each-other and whose combination is highly effective in
creating a safe and automated driving experience.

Figure 1.3 presents an overview of the various and most common sensors required for au-
tonomous driving such as cameras, Sound Navigation and Ranging (SONAR), Light Detection
And Ranging (LiDAR) and RADAR.

(a) Camera chart. (b) LiDAR chart.

(c) RADAR chart. (d) Ultrasonic chart.

Figure 1.3: Key sensors radar charts adapted from [6].

Cameras are the main sensor for 2D vision. However, cameras lack precision in providing
3D vision, a vital feature for safe driving. LiDAR has the unique capability of providing a
detailed and accurate point cloud of the surroundings of the vehicle. The LiDAR sensors are
now implemented in autonomous vehicles to be the eyes of the car, providing them 360 degrees
view helping them change lanes, keeping a safe distance from other vehicles and pedestrian
and spotting roadblocks and other obstructions [7]. However, contrary to all the others sensors,
LiDAR still has a long way to go as the technology is still improving and has not yet matured.
LiDAR is also far away from meeting the reasonable costs [8].

3

Figure 1.4: Illustration of a ToF measuring system adapted from [9].

The basic operation principe of a LiDAR, which is estimating the Time of Flight (ToF), is
depicted in figure 1.4. The distance is given by (1.1).

d =
ToF

2c
=
Stop− Start

2c
, (1.1)

where, d is the distance between the LiDAR and the object, c is the speed of light, Start is the
time at which the LiDAR emits the pulse and Stop is the time at which the LiDAR receives
the pulse.

According to (1.1), it is very important that the LiDAR is temporally precise as 1 cm takes
only about 50 ps. As such, it is fundamental that the received signal is adequately sampled
and digitally processed.

1.2 Motivation

The main motivation of this work is to devise suitable sampling architectures for LiDAR. Two
architectures are studied, one based on an Analog-to-Digital Converter (ADC), and another
based on a Time-to-Digital Converter (TDC).

On each side of the figure 1.5 is an example of an ADC and TDC based sampling methods.
An ADC-based architecture is useful for a full-waveform LiDAR [10], and thus for achieving
best possible range and precision. In contrast, a TDC-based architecture is not suitable for
full-waveform nor optimal performance; however, it can be directly implemented in an Field
Programmable Gate Array (FPGA) as an all-digital design.

4

Figure 1.5: Left side: ADC-based sampling. Right side: A direct ToF estimation obtained from a
TDC.

1.3 Objectives

The main objective of this dissertation is to study, implement and compare two different
sampling methods suitable for LiDAR. This results in the following objetives.

1. Find out which types of ADCs are appropriate for a LiDAR.
2. Configure an ADC with a suitable architecture for operating according to the needs of a

LiDAR.
3. Investigate whether a TDC can be implemented directly in an FPGA.
4. If point 3. is observed to be true, implement a TDC directly in an FPGA.
5. Compare both implementations (ADC vs. TDC) based on the obtained results.

1.4 Document Stucture

This document is divided in 7 chapters, including this introductory chapter:
Chapter 1 - Introduction: contextualization of the topic and scope of this document,

the motivation for this research and what it attempts to clarify. Briefly describes how the
document is organized and the contributions associated with this research.

Chapter 2 - Fundamental ADC and TDC concepts : Study and research on various state
of the art implementations for ADC and TDC with the purpose of identifying the sampling
architectures that best suit the application at hand.

Chapter 3 - ADC - based front-end : This chapter explains the steps taken to implement
a sampling method based on ADC suitable for LiDAR in a workflow manner. It presents the
experimental results from the work developed.

Chapter 4 - TDC - based front-end : This chapters describes at a conceptual level the
design of the TDC architecture to implement a suitable sampling method for LiDAR.

Chapter 5 - Implementation of a TDC : This chapters describes the implementation
design of the TDC architecture, and presents corresponding simulation.

Chapter 6 - Experimental validation of a TDC : This chapters presents corresponding
experimental results of the implementation design of the TDC architecture.

Chapter 7 - Conclusion: a summary of the results and outcomes presented and discussed
across the document, along with some topics for future work.

5

1.5 Contributions

The software and hardware developed for this dissertation can be accessed on the author’s
personal GitHub page, on https://github.com/alexandre-brandao/SOFTLI. Several Very
High Speed Hardware Description Language (VHDL) modules were developed to meet the
requirements of the dissertation, namely, ADC and TDC implementation in a LiDAR context.

• Set the ADC/DAC as fully synchronous and operating as single-shot.
• Added a python interface to operate the ADC/DAC for ADC implementation in a

LiDAR context.
• Implementation and development of an all-digital TDC based on a tapped delay line

and a mux-based encoder.
• Development of an all-digital TDC with features that, to the best of the author’s

knowledge, have not been found in the literature.1

• Co-author of an invention report within the scope of project SOFTLI, titled “Interference-
resilient LiDAR waveform and estimation method thereof”. Such an invention relies on
TDCs.

1Please refer to section 4.10 for more detail.

6

CHAPTER 2
Fundamental ADC and TDC concepts

2.1 Introduction

In this chapter, ADC and TDC architectures suitable for ToF measurement are examined and
discussed. The chapter starts with the study of various conventional ADC architectures to find
the best architecture that suits this dissertations needs based on power, speed and accuracy.
Next is a study of the various TDCs architectures to investigate the possible implementation
of a TDC in an FPGA. As a last study, search for a suitable thermometer encoder which is
typically coupled with a TDC.

2.2 ADC Architectures

When looking for an ADC, there are three important features that should be considered:
1. Sampling rate.
2. Power consumption.
3. Resolution (Effective Number of Bits (ENOB)).
Defining such features is important as it rules out some ADC architectures, leaving others

to be chosen. The reason for such a rationale is that, unfortunately, there is no “one size fits
all” architecture. Figure 2.1 illustrates the tradeoffs of the conventional architectures.

7

(a) Conventional ADC architectures comparison diagram in
terms of resolution vs speed.

(b) Some of the conventional ADC architectures
trade-offs on a radar chart.

Figure 2.1: Conventional ADC architectures comparison adapted and reproduced from [11], [12].

The following subsections discuss different ADC architectures with its respective pros and
cons, namely:

1. SAR.
2. Delta-Sigma A/D.
3. Dual-Slope A/D.
4. Flash A/D.
5. Pipelined A/D.

2.2.1 SAR

Successive-Approximation-Register (SAR) architecture has been used for decades. SAR ADCs
are very common, stable and reliable and are also known as the “Bread and Butter” of the the
Data Acquisition (System) (DAQ) world.

Figure 2.2: SAR Block Diagram reproduced from [13].

8

The Input signal is initially held on the sample-and-hold circuit that outputs a signal
that will remain constant at the input V − of the comparator until the circuit decides if it
has successfully created a word. The output of the Digital-to-Analog Converter (DAC) is
connected at the input V + of the comparator which creates an analog reference voltage based
on the N bit digital word generated from the control logic. The N bit digital word is based on a
binary search algorithm which tries to successfully divide the reference voltage until the output
of the DAC matches the sampled input voltage which is being held by the sample-and-hold
circuit.

The algorithm works by starting with the N-bit register, the digitalized output. This
output is first set the Most Significant Bit (MSB) to 1 and the remaining bits to 0, that
is, 100....00. This forces the DAC output half of the reference voltage, where the DAC
output voltage is provided to the comparator, where it will output a high or low signal and
consequently be evaluated by the control logic. At this point the MSB of the digitalized
remains with the logic attribute assigned by the comparator. The SAR control logic then
moves to the next bit down, forces that bit high, and does another comparison. This process
continues for n successive times, with n being the bit resolution of the ADC itself, until the
closest value to the actual signal is found [13], [14] as shown in the figure. 2.3.

Figure 2.3: Operation of a 4-bit ADC based on SAR.

Pros and cons. This architecture is capable of handling a wide variety of signals with excellent
fidelity whilst offering a good balance between speed and resolution [13] and can possess high
sampling rate. The disadvantage of this architecture is that these ADCs do not possess any
inherent Anti-Aliasing Filtering (AAF) to get rid of higher-frequency noise and signals, unless
it is manually added.

Applications. Applications for SAR ADCs include DAQ systems, from low-end multiplexed
ADC systems to higher speed ADC systems, industrial control and measurement and CMOS
imaging [13].

9

2.2.2 Delta-Sigma A/D

Delta-Sigma architectures are known for their high bit resolution systems as they are able to
strongly reduce quantization error.

Figure 2.4: Delta-Sigma Block Diagram adapted from [13].

This architecture uses oversampling to sample far higher than the base sample rate. The
Delta-Sigma ADC consists of a modulator, a filter, and a decimator described next, these
ADCs are mostly digital.

∆− Σ modulator. This module is used for noise shaping of the oversampled input signal
consisting of a difference amplifier, an integrator, a comparator and a 1 bit DAC, which
essentially also acts as a comparator. In the figure 2.5 is the another form the modulator
representation.

Figure 2.5: Modulator block diagram from Delta-Sigma architecture seen in the frequency domain
reproduced from [15].

The integrator in this architecture acts as a low-pass filter to the input signal. Quantization
noise is added to the signal output of this filter due to the 1-bit conversion process. The output

10

of the modulator can be represented using (2.1) [15].

So(f) =
Si(f) + qf

f + 1
=
Si(f)

f + 1
+

qf

f + 1
, (2.1)

where q is the quantization noise.
The first term of the equation (2.1) is considered the signal term and the second term

can be considered the noise term. As the frequency approaches zero, it can be seen that the
noise term approaches zero and the output of modulator approaches Si. As the frequency
is increased, the noise term approaches q and the signal term approaches zero. Thus, the
integrator acts as a high-pass filter for the quantization noise [15].

DSP Low-pass filter. The effect of the low pass filter eliminates the second term of the eq. 2.1.
Resulting in a clean output signal given by (2.2).

So(f) =
Si(f)

f + 1
. (2.2)

Decimator. Decimation is the process of discarding the unnecessary samples and is used as a
mechanism to reduce the data rate to a usable value whilst maintaining the information.

Pros and Cons. This approach creates a very high-resolution data stream and has the
advantage of allowing multistage AAF, making it virtually impossible to digitize false signals
[13]. However, this architecture pays in speed.

Applications. Data acquisition, especially noise and vibration, industrial balancing, torsional
and rotational vibration, power quality monitoring, precision industrial measurements, audio
and voiceband, communications [13].

2.2.3 Dual-Slope A/D

Dual Slope ADC are accurate and possess medium to high speed in relation to other architec-
tures.

Figure 2.6: Dual-Slope ADC graphical analysis reproduced from [13].

11

This principle is simple, the input voltage is allowed to “run up” for a controlled period of
time [13]. Once the signal has been set up for a set duration, a known voltage starts running
down at a fixed speed when the polarity is changed. When the known voltage hits the value
0, the systems compares the time stamps and calculates the input voltage based on the time
stamps relation.

Pros and Cons. This architecture is simple, very precise and accurate, but as the graph
indirectly shows, the setup lacks the speed.

Applications. Handheld and benchtop multimeters[13].

2.2.4 Flash A/D

Flash ADCs are very well known ADCs. This is due to to their conversion speed and is also
very simple to understand. Their conversion speed is the fastest out of the architectures and
operate with negligible latency.

Figure 2.7: Flash ADC diagram reproduced from [16].

The flash ADC resolution is limited by the number of resistors, this means that if we want
an N bit flash ADC, there is a need for 2N resistors and 2N − 1 comparators.

Pros and Cons. This circuit is ideal for the need of high sampling rates, however there’s a
big price to pay with power vs resolution.

Applications. Fastest digital oscilloscopes, microwave measurements, fiber optics, RADAR
detection, and wideband radio [13].

12

2.2.5 Pipelined A/D

The Pipelined ADC stands on the middle ground in terms of speed. It is faster than the SAR
and delta-sigma architectures but slower than flash ADC.

Figure 2.8: Pipelined ADC diagram reproduced from [17].

This architecture cascades low resolution stages to obtain high overall resolution, can also
be seen as the pipelined version of the flash ADC. The flash ADC latches all of its comparators
to one reference voltage, however, in a pipelined ADC, the analog signal is not latched by all
comparators at the same time, thus spreading out the energy required to convert the analog
to a digital value as seen in the figure 2.8. Each stage performs coarse A/D conversion and
computes its quantization error. In this type of ADC, the conversion takes two steps. During
the first step, the most significant bits of the digital output are determined by the first stage
flash ADC. Then a DAC converts this digital result back to an analog signal to be subtracted
from the input signal. This residue is amplified by the inter-stage gain amplifier and then sent
to the second stage flash ADC. The second stage flash determines the least significant bits of
the digital output, as shown in the figure 2.9.

Figure 2.9: Pipelined operation for a 9 bit ADC [18].

13

Pros and Cons. This architecture allows high resolution without using huge amounts of
energy. On the other hand, this architecture is slower than the Flash ADC.

Applications. Digital oscilloscopes, RADAR, software radios, spectrum analyzers, HD video,
ultrasonic imaging, digital receivers, cable modems, and Ethernet [13].

2.2.6 Summary

The table 2.1 summarizes the features of the presented architectures.

ADC Type Slope Sigma-Delta SAR Pipelined Flash

Accuracy 6-20 bits 16-32 bits 6-16 bits 8-16 bits <12 bits
Speed Slowest Slow Moderate High Highest
Bandwidth Slowest Slow Moderate High Highest
Latency Moderate Highest Low High Lowest
Power Low Moderate Low Low High
Area Small Small Small Small High
Pros Accurate,

inexpen-
sive

High stability and
dynamic perfor-
mance, inherent
anti-aliasing
protection

Good
speed/resolution
ratio

Very fast Fastest

Cons Low speed Hysteresis on un-
natural signals

No inherent
anti-aliasing
protection

Limited
resolution

Low bit
resolution

Table 2.1: ADC state of the art architectures performance comparison [13], [19]–[21].

Having analyzed the different ADC architectures, it is now time to choose a suitable
architecture for a LiDAR receiver. The waveform to be sampled is a short pulse with a pulse
width between 10 ns and 100 ns, with a repetition rate lower than 10 kHz. A suitable ADC for
sampling such a pulse with high fidelity should have:

1. A high sampling frequency between 200 Msamples/s to 1 Gsample/s.
2. Power consumption lower than 1 W.
3. An ENOB of at least 8.

Table 2.1, aids in choosing the ADC based on the features above. Such a high sampling
frequency, excludes Slope, Sigma-Delta and SAR architectures. Out of the two fastest archi-
tectures, there is a need for low power consumption. As such, the chosen architecture is the
pipelined architecture which has the best match in terms of the accuracy, power and speed.

Based on the chosen architecture, we chose to purchase an ADC based on pipelined
architecture of the AD9680 ADC, which in turn was found integrated in the AD-FMCDAQ2-
EBZ kit. The AD-FMCDAQ2-EBZ Board from Analog Devices provides an ADC that has
an on-chip buffer and sample-and-hold circuit designed for low power, small size, and ease
of use, which is very practical. The ADC also has an ENOB of 10.4bits when operating at
10 MHz which is greater than the required 8 bits and is able to sample wide bandwidth analog

14

signals of up to 2 Gsamples/s which the required was a maximum of 1 GHz. To add to that it
uses a low jitter clock generator which can run up to 3 Gsamples/s and a reference design
compatible with our FPGA, a ZC706 evaluation board.

2.3 TDC Architectures

TDCs precisely measure the time intervals between two events, popularly known as start and
stop, and have applications in a large number of time measurement systems and subsequently
have a variety of industrial and research applications. They are widely used in digital storage
oscilloscopes, logic analyzers and high-energy particle physics experiments [22]. The simplest
form of a TDC is a digital counter. However, to achieve a high resolution TDC, one needs to
use a very high frequency counter and this is not energy efficient. The resolution of counter-
based TDCs can be improved significantly by resolving the counter residual error with a high
resolution fine TDC based on gate delay [23].

This section provides an overview of some important existing architectures of TDCs,
focusing on its principle of operation and emphasizing suitability for FPGA implementation.
The following architectures with its respective pros and cons are discussed:

1. Time-to-Amplitude Converter.
2. Pulse Shrinking.
3. Tapped Delay Line.
4. Vernier Delay Line.
5. Phased Clocks.
6. Gated Ring Oscillator.

2.3.1 Time-to-Amplitude Converter (TAC)

The first approach at measuring ToF was quantizing a signal into a digital word. This can be
seen in the figure 2.10.

Figure 2.10: Single-Slope Analog-To-Time-Interpolation converter reproduced from [24].

As with many TDCs, it has a start and stop command, in this case, triggering the
commands, start and stop, respectively, define the width of the pulse of the Pulse Generator,
in this architecture the start command triggers a pulse to stay at a logical 1, or a constant
and positive voltage that is then introduced into a integrator.

15

Figure 2.11: Single-Slope Analog-To-Time-Interpolation converter graphical illustration.

The integrator behaviour can be seen in the figure 2.11. Once the stop signal is triggered,
the value at the output of the integrator, is an analog signal, which is introduced into an
ADC and is then converted into a word which can be mapped into a value in time[24]. The
number of bits at the output of the ADC will dictate the maximum value of time that can be
measured.

DR = 2N · TLSB (2.3)

Where DR is the Dynamic Range of the ADC converter and TLSB is the time it takes the
Least-Significant-Bit to transition from a logical 0 to 1.

2.3.1.1 Pros and Cons

This architecture is easy to understand and very intuitive, however, the reason why it is so
rarely used nowadays is because the final system resolution is defined by the ADC resolution
and the conventional usage of the ADC. All blocks should have a linear response and the
integrator itself is very dependent on its implementation. Finally, the presence of the ADC
makes this architecture unsuitable for the FPGA implementation.

2.3.2 Pulse Shrinking

Figure 2.12: TDC common architectural block diagram for Pulse Shrinking adapted from [25].

16

Figure 2.13: Pulse Shrinking TDC reference architecture adapted from [25].

Pulse shrinking architectures are very straightforward, as the name implies, it consist in,
given an input signal, repeatedly shrink the input pulse until it ceases to exist.

To shrink the pulse, the input signal must propagate through a delay line which is set by a
consecutive number of inverters, ideally with the same width and an even number of NOT
gates as seen in figure 2.13. If all inverters maintain the same size, the pulse would maintain its
duration and because it has a closed loop, these architectures exhibit a ring oscillator behavior
where the number of NOT gates determine the oscillation frequency. For this circular behavior,
the signal is fed back into a NOR Gate as seen in figure 2.13. Knowing that for each loop that
occurs, the pulse is shrunk by a set amount and that the counter is incremented in each loop,
set by OUTPUT signal, figure 2.13, to the counter block [25]. The relation between the value of
the counter, in other words, the number of loops that occur times the shrinking factor tell us
the length of the input pulse.

2.3.2.1 Pros and Cons

This architecture offers great resolutions and low power consumption. The disadvantage of this
architecture is that as it is not possible to create custom cells and hard control the shrinking
time in an FPGA. Nevertheless, the pulse shrinking delay line can be implemented in FPGA
subjected to limitations [25], [26].

2.3.3 Tapped Delay Line

Figure 2.14: Tapped Delay Line.

Tapped Delay Line (TDL) architectures are very popular due to their simplicity in im-
plementation, the idea behind the TDLs is to use the intrinsic propagation delay of a basic
element, also known as a digital cell to be able to make fine measurements [27], [28]. As shown
in figure 2.14, we can see that when a start signal is set, it starts to propagate through the
delay line, the idea is to delay the signal through these taps. In which each tap delays a signal
by the delay introduced from its implementation. The stop or the clock signal is set so that
at each rising edge of the clock or when the stop signal is triggered to store a “photo” of the
state of the delay line, making it possible to infer at which position the signal stopped.

17

It is important to known that this architecture is easily affected by Process-Voltage-
Temperature (PVT) conditions, this means that the bigger the delay line, the less linear it is.
This can be seen in the figure 2.15.

Figure 2.15: Tapped Delay Line temperature effect of average delay per digital cell.

The idea behind figure 2.15 is that if every delay cell suffered the same variation, that
would mean that the average delay cell would increase or decrease linearly, however, because
temperature in many cases does not affect the delay line in a uniform manner, the TDL tends
to deteriorate in linearity, thus leading to a transfer curve that differs from the desired linear
behaviour. To minimize effects which are propagated through the delay chain, it is desirable
to have a delay chain as short as possible.

Like the other mentioned architectures, all of them have a problem with dynamic range
and in this particular case, there is a limit to how many digital cells can be present in a limited
area, and second, due to PVT conditions, it is not recommend to have a large number of
digital cells. The TDL is typically seen coupled with a counter, known as a coarse counter
which deals with big jumps in time and the TDL deals with the fine measurements. This type
of schemes can be seen in the figure 2.16.

Figure 2.16: Coarse counter presence for increasing the dynamic range of the TDL.

2.3.3.1 Pros and Cons

The advantage of this architecture is that it is possible to develop a fully digital TDC at
the cost of the FPGA resources in which digital cell chains are always accompanied by their
following register chains in a modern FPGA fabric, which is convenient for the software
compiler to automatically generate the TDL. The algorithm is relatively simple and it has low

18

power consumption [29]. However, it is prone to glitches, easily affected by bubbles1 and has
metastability problems as the latching input might transition exactly when being captured,
violating setup/hold constraints [30]. Another disadvantage of this architecture is the fact that
it is limited by the technology itself and the most significant limitation of these architectures is
the difficulty to predict the placement and routing delays as well as the time delay of the logic
gates itself. The consequence of this inevitable hardware restriction is a non-stable resolution
of the designed TDC [31].

2.3.4 Vernier Delay Line

This architecture was proposed to remove the limitation of the cell delay being limited by
technology in the TDL.

Figure 2.17: Vernier Delay Line concept reproduced from [24].

It’s basic setup and principle of operation can be seen in the figure 2.17. The proposed
architecture consist of 2 parallel delay lines, in which each delay element that belongs to the
start line must be close to and higher than the delay of the elements of the stop line. This
means that when the start sets off and starts propagating through its delay line and after
some time, the stop signal is triggered. When the stop signal is triggered, it must be able
to catch up to start signal, in other words, the stop signal must propagate faster than the
start signal.

1For more information about bubbles, please see section 2.3.

19

The measurement is done based of the difference between the start and stop signal, this
means that there is direct relationship between how far into the delay line it took the stop
signal to catch up to the start signal.

2.3.4.1 Pros and Cons

High resolution can be achieved and the delay mismatch is low due to same delay elements used
as delay cells. Regarding FPGA implementations, the Vernier Delay Line (VDL) architecture
is usually implemented using a dual ring oscillator schemes, paired with a phased detector
[32]. However, implementation on FPGAs is complex due to creating the delay elements in an
FPGA making it much more complex than the TDL.

2.3.5 Phased Clocks

If the resolution demands are not very high, then the phased clocked architecture is typically
used to reduce resource usage. The architecture can be seen in the figure 2.18.

Figure 2.18: Phased Clocks architecture reproduced from [33].

The basic structure of a phased clock architecture is that uses multiple phases as bins
to sample the hit signal which can be generated via pulse generator as shown in figure 2.10
with a start and stop command. The input signal is divided in four parts and detected by the
D-type flip-flops based on four different clock phases. The locations of the four D-type flip-flops
are constrained to control the difference between the divided signal paths. The vertical double
lines, thick lines, double dashed lines, and dashed thick line correspond to the clock phases 0,
90, 180, and 270, respectively. The outputs from the four D-type flip-flops are aligned step
by step by the chains of additional D-type flip-flops [34]. The fine time counter extracts a
three-bit time count from the pattern of the outputs from the chains. The fine time count

20

is combined with the data from a coarse time counter to output a reasonable measurement.
Unlike the TDL, the delay is not generated by the intrinsic cell propagation time but instead
is given by the phase difference between the clocks used. The higher the number of clock
phases, the higher will the resolution be [33].

2.3.5.1 Pros and Cons

This architecture poses lots of problems with high frequencies and routing skew. On the other
hand, an advantage of this architecture is its simplicity. Another advantage of this architecture
is that for FPGAs this is a great implementation as there are multiple ways of generating
phased clocks such as using Phase Locked Loop (PLL), Delay Locked Loop (DLL) or even
delay lines for phase shifting. This architecture is also PVT insensitive in comparison to other
architectures [35].

2.3.6 Gated Ring Oscillator

Figure 2.19: GRO architecture reproduced from [36].

This architecture operates only when the Enable signal is high level and stops when
this signal is at low level. The outputs of the Gated Ring Oscillator (GRO) are used as the
clocks which drives the counter [37]. One important note, the GRO topology is different from
a traditional ring oscillator, such as the Pulse Shrinking architecture by its property to freeze
between two consecutive time measurements. If instead of freezing, the system is reset between
measurements, there is no possibility to use the previous state to improve the resolution by
analyzing the quantization error.

2.3.6.1 Pros and Cons

The benefit from the gating technique, especially with successive measurements, is the increased
effective time resolution which cannot be achieved for a simple measurement [38]. However,
the main issue is to initialize and maintain a well-defined oscillation through gating operation,
since the ring freezes and starts from the previous state without reset [39]. Implementation in
an FPGA would be very complex.

21

2.3.7 Summary

FPGA
Type Advantages Disadvantages Implementation

TDL Clock is not required. High
resolution can be achieved
and has a simple design.
Low resource usage. Simple
to calibrate.

Needs very high frequencies
for lower number of delay
cells for better performance.
Needs calibration.

Simple

VDL Delay mismatch is low due
to same delay elements used
as delay cells. High Resolu-
tion can be achieved. Clock
is not necessarily required.
These lines have higher com-
plexity but are able to offer
performance levels close to
the ones achieved by tapped
delay lines

Component variant delay
due to many buffers in one
delay line. Higher complex-
ity when compared to the
TDL. Requires a minimum
of 2 TDLs on FPGA. Hard
to calibrate.

Challenging

GRO Simple and delivers high res-
olution.

High area usage. When
propagating a pulse along a
chain of buffers configured as
a ring, due to mismatch on
the cells’ rise and fall times,
a pulse shrinking/stretching
effect can occur leading to
the cease of the signal.

Complex

Pulse
Shrink-
ing

Offers a decent resolution
although higher resolutions
can be achieved

The shrinking factor can-
not be fully controlled in
an FPGA. Resolution still
falls flat against the TDL
when implemented in FPGA
and the extra complexity in-
volved to compete with the
TDL is not justified.

Complex

TAC Simplicity. Requires the presence of an
ADC. Weak linearity.

No

Phased
clocks

Best linearity and very low
hardware resource utiliza-
tion. Good for low resolu-
tion applications and PVT
insensitivity. No calibration.

Sensitive to routing skew
and very unstable at high
frequencies.

Simple

Table 2.2: TDC State of the Art architectures summary [24], [40].

Table 2.2 summarizes each one of the architectures advantages and disadvantages. The
TDL-based TDC is the simplest to understand and possibly the least complex to implement

22

in an FPGA, turning it into an attractive option. Another reason to consider the TDL is the
significant number of publications directly related to the TDL, allowing for a more mature
architecture.

2.4 Encoding Logic for Thermometer Code

TDC architectures typically offer their measurement as a word known as a thermometer code
which must be converted into a binary code. These thermometer codes were mainly seen
in flash type ADC where the output was digital and seen as a sequence of 1s and 0s. This
sequence known as a thermometer code, is an entropy coding of a sequence of 1s followed by a
0 or vice-versa which depending on the state of the chain can indicate position of the pulse.

Table. 2.3 is representation of the conversion of the thermometer codes to binary codes to
figure out the number of ones that are present.

Decimal Thermometer Binary Code Binary Code
Number Code for ones for zeros

0 0000000 000 111
1 0000001 001 110
2 0000011 010 101
3 0000111 011 100
4 0001111 100 011
5 0011111 101 010
6 0111111 110 001
7 1111111 111 000

Table 2.3: Thermometer encoding.

An appropriate definition for bubble errors is when there is one or more invalid bits in a
thermometer code then it is termed as bubble error and the thermometer codes depending on
the FPGA design suffer from bubble errors. For example the binary word 111110000 may
turn into a 110010000. We can see this effect in the figure 2.20.

Figure 2.20: Bubble effect.

The main cause are due to uneven propagation delays in the design or uncertainty introduced
in the sampling moment due to meta-stability. Now, choosing the proper design for the encoder
is crucial to minimize the resulting error with the minimum delay possible, this means the
encoder must be “bubble proof” so the encoder should output a reasonable number.

23

As such, the following thermometer encoders are presented along with its pros and cons:
1. ROM based thermometer encoder.
2. Wallace Tree based encoder.
3. Fat Tree based encoder.
4. Multiplexer based encoder.

2.4.1 ROM based Thermometer-to-Binary converter

The Read Only Memory (ROM) based technique is one of the first techniques implemented in
thermometer encoding, also very popular to this day and was initially adopted for flash ADC
classified as Binary-ROM encoder using a parallel layout [41], [42]. The circuitry and scheme
layout of this encoder can be seen in the figure 2.21 is used to count the number of ones in a
binary representation.

Figure 2.21: ROM based encoder circuitry and scheme adapted from [41].

The layout of figure 2.21 at first looks relatively complex but the reality of the situation
is that it is not. To start, the schematics show us a 7 bit thermometer code input and a 3
bit binary code output. Between the input and the output there is an Edge Detector, or
what the original authors call the 1 of N block or One-Hot-Encoder[41]. Essentially, the edge
detectors detects transitions of a logical 1 to logical 0 of the thermometer code, in which it is
always necessary to assume that the code is clean and so there are no bubble errors. The edge
detector is composed of multiple AND gates with 1 input non-inverted and the other input
inverted. Next is the layout of the transistors, visible on the right side of figure 2.21. Finally,
the output has inverters at it is output and their purpose is just to invert whatever value is at
the input of the inverter.

Next, the example in the figure 2.22.

24

Figure 2.22: ROM based encoder example.

The blue lines in the figure 2.22 represent the logical value 1 and the red lines represent
the logical value 0, the color of the lines also represent the state of the lines. So, with an
input of 1111100, the expected output should be the binary word 101. Looking closely at the
figure, B2 and B0 are blue and B1 is red which represent the binary word 101, so as expected,
the circuit works and counted correctly the number of 1s. Basically, it stores combination of
input variables and for each combination it will generate the output.

Next, looking at the same circuit one last time in the figure 2.23.

Figure 2.23: ROM based encoder example analysis.

We can see that the scheme on the right side of the figure 2.21 and the figure 2.23,

25

makes the pattern of the transistors very visible, highlighted in green and the blue line
from the edge detector passes through the green lines when it is logical values are 1, 0, 1,
respectively. However, the output is inverted, so it doesn’t make sense for it to be actually, 1,
0, 1, respectively, in reality, looking again at the same figure, these values are acting on the
transistor gate inverting the expected logical value, so it is possible to infer that it is actually
the inverted values of the expected output and that’s why the output is inverted.

This method is able to correct at least one bubble error.
To note that it is possible to implement a fully digital Binary-ROM based encoder as

mentioned by [41] and seen in the figure 2.24.

Figure 2.24: Full digital ROM based encoder reproduced from [41].

2.4.1.1 Pros and Cons

The advantage of this circuit is its simplicity. However, relation to the other architectures it
is slow, power consumption is high in general and grows with increased thermometer codes
and increased data speed might turn this technique into a victim of bubble error making it
unsuitable for very high frequency applications, to add to this more circuitry is required to fix
these bubble errors.

For an FPGA, that positions its logic cells in very specific locations, make it hard for these
kind of techniques to be accepted as the probability of uneven propagation delay occurring is
much worse than implementation via Very Large-Scale Integration (VLSI). In other words, for
high speed operations, this technique will only degrade in performance and implementation on
the FPGA is hardly feasible.

2.4.2 Wallace Tree based Thermometer-to-Binary converter

The Wallace Tree encoder is, like the ROM based Encoder, a technique to calculate the number
of ones, but instead uses Full Adders as illustrated in the figure 2.25

26

Figure 2.25: 3 Bit Wallace Tree Encoder.

In the figure 2.26 we can see that its basic cells, the Full Adders are arranged in a specific
way to count the number of logical 1s at their input for its final binary output. In this
particular example, the blue lines represent the logical value 1 and the red lines represent
the logical value 0. For an input 111111111000000 the output is 1001 which represents the
decimal value of 9.

Figure 2.26: 4 Bit Wallace Tree encoder example adapted from [43].

The operations of the encoder can be easily pipelined, allowing the thermometer codes to
be converted into fine timestamps without introducing dead time. Using this encoder severely
reduces the probability of having missed TDC codes since it does not aim at locating the
transition point in the thermometer code [42], [44].

27

2.4.2.1 Pros and Cons

The advantage of this circuit is its flexibility and the fact that its topology can be selected
according to speed and power. The disadvantage is the fact that relative to the other
architectures it has a huge area, high power consumption, it is relatively complex to implement
on an FPGA with scalability and has a long critical path [45].

2.4.3 Fat-Tree based Thermometer-to-Binary converter

The fat tree shown in figure 2.27 is relatively simple technique where OR Gates are main
component. This simplicity allows for direct conversion from the input to the output calculating
the number of ones.

(a) Free Tree logic using OR gates. (b) Fat Tree output logic.

Figure 2.27: Fat Tree encoder adapted from [46].

It’s behavior is very similar to ROM based encoder where instead of using a representation
via transistors, this architecture uses some combinatorial logic to produce an output.

Figure 2.28: Fat Tree logic analysis.

28

On the right side of the figure 2.27, the bit C0 decides if it is a logical 1 or a 0 of the MSB.
Next is the OR gate between B0 and B1 which will once again decide if it is a logical 1 or a 0

of the second MSB, which is half of the the MSB. Finally, Least Significant Bit (LSB) chooses
whether the least significant bit is a logical 1 or 0. Once again, depending on the thermometer
code, one of the AND gates will be active outputting a given binary code.

2.4.3.1 Pros and Cons

The advantages of this technique is that its implementation on FPGA is not complex, it only
requires the usage of Look-Up Tables for implementation. However, implementation with a
thermometer code size which can easily altered seems to be relatively complex. Aside from
this, it also has significant power consumption [47].

2.4.4 Multiplexer Based Thermometer-to-Binary Converter

Figure 2.29: Standard mux based encoder.

The standard muxed based encoder topology is a relatively simple algorithm and works
on binary search algorithm. It is mainly composed to 2:1 multiplexers. This algorithm was
originally adopted for Flash ADC Thermometer to Binary conversion but is now used on
TDCs [42], [48].

To briefly explain the algorithm, the idea behind this is the following. Let’s say there’s 7
bit input thermometer code as seen in figure 2.29, and a 3 bit output. The number of output
bits always have to be able to fit the value of the number of input bits in binary. So, in this
case, the decimal value of 7 can be represented in 3 bits as 111.

29

Figure 2.30: Mux based encoder algorithm.

The figure above is the explanation of algorithm, on the left side the input thermometer
code is all logical 1, now the object on this algorithm, is like the previous architectures, to
count the number of ones. To do this, first the whole input is selected, where the bit at the
center of the bus will select the upper or lower half of the input. On the right and left side
both bits at the same location are set 1 and as such will select the upper half of the input bus
and discard all the other values and B2 will be equal to logical 1. Now the process repeats
itself, the bit at the center of the available input will select the upper or lower half, on the left
side of the figure the upper half is selected and on the right side, the lower half is selected,
discarding the bit itself from the input and the bits on the opposite side of the bus. The
finally the remaining bit is selected. Thus, for the case of the left side of the image, the input
is 1111111 and the output is supposed to be 111 and the algorithm delivered 111 which is
correct. On the right side of the image, the thermometer input is 1111100 and the output is
supposed to be "101" and the algorithm delivered 101 which is once again correct.

On the next figure 2.31 is another example of the state of figure 2.29 when the input is
1111000.

30

Figure 2.31: Mux Based encoder example.

This algorithm for bubble correction has at least 1 degree of bubble suppression.

Pros and cons. The algorithm itself is very intuitive and easy to implement using 2:1
multiplexers, which means using FPGA Look-Up Tables (LUTs). It requires less hardware
and has a short critical path which is very ideal to implement in an FPGA operating at very
high frequencies. Scalability is not issue as this algorithm can be easily expanded to higher
resolution of bits [49] and uses low power [45], [47]. However, this structure has a disadvantage
of large fan-out which increases the overall power consumption [50].

31

2.4.5 Summary

Encoder
Type Advantages Disadvantages

Standard Mux Based En-
coder

Simple, scalability is not an is-
sue and has short critical path.
Bubble error correction up to
the third order. Low power and
less latency in comparison to the
other architectures. No clock sig-
nal required.

Large fan-out with increased ther-
mometer code.

Wallace Tree Encoder Extremely simple and scalability
is not an issue. Precisely matched
with best approximated value of
the output. Capable of self bub-
ble error correction. No clock sig-
nal required.

Has large delay, occupies large
areas and is not suitable for the
high speed operations.

ROM Based Encoder Extremely simple and scalability
is not an issue. No clock signal re-
quired. The binary encoder that
can remove the bubble error up
to the fourth order.

Power hungry.

Fat Tree Encoder Has lower latency and smaller
area when compared to ROM
based encoder and wallace tree
encoder. No clock signal re-
quired.

Large delay and power hungry.

Table 2.4: Thermometer state of the art encoders summary [51], [52].

Table 2.4 shows that all architectures offer bubble suppression at least to 1 degree. However,
the most efficient method in terms of speed, latency and simplicity seems to be the multiplexer-
based method. As a result, the TDC to be implemented is based on a TDL architecture and
on a standard mux-based thermometer encoder.

32

CHAPTER 3
ADC-based front-end

3.1 Introduction

This chapter is organized in a workflow manner and describes the problem and solution for
the measurement of the ToF using an ADC on an FPGA, namely the ZC706 Evaluation Kit
Board [53] combined with the AD-FMCDAQ2-EBZ Board [54] from Analog devices. Both the
FPGA board and the AD-FMCDAQ2-EBZ Evaluation board are shown in the figure 3.1.

(a) ZC706 evaluation board. (b) AD-FMCDAQ2-EBZ evaluation board.

Figure 3.1: Boards used for DAC/ADC front-end Implementation.

This chapter is divided in multiple parts:
1. Brief introduction to the hardware involved and Hardware Descriptive Language (HDL)

designs used to get started.
2. An overall discussion of the AD-FMCDAQ2-EBZ kit, making its principle of operation

and limitations crystal clear.
3. Breakdown of the steps taken for a DAC to emit single-shot pulses.
4. Breakdown of the steps taken for the ADC to achieve synchronization between

DAC/ADC.
5. Python user commands to control the FPGA.
6. ADC experimental validation.

33

3.2 Initial setup

To operate both boards, Analog Devices provides a reference design1 for the typical user
to get started with the AD-FMCDAQ2-EBZ Board. Both a C project and a Vivado ref-
erence design2 are provided in their github to setup for Vivado 2018.3. These files are
accessable on https://github.com/analogdevicesinc/hdl for Vivado’s reference design
and https://github.com/analogdevicesinc/no-OS for the C project code.

By default, the AD-FMCDAQ2-EBZ is already able to transmit and receive test signals.
However, they are not perfectly synchronized and thus this chapter addresses the problem of
synchronizing both modules.

Starting by understanding the overview of the AD-FMCDAQ2-EBZ block diagram of the
design and explaining the design changes step by step aids in breaking down the complex
design as was given(see appendix B) to reach this chapters objective.

3.3 AD-FMCDAQ2-EBZ Evaluation Board overview

The AD-FMCDAQ2-EBZ Board provides 2 ADC and 2 DAC channels with full synchronization
capabilities [55]. Component wise, this module has three important components.

• AD96803 dual, 14-bit, 1.0 GSPS, JESD204B ADC.
• AD91444 quad, 16-bit, 2.8 GSPS, JESD204B DAC.
• AD9523-15 provides a 14-output, clock distribution function with low jitter performance.

The AD-FMCDAQ2-EBZ board is clocked by an internally generated carrier platform via the
FPGA Mezzanine Card (FMC) connector.

3.3.1 Analog Devices Reference Design overview

Figure 3.2 shows the block diagram for the reference design available from Analog Devices.

1Please see appendix A for initial setup.
2Please see appendix B for reference design.
3https://www.analog.com/media/en/technical-documentation/data-sheets/AD9680.pdf
4https://www.analog.com/media/en/technical-documentation/data-sheets/AD9144.pdf
5https://www.analog.com/media/en/technical-documentation/data-sheets/AD9523-1.pdf

34

Figure 3.2: Analog Devices Setup for a Xilinx Block Diagram on the ZC706 adapted from [56]

The figure 3.2 shows how the modules interact with each other and the datapath. The
reference designs illustrate that it can be run on a ZYNQ processor and that the following
modules and communications protocols are available.

• Timers.
• Interrupts.
• Double Data Rate (DDR).
• Ethernet (ETH).
• Universal Asynchronous Receiver Transmitter (UART).
• Inter-Integrated Circuit (I2C).
• Serial Peripheral Interface (SPI).

For communication with external modules, only the UART and ETH is available. The diagram
informs us that it uses the memory DDR as either a workspace or for storing information.

In terms of datapath, the diagram also tells us that for operating the DAC, 128 bits of
information must be deposited into a First In First Out (FIFO), whose interface is a data
streaming interface. The next step is to pass the data into the AD9144_upack which also has
a streaming interface. The upack utility core from Analog Devices uses a technique known as
interleaving by “shuffling” over the bus of 128 bits of data.

Next up is the AD9144 core which must be correctly configured to warn the core where the
information is coming from. The core needs to know if it is from an internal data generator
such as Direct Digital Synthesis (DDS), pattern or Pseudorandom Binary Sequence (PRBS)
or from the external DDR via Direct Memory Access (DMA). Finally, there is the transceiver,
also known as Shared GT or XCVR which instantiates the transceiver and correctly sets it up.

35

For operating the ADC, it is a matter of following the data flow in the opposite direction,
where the cpack utility core unpacks the shuffled data from the DAC and the ADC core
requires no specific configurations unlike the DAC. The ADC sampled data is sent to the
DDR via DMA.

To note that the DAC interface is channel based and the ADC has an internal DC filter
present, leading to the removal of the DC component of any incoming signal.

3.3.2 AD-FMCDAQ2-EBZ Clocking

Understanding how the clocks were distributed and generated on the board was a crucial step
to understanding how to manage and adjust the project to our desire.

The AD-FMCDAQ2-EBZ platform uses a PLL from the AD9523-1 with the reference
for the PLL being sourced from an external 125 MHz crystal. The AD9523-1 PLL2 Voltage
Controlled Oscillator (VCO) has a locking range of 2.940 GHz to 3.100 GHz, outputting a
nominal frequency of 3 GHz [57].

Figure 3.3: AD-FMCDAQ2-EBZ Block Diagram6.

Looking at the figure 3.3, there’s a 125 MHz crystal which drives the PLL2, generating a
nominal frequency of 3 GHz which goes through a combinatorial block which feeds the ADC
and DAC of the system.

From the description supplied by Analog Devices in relation to clocking of the ADC and
DAC, namely, the ADCCLK and DACCLK reference in the red arrow of the figure. These clocks
determine the sampling rate of the converters and if a harmonic relationship is required, then
the combinatorial block which acts as a divider for PLL2 can be freely configured [57]. As a
result of this, so long as both of them are configured with the same divider then at least those
two points are guaranteed to be synchronized.

6https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-
kits/eval-ad-fmcdaq2-ebz.html

36

3.3.3 Bare Metal AD-FMCDAQ2-EBZ Software

Analog Devices also provides a C project complementing their reference design in Vivado. To
test their design the DACs were directly connected to the ADC, in order to conduct loopback
tests as seen in figure 3.4.

Figure 3.4: Closed loop AD-FMCDAQ2-EBZ.

Using their software, the results were stored in a Comma Separated Value (CSV) file, where
the outputted values were already in two’s complement. Thus, resulting in the figure 3.5.

Figure 3.5: Sine wave being repeatedly outputted cyclically by the DAC.

Their software had already been set up with a sine wave test waveform.

3.4 DAC/ADC Front End implementation

This section discusses how the ADC and DAC full synchronization is achieved.

37

3.4.1 Operating the DAC

The first objective is to get the DAC to produce a desirable waveform. The first step was to
load a predefined signal into a buffer of 1024 positions and set up the DMA, where the buffer
would then be loaded into a FIFO via DMA which would then output the same waveform
cyclically. The cyclic behavior is shown in the bottom waveform of the figure 3.6.

Multiple waveforms were tested and the final decision was to set the pulse with a very
small duty cycle to bypass the DC Blocker within the ADC. Shown in the top waveform of
the figure 3.6.

(a) DAC Base Waveform.

(b) Captured Waveform for a duration of 16µs.

Figure 3.6: Capturing the waveforms when the DAC was still operating cyclically.

The results shown in the figure 3.6 looked promising as the waveform could now be selected
and captured with some degree of distortion, however the waveform was still being reproduced
cyclically and the software wasn’t able to stop the cyclic behaviour. So the decision was to
use same idea of the buffer in software and instead implement a buffer that would carry the
same narrow pulse and repeatedly output the pulse in hardware, written in VHDL for the
reference design and as a consequence lower the number resources used by FPGA and lowering
the complexity of the blocks.

By setting up the waveform and converting these waveform values into hexadecimals
representations of the 2’s complement representation values, allowed for easy passage of a
waveform of 1024 positions to an RTL memory block. The figure 3.7 is a simple illustration of
the steps taken to pass the values to the RTL block.

38

Figure 3.7: From waveform generation to RTL memory block.

The new block interface inserted is shown in figure 3.8.

Figure 3.8: First Version of the Memory Buffer operating in cyclic mode.

The behavior of the new RTL block is shown in the figure 3.9.

Figure 3.9: Short pulses produced by the DAC. The bottom plot is the noise of the effect of
disconnecting the channel 2.

At this point, the DAC is generating a short pulse every 1µs. After proving that this

39

block showed the same results and used less resources, the next step was to remove the cyclic
behaviour by adding a single-shot mode that would be triggered by the user at the touch of
key. Such an implementation required the addition of a new axi-slave custom Intellectual
Property (IP) block to communicate with the Zynq and the current block generating the signal
would have to be modified to only output a given signal at the command of the single-shot.

Figure 3.10: Simplified diagram of the DAC upack block substitution for the new RTL mem_buffer
block.

Figure 3.11: Adding the new updated RTL block to the Vivado Reference Design operating in
single-shot.

The figure 3.10 is a simplified diagram of the actual connections which occurred in Vivado
shown in the figure 3.11.

40

Figure 3.12: Block diagram of the insertion of single-shot axi block.

Figure 3.13: Connecting the new RTL block with the single shot RTL block.

With the newly updated RTL block and single-shot block added, shown in the figure 3.12,
the system only outputted one waveform manually triggered shown in the results section,
figure 3.22.

41

3.4.2 Operating the ADC

Operating the ADC was not as complex as the DAC was already configured, needless to
say that complexity of the blocks combined that would make up the ADC were much more
complex. As shown in figure 3.15.

Figure 3.14: Identified the block involved with the ADC for capturing and storing.

Figure 3.15: Simplified block diagram of the block design for capturing and storing data.

As shown in figure 3.16, the data is packed 4 samples per channel and each sample is worth
16bits of data, this means a total of 64 bits per channel by which the two channels together
make up a total of 128 bits of data.

Figure 3.16: Sample distribution.

For a sampling rate of 1 GHz and loading 4 samples in parallel, this means that data is
streaming at 128 bits@250MHz, referenced as 1 on the figure 3.15 as the FIFO, but the DMA,

42

referenced as 2 on the figure 3.15, reads the data at a much lower rate of 128bits@100MHz, Ana-
log Devices solution to this problem is by offloading the incoming data into the Programmable
Logic (PL) DDR3 Memory up to a maximum of 1 Gigabyte of data referenced in 3 on the
figure 3.15 as the Memory Interface Generator [58]. However, evaluating precisely how complex
these blocks, created many variables. It looked far to complex for our purpose. As such, one
solution is by applying simpler blocks where the objective was to use the signal from the
single shot module and apply this signal to state machine that would consequently trigger the
capture and deposit a set number of samples into a memory block.

The starting point was developing a state machine that would control this process, and so
the following Finite State Machine (FSM) was created as shown in the figure 3.17.

Figure 3.17: Finite state machine diagram for the ADC.

The FSM consists of 3 simple states, IDLE state is the starting state and is also where the
systems waits for some trigger condition, CAPTURE state where a set number of samples should
be deposited and a FINISH state to stop the capture and reset the system. The next step is by
constructing and signalling the correct modules that would make up a fully functional ADC
capture module. The next modules are required.

1. A memory block to store the samples from the ADC.
2. A counter to track the samples that are being stored and the memories position.
The first versions of the implementation used a memory written in VHDL for test purposes,

the memory has a standard interface shown in figure 3.18.

43

Figure 3.18: Memory controller

The table 3.1 is a brief description of the effects of the FSM on the counter and the memory
block.

Current Next Transition
State State Memory Counter condition
IDLE CAPTURE No action Reset Counter Capture7

signal detected
CAPTURE FINISH Enable Memory Enable Counter Wraparound8

Write data Increment Counter signal detected
FINISH IDLE Disable Memory Reset Counter Automatic

Table 3.1: Memory controller actions.

The results are shown in figure 3.19 of the testbench from Vivado.

8In this context, this is the same as the single-shot signal.
8This signal is set when the counter hits the maximum value attainable.

44

Figure 3.19: Testbench - memory controller in a simulated environment.

45

The current memory could not be used as the user had no way to access this memory. The
trick was substitute the current memory for a Xilinx native IP block known as Block Random
Access Memory (BRAM), which also had a standard interface, and a BRAM controller that
would allow the BRAM to be connected to the Zynq via Advanced eXtensible Interface (AXI)-
Interconnects. The connections shown in the figure 3.20 were set to allow the user to access
the BRAM.

Figure 3.20: Memory controller connected to the BRAM.

Highlighted in green is the single-shot signal actings a a trigger mechanism.

3.4.3 Python user interface

One of the requested tasks was to have a user interface that would use Python. Knowing Vivado
uses Tool Command Language (TCL) allows for interacting with design tools to generate the
bitstream and load into the FPGA. The trick was to write TCL script that would take the
generated bitstream and load onto the FPGA by using Python to execute the TCL script.
However, the data required for it to be read and displayed graphically. The Python script
was further developed to connect and read from the serial line in which the FPGA would
output the current captured values in memory when a single shot would be triggered, when
would then store these values values in a buffer on the computer which would consequently be
displayed graphically.

The table 3.2 shows the various commands at which the user can use to manage the
interface and communicate with the DAC and ADC.

Command Description

i Shows an introductory message.
s Single shot trigger command.
r Read samples stored in BRAM.

HG Display graph of the read samples.
x Terminate program.

Table 3.2: User interface operations.

46

3.5 Experimental validation

3.5.1 Setup

The experimental setup for capturing and displaying the generated waveform is shown in
figure 3.21.

(a) Setup diagram. (b) Labeled setup photo.

Figure 3.21: Experimental setup.

Figure 3.21 shows the AD-FMCDAQ2-EBZ in a closed loop configuration where each
channel of the ADC and DAC are directly connected to each other via coaxial cables.

3.5.2 Results

Results are shown in figure 3.22.

Figure 3.22: 50 waveforms generated by the DAC and captured by the ADC, with both operating in
single-shot.

47

Waveforms are perfectly overlapped for the rising and falling edges, which means that
jitter is lower than the original sampling period of the ADC, of 1 ns. The fact that multiple
captured waveforms, each comprising a single pulse, are overlapped means that single-shot
and synchronous operation was successfully achieved.

Resource Utilization Available Utilization(%)

LUT 27234 218600 12.46
LUTRAM 527 70400 0.75

FF 31349 437200 7.17
BRAM 10.50 545 1.93
DSP 16 900 1.78
IO 40 362 11.5
GT 4 16 25.00

BUFG 3 32 9.38

Table 3.3: ADC - FPGA resource usage on the ZC706.

The table 3.3 shows a great resource usage and a total on chip power usage of 4.871 W

derived from the power analysis of post-implemented design.

48

CHAPTER 4
TDC-based front-end

TDC techniques and thermometer encoders were reviewed in chapter 2. From all techniques,
we chose to implement a TDC based on a TDL and mux-based thermometer decoder.

As such, this chapter describes the system architecture at a conceptual level. Key constructs
are identified, including significant architectural elements such as components and relationships
among them, as well as architectural mechanisms.

4.1 System overview

Figure 4.1 is an overview of the proposed TDC architecture using the Tapped Delay Line
topology at the center of the systems architecture.

Figure 4.1: System architecture overview.

49

The system is composed of:

• Generate Pulse: This is the systems “kick-starter” whose objective is to deliver a
constant pulse, known as the hit signal, which is set to a logical 1 the moment the
start signal is set and is set to a logical 0 the moment the stop signal is set.

• Tapped Delay Line: The “heart” of the system, the whole system is based on the TDL
architecture and this block is responsible for evaluating the delay line by periodically
updating the systems current delay-line state.

• Re-mapping Logic: This block stores 2 specific instances of the delay chain, where
one is the time the delay line is filling and the other is when the delay line is emptying.

• Synchronizer: The “brain” of the system, this block deals with signalling the Remap-
ping logic and the Coarse Counter to operate at certain instances according to the state
of the delay line.

• Coarse Counter: The coarse counter is a very popular module in implementations of
the TDL and is completely responsible for counting the number of clock cycles that the
TDL is full.

• Counter error: This is a simple block that is responsible for limiting the maximum
measurement range of the Time-to-Digital Converter.

• Thermometer-to-Binary Decoder: This block is responsible for acquiring the
thermometer codes stored in the Re-mapping Logic and converting the thermometer
codes into a binary word.

• Merge: This block is the last block of the system that delivers a measurement in
picoseconds. The role of this block is to calculate ToF based on the value of the coarse
counter and the two binary codes of the decoded thermometer codes stored in the
Re-mapping logic.

50

Figure 4.2: Simplified RTL block diagram of the system architecture.

51

4.2 Pulse generator

This section is focused on the Pulse Generator.

Figure 4.3: Pulse Generator block.

The system must be able to measure the width of the hit signal which is generated via
the Pulse Generator block.

The behaviour of the Pulse Generator block can be seen in the figure 4.4.

Figure 4.4: Pulse Generator timing diagram

From the figure 4.4, on the rising edge of the Start signal, referenced in light blue, the
hit signal is set to a logical 1 and the rising edge of the Stop signal referenced in red sets the
hit signal to a logical 0.

In technical terms, at the rising edge of the Start signal, the D Flip-Flop fixed with a
logical input 1, sets the output of the D Flip-Flop equal to its input and retains this value
until it is reset. The reset is controlled by another D Flip-Flop fixed with a logical 1 at its
input and at the rising edge of the stop signal, its output will equal its input resetting both D
Flip-Flops and as a result the hit signal will be set with a logical 0. Note that it possesses an
asynchronous behaviour as it is not dependent on any clock. The TDC clk is there to show
that this block is uncorrelated to the clock signal. To note, that the Stop signal could have
been used to trigger the asynchronous reset however, the system is based off the edge detection
of both input signals and the reset mechanism is more complicated than what is illustrated in

52

the figure 4.4 as the hit signal can be reset under certain circumstances which is covered in
the implementation.

4.3 Tapped delay line

This section is focused on the Tapped Delay Line.

Figure 4.5: TDL block.

For this architecture, the time it takes to traverse the whole delay line, must be close to and
bigger than the clock period, as the tap delay line should act to represent the sub-resolution
of the system. The figure 4.6 can be seen as ruler that measures time, in which the 2 ns jumps
shown represents the systems major resolution, represented by the clocks period, and the
residual measure, known as a fine measure or minor resolution is measured by knowing how
many digital cells were crossed over by a signal.

Figure 4.6: Timing resolution expansion.

4.3.1 Digital cell

This architecture uses 4 cascaded digital adders, also known as Ripple Carry Adders (RCAs)
blocks as shown in figure 4.7.

53

Figure 4.7: Digital cell.

In figure 4.7 are the cascaded blocks of adders. A question that follows the previous
statement is, how do those combinatorial blocks propagate the input signal? The answer is
by looking at the table 4.1, the fixed input A and B as 0 and 1 respectively, creates a buffer
between the Cin and the Cout, the Cout always inherits the value of the Cin. In conclusion,
when the Hit signal is a logical 1 then four taps later the output is a logical 1 and when the
Hit signal is a logical 0 then four taps later the output is a logical 0, each 4 taps is a digital
cell of the delay line.

A B Cin Cout
0 1 1 1
0 1 0 0

Table 4.1: Carry Lookahead Adder truth table.

This concludes this Digital Cell section.

4.3.2 Tapped delay line topology

Understanding the digital cells is a crucial step to understanding how the delay line is
constructed and its principle of operation. A fully functional delay line is created by cascading
a set number of digital cells. For this topology, it is very important that the total delay
imposed by the delay line is smaller than and close to the sampling period as the idea is to
have the delay line slicing a clock period into a set number of digital cells.

For simplicity, in figure 4.5 painted in green on the section Tapped Delay Line there are
5 small boxes which contain the current value of a digital cell and when cascaded represent
the delay line. The boxes act as the delay line samplers storing a “photo” of the state of the

54

delay line at each positive clock edge presented in figure 4.8. For simplicity and example, the
resolution is dictated by only 8 digital cells and thus only 8 containers are required.

Figure 4.8: Ideal representation of the system sampling the hit signal through the delay line.

From the figure 4.8, on the first sample of the hit signal, the delay line state is all 0, on
the second sample of the hit signal there is one container with logical 1, on the third sample
of the hit signal, the delay line is full and continue full until the Nth sample, where the delay
line is half empty and on the (N+1)th sample, delay line state would be the same as the first
sample which is empty. This explains how the behaviour of the delay line adapts to the hit
signal.

55

4.4 Synchronizer

This section is focused on the Synchronizer.

Figure 4.9: Synchronizer block.

The Synchronizer is the head of the TDC architecture, deals with signalling the enabler of
the counter and the enablers of the Remapping Logic at very specific instances.

Figure 4.10: Synchronizer datapath.

In the figure 4.10, the Synchronizer can be seen as a state machine in which its states are
dependent on the first and last elements of the delay line and the current state.

When evaluating the TDL, there’s actually 4 possible states:

• Filling
• Emptying
• Full

56

• Empty

As shown in the figure 4.11, the first time the system looks at the hit signal, it is seen
as filling, then it is full and then it is emptying, finally, after that, it is empty and the cycle
repeats itself when the hit signal appears. The empty cycle can be represented as a idle state
as no event is is occurring and as such is omitted in the figure 4.10.

Figure 4.11: Tapped delay line states.

The figure 4.11 is an illustration of the first 3 states mentioned, namely, one is filling, two is
full and three is emptying. When evaluating the delay, the only states that are important are
when it is filling, case 1, that means that the first and last element are 1 and 0, respectively.
Case 2 states that the TDL is full when the first and last element are 1. Finally for case 3,
which is when the TDL is emptying so its first and last element are 0 and 1, respectively, thus
only one of those 3 states can be active at once.

Figure 4.12: Synchronizer timing diagram.

On the figure 4.12, this particular hit signal behaviour can now be evaluated. The zone
circled in red represent case 1 of the delay line state when it is filling and will last for a duration
of TA, where TA and TC is the duration of one clock period. In terms of clock periods, it is

57

quite intuitive to evaluate part of the Hit signal which is at least 5 clock periods long, that
means that the counter enable, seen as the second case in the timing diagram should stay
enabled for at least 5 clock periods, which is TB long, finally, storing the last part of the Hit
signal as shown in blue in the timing diagram will sample the final state where it is emptying
and sets its enable for a duration of TC .

4.5 Re-mapping logic

This section will be focused on the Remapping Logic.

Figure 4.13: Remapping Logic block.

The remapping logic serves to save specific states of the delay line, from the figure 4.8,
they would be the Nth and 1st state which can also be a representation of sampling the first
and last pieces of the Hit Signal, highlighted in red and blue on the figure 4.14

Figure 4.14: First and last sampling stages of the hit signal.

From the figure 4.14 these are instances of which the synchronizer must be able to identify
and use its control signals to correctly identify and end of the signal must be stored.

58

4.6 Counter

This section is focused on the Counter.
The counter is another module who receives one of the Synchronizer’s control signal which

must be able to identify the time at which and for how long this module should be stay
enabled.

Figure 4.15: Counter block.

Counters can be made asynchronous or synchronous, in each of these types, is an up
counter or a down counter. This architecture uses a synchronous up counter as the objective
is to count the number of clock cycles that the tapped delay line is full.

4.7 Counter error

This section is focused on the Counter Error.
Unlike the previously module, this module only appears on the overview architecture. This

module’s function is the simplest out of all the modules.
Like many sensors similar to the LiDAR, which have a receiver and sender, the device

must be able to emit a signal and receive the signal. What if after emitting the signal there is
no notification of the reflected signal? In the figure 4.16, where the first situation is when the
device receives the signal and the second situation, which can actually be interpreted into 2
possible scenarios, one in which the signal was never reflected to the receiver and the second
case scenario, where the signal was reflected but is already above the maximum distance, as
such, the solution is to discard the signal.

59

(a) Signal conditions met. (b) Signal conditions not met.

Figure 4.16: Signal travelling conditions.

To discard the emitted signal seen on the right side of the figure 4.16 when the signal
conditions are not met is by analysing the direct relationship between the maximum distance,
the speed of light, in others words, the propagation velocity and the rate at which the counter
is updated then it is possible to infer how much the counter has to count until it signals when
the distance is above a certain threshold by using a simple formula.

Ttrip =
d

c
, (4.1)

where d is the maximum travelling distance of the signal in meters, c is the speed of light in
m s−1 and finally T is the trip time to reach the distance, d, in seconds.

As Ttrip is related to the counter by the relationship between the Ttrip and Tclock which
can be described in the following formula:

Ncounts =
Ttrip
Tclock

, (4.2)

for the case of this section, Ncounts is the number of counts required to reach the maximum
signal trip time allowed and Tclock is the systems clock period.

60

4.8 Thermometer-to-Binary decoder

Figure 4.17: Thermometer to Binary Decoder block.

The Thermometer-to-Binary converter uses the standard Mux Based Encoder. However it
is a pipelined version of the muxed based encoder where at the end there is a one counter to
get around the bubbles. Pipelining increases stability and allows for automatic scaling without
worrying about timing constraints which greatly aids the synchronous system.

Figure 4.18: 14-bit pipelined mux based encoder with a counter in the final stages [59].

This module is used for a ones counter. The zero counter also uses the same module but
instead subtracts the number ones from the total number of bits.

61

4.9 Merge

This section is focused on the Merge block.

Figure 4.19: Merge block.

The Merge is where all the important information converge at. The merge takes in the
value of the counter and the values at the binary word of the stored thermometer codes and
is be able make a precise measurement of the ToF. The following steps will breakdown the
formula that makes the precise measurements.

Tmeasure = Tclock ·N + (Finestart − Finestop) · Tdelay, (4.3)

where, Tmeasure is the output in picoseconds, N is the counters values is given by N =

Nfull + 1, Nfull is the number of times the hit signal is seen as full, Tclock is the systems clock
period, Finestart is the number of ones calculated from first stored thermometer codes, Finestop
is the number of zeros from the second stored thermometer codes and Tdelay is the time it
takes to traverse one digital cell.

To review some important concepts so far:
• The system is composed of 3 important states shown in figure 4.11 when evaluating the

hit signal.
• The counter provides the amount of times the hit signal was seen as full.
• The remapping logic stores the states in which the hit signal is seen as filling and

emptying as shown in figure 4.20.
• The systems operates at a given frequency and the size of the delay line should be bigger

than and close to the systems clock period.
• The Thermometer-to-Binary converter counts the number of ones in the filling state and

the number of zeros for the emptying state.

62

Figure 4.20: Observation of System States

From (4.3), on the figure 4.20, the 5+1 will the be the counters value and Tclock is the clocks
period. The (5+1)Tclock part of the equation gives us the gross estimate of the measurement.
The mentioned value 1 in the section of the counter is directly related to the calculations
ahead.

In the figure 4.21, the first case takes the ends of the sampled hit signal for the fine
measurements calculations.

Figure 4.21: Possible Case Scenarios of the First and Last Piece of the TDL

In the first case of the figure 4.21, ∆A < ∆B. In this particular case where there’s ∆B

space available from Tclock space, then the remaining space of when ∆A is added, can be given
by:

∆rem = ∆B −∆A, (4.4)

Where delta ∆rem is the remaining free slot of time available, shown in the figure 4.22.

63

Figure 4.22: Fine Measurement Analysis

Relating ∆rem to Tclock for the fine measurements can be given by:

Tfine_measure = Tclock −∆rem = Tclock + ∆A −∆B, (4.5)

Where Tfine_measure is the slot of time occupied by the time of the first and last piece of the
hit signal when it is on. This last equation is the fine measurement of the equation.

Next step is to formulate and condense the original equation of the gross estimate and the
fine estimate.

Tmeasure = Tclock ·Nfull + Tclock + ∆A −∆B. (4.6)

The (4.6) originates the value 1 which occurs in the counter and previously mentioned, where
Tclock is the substitution for the added one. A compressed version of the previous formula
which highlights the presence of the number 1:

Tmeasure = (Nfull + 1) · Tclock + ∆A −∆B. (4.7)

The (4.7) is divided into a gross and fine estimate. For the gross estimate:

Tgross_measure = (Nfull + 1) · Tclock. (4.8)

For the fine estimate:
Tfine_measure = ∆A −∆B. (4.9)

Resulting in the final equation.

Tmeasure = Tgross_measure + Tfine_measure = Tclock ·N + ∆A −∆B. (4.10)

64

Finally, ∆A is the number of ones of the first piece of the hit signal, also known as Finestart
times the delay of one digital cell and ∆B is the number of zeros of the last piece of the hit
signal of the hit signal, also known as Finestop, times the delay of one digital cell.

To validate the (4.10), the analysis of the figure 4.21 presents 2 extras cases. The third
case, ∆A = ∆B, where Nfull = 5 as shown in the figure 4.20, then N = 6 for the gross measure.
If both ∆A and ∆B are equal, then ∆A fits in ∆B free time slot and according to the (4.10),
where Tmeasure = 6 clock periods, proving the equation is correct. For the second case where
∆A > ∆B, as shown in figure 4.21, case 2, then once again according to the equation (4.10)
the result will lead to ∆A −∆B > 0 and as a consequence Tmeasure > 6 clocks periods which
means that the sign is correct. Once again proving the correctness of the equation.

4.10 Summary

The overall system behaviour can be summarized in the following timing diagram shown in
the figure 4.23.

Figure 4.23: System architecture timing diagram.

This architecture features simple control logic with an intuitive state machine and a TDL
with a mux based decoder for thermometer decoding. To the best of the author’s knowledge,
this particular architecture could not be found in the literature. Although there appears
to be novelty in the proposed architecture, a comparison with other architectures in terms
of performance cannot be given at the moment, as further tests beyond those shown in the
following chapter are needed. The main advantages of this architecture are its simplicity and
repeatability.

65

CHAPTER 5
Implementation of a TDC

5.1 Introduction

The chapter presents the implementation of the TDC architecture explained in chapter 4, in
which the chapter will start by a brief introduction of the hardware involved along with the
Vivado software used to get the project started. Next, the chapter will analyze and explain
each module and expose the simulation results.

5.2 Implementation and simulation results

This project was set to operate at 500 MHz and implemented in a ZC706 Evaluation Board
together with the HW-FMC-XM105-G debugging board for testing along with the Xilinx
Vivado Software Design and its Software Development Kit (SDK).

(a) ZC706 evaluation board. (b) FMC XM105 Debug Card.

Figure 5.1: Boards used for TDC testing.

5.2.1 Vivado Design Suite

The work here presented was developed with the Vivado Design Suite 2018.3 as seen in
figure 5.2 to project the described hardware’s behavior onto an FPGA. The Vivado Design
Suite integrates 5 important phases when creating and implementing a project. First, it is

67

the creation of the project and specifying the target FPGA from a huge catalogue, in this
case, it was the ZC706 Evaluation Board. The second phase includes the projects construction
and running the simulation to verify its functionality, third is running the synthesis, fourth is
running the implementation and check the reported data such as, temporal characteristics,
total resource usage and design rule checking. With all the steps above accomplished, the final
step is generating the bitstream and loading a particular file, describing the hardware for one
particular FPGA.

Figure 5.2: Vivado 2018.3 Interface with focus on “Flow Navigator”.

5.2.2 Module Implementation in VHDL

All of the following hardware was written in VHDL and the technical structural architecture
division is seen in the figure 5.3.

68

Figure 5.3: System implementation overview.

69

On the figure 5.3 consists of the combination of the various module, where the tdl_inst in-
tegrates the implementation of the Tapped Delay Line together with the Re-mapping Logic. The
T2B_decoder_inst integrates the Thermometer to binary encoder. The synchronizer_inst
integrates the synchronizer module, also known as the control logic of the architecture, the
coarse_cnt_inst implements the counter, the Start_edge_detect and Stop_edge_detect
are two external modules to detect activity in the start and stop input of the systems input,
very similar to the pulse generator, the merge_inst represents the merge block and finally
the error_inst describes the counter error module.

5.2.2.1 TDL combined with the Re-mapping Logic

The implementation starts by implementing the TDL alone. The module is presented in the
figure 5.4.

Figure 5.4: TDL instantiation module.

According to the proposed TDC architecture mentioned in section 4.3, digital cells are
based on ripple carry adders. The ZC706 Evaluation board has a primitive that implements 4
bit ripple carry adders, known as CARRY4 Primitives which is shown in the figure 5.5.

70

Figure 5.5: CARRY4 Primitive from Zynq 7000 libraries [60].

The CARRY4 Primitive is a digital cell, the red marker means that the input is set to a set
of logical 0s, the blue marker means that they are set to logical values of 1s. The blue marker
represents the multiplexer selector input and is set to 1 to set the green path. In summary,
the four cascaded multiplexers represent a digital cell.

Instantiating one of these in VHDL is a rather trivial process as that is available in the
Zynq7000 HDL library documentation. Cascading these CARRY4 primitives results in the
construction of the TDL.

71

(a) Carry4 Delay line instantiation.

(b) Delay line FPGA layout.

Figure 5.6: Tapped Delay line representing both conceptual and actual implementation.

The VHDL code for the Tapped Delay Line can be described as the following:

72

carry_delay_line: FOR i IN 0 TO NUM_CARRY4_STAGES-1 GENERATE

FirstCarry4: IF i = 0 and SIM_MODE = FALSE GENERATE
ATTRIBUTE LOC OF delayblock :

LABEL IS "SLICE_X"&INTEGER'image(Xoff)&"Y"&INTEGER'image(Yoff+i);

attribute dont_touch of delayblock: label is "TRUE";
BEGIN

delayblock:
CARRY4

PORT MAP(
CO => tdl_val_w(3 downto 0), -- 4-bit carry out
O => open, -- 4-bit carry chain XOR data out
CI => '0', -- 1-bit carry cascade input
CYINIT => hit_i, -- 1-bit carry initialization
DI => "0000", -- 4-bit carry-MUX data in
S => "1111" -- 4-bit carry-MUX select input
);

END GENERATE;

NEXT_CARRY4: IF i > 0 and SIM_MODE = FALSE GENERATE

attribute dont_touch of delayblock: label is "TRUE";
BEGIN

delayblock:
CARRY4

PORT MAP(
CO => tdl_val_w((4*(i+1)-1) downto i*4),
O => open,
CI => tdl_val_w((4*i)-1),
CYINIT => '0',
DI => "0000",
S => "1111"
);

END GENERATE;

END GENERATE;

Code snippet 1: Implementation of the VHDL code for the Tapped Delay Line.

carry_delay_line: FOR i IN 0 TO NUM_CARRY4_STAGES-1 GENERATE

SIM_first_carry4: IF i = 0 and SIM_MODE = TRUE GENERATE
begin

tdl_val_w(3 downto 0) <=
((hit_i & hit_i & hit_i & hit_i) and "1111") after TAP_DELAY_TIME;

end GENERATE;

SIM_next_carry4 : IF i > 0 and SIM_MODE = TRUE GENERATE

BEGIN
tdl_val_w(4*(i+1)-1 downto 4*i) <=

(tdl_val_w(4*i -1 downto 4*(i-1)) and "1111") after TAP_DELAY_TIME ;
END GENERATE;

END GENERATE;

Code snippet 2: Simulation code for Tapped Delay Line.

73

On the left image of the figure 5.3 and on the right side of the figure 5.6 are both the
representation of the delay line. The bottom image of the figure 5.6 is the actual implementation
of the tapped delay, which uses cascaded CARRY4 Primitives.

An important note is the attribute LOC of the delay line on the code 1 is to position the
delay line in very specific location on the FPGA, however, when allocating the delay chain,
the trick is not to allocate all of the CARRY4 elements per slice but only allocate the first
CARRY4 block.

When the chain is synthesized, connections are made from the carry out of one CARRY4
to the carry in of another CARRY4. On the die, however, there is only one possible connection
the carry in of a CARRY4 which is from the carry out of the CARRY4 immediately below it
creating a dedicated route which does not use the fabric routing1. To backup the following
statement, in the documentation of the 7 series Configurable Logic Block (CLB) there are
carry chain primitives [61] which are made up of two or more CARRY4 primitives that use a
dedicated route when instantiated and the CARRY4 are placed in a vertical alignment.

In summary, the synthesis tools infer a carry chain logic from arithmetic HDL code and
automatically does this placement, so only the first element needs to be manually placed.

As for the placement of the sampling register right next to CARRY4 primitives, the LOC
attribute is not required as in most cases as the synthesizer by default already optimizes this
route as seen in figure 5.6.

The set is still incomplete as the tdl_inst implementation is still left to be combined
with the Re-mapping Logic. Adding the Remapping logic results in the figure 5.7 .

Figure 5.7: TDL and Re-mapping Logic combined.

The difference between the Re-mapping Logic registers and the registers connected directly
to Tapped Delay Line is the existence of an enabler. The enabler is set by the control logic

1Further information on https://forums.xilinx.com/t5/Implementation/Problem-trying-to-LOC-a-
CARRY4/td-p/802074

74

and therefore this module has a store_FirstPiece_i and store_LastPiece_i which are
these registers enablers.

Figure 5.8: Re-mapping Logic register datapath structure.

The figure 5.8 is another point of view of the registers position relative to the registers of
the Tapped Delay Line. The store_FirstPiece_i is the enabler of the set of registers on
the left side of the figure 5.8 and store_LastPiece_i is the enabler of the set of registers on
the right side of the figure 5.8.

These first line of registers have two purposes.
1. Sampling the TDL.
2. Solve meta-stability issues which frequently occurs in these architectures.
The second set of registers are used to capture to stabilize the value at the input of the

store registers before accepting these values.
The implementation on figure 5.8 is shown in code 3.

75

FIRST_STAGE_SAMPLING: FOR j IN 0 TO NUM_STAGES-1 GENERATE
-- 1st line registers - Sampling Stage
TDC_VAL_REG : FDCE

generic map(INIT => '0')
port map(

D => tdl_val_w(j),
CE => '1',
C => clk_i,
CLR=> rst_i,
Q => tdl_val_r(j)
);

END GENERATE;

SECOND_STAGE_FIRST_PIECE_SIGNAL_REG: FOR k IN 0 TO NUM_CARRY4_STAGES-1 GENERATE
attribute dont_touch of tdc_thermometer_firstpiece_val_reg: label is "TRUE";
BEGIN

tdc_thermometer_firstpiece_val_reg : FDCE
generic map(INIT => '0')
port map(

Q => tdl_thermometer_FirstPiece_val_r(k),
D => tdl_val_r((4*(k+1))-1),
CE => store_FirstPiece_i,
C => clk_i,
CLR=> rst_i
);

END GENERATE;

SECOND_STAGE_LAST_PIECE_SIGNAL_REG: FOR l IN 0 TO NUM_CARRY4_STAGES-1 GENERATE
attribute dont_touch of tdc_thermometer_lastpiece_val_reg: label is "TRUE";

begin
tdc_thermometer_lastpiece_val_reg : FDCE

generic map(INIT => '0')
port map(

Q => tdl_thermometer_LastPiece_val_r(l),
D => tdl_val_r((4*(l+1))-1),
CE => store_LastPiece_i,
C => clk_i,
CLR=> rst_i
);

END GENERATE;

Code snippet 3: Re-mapping Logic VHDL code.

76

Figure 5.9: TDL instantiation simulation results.

77

The simulation is under the assumption which the size of the tapped delay line is set to 45
digital cells and the delay considered for each digital cell is 50 ps From the simulation results
in the figure 5.9 and the figure 5.4, the module has multiple i/o signals such as the clock seen
as clk_i, the popular hit signal seen as hit_i, the reset signal seen is rst_i, the Re-mapping
Logic Registers Enablers and the first and last element of the first line of registers, also known
as the first and last elements of the sampled delay line. When one of the Re-mapping Logic
registers enablers are active, then at the end of the clock cycle they store the value of the first
line of registers, so long as the systems state is seen as filling. The same behaviour applies
when the system is seen as emptying.

5.2.2.2 Counter VHDL

Out of all the sections, the counter is the easiest to describe. As previously stated on the
architecture, it is a simple up counter where its starting value is set to 1.

Figure 5.10: Counter module.

78

entity coarse_cnt is
Port (clk_i : in STD_LOGIC;

nrst_i : in STD_LOGIC;
cnt_en_i : in STD_LOGIC;
coarse_cnt_o: out STD_LOGIC_VECTOR(9 DOWNTO 0)

);
end coarse_cnt;

architecture Behavioral of coarse_cnt is
signal s_cnt_r : unsigned(9 DOWNTO 0) := (OTHERS => '0');

begin
process(clk_i)
begin

if(rising_edge(clk_i)) then
if(nrst_i = '0') then

s_cnt_r <= to_unsigned(1, 10);
elsif(cnt_en_i = '1') then

s_cnt_r <= s_cnt_r + 1;
end if;

end if;
end process;

--OUTPUT CURRENT VALUE
coarse_cnt_o <= std_logic_vector(s_cnt_r);

end Behavioral;

Code snippet 4: Counter VHDL code.

The counter is set to 10 bits on a device running at 500 MHz as it is registered for a 200m
distance. Using the eq. 4.1 the resulting ToF for 400m, which is double due to the reflection
of the signal, results in 1.4 µs. Next, using the eq. 4.2 results in 704 counts.

dlog2Ncountse = 10, (5.1)

This last equation proves that the minimum number of bits required to store the decimal
number 704 is 10 bits.

The simulation results are seen in the figure 5.11.

Figure 5.11: Counter simulation results.

79

5.2.2.3 Counter error VHDL

Figure 5.12: Counter error module.

Using the eq. 4.2 for a system running at 500 MHz and a Ttrip of 1.4µs results in nearly
700 counts, as seen in the counters implementation section 5.2.2.2, whose binary representation
of the decimal value 700 is 10 1011 1100. The maximum value was limited to 704 whose
binary representation is 10 1100 0000.

When the four most significant bits of the counter match the binary sequence 1011 then
max_cnt_o signal is set off, forcefully bringing down the hit signal for further measurements
ending in the maximum possible value attainable by the system.

80

5.2.2.4 Synchronizer

Figure 5.13: Synchronizer module.

The synchronizer is a simple module as seen in the fig 4.10 represented by the FSM.

Figure 5.14: Synchronizer - Finite state machine.

The FSM represented in the figure 5.14 is a mealy FSM. The default state is represented
by “idle” state which represents inactivity, however, when the first and last element are 10,
respectively, then the output enables the storeFirstPiece registers and having detected the
delay line as filling, passes onto the next state, “Filling Detected”. At this point, this state
should be able to cope with a special situations that occurs when the delay line is larger than
a clock period as depicted in the figure 5.15.

81

Figure 5.15: Delay line temporal analysis of anomaly detected.

The situation mentioned on the figure 5.15 references the case where line is seen as filling
twice instead of passing to a full state or an emptying state. To cope with such a situation,
at the state “Filling detected” if it detects first and last elements of the sampling registers as
10 once again or 11, then the next state is seen as “Full detected” and enables the counter.
However, there is a case where the system may go from filling to emptying and as such, we may
skip immediately to the “Emptying detected” state as the system recognizes it is emptying,
enabling the storeLastpiece registers.

Onto the next state, “Emptying detected”, is skipped as the necessary signals have been
successfully triggered, skipping to next block, which is the processing blocks. During this
stage, the system is tasked with processing the information until the end of measurement is
triggered.

The simulation results are seen in the figure 5.16.

82

Figure 5.16: Synchronizer simulations and FSM behavior.

83

From the simulations results, first the storeFirstPiece_en was active as it is made to
store the first end of the hit signal and then the counter is enabled as it sees the next state as
full detected and finally and storeLastPiece_en is enabled to store the last end of the hit
signal.

Although the system is able to skip from the filling state to the emptying state, it shouldn’t
be used to measure distances directly related to the ToF smaller than 2 ns, as the system is
only able to perceive the signal so long as there are 2 consecutive captures as illustrated in the
figure 5.17.

Figure 5.17: System limitation representing case scenarios where the system may fail to detect.

5.2.2.5 Thermometer to Binary encoder

The figure 5.18 presents the thermometer to Binary encoder interface.

Figure 5.18: Thermometer to Binary module.

This section converts the thermometer code to a binary code and provides signals for
streaming with further modules.

The thermometer was implemented by making use of the code available from a free open
source website2 to count the number of ones using a pipelined mux based encoder. However,
as seen in the merge section of the system architecture, it’s important to count the number of
ones and zeros and therefore, it was crucial to adapt their free open source code into something
the could count the number of ones and zeros.

2More information on https://cas.tudelft.nl/fpga_tdc/TDC_basic.html

84

The RTL module of their code can be seen in the figure 5.19.

Figure 5.19: Pipelined Thermometer to Bin encoder blackbox.

From the figure 5.19, the block is able to output number of ones of the thermometer code
using the pipelined mux based encoder. This block required for it to be alerted of when the
data is ready through its valid port and after a few clock cycles the output will produce the
number ones and assert the ready signal, signalling that the output is ready.

The block diagram on the figure 5.20 shows the explicit changes.

Figure 5.20: T2B block diagram.

In figure 5.18 and figure 5.20, there are a lot of similarities as the only difference is the
lack of the clock source and the reset signal. The block diagram show us the open source
code, namely the Pipelined T2B to count the number ones instantiated twice, one for each
thermometer code. As the Last Piece thermometer code is required to count the number of
zeros, an extra block as added to subtract the number of ones from the total from the total
number of bits on thermometer code.

85

As each one of these blocks finish processing the data, there are two ready signals, one for
each thermometer code, signalling that the data is ready to be used. This behaviour provides
a streaming mechanism for the block that will stream this data to the following Merge block.

Although the architecture allows for flexible resizing of the thermometer code, the output
of this block is always an 8 bit output, therefore, there can only be a maximum of 255 CARRY4
instantiations.

86

Figure 5.21: T2B simulation results.

87

The number of digital cells under test for simulation is 45 and therefore from the simulation,
the binary codes start with 0 for the FirstPiece thermometer codes and 45 for the LastPiece
thermometer code as the system is idle the number of zeros is the number of digital cells and
the number of ones is the number is zero.

There are two valid signals and ready signals, in which once the thermometer codes are
available, the system takes Tp nanoseconds to process the information, where Tp is a multiple
of a number of clock cycles which depends on the size of the thermometer code.

5.2.2.6 Merge

The merge block module can be seen in the figure 5.22.

Figure 5.22: Merge module.

The fine_bin_FirstPiece_i and fine_bin_LastPiece_i signals represent number of
ones and zeros of the thermometer codes, the coarse_cnt_i represent the gross measure of
the system.

In its essence, it is an arithmetic block, that takes in the all previous signals and applies
the eq. 4.3 and outputs a given measure and setw a end of measurement, seen as eom_o signal
in the figure 5.22. The measurement is only initialized when both the ready signals from
the thermometer to binary encoder are set. In other words, the block only processes the
information once the hit signal is analyzed. However, when running at very high frequencies,
namely at 500 MHz these operations tend to take longer than one clock period, thus posing a
problem. The solution was to add counter to counter the problem as seen in the figure 5.23.

Figure 5.23: Included counter for timing correction.

88

When the LastPiece and FirstPiece binary codes are available, the counters enabler is
set to count for a set number of clock cycles, in this case it was set to 6. The moment the
counter is enabled, the arithmetic block simultaneously starts processing the data ensuring a
total of 6 clock cycles to process the data and therefore also disabling the counter.

5.2.2.7 TDC

This module’s interface can be seen in the left side of the figure 5.24 combining the effort of
all the previous modules implementations seen on the right side of the figure 5.24. Important
to remember, the purpose is to accurately define the time interval marked by the start and
stop signal.

(a) TDC interface.
(b) TDC aggregating all the previous module in one location work-

ing together.

Figure 5.24: TDC simplified RTL view and interface.

Figure 5.25: Hit signal illustration.

Where ∆t is the time interval in which the TDC must define.
The systems interface also has an enabler, that acts as the pause button of the system, a

reset to the system back to its initial state and a clock which dictates the systems operating
frequency of 500MHz.

In the figure 5.26 are the simulation results of the system. Also,important to remember
that the delay of each digital cell is set to 50 ps, the number of digital cells of the delay line is
45.

89

Figure 5.26: TDC simulation results.

90

5.2.2.8 Hardware compatibility

Before starting with the Experimental validation it is important to note that the HW-XM105-G
Debug Board developed problems when trying to program the bitstream to the FPGA with
the board connected to the High Pin Count (HPC) or Low Pin Count (LPC). The problems
which surged were directly related to the FPGA and its Joint Test Action Group (JTAG)
connectivity due to the fact that the JTAG connectivity on the ZC706 allows a host computer
to download bitstreams to the System on Chip (SoC) and allows for the usage of the debug
tools seen by, for example, Vivado’s Integrated Logic Analyzer (ILA). In the figure 5.27 are
the ZC706 JTAG connections related to the FMC HPC and LPC.

(a) ZC706 JTAG Chain Block Diagram [62].

(b) Labeled location for closing the JTAG
Chain U31 Bus Switch using a bypass
jumper.

Figure 5.27: Closing the ZC706 FMC LPC JTAG Chain.

In the ZC706, when a mezzanine card is attached to the LPC or HPC connectors. The
cards are automatically added to the JTAG chain, this itself implies new connections are setup.
The Single Pole Single Throw (SPST) switches which are normally closed, transition to an
open state when an FMC is attached and therefore, this loop must be closed by using a bypass
jumper [62] unless the card is already correctly configured and closes the JTAG chain. In this
particular case, as shown in the figure 5.27, the loop is closed by a bypass jumper connecting
the input of FMC LPC Test Data in (TDI) to the output Test Data out (TDO), or in other
words, closing the SPST Bus Switch U31 connection seen on the left side of the figure 5.27.

91

CHAPTER 6
Experimental validation of a TDC

6.1 Introduction

This chapter provides the results and the methods used to validate the implemented architecture
shown in the last chapter. The following results are discussed:

1. Digital cell delay estimation.
2. Linearity estimation.
3. Repeatability estimation.

6.2 Digital cell delay estimation

First and foremost objective was to measure the average delay per digital cell.

6.2.1 Experimental Setup

The setup for doing so is illustrated on the diagram of the figure 6.1.

Figure 6.1: Setup for the number of digital cells estimation necessary to fit one clock cycle.

As shown in figure 6.1, by injecting the clock signal into a sufficiently big tapped delay
line, initially set as 200 digital cells and sampling rate of 1 Hz, enabled free running sampling
and time enough to evaluate the thermometer code.

The output of the second sampling stage is the thermometer code from one of the re-
mapping logic storage units where its enable was forcefully set to be always on. Due to this,

93

it was possible to constantly sample from the delay line at a very low frequency and as a
consequence, it was possible to see the number of clock cycles that would fit in the delay line.

6.2.2 Results

Figure 6.2: Visual results of the thermometer code sampled twice.

The results of the figure 6.2 allowed for the adjustment of the size of the delay line to fit
one clock cycle which resulted in the values seen by the simulation, averaging to around 40
digital cells. Using the following formula which supposes the tapped is slightly greater than
one clock period.

Tclock ≤ NDigital cells · τdelay, (6.1)

results in the substitution of Tclock for the clocks period equivalent to 2 ns and NDigital cells

of 40 resulting in estimating the average digital cell delay of around 50 ps. However, it had
to be slightly greater than the current clock period due to external factors that may provoke
sufficient variation for the condition above to fail and as consequence the TDL was setup with
45 digital cells.

Having an estimate of the delay per digital cell was crucial for testing the TDC as the
calculations in the merge block requires a value for the expected delay to proceed with the
practical tests.

6.3 Estimation Linearity

6.3.1 Experimental Setup

In order to observe the linearity of the estimations, the following experimental setup shown in
figure 6.3 was considered.

94

(a) Setup diagram. (b) Labeled setup photo.

Figure 6.3: Experimental setup.

An Arbitrary Waveform Generator (AWG), model AWG70002A, operating at 15 Gsample/s

was used to generate two short pulses delayed by a given number of samples. Marker 2 of the
AWG was used as a start signal, whereas the output of channel 2 was used as a stop signal.
The signal outputted by channel 2 had to be amplified such in order to rise to the same level
as the other channels in order to apply to the FPGA. For that a broadband amplifier SHF
810 was used.

In the FPGA, the pins which were used for setting the start and stop signal on the debug
board HW-XM105-G were the P_CLK1_M2C and N_CLK1_M2C pins which would translate to
the AD28 and AC28 pin on the ZC706 Evaluation Board [62], [63].

The figure 6.4 shown is the Vivado practical TDC setup for testing linearity.

95

Figure 6.4: Vivado - TDC Testing block diagram setup.

96

In figure 6.4, the zone delimitted in red allowed to user to use the terminal to access the
values of the TDC, the zone delimitted in blue is used to extend the 21-bit bus outputted
from the TDC to a 32-bit bus for compatibility purposes with the following block. The Mixed
Mode Clock Manager (MCMM) is used for generating a clock of 500 MHz for the TDC.

6.3.2 Results

Figure 6.5: Estimated delay as a function of the programmed delay.

Figure 6.5 shows that the estimation results produced by the TDC increases linearly with
the programmed delay. The TDC having a linear relationship between the programmed delay
and the estimated delay is a very desirable feature and was effectively achieved.

97

6.4 Estimation repeatability

6.4.1 Experimental setup

In order to observe the estimation repeatability, the following experimental setup shown in
figure 6.6 was considered.

(a) Setup diagram. (b) Labeled setup photo.

Figure 6.6: Experimental setup.

The FPGA uses the P_CLK1_M2C and N_CLK1_M2C pins from the HW-XM105-G debug
board to create a loop as shown on the figure 6.6 on the FPGA.

The Vivado variance test setup can be shown on the figure 6.7.

Figure 6.7: Vivado design setup for variance test.

In the design show in figure 6.7 there is a 500 MHz clock supplying the TDC and the pulse
generator. The pulse generator emits a pulse whose bifurcation occurs for both TDC inputs
start_i and stop_i. One path of the pulse generator goes directly to the input start_i
of the TDC, the other path is a longer path which imposes a delay, controlled externally
by inserting a cable between STOP_i external input and STOP_o external output which are

98

connected to the P_CLK1_M2C and N_CLK1_M2C pins, respectively. The external input STOP_i
is connected to the input stop_i of the TDC.

Two different coaxial cables were used, with different lengths, namely a Radio Frequency
(RF) cable from the MWX312 series with the length of approximately 39.8 cm±1 mm that has
a propagation delay of 4.9 ns m−1 and a cable from the MWX342 series with the length of
approximately 40.5 cm±1 mm that has a propagation delay of 4.3 ns m−1 [64]. Under these
conditions, the total delay imposed by the MWX342 and the MWX312 cable is 1.9502 ns and
1.7415 ns, respectively, whose expected difference in delay is 0.2087 ns.

6.4.2 Results

(a) MWX312 cable test. (b) MWX342 cable test.

Figure 6.8: Repeatability results.

From the figure. 6.8 the tests resulted in perfect repeatability. The MWX312 expected
delay was 1740 ps whereas the TDC estimated 11 900 ps for 16 samples, whereas the MWX342
expected delay was 1950 ps whereas the TDC estimated 12 050 ps for 16 samples. The expected
difference in delay estimated is therefore 150 ps whereas the expected difference in delay is
210 ps. These results are very positive, as only a slight deviation in the difference between the
expected delay which occurred between both cables which maintained a steady difference of
150 ps.

6.5 Resource usage

Resource Utilization Available Utilization(%)

LUT 246 218600 0.112
FF 501 437200 0.114
IO 27 362 7.458

BUFG 2 32 6.25

Table 6.1: Base TDC FPGA resource usage on the ZC706.

Table 6.1 shows minimal resource usage in relation to the total resource usage. A total on
chip power usage of 227 mW derived from the power analysis of post-implemented design, out

99

of which, 200 mW are from device static and 27 mW from on chip-power, whereas a breakdown
on the on-chip power, the TDL and the thermometer to binary encoder consumed the highest
power, namely, 7 mW and 8 mW, respectively.

6.6 Summary

All the results are very promising, as the TDC exhibited a linear behavior and perfect
repeatability and the table 6.1 showed low resource usage and a reported power consumption
of 227 mW.

100

CHAPTER 7
Conclusion

LiDAR is a key sensor that enables an AV to observe its surroundings in 3D with high
resolution. However, in contrast to complementary sensors such as cameras and RADAR,
LiDAR is not yet a fully mature sensor. One of the aspects that requires development is
sampling architectures for a LiDAR receiver. Such is the focus of this dissertation.

This dissertation started by studying different sampling architectures based on ADC and
TDC, with the goal of choosing suitable architectures for LiDAR. We have then successfully
implemented a first sampling architecture based on a pipelined architecture ADC, and a second
sampling architecture based on a TDC, in turn consisting of a TDL topology and a mux-based
encoder.

The ADC-based front-end complied with all target parameters, namely sampling frequency
and ENOB, with the exception of power consumption. Its power consumption of 1.65 W per
channel at 1 Gsample/s is too high for a LiDAR receiver, given that a LiDAR comprises tens
of channels, which requires tens of ADCs.

The TDC-based front-end also complied with all target parameters, namely a temporal
resolution of 50 ps which allows for a spacial resolution of 1 cm. The implemented TDC takes
few resources, and only consumes 227 mW. The expected sampling frequency of the TDC due
to an associated processing time of 26 ns and for a window of 1 µs is around 38 Msample/s.

Even though implementation and tests of both architectures were successful, these must be
considered preliminary. Nonetheless, we should compare both architectures. The implemented
ADC is appropriate for a full-waveform LiDAR receiver that requires a sampling rate up to 1
GHz. The TDC is appropriate for processing pulses as short as 5 ns, as the detection only
occurs on the rising edge of the pulse. Consequently, if the waveform boils down to a short
pulse, the TDC should be employed for a matter of simplicity, cost (no external chip required)
and power consumption.

101

7.1 Future work

In the near future there is room for further optimization of the TDC. More extensive tests
should then be performed, and calibration must be addressed.

In the medium to long term future we should consider investigating multi-channel TDCs,
such that a full-waveform LiDAR can be implemented with TDCs. This would provide the
advantages of both TDCs and ADCs, however without the disadvantages of ADC, namely,
cost and power consumption.

102

Bibliography

[1] C. Filiz, An autonomous vehicles prevent traffic accidents? Last seen on 30/05/2021, 2020. [Online].
Available: https://www.intechopen.com/books/accident- analysis- and- prevention/can-
autonomous-vehicles-prevent-traffic-accidents-.

[2] A. Lafrance, Self-driving cars could save 300,000 lives per decade in america, Last seen on 30/05/2021,
2015. [Online]. Available: https://www.theatlantic.com/technology/archive/2015/09/self-
driving-cars-could-save-300000-lives-per-decade-in-america/407956/.

[3] S. Blanco, SAE updates, refines official names for ’autonomous driving’ levels, Last seen on 30/05/2021,
2021. [Online]. Available: https://www.caranddriver.com/news/a36364986/sae-updates-refines-
autonomous-driving-levels-chart/.

[4] 2020 autonomous vehicle technology report, https://www.wevolver.com/article/2020.autonomous.
vehicle.technology.report, Last accessed: 15/05/2021, 2020.

[5] A. Mutschler, Sensor Fusion Challenges In Cars, https://semiengineering.com/sensor-fusion-
challenges-in-cars/, Last accessed: 15/06/2021, 2020.

[6] F. Rosique, P. J. Navarro, C. Fernández, and A. Padilla, “A systematic review of perception system
and simulators for autonomous vehicles research,” Sensors, vol. 19, no. 3, 2019, issn: 1424-8220. doi:
10.3390/s19030648. [Online]. Available: https://www.mdpi.com/1424-8220/19/3/648.

[7] M. Choudhary, “Why LiDAR is important for autonomous vehicle?” 2020. [Online]. Available: https:
//www.geospatialworld.net/blogs/why-lidar-is-important-for-autonomous-vehicle/.

[8] The 25-year-old billionaire building the future of self-driving cars, https://www.theverge.com/
22298001 / luminar - austin - russel - ceo - interview - self - driving - cars, Last accessed:
08/06/2021, 2021.

[9] A. Vaughan, Time of flight & lidar: Optical analog front end design, Last seen on 30/05/2021. [Online].
Available: https://www.ti.com/lit/an/sboa337/sboa337.pdf?ts=1622376881229&ref_url=
https%5C%253A%5C%252F%5C%252Fwww.ti.com.cn%5C%252Fsitesearch%5C%252Fcn%5C%252Fdocs%
5C%252Funiversalsearch.tsp%5C%253FlangPref%5C%253Dzh-CN%5C%2526searchTerm%5C%253D.

[10] D. Bastos, P. P. Monteiro, A. S. R. Oliveira, and M. V. Drummond, “an overview of lidar requirements
and techniques for autonomous driving,” in 2021 Telecoms Conference (ConfTELE).

[11] Tutorials: Microcontroller systems (micsy), Last seen on 1/06/2021, 2021. [Online]. Available: http:
//www.weigu.lu/tutorials/microcontroller/08_ad_da_converter/index.html.

[12] L. Danial, N. Wainstein, S. Kraus, and S. Kvatinsky, “Breaking through the speed-power-accuracy
tradeoff in ADCs using a memristive neuromorphic architecture,” IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. 2, no. 5, pp. 396–409, 2018. doi: 10.1109/TETCI.2018.2849109.

[13] Types of A/D converters - the ultimate guide, released on 22. April 2021 and last seen on 23. May 2021,
DEWESOFT, 2021. [Online]. Available: https://dewesoft.com/daq/types-of-adc-converters#
adc-features.

[14] Tutorials: Microcontroller systems (micsy), Last seen on 1/06/2021, 2021. [Online]. Available: https:
//www.maximintegrated.com/en/design/technical-documents/tutorials/1/1080.html.

103

https://www.intechopen.com/books/accident-analysis-and-prevention/can-autonomous-vehicles-prevent-traffic-accidents-
https://www.intechopen.com/books/accident-analysis-and-prevention/can-autonomous-vehicles-prevent-traffic-accidents-
https://www.theatlantic.com/technology/archive/2015/09/self-driving-cars-could-save-300000-lives-per-decade-in-america/407956/
https://www.theatlantic.com/technology/archive/2015/09/self-driving-cars-could-save-300000-lives-per-decade-in-america/407956/
https://www.caranddriver.com/news/a36364986/sae-updates-refines-autonomous-driving-levels-chart/
https://www.caranddriver.com/news/a36364986/sae-updates-refines-autonomous-driving-levels-chart/
 https://www.wevolver.com/article/2020.autonomous.vehicle.technology.report
 https://www.wevolver.com/article/2020.autonomous.vehicle.technology.report
https://semiengineering.com/sensor-fusion-challenges-in-cars/
https://semiengineering.com/sensor-fusion-challenges-in-cars/
https://doi.org/10.3390/s19030648
https://www.mdpi.com/1424-8220/19/3/648
https://www.geospatialworld.net/blogs/why-lidar-is-important-for-autonomous-vehicle/
https://www.geospatialworld.net/blogs/why-lidar-is-important-for-autonomous-vehicle/
 https://www.theverge.com/22298001/luminar-austin-russel-ceo-interview-self-driving-cars
 https://www.theverge.com/22298001/luminar-austin-russel-ceo-interview-self-driving-cars
https://www.ti.com/lit/an/sboa337/sboa337.pdf?ts=1622376881229&ref_url=https%5C%253A%5C%252F%5C%252Fwww.ti.com.cn%5C%252Fsitesearch%5C%252Fcn%5C%252Fdocs%5C%252Funiversalsearch.tsp%5C%253FlangPref%5C%253Dzh-CN%5C%2526searchTerm%5C%253D
https://www.ti.com/lit/an/sboa337/sboa337.pdf?ts=1622376881229&ref_url=https%5C%253A%5C%252F%5C%252Fwww.ti.com.cn%5C%252Fsitesearch%5C%252Fcn%5C%252Fdocs%5C%252Funiversalsearch.tsp%5C%253FlangPref%5C%253Dzh-CN%5C%2526searchTerm%5C%253D
https://www.ti.com/lit/an/sboa337/sboa337.pdf?ts=1622376881229&ref_url=https%5C%253A%5C%252F%5C%252Fwww.ti.com.cn%5C%252Fsitesearch%5C%252Fcn%5C%252Fdocs%5C%252Funiversalsearch.tsp%5C%253FlangPref%5C%253Dzh-CN%5C%2526searchTerm%5C%253D
http://www.weigu.lu/tutorials/microcontroller/08_ad_da_converter/index.html
http://www.weigu.lu/tutorials/microcontroller/08_ad_da_converter/index.html
https://doi.org/10.1109/TETCI.2018.2849109
https://dewesoft.com/daq/types-of-adc-converters#adc-features
https://dewesoft.com/daq/types-of-adc-converters#adc-features
https://www.maximintegrated.com/en/design/technical-documents/tutorials/1/1080.html
https://www.maximintegrated.com/en/design/technical-documents/tutorials/1/1080.html

[15] Understanding the Delta-Sigma ADC, Last seen on 1/06/2021, 2016. [Online]. Available: https://
www.allaboutcircuits.com/technical-articles/understanding-the-delta-sigma-analog-to-
digital-converter/.

[16] Flash ADC, Last seen on 30/05/2021, 2021. [Online]. Available: https://www.mathworks.com/help/
msblks/ref/flashadc.html.

[17] Pipelined ADCs and more, Last seen on 30/05/2021, 2010. [Online]. Available: https://inst.eecs.
berkeley.edu/~ee247/fa10/files07/lectures/L22_2_f10.pdf.

[18] Pipeline ADCs, Last seen on 30/05/2021, 2000. [Online]. Available: http://people.ece.umn.edu/
~harjani/courses/8331/ADC-pipeline_lecture.PDF.

[19] SAR ADCs vs. Delta-Sigma ADCs: Different architectures for different application needs, Video published
by Training Ti, 2015. [Online]. Available: https://training.ti.com/adcwebinar#:~:text=The%
5C%20SAR%5C%20converter%5C%20takes%5C%20a,time%5C%20and%5C%20performs%5C%20a%5C%
20conversion.&text=Delta%5C%2DSigma%5C%20converters%5C%20provide%5C%20best,signal%
5C%20once%5C%20for%5C%20each%5C%20conversion..

[20] E. Kandilakis, “Ultra-low energy time-mode ADC with background calibration for biomedical sensing
applications,” M.S. thesis, Delft University of Technology, 2021.

[21] Analog-to-digital converter architectures and choices for system design, Writing by Brian Black amd last
seen on 23. May 2021, ANALOG, 1999. [Online]. Available: https://www.analog.com/en/analog-
dialogue/articles/analog-to-digital-converter-architectures-and-choices.html.

[22] B. Swann, B. Blalock, L. Clonts, D. Binkley, J. Rochelle, J. Breeding, and K. Baldwin, “A 100-ps time-
resolution cmos time-to-digital converter for positron emission tomography imaging applications,” Solid-
State Circuits, IEEE Journal of, vol. 39, pp. 1839–1852, Dec. 2004. doi: 10.1109/JSSC.2004.835832.

[23] S. Naraghi, “Time-based analog to digital converters,” M.S. thesis, University of Michigan, 2009.

[24] R. F. F. Granja, “11.7b time-to-digital converter with 0.82ps resolution in 130nm cmos technology,”
M.S. thesis, Técnico Lisboa, 2018.

[25] D. Dinkar Toraskar, M. P. Mattada, and H. Guhilot, “Time domain ADC using pulse shrinking tdc,”
in 2016 International Conference on Circuits, Controls, Communications and Computing (I4C), 2016,
pp. 1–4. doi: 10.1109/CIMCA.2016.8053264.

[26] Comparative Study of Delay Line Based Time to Digital Converter Using FPGA, Last seen on 1/06/2021,
2017. [Online]. Available: https://www.irjet.net/archives/V4/i9/IRJET-V4I9208.pdf.

[27] J. Wu, “Several key issues on implementing delay line based TDCs using FPGAs,” IEEE Transactions
on Nuclear Science, vol. 57, no. 3, pp. 1543–1548, 2010. doi: 10.1109/TNS.2010.2045901.

[28] J. Wang, S. Liu, Q. Shen, H. Li, and Q. An, “A fully fledged TDC implemented in field-programmable
gate arrays,” IEEE Transactions on Nuclear Science, vol. 57, no. 2, pp. 446–450, 2010. doi: 10.1109/
TNS.2009.2037958.

[29] K. Cui and X. Li, “A high-linearity Vernier time-to-digital converter on FPGAs with improved reso-
lution using bidirectional-operating vernier delay lines,” IEEE Transactions on Instrumentation and
Measurement, vol. 69, no. 8, pp. 5941–5949, 2020. doi: 10.1109/TIM.2019.2959423.

[30] M. Függer, A. Kinali, C. Lenzen, and T. Polzer, “Metastability-aware memory-efficient time-to-digital
converters,” in 2017 23rd IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), 2017, pp. 49–56. doi: 10.1109/ASYNC.2017.12.

[31] F. Dadouche, T. Turko, W. Uhring, I. Malass, N. Dumas, and J.-P. Le, “New design-methodology of
high-performance TDC on a low cost FPGA targets,” Sensors and Transducers, vol. 193, pp. 123–134,
Oct. 2015.

[32] R. Machado, J. Cabral, and F. S. alves, “All-digital time-to-digital converter design methodology based
on structured data paths,” vol. 7, IEEE, 2019.

104

https://www.allaboutcircuits.com/technical-articles/understanding-the-delta-sigma-analog-to-digital-converter/
https://www.allaboutcircuits.com/technical-articles/understanding-the-delta-sigma-analog-to-digital-converter/
https://www.allaboutcircuits.com/technical-articles/understanding-the-delta-sigma-analog-to-digital-converter/
https://www.mathworks.com/help/msblks/ref/flashadc.html
https://www.mathworks.com/help/msblks/ref/flashadc.html
https://inst.eecs.berkeley.edu/~ee247/fa10/files07/lectures/L22_2_f10.pdf
https://inst.eecs.berkeley.edu/~ee247/fa10/files07/lectures/L22_2_f10.pdf
http://people.ece.umn.edu/~harjani/courses/8331/ADC-pipeline_lecture.PDF
http://people.ece.umn.edu/~harjani/courses/8331/ADC-pipeline_lecture.PDF
https://training.ti.com/adcwebinar#:~:text=The%5C%20SAR%5C%20converter%5C%20takes%5C%20a,time%5C%20and%5C%20performs%5C%20a%5C%20conversion.&text=Delta%5C%2DSigma%5C%20converters%5C%20provide%5C%20best,signal%5C%20once%5C%20for%5C%20each%5C%20conversion.
https://training.ti.com/adcwebinar#:~:text=The%5C%20SAR%5C%20converter%5C%20takes%5C%20a,time%5C%20and%5C%20performs%5C%20a%5C%20conversion.&text=Delta%5C%2DSigma%5C%20converters%5C%20provide%5C%20best,signal%5C%20once%5C%20for%5C%20each%5C%20conversion.
https://training.ti.com/adcwebinar#:~:text=The%5C%20SAR%5C%20converter%5C%20takes%5C%20a,time%5C%20and%5C%20performs%5C%20a%5C%20conversion.&text=Delta%5C%2DSigma%5C%20converters%5C%20provide%5C%20best,signal%5C%20once%5C%20for%5C%20each%5C%20conversion.
https://training.ti.com/adcwebinar#:~:text=The%5C%20SAR%5C%20converter%5C%20takes%5C%20a,time%5C%20and%5C%20performs%5C%20a%5C%20conversion.&text=Delta%5C%2DSigma%5C%20converters%5C%20provide%5C%20best,signal%5C%20once%5C%20for%5C%20each%5C%20conversion.
https://www.analog.com/en/analog-dialogue/articles/analog-to-digital-converter-architectures-and-choices.html
https://www.analog.com/en/analog-dialogue/articles/analog-to-digital-converter-architectures-and-choices.html
https://doi.org/10.1109/JSSC.2004.835832
https://doi.org/10.1109/CIMCA.2016.8053264
https://www.irjet.net/archives/V4/i9/IRJET-V4I9208.pdf
https://doi.org/10.1109/TNS.2010.2045901
https://doi.org/10.1109/TNS.2009.2037958
https://doi.org/10.1109/TNS.2009.2037958
https://doi.org/10.1109/TIM.2019.2959423
https://doi.org/10.1109/ASYNC.2017.12

[33] R. Machado, C. Jorge, and F. S. Alves, “Recent developments and challenges in fpga-based time-to-digital
converters,” IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 11, pp. 4205–4221,
2019. doi: 10.1109/TIM.2019.2938436.

[34] Y. Sano, Y. Horii, M. Ikeno, O. Sasaki, M. Tomoto, and T. Uchida, “Subnanosecond time-to-digital
converter implemented in a kintex-7 fpga,” Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 874, pp. 50–56,
2017, issn: 0168-9002. doi: https://doi.org/10.1016/j.nima.2017.08.038. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0168900217309245.

[35] M. Mattada and H. Guhilot, “62.5â ps lsb resolution multiphase clock time to digital converter
(tdc) implemented on fpga,” Journal of King Saud University - Engineering Sciences, 2021, issn:
1018-3639. doi: https://doi.org/10.1016/j.jksues.2021.01.007. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1018363921000143.

[36] Z. Soni, D. K. Panda, and A. B. Sarbadhikari, “Comparative study of delay line based time to digital
converter using fpga,” International Research Journal of Engineering and Technology (IRJET), Tech.
Rep., Sep. 2017.

[37] W. Gao, D. Gao, C. Hu-Guo, and Y. H, Integrated High-Resolution Multi-Channel Time-to-Digital
Converters (TDCs) for PET Imaging, Northwestern Polytechnical University and Institut Pluridisci-
plinaire Hubert Curien, 2011. [Online]. Available: https://www.intechopen.com/books/biomedical-
engineering - trends - in - electronics - communications - and - software / integrated - high -
resolution-multi-channel-time-to-digital-converters-tdcs-for-pet-imaging.

[38] H. S., “Time-to-digital converter basics. in: Time-to-digital converters,” Springer Series in Advanced
Microelectronics, vol. 29, Oct. 2010. doi: 10.1007/978-90-481-8628-0_2.

[39] A. A. Muntean, “Design of a fully digital analog sipm with sub-50ps time conversion,” M.S. thesis, Delft
University of Technology, 2017.

[40] C. Priyanka and P. Latha, “Design and implementation of time to digital converters,” in 2015 International
Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 2015,
pp. 1–4. doi: 10.1109/ICIIECS.2015.7193116.

[41] Y.-J. Chuang, H.-H. Ou, and B.-D. Liu, “A novel bubble tolerant thermometer-to-binary encoder for
flash a/d converter,” in 2005 IEEE VLSI-TSA International Symposium on VLSI Design, Automation
and Test, 2005. (VLSI-TSA-DAT)., 2005, pp. 315–318. doi: 10.1109/VDAT.2005.1500084.

[42] A. Chunn and R. K. Sarin, “Comparison of thermometer to binary encoders for flash adcs,” in 2013
Annual IEEE India Conference (INDICON), 2013, pp. 1–4. doi: 10.1109/INDCON.2013.6726138.

[43] T. Pardhu, S. Manusha, and K. Sirisha, “A low power flash adc with wallace tree encoder,” in 2014
Eleventh International Conference on Wireless and Optical Communications Networks (WOCN), 2014,
pp. 1–4. doi: 10.1109/WOCN.2014.6923067.

[44] P. Carra, M. Bertazzoni, M. G. Bisogni, J. M. Cela Ruiz, A. Del Guerra, D. Gascon, S. Gomez, M.
Morrocchi, G. Pazzi, D. Sanchez, I. Sarasola Martin, G. Sportelli, and N. Belcari, “Auto-calibrating tdc
for an soc-fpga data acquisition system,” IEEE Transactions on Radiation and Plasma Medical Sciences,
vol. 3, no. 5, pp. 549–556, 2019. doi: 10.1109/TRPMS.2018.2882709.

[45] R. Jogdand, P. Dakhole, and P. Palsodkar, “Low power flash adc using multiplexer based encoder,” Mar.
2017, pp. 1–5. doi: 10.1109/ICIIECS.2017.8276157.

[46] D. Lee, J. Yoo, K. Choi, and J. Ghaznavi, “Fat tree encoder design for ultra-high speed flash a/d
converters,” The Pennsylvania State University, Department of Computer Science & Engineering, Report.

[47] S. Hussain, R. Kumar, and G. Trivedi, “Methodology and comparative design of an efficient 4-bit
encoder with bubble error corrector for 1-gsps flash type adc,” IET Circuits, Devices & Systems,
vol. 14, no. 5, pp. 629–639, 2020. doi: https://doi.org/10.1049/iet-cds.2019.0499. eprint:
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet- cds.2019.0499.
[Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-
cds.2019.0499.

105

https://doi.org/10.1109/TIM.2019.2938436
https://doi.org/https://doi.org/10.1016/j.nima.2017.08.038
https://www.sciencedirect.com/science/article/pii/S0168900217309245
https://doi.org/https://doi.org/10.1016/j.jksues.2021.01.007
https://www.sciencedirect.com/science/article/pii/S1018363921000143
https://www.sciencedirect.com/science/article/pii/S1018363921000143
https://www.intechopen.com/books/biomedical-engineering-trends-in-electronics-communications-and-software/integrated-high-resolution-multi-channel-time-to-digital-converters-tdcs-for-pet-imaging
https://www.intechopen.com/books/biomedical-engineering-trends-in-electronics-communications-and-software/integrated-high-resolution-multi-channel-time-to-digital-converters-tdcs-for-pet-imaging
https://www.intechopen.com/books/biomedical-engineering-trends-in-electronics-communications-and-software/integrated-high-resolution-multi-channel-time-to-digital-converters-tdcs-for-pet-imaging
https://doi.org/10.1007/978-90-481-8628-0_2
https://doi.org/10.1109/ICIIECS.2015.7193116
https://doi.org/10.1109/VDAT.2005.1500084
https://doi.org/10.1109/INDCON.2013.6726138
https://doi.org/10.1109/WOCN.2014.6923067
https://doi.org/10.1109/TRPMS.2018.2882709
https://doi.org/10.1109/ICIIECS.2017.8276157
https://doi.org/https://doi.org/10.1049/iet-cds.2019.0499
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-cds.2019.0499
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-cds.2019.0499
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-cds.2019.0499

[48] Bui, V. Hieu, S. Beak, S. Choi, J. Seon, Jeong, and T. Ted., “Thermometer-to-binary encoder with bubble
error correction (bec) circuit for flash analog-to-digital converter (fadc),” in International Conference on
Communications and Electronics 2010, 2010, pp. 102–106. doi: 10.1109/ICCE.2010.5670690.

[49] I. P.Latha Dr. R. Sivakumar, “Implementation of mux based encoder for time to digital converters
architecture,” vol. 4, 2018.

[50] M. J. Azmi and S. A. Imam, “Power and area efficient ADC with suitable encoders and comparators: A
review,” International Research Journal of Engineering and Technology (IRJET), 2015, issn: 2395-0072.
doi: https://doi.org/10.1016/j.jksues.2021.01.007. [Online]. Available: https://www.irjet.
net/archives/V2/i1/IRJET-V2I186.pdf.

[51] M. Mrinal, J. Jaijee, P. Bhulania, A. Mehra, H. Rana, and S. Khanna, “Study and designing of fourth
order bec circuit for flash analog to digital converter using mux based encoder,” Indian Journal of
Science and Technology, vol. 10, pp. 1–7, May 2017. doi: 10.17485/ijst/2017/v10i18/106370.

[52] S. M. Mayur, “Design of novel multiplexer based thermometer to binary code encoder for 4 bit flash adc,”
in 2017 2nd IEEE International Conference on Recent Trends in Electronics, Information Communication
Technology (RTEICT), 2017, pp. 1006–1009. doi: 10.1109/RTEICT.2017.8256750.

[53] ZC706 evaluation kit, Last seen on 12/06/2021. [Online]. Available: https://www.xilinx.com/
products/boards-and-kits/ek-z7-zc706-g.html.

[54] AD-FMCDAQ2-EBZ board, Last seen on 12/06/2021. [Online]. Available: https://www.analog.com/
en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-ad-
fmcdaq2-ebz.html.

[55] AD-FMCDAQ2-EBZ introduction, Last revision on 03 Jan 2021 21:49, was approved by Robin Getz.,
ANALOG DEVICES, 2021. [Online]. Available: https://wiki.analog.com/resources/eval/user-
guides/ad-fmcdaq2-ebz/introduction.

[56] AD-FMCDAQ2-EBZ HDL reference design, 14 Dec 2020 15:23 was approved by Stanca-Florina Pop,
ANALOG DEVICES, 2020. [Online]. Available: https://wiki.analog.com/resources/eval/user-
guides/ad-fmcdaq2-ebz/reference_hdl#xilinx_block_diagram.

[57] AD-FMCDAQ2-EBZ clocking, Last revision 19 Jan 2018 10:14 was approved by Alexandru Ardelean,
ANALOG DEVICES, 2018. [Online]. Available: https://wiki.analog.com/resources/eval/user-
guides/ad-fmcdaq2-ebz/clocking#overview.

[58] AD-FMCDAQ2-EBZ HDL Design DMA, Last seen on 12/06/2021, 2018.

[59] Basic FPGA TDC design, https://cas.tudelft.nl/fpga_tdc/TDC_basic.html, Last accessed:
06/06/2021, 2015.

[60] Xilinx 7 Series FPGA and Zynq-7000 All Programmable SoC Libraries Guide for HDL Design, UG768,
Rev.14.7, XILINX, 2013. [Online]. Available: https://www.xilinx.com/support/documentation/sw_
manuals/xilinx14_7/7series_hdl.pdf.

[61] 7 series FPGAs configurable logic block, UG474, Rev.1.8, XILINX, 2016. [Online]. Available: https:
//www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf.

[62] ZC706 evaluation board for the Zynq-7000 XC7Z045 SoC, UG954, Rev.1.8, XILINX, 2019. [Online].
Available: https://www.xilinx.com/support/documentation/boards_and_kits/zc706/ug954-
zc706-eval-board-xc7z045-ap-soc.pdf.

[63] FMC XM105 debug card user guide, G537, Rev.1.3, XILINX, 2011. [Online]. Available: https://www.
xilinx.com/support/documentation/boards_and_kits/ug537.pdf.

[64] MWX cable series datasheet, https://www.aspen-electronics.com/junkosha-datasheets.html,
Last accessed: 06/06/2021, 2019.

[65] F. Fallah, “Introduction to Zynq™ Architecture.” [Online]. Available: https://www.aldec.com/en/
company/blog/144--introduction-to-zynq-architecture.

106

https://doi.org/10.1109/ICCE.2010.5670690
https://doi.org/https://doi.org/10.1016/j.jksues.2021.01.007
https://www.irjet.net/archives/V2/i1/IRJET-V2I186.pdf
https://www.irjet.net/archives/V2/i1/IRJET-V2I186.pdf
https://doi.org/10.17485/ijst/2017/v10i18/106370
https://doi.org/10.1109/RTEICT.2017.8256750
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-ad-fmcdaq2-ebz.html
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-ad-fmcdaq2-ebz.html
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/eval-ad-fmcdaq2-ebz.html
https://wiki.analog.com/resources/eval/user-guides/ad-fmcdaq2-ebz/introduction
https://wiki.analog.com/resources/eval/user-guides/ad-fmcdaq2-ebz/introduction
https://wiki.analog.com/resources/eval/user-guides/ad-fmcdaq2-ebz/reference_hdl#xilinx_block_diagram
https://wiki.analog.com/resources/eval/user-guides/ad-fmcdaq2-ebz/reference_hdl#xilinx_block_diagram
https://wiki.analog.com/resources/eval/user-guides/ad-fmcdaq2-ebz/clocking#overview
https://wiki.analog.com/resources/eval/user-guides/ad-fmcdaq2-ebz/clocking#overview
 https://cas.tudelft.nl/fpga_tdc/TDC_basic.html
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/7series_hdl.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/7series_hdl.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/zc706/ug954-zc706-eval-board-xc7z045-ap-soc.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/ug537.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/ug537.pdf
https://www.aspen-electronics.com/junkosha-datasheets.html
https://www.aldec.com/en/company/blog/144--introduction-to-zynq-architecture
https://www.aldec.com/en/company/blog/144--introduction-to-zynq-architecture

[66] AD-FMCDAQ2-EBZ introduction, Rev.0, ANALOG DEVICES. [Online]. Available: https://www.
analog.com/media/en/technical- documentation/technical- articles/JESD204B- Survival-
Guide.pdf.

107

https://www.analog.com/media/en/technical-documentation/technical-articles/JESD204B-Survival-Guide.pdf
https://www.analog.com/media/en/technical-documentation/technical-articles/JESD204B-Survival-Guide.pdf
https://www.analog.com/media/en/technical-documentation/technical-articles/JESD204B-Survival-Guide.pdf

Appendix A

109

 QUICK START GUIDE FOR AD-FMCDAQ2-EBZ ON XILINX ZC706

All the tools here are done in Windows 10 and assumes all the modules of the ZC706 is working.

If not, then it is highly recommended to follow XILINX Documentation in the following link before proceeding

https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html#documentation (Search for XTP242 –

ZC706 BIST Tutorial). This will require Vivado and SDK 2015.4

Xilinx Windows 10 Setup

Vivado 2018.3
1. Create or if already created, login into the XILINX website and download Vivado 2018.3

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-

design-tools/2018-3.html

Note: Use your Vivado license to validate the software

Cygwin
1. Download Cygwin and download all the necessary make, git and nano(optional) packages

(Page) https://www.cygwin.com/

(Download) https://www.cygwin.com/setup-x86_64.exe

Analog Devices

AD-FMCDAQ2-EBZ
1. Go to your C folder and create a folder named adi. Inside adi folder, git clone the following repositories

in Cygwin

cd /cygdrive/c/adi/
git clone https://github.com/analogdevicesinc/hdl
git clone https://github.com/analogdevicesinc/no-OS

Note: Both repositories should be in the same folder

2. Before we get officially started with Cygwin terminal, first thing that we must do is

export PATH=$PATH:/cygdrive/c/Xilinx/Vivado/2018.3/bin/
export PATH=$PATH:/cygdrive/c/Xilinx/SDK/2018.3/bin/

Note: To permanently add to your PATH, you can do the following

Go to your directory and open with a text editor the .bash_profile

 nano ~/.bash_profile

This script should appear once you open it

To the extent possible under law, the author(s) have dedicated all
copyright and related and neighboring rights to this software to the
public domain worldwide. This software is distributed without any warranty.
You should have received a copy of the CC0 Public Domain Dedication along
with this software.
If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.

base-files version 4.3-2

~/.bash_profile: executed by bash(1) for login shells.

The latest version as installed by the Cygwin Setup program can
always be found at /etc/defaults/etc/skel/.bash_profile

Modifying /etc/skel/.bash_profile directly will prevent
setup from updating it.

The copy in your home directory (~/.bash_profile) is yours, please
feel free to customise it to create a shell
environment to your liking. If you feel a change
would be benifitial to all, please feel free to send
a patch to the cygwin mailing list.

User dependent .bash_profile file

source the users bashrc if it exists
if [-f "${HOME}/.bashrc"] ; then
 source "${HOME}/.bashrc"
fi

Set PATH so it includes user's private bin if it exists
if [-d "${HOME}/bin"] ; then
PATH="${HOME}/bin:${PATH}"
fi

Set MANPATH so it includes users' private man if it exists
if [-d "${HOME}/man"]; then
MANPATH="${HOME}/man:${MANPATH}"
fi

Set INFOPATH so it includes users' private info if it exists
if [-d "${HOME}/info"]; then
INFOPATH="${HOME}/info:${INFOPATH}"
fi

At the end of the file insert the lines below and then press Ctrl+S then Ctrl+X

 export PATH=$PATH:/cygdrive/c/Xilinx/Vivado/2018.3/bin/

 export PATH=$PATH:/cygdrive/c/Xilinx/SDK/2018.3/bin/

Now finally, we’re back at the terminal, to activate these changes immediately, run the following

command

 source ~/.bash_profile

3. Go to hdl folder and change to the branch hdl_2018_r2

cd /cygdrive/c/adi/hdl
git checkout hdl_2018_r2

4. Build the project using the Makefile

cd projects/daq2/zc706/
make -C .

 Note: This will take some time

5. Open Vivado 2018.3, Open Project and open daq2_zc706.xpr

6. On the design run section, right-click synth1, launch runs and once ready, right click again and generate

bitstream

Note: During the building of the files, sometimes it may already run the implementation, if you see 2

ticks on the design run tab(Image below) then you may skip to the next step.

7. On the File section, export HARDWARE

8. Tick the include bitstream and press OK

9. On the File section click launch SDK

10. Now back to no-OS folder and checkout to the branch 2018_R2 on the Cygwin terminal

cd /cygdrive/c/adi/no-OS
git checkout 2018_R2

11. Building the software

cd /cygdrive/c/adi/no-OS/fmcdaq2/zc706
make -C .

Note: Make sure that the FPGA is powered on and connected to the PC and then run the command:

12. Running the software

make -C . run

Note: The make run will download the bitstream on the FPGA and after that program the board with
the elf file.

The software is started before the memory debugger disconnects.

Use Tera Term to see what the UART is sending

13. Evaluating the result

make capture

Note: By default, the software captures (in case of ADC based projects) the data received from the

device in the RAM.

rx_xfer.start_address = *_MEM_BASEADDR + OFFSET;

rx_xfer.no_of_samples = value;

dmac_start_transaction(ad_core_dma);

Note: The CSV files are in 2’s complement format, they are located at

/cygdrive/c/adi/no-OS/fmcdaq2/zc706

14. Back to the SDK, create a new Application Project, Empty Application

15. Create your hardware platform with system_top.hdl file and name it in project name section.

16. After having created your project, copy/drag all the files in the directory(below) to the src files of your

application project in SDK.

/cygdrive/c/adi/no-OS/fmcdaq2/zc706/sw/src/

17. On your src directory in SDK, edit the config.h file and uncomment XILINX, ZYNQ and ZYNQ_PS7

18. Everything should be ready, you should be free to edit fmcdaq2.c freely.

.

118

Appendix B

119

Figure 1: Vivado DAQ2 reference design.

120

The item list ahead summarizes the main components in the figure 1.

• AD9144: The systems transmitter, it will deal with all the translation from the digital
domain to the analog domain.

• AD9680: The systems receiver that will deal with the translation from the Analog
domain to the digital domain.

• Axi-Interconnect: Used to connect one or more Memory Mapped Axi-Master to one
or more memory mapped slaves devices.

• ZYNQ: The Zynq architecture is Xilinx’s all-programmable SoC, combines a dual-core
Advanced RISC Machine (ARM) Cortex-A9 with a traditional FPGA whose interface is
based on the AXI standard [65].

• Reset: This block is important when designing an FPGA project. A resets main
function is to clear any pending errors and unknown states and bring a system back into
its normal state.

• XCVR and JESD: The JESD is a multigigabit serial data link between converters and
receiver, in our case the FPGAs. The purpose of the xcvr is to implement a JESD204B
device link using a transceiver core [66].

• Audio/HDMI: This block wasn’t used during the whole project, however it’s function
served for in case somebody wanted to use the FPGA with an Operating System (OS).

121

	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Scope
	Motivation
	Objectives
	Document Stucture
	Contributions

	Fundamental ADC and TDC concepts
	Introduction
	ADC Architectures
	SAR
	Delta-Sigma A/D
	Dual-Slope A/D
	Flash A/D
	Pipelined A/D
	Summary

	TDC Architectures
	Time-to-Amplitude Converter (TAC)
	Pulse Shrinking
	Tapped Delay Line
	Vernier Delay Line
	Phased Clocks
	Gated Ring Oscillator
	Summary

	Encoding Logic for Thermometer Code
	ROM based Thermometer-to-Binary converter
	Wallace Tree based Thermometer-to-Binary converter
	Fat-Tree based Thermometer-to-Binary converter
	Multiplexer Based Thermometer-to-Binary Converter
	Summary

	ADC-based front-end
	Introduction
	Initial setup
	AD-FMCDAQ2-EBZ Evaluation Board overview
	Analog Devices Reference Design overview
	AD-FMCDAQ2-EBZ Clocking
	Bare Metal AD-FMCDAQ2-EBZ Software

	DAC/ADC Front End implementation
	Operating the DAC
	Operating the ADC
	Python user interface

	Experimental validation
	Setup
	Results

	TDC-based front-end
	System overview
	Pulse generator
	Tapped delay line
	Digital cell
	Tapped delay line topology

	Synchronizer
	Re-mapping logic
	Counter
	Counter error
	Thermometer-to-Binary decoder
	Merge
	Summary

	Implementation of a TDC
	Introduction
	Implementation and simulation results
	Vivado Design Suite
	Module Implementation in VHDL

	Experimental validation of a TDC
	Introduction
	Digital cell delay estimation
	Experimental Setup
	Results

	 Estimation Linearity
	Experimental Setup
	Results

	Estimation repeatability
	Experimental setup
	Results

	Resource usage
	Summary

	Conclusion
	Future work

	Bibliography
	Appendix A
	Appendix B

