

Universidade de Aveiro

2021

Dimitri Alexandre da
Silva

Plataforma de serviços para monitorização da cadeia
de valor do pescado

Middleware for fish value chain treaceability

Universidade de Aveiro

2021

Dimitri Alexandre da
Silva

Plataforma de serviços para monitorização da cadeia
de valor do pescado

Middleware for fish value chain treaceability

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia
Informática, realizada sob a orientação científica do Doutor Cláudio Jorge Vieira
Teixeira, Diretor dos Serviços de Tecnologias da Informação e Comunicação
da Universidade de Aveiro.

 Tese escrita no âmbito do projeto mobilizador ValorMar - Valorização integral
dos recursos marinhos: potencial, inovação tecnológica e novas aplicações”,
especificamente no seu PPS 4 cofinanciado pelo Fundo Europeu de
Desenvolvimento Regional (FEDER) no âmbito do Programa Portugal 2020,
financiado pelo Fundo Europeu de Desenvolvimento Regional (FEDER)
através do Programa Operacional Competitividade e Internacionalização
(COMPETE 2020)

o júri

presidente Professor Doutor José Alberto dos Santos Rafael
Professor Associado da Universidade de Aveiro

 Professor Doutor Fernando Joaquim Lopes Moreira
Professor Catedrático da Universidade Portucalense Infante D. Henrique

 Doutor Cláudio Jorge Vieira Teixeira (Orientador)
Diretor de Serviços da Universidade de Aveiro

agradecimentos

Ao Doutor Cláudio Teixeira, pelo acompanhamento durante o projeto e
dissertação, mostrando sempre disponibilidade para ajudar e fornecer recursos
quando possível.

Aos membros do consórcio Valormar por viabilizarem este projeto e terem
criado esta oportunidade.

Aos colegas do projeto, pelos desafios criados no ambiente colaborativo, pelo
apoio a resolver esses desafios e pelos momentos de convívio.

Aos membros dos STIC, que partilharam conhecimento e experiências e
acolheram a equipa do projeto durante o desenvolvimento.

À família, pelas oportunidades criadas desde o início da minha educação, que
acompanharam sempre no que podiam e incentivaram sempre a continuar o
percurso académico.

Aos restantes professores, colegas, amigos e outros membros da comunidade
académica de Aveiro, onde me integrei durante a licenciatura e mestrado por
me acolherem e participarem nesta fase da minha vida.

palavras-chave

Middleware, Rastreabilidade, Micro-serviços, Contentores

resumo

A rastreabilidade na cadeia de valor alimentar é um tema de interesse pelas

vantagens que traz aos consumidores, produtores e autoridades reguladoras.

Esta dissertação descreve as minhas contribuições durante a conceção e

implementação de um middleware baseado em micro-serviços para a cadeia

de valor do pescado portuguesa considerando as práticas atuais da indústria e

os requisitos das partes interessadas envolvidas no projeto, com o objetivo de

integrar toda a informação de rastreabilidade disponível de cada um dos

operadores para fornecer aos clientes a história completa dos produtos que

adquirem. Durante este projeto, assumi muitas funções, como

desenvolvimento, operações e até mesmo alguma segurança, o que me

permitiu melhorar as minhas capacidades em todos essas disciplinas e

experimentar as mais recentes tecnologias nativas da nuvem, como

contentores e práticas de DevOps.

keywords

Middleware, Traceability, Micro-services, Containers

abstract

Traceability in the food value chain is a topic of interest due to the advantages
it brings to both the consumers, producers and regulatory authorities. This
thesis describes my contributions during the design and implementation of a
microservice based middleware for the Portuguese fish value chain considering
current practices in the industry and the requirements of the stakeholders
involved in the project, with the goal of integrating all the traceability information
available from each operator to provide customers with the full story of the
products they purchase. During this project I assumed many roles such as
development, operations and even some security allowing me to improve my
skills in all these fields and experimenting with the latest cloud native
technologies such as containers and with DevOps practices.

i

Index

Index .. i

Figure Index ... v

Table Index ... vii

List of Acronyms ... ix

1 Introduction ... 1

1.1 Project Context ... 1

1.2 Thesis Goals ... 2

1.3 Working environment .. 2

1.4 Document Structure.. 3

2 State of the Art .. 5

2.1 Traceability studies – regulations, standards and social impact ... 5

2.2 Traceability studies – technological approaches .. 7

2.3 Microservice based architectures ... 8

2.4 Technology review ... 9

3 Initial Project State and Design ... 12

3.1 Domain Analysis .. 12

3.2 Middleware Requirements and Early Design ... 13

3.3 Improved Proposed Architecture.. 15

3.4 Domain Segmentation .. 16

4 Middleware Design and Development .. 19

4.1 Full Overview ... 19

ii

4.2 API Management and Gateway .. 21

4.2.1 Developer and Publisher Portal .. 21

4.2.2 API Gateway and Traffic Manager .. 22

4.2.3 Token Generation and Validation .. 22

4.2.4 Monitorization .. 23

4.3 Inter-Domain Communication ... 23

4.3.1 Kafka in event driven scenarios ... 24

4.3.2 Auxiliary components .. 24

4.4 Information Microservice ... 25

4.4.1 Mediawiki Engine .. 25

4.4.2 Infoboxes and Text Extraction ... 26

4.4.3 Categorization .. 30

4.4.4 Authentication and Permissions ... 30

4.4.5 Static Content and Visual Tweaks .. 31

4.5 Governance Microservice .. 31

4.5.1 Data Model ... 32

4.5.2 Operator Trees .. 33

4.5.3 Architecture and Implementation ... 33

4.5.4 Information Exporting .. 34

4.5.5 Profile Replication .. 35

4.6 Tracking Microservice ... 35

4.6.1 Data Model ... 35

4.6.2 Architecture and Implementation ... 36

4.6.3 Excel/Table File Insertion .. 37

4.7 Monitoring Microservice .. 38

4.7.1 Configuration and Event Definitions ... 38

4.7.2 Event Reception and Analysis .. 38

4.7.3 Notifications ... 39

iii

4.8 Playback Microservice ... 39

4.9 Users and Authentication ... 39

4.9.1 Authentication and Authorization Standards.. 40

4.9.2 Single Sign On with OpenIDConnect .. 40

4.9.3 User Profiles and Claims .. 41

4.9.4 Identity Federation and Shibboleth Example ... 42

4.10 Backoffice Web Application .. 42

4.11 External Client Applications .. 43

5 Middleware Operational Management .. 45

5.1 Docker and image creation ... 45

5.2 Kubernetes and Container Orchestration ... 46

5.3 Cluster Installation and Automation... 47

5.4 Deployment .. 51

5.4.1 WSO2 APIM and IS ... 51

5.4.2 WSO2 Micro Integrator ... 53

5.4.3 .Net Core Services .. 53

5.4.4 Kafka .. 53

5.4.5 Mediawiki... 54

5.4.6 Elastic (ELK) Stack .. 55

5.4.7 Database Engines ... 55

5.4.7.1 SQL Server ... 56

5.4.7.2 MySQL ... 56

5.4.7.3 MongoDB ... 57

5.4.7.4 Neo4j .. 57

5.5 Monitorization .. 58

5.6 External Network Access ... 62

5.7 Load Tests .. 63

6 Development Process and CI/CD ... 67

iv

6.1 Scrum Methodology ... 67

6.2 Team Foundation Server .. 67

6.3 Tests ... 69

6.4 CI Pipelines .. 70

7 Conclusion .. 73

References .. 75

v

Figure Index

Figure 1 SOA Architecture example .. 8

Figure 2 MSOA Architecture example .. 8

Figure 3 Fishery and Aquaculture integrated process (source: internal project documentation) 13

Figure 4 Initial Domain Model[62] .. 14

Figure 5 Middleware reference architecture[64] .. 16

Figure 6 Middleware Class Diagram, adapted from the journal[68] .. 19

Figure 7 Middleware components and information flow ... 20

Figure 8 WSO2 Core Features (source: wso2.com) ... 21

Figure 9 WSO2 AM Developer Portal homepage .. 22

Figure 10 WSO2 AM Analytics Dashboard... 23

Figure 11 Kafka APIs (source: dzone.com) ... 24

Figure 12 Wiki page (Sparatus aurata) ... 26

Figure 13 Taxonomy Infobox display (Sparus Aurata) .. 27

Figure 14 Taxonomy Infobox insertion (Sparus aurata) .. 28

Figure 15 Infobox API Swagger definition .. 29

Figure 16 Taxonomy Infobox API extraction (Sparus Aurata) .. 29

Figure 17 Mediawiki SSO configurations .. 30

Figure 18 Mediawiki permissions configurations .. 31

Figure 19 Governance Database Model ... 32

Figure 20 Governance Microservice Implementation Diagram ... 34

Figure 21 Tracking Data Model ... 36

Figure 22 Tracking Microservice Implementation Diagram[68] ... 37

Figure 23 Login Page WSO2 Identity Server .. 41

Figure 24 Backoffice Web Application - Operator menu .. 43

Figure 25 Kubernetes HA Topology - stacked etcd (source: kubernetes.io) 49

Figure 26 WSO2 APIM Deployment Pattern 3 (source: github.com/wso2/kubernetes-apim) 52

vi

Figure 27 Lenses IO Fast-Data-Dev Kafka Connect Dashboard ... 54

Figure 28 MongoDB Cluster Topology (source: mongodb.com) .. 57

Figure 29 Neo4j HA Architecture (source: neo4j.com) ... 58

Figure 30 OpenNebula – Physical Host Metrics .. 58

Figure 31 OpenNebula – VM Network Metrics ... 59

Figure 32 Kubernetes UI – Nodes .. 59

Figure 33 Kubernetes UI – Kafka Pods ... 60

Figure 34 Grafana – Kubernetes Cluster Dashboard .. 61

Figure 35 Grafana – Alert Configuration ... 61

Figure 36 Grafana – Alerting Channels ... 62

Figure 37 Tracking API Load test results – throughput ... 65

Figure 38 Tracking API Load test results – average response times ... 66

Figure 39 TFS CI Pipelines .. 68

Figure 40 TFS Micro Integrator pipeline ... 68

Figure 41 TFS Scrum sprint task board ... 69

vii

Table Index

Table 1 Kubernetes cluster node roles ... 50

Table 2 Load test results - Throughput and bandwidth .. 63

Table 3 Load test results – Response time ... 64

ix

List of Acronyms

AM WSO2 API Manager

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

AWS Amazon Web Services

CI Continuous Integration

CD Continuous Delivery

CPU Central Processing Unit

CRUD Create, Read, Update and Delete

CSS Cascading Style Sheets

DNS Domain Name System

EI WSO2 Enterprise Integrator

EU European Union

FaaS Function-as-a-service

HA High Availability

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

IPVC Politechnic Institute of Viana do Castelo

IaaS Infrastructure-as-a-Service

IS Identity Server

x

IT Information Technology

JSON JavaScript Object Notation

JVM Java Virtual Machine

PaaS Platform-as-a-Service

MI WSO2 Micro Integrator

MQTT Message Queuing Telemetry Transport

MSOA Microservice-oriented Architecture

NFC Near Field Communications

NFS Network File Server

RAM Random-Access Memory

REST Representational State Transfer

RFID Radio-frequency Identification

ORM Object-Relational Mapper

SOA Service-oriented Architecture

SPA Single-page Application

SSO Single Sign On

STOMP Simple Text Oriented Messaging Protocol

TFS Microsoft’s Team Foundation Server

UA Universidade de Aveiro

UI User Interface

VM Virtual Machine

VPN Virtual Private Network

1

1 Introduction

In recent years there has been a lot of attention drawn towards the safety and quality standards of

the food we consume due to the industrialization of the production processes that difficult

transparency by having a high complexity on the structure of the value chains with a wide variety

of stakeholders. Reported incidents and safety concerns made traceability systems a necessity to

improve customer trust.

Portugal is the holder of one of the biggest Exclusive Economic Zones in the world coming in at

11th place with 1 721 751 km2[1] which makes fishing a prominent activity in the country which

enables consortiums like Valormar[2] to apply new technologies to add value and improve the

efficiency to the sea food value chain.

The PPS4 subproject of the Valormar consortium described in this document has the goal of

digitizing that value chain to gather as much traceability related information about the products

along with static descriptions with the main goal of enhancing customer experience in the stores

during the purchase of the final products displayed on the shelf with more transparency and helpful

information.

1.1 Project Context

To digitize the value chain the proposal was to create a middleware with APIs to collect traceability

information and enable the tracing of product lots over the value chain. This middleware must be

versatile and prepared to integrate with a very broad range of operators, some with digital systems

already in place that track their inventories and others with only physical records.

This project is being developed in collaboration with other universities and companies that

participate in the Portuguese fish value chain giving us a case study, namely Docapesca[3] and

Sonae[4]. Docapesca handles product registration at the start of the chain and interaction with the

producers while Sonae participates closer to the consumer in the value chain being present both in

distribution and consumer sales.

2

Both companies operate at a national level and the final goal of this project is to enable the

collection of data at all stages of the value chain and to make this information available to any

interested party that can be end users which will benefit from them during and after the purchase of

the products as well as the companies that participate in the chain which will have the possibility to

gain new insights from the collected data.

Other components in the PPS4 subproject that will interact with the middleware are being

developed by other entities such as an in-store kiosk by IPVC[5] and operator integration

components by FlowTech[6], formelly FoodInTech which works with transformation operators and

other middlemen in the value chain.

1.2 Thesis Goals

For this thesis, my goals are to describe the design and implementation phases of the middleware

with in-depth technical details of the components I developed or installed. Besides the development

responsibilities of the middleware, I was also responsible for deploying and maintaining the staging

environment for development use which allowed me to learn a bit regarding cloud computing and

system administration. To complement my development tasks on the project with the knowledge

gained while maintaining the system I included in my work automating the deployment process in

cloud infrastructures and load tests to validate that deployment.

1.3 Working environment

The middleware was developed by a team of research fellows at the University of Aveiro working

under the supervision of Doctor Cláudio Teixeira. The team was composed of two backend

developers, a front-end developer, a tester and a biologist. I was one of the backend developers and

my tasks started with designing a final segmented domain model for the middleware and then

during the implementation phase I developed the information and user domains, cross cutting

features and inter-domain communications with some sparse contribution to the development of the

other domains.

Other responsibilities included integrating all the components together into a staging environment

for all the developers and creating continuous integration pipelines. I joined the project in the

design phases and have been contributing to the development phase which is the current stage of

the project at the time of writing this document.

3

1.4 Document Structure

After the introductory section, this document contains a chapter with a literature and technology

review of systems related to food traceability and industry standards currently in practice around

the world and a brief overview of the technologies used by the operators in the Portuguese fish

value chain.

Next comes a chapter covering the design phase of the middleware with an analysis of the previous

prototype and the new proposed solution with the change of architecture which is then followed by

a development chapter which contains in depth detail of the components I developed with a brief

explanation of the remaining components and their integration with each other.

There is a dedicated chapter for the deployment and configuration of all the tools necessary for the

system’s operation and the load tests used to validate that automated environment.

The chapter before the conclusion explains all the working methodology of the middleware team

with agile techniques and the CI/CD pipelines developed for running tests and the staging

environment.

5

2 State of the Art

During this chapter, a brief review of the existing research regarding food traceability systems will

be made to establish a comparison with the current state of traceability in the value chains to be

integrated in the middleware. Two main groups of studies were reviewed: studies related to the

regulations currently enforced in the sector which relate to or force the implementation of

traceability and the impact of this traceability on the businesses or consumers and studies focused

on implementing traceability in specific cases or focused on the technologies used like blockchain

or IoT related projects.

Furthermore, since the architecture type of the solution was already decided to be microservice-

oriented and event-driven a review of the current technologies applied that could be interesting to

use was done continuously during the development of the project.

2.1 Traceability studies – regulations, standards and social impact

On a global scale there clear differences in the regulations regarding traceability as reviewed[7] by

Charlebois S. et al. Although Portugal was not included in that study but as it is a European Union

(EU) member state its regulations are like the ones from the other EU countries included. The first

big push regulation wise that forced traceability systems to be gradually implemented was EU

regulation (EC) No. 178/2002 which laid down the general principles and requirements for food

law, also establishing the European Food Safety Authority and procedures to follow to enable food

safety. This law requires food related operators to: (1) be able to identify the source and destination

of a product; (2) have systems and procedures in place to provide this information to the relevant

authorities.

Aung and Chang’ study[8] defines traceability and why it is becoming a major requirement to

ensure high food quality and security standards due to the increase of consumer demand for this

type of information after the first major incidents like the Bovine Spongiform Encephalopathy

(BSE) outbreak, commonly known as the Mad Cow disease.

6

Even with the current laws in place and the improvements to the traceability infrastructure over the

2000s decade, issues are still common and new issues are starting to arise with the constant rise of

demand for food commanded by the population growth. The 2013 horsemeat scandal was

responsible for once again placing the customer’s focus on food traceability as this time the

incident was related to fraudulent products which greatly damaged the consumer’s confidence in

the supply chains, as reported by this article[9].

The current and future issues regarding food traceability are documented by King, T. et al in their

study[10] that relates the global trends to the developments in food safety and conclude that issues

like climate change, a growing and aging population, urbanization, and an increased affluence will

difficult the current food safety challenges and create new demands on the industry participants.

The rising issues singled out in the document are rising antibiotic resistance in bacteria, foodborne

viruses, chemical contamination, economically motivated adulteration of food, allergens and

intolerances, presence of nanoparticles and genetically modified food. These issues can be

mitigated with advancements in science and the ones mentioned in the document most relevant to

this dissertation are related to big data and traceability tools. The authors state that the

establishment of a Big Data culture which would allow for the processing of the high volume of

information captured by global supply chains to improve decision-making, insight discovery and

optimization of processes. The advancements regarding traceability tools are related to the

collection of information relevant to the informatics field are the employment of technologies like

RFID[11] and NFC[12] and the improvements of the integration of information between

businesses.

Regarding the technological advancement of the traceability in the fishing industry, Hardt. Marah J.

et al reported in their study[13] the challenges of implementing chain wide traceability stating that,

among other things, the lack of resources and the perception that traceability only provides social

benefits and not economic ones are big constraints preventing more companies from pursuing such

systems. The same study reports that only 40% of the producers inquired have traceability systems

which is a big barrier to chain wide traceability as in many cases the first step of the product’s

lifecycle is missing.

Last, but not least, he social impacts regarding traceability or lack thereof we have the example of

the COVID-19 pandemic which was caused by a virus who’s likely zoonotic origin being a wet

market in Wuhan, China, as reported[14] by Rothan, H. A., & Byrareddy, S. N. This incident has

had a very wide impact on a global scale regarding the population’s health, the environment and

the economy[15] as well as social impacts such as the negative effect it had on education[16],

forcing hasty transitions to remote learning. This pandemic once again led to a raise in awareness

7

of the customers who according to a study[17] in China have displayed and increase in food safety

knowledge and practices.

2.2 Traceability studies – technological approaches

Regarding the more practical examples of traceability in the supply chains, several studies and

projects have appeared in the recent years.

A. Kassahun et al. provide a reference architecture[18] for chain wide collaborative transparency

systems using the EPCIS[19] standard based on a Service Oriented Architecture[20]. The authors

that proposed the reference architecture placed heavy focus on the stakeholders that interact with

the proposed system identifying consumers, chain operators and third-party service providers with

an added focus to the chain operators which they divided in multiple tiers depending on the

technology level or their internal traceability systems with the main challenge being the integration

of all these different sources of information into the same system.

Regarding the EPCIS standard, it belongs to GS1 and its main goal is to allow the sharing of

information across and within enterprises with the final goal being to create the full history of

object as it travels through the business process steps. Most of the systems of the operators our test

case is trying to integrate in the first versions of the middleware are not compliant with any

standard so we are not implementing it for now, but in the future the platform can be made EPCIS

compliant. In our case study the level of complexity and state of technology of these existing

systems range from paper based records to retail industry standard software solutions by companies

such as SAP[21] with some cases who have their own internally developed systems.

In the fish industry this example[22] implemented the traceability of live fish along a supply chain

using RFID tags to collect information during the farming and transportation of the living

organisms.

A practical example[23] of a chain wide system similar to the one described in this document was

developed for the olive oil supply chain with the goal of using a web application to allow for

customer access to the traceability information.

A lot of the more recent studies are focused on blockchain technology for supply chain

collaboration with this paper[24] describing how integration could be achieved with this

technology. While a blockchain does add many benefits to a collaborative traceability system

regarding the integrity of the information collected and the decentralized aspect of the mode of

operation, the stakeholders decided not to pursue such type of system due to the concerns over the

higher complexity of implementation taking into consideration the existing systems that would be

integrated in the middleware.

8

2.3 Microservice based architectures

As stated in the introduction section, the choice of architecture type for the middleware was a

microservice oriented architecture. According to Sill, Allan’s publication[25], microservices follow

the old approach from service oriented architectures of splitting services into functions that can

interact via programming interfaces but with some improvements, driven by the goals of rapid,

interchangeable, adaptable and scalable components. This offers more flexibility during

development over the more formal implementation of SOAs. The type of architecture also goes

along well with the current container-based cloud environments and places a strong emphasis on

the use of RESTful APIs for messaging.

According to Indrashiri and Siriwardena’s book[26], SOAs appeared to combat the drawbacks of

monolithic applications by segregating the functionalities into reusable and loosely coupled

services usually segmented around the entities of the system with a Service Bus layer to centralize

those features for the consuming applications that can also be responsible for composing services

together to create more complex capabilities and the cross cutting features such as security. This

centralized Service Bus remained a monolithic entity which all the developers would share to

integrate their services. Due to the increase in complexity of the business capabilities required over

time, the Service Bus layer became a hinder to development mostly due to the inter-service

dependencies.

Event Service Product Service

Service Bus

Consumer Applications

Event Persistence Product Persistence

Figure 1 SOA Architecture example

Product Traceability
Service

Product Information
Service

API Management Layer

Consumer Applications

Traceability Information
Persistence

Product Information
Persistance

Figure 2 MSOA Architecture example

To overcome this, in a microservice oriented architecture the responsibilities of the service bus are

contained in each service so that they take care of the inter-service communications and

composition with an API Management Layer taking over the remaining cross cutting features. The

resulting microservices each offer their own well-defined business capability developed and

9

deployed independently with corresponding interfaces to expose the information to the other

microservices and to the outside consumers.

2.4 Technology review

Many tools are required for the development and deployment of a microservice oriented system,

and a lot of the choices were already made when I joined but a technology review as still done to

evaluate these choices.

For the API Management Layer, the API Manager from the WSO2[27] product family was chosen

due to being open source, installable on premises and compatible with other products from the

family such as the Identity Server. Most of the current solutions are offered only as a service like

IBM’s API Connect[28] or Azure’s API Management[29] and could not be used in the context of

this project due to the private cloud resources allocated. Other tools like Apigee[30] and 3Scale[31]

were not considered due to their price as there was a preference for open-source tools. A valid

alternative for WSO2 would be Kong[32] which presents similar features but is not as customizable

as WSO2. The final reason for choosing WSO2 was its presence in other department projects

which would enable the sharing of knowledge between teams.

Regarding the inter-service communication and some other messaging needs, a message broker or

streaming platform was needed and, in this case, the most suitable was Apache Kafka[33], mostly

due to its performance and the APIs it provides, like the Connect API which has many connectors

available for the creation of data pipelines to and from a lot of different database engines.

Alternatives such as ActiveMQ[34] or RabbitMQ[35] use higher level messaging protocols such as

AMQP[36], STOMP[37] or MQTT[38] which makes it more interoperable than Kafka which uses

plain TCP for communications but at the cost of having more overhead which makes them less

efficient and performant.

For microservice development many frameworks are available. The one proposed for the

development of the internal applications was .Net Core[39] which is the cross-platform successor

to Microsoft’s .Net Framework, with one of the main reasons being that the technological leader in

the project is specialized in Microsoft tools. It is open source and supports the F# and C# languages

and one of its main advantages over the others is the async programming instructions that allow for

a better performing application. Alternatives such as JakartaEE[40] and Spring[41] based on Java

are also very good offering more abstraction and with more community made libraries available.

Another advantage of Java is that it is cross-platform due to the JVM based execution but

nowadays C# can also be compiled for most environments. Other alternatives for microservice

developments have also been popping up such as FaaS platforms like Azure Functions[42] or AWS

10

Lambda[43] which claim to substantially decrease development time with a serverless model with

the drawback of becoming perhaps too dependent on the providers and sometimes limited to what

other components can be used for storage and integration to what that specific provider has

available.

For the persistence needs of each microservice a lot of different types of databases are available

and, in each case, the most suitable one will be evaluated. A preference for Microsoft’s SQL

Server[44] was established in all the cases where a relational database engine is required unless it is

more convenient to use another if any compatibility problems arise. Once again, this choice was

imposed due to the familiarity with this software of our partner entities. In some cases MySQL[45]

for compatibility purposes and in other cases non-relational engines were used. These non-

relational engines were Neo4j[46], which a graph database and MongoDB[47], a document based

database. The choice of these non-relational databases was made by the developers of the

components that make use of them. In the case of MongoDB the main reason was the bigger

flexibility regarding the data structure of relational engines. Neo4j was adopted as an experiment to

store traceability information.

Regarding containers for the packaging and deployment of the applications, Docker[48] is

currently the industry standard regarding container engines with OpenShift’ rkt[49] and Apache

Mesos[50] as very niche alternatives with less adoption and less supporting projects.

Container orchestration tools allow for the automation of deployment, management, scaling and

networking of the containers, with the most popular solutions are Docker Swarm[51] and

Kubernetes[52] with the latter one being way more advanced and feature rich with support for

automated scaling and better auxiliary tools for deployment and monitoring of the components.

For situations when orchestration tools cannot be used or are not enough to achieve the level of

automation desired, automation tools like Ansible[53], Chef[54] and Puppet[55] can be used with

their main difference being in the approach they provide with Ansible being configuration-driven,

Chef code-driven and Puppet model-driven. The choice made was Ansible as it was the most

simple and easiest to learn and although it is not as complex, it had enough features for our needs

and many community projects available online for automating the installation of popular software.

The hardware infrastructure used is managed using OpenNebula[56] which allows for the creation

and management of virtual machines with volumes attached. Alternatives such as OpenStack[57]

for cloud management although more advanced at the moment of writing were not used as the

choice was out of the project’s control. Services providers like AWS and Azure were not used as

no budget was allocated since there was this private infrastructure available.

11

Completing the list of main technologies required is a Continuous Integration and Continuous

Development platform and the one used was Microsoft’s Team Foundations Server 2017, which

has recently been updated and renamed to Azure DevOps[58] and is maintained on premises by the

university’s IT department. Alternatives like Jenkins[59] were also considered, primarily for the

better flexibility but ended up not being necessary with the other platform already readily available.

12

3 Initial Project State and Design

When I joined the project there was already a substantial portion of the design phase done and

documented such as a preliminary study of all the transformation processes in the value chain and a

draft design of the middleware. The first steps of the development team were to study everything

that had been researched and reported related to the project to make the final adjustments to the

design before the start of the implementation.

3.1 Domain Analysis

The focus of the domain analysis was the information regarding the traceability of the products and

mapping the operators that would participate in this early iteration of the middleware and what

information they could provide. At this stage there were already plans to include descriptive

information related to the products and value chain to complement the traceability information and

monitorization features centered around the traceability information but no concrete ideas yet.

For the Portuguese fish value chain there was a study[60] conducted where the current businesses

processes were modelled using BPMN[61]. The processes of several businesses were analysed and

modelled and to fully understand the flow of the products over the value chain, abstract integrated

processes were drawn. Taking the example of the fish and fishery value chain integrated process

developed by the study present in Figure 3, we can understand the moments when information

about the products is collected. In this process the products start their lifecycles either on a vessel

operator or on an aquaculture producer operator with capture or production events, respectively.

The product then goes through a series of retailers, transformers and logistics operators where

quality assessment, storage, transformation, transportation and sale events may occur until it

reaches the hands of the final consumer.

13

Figure 3 Fishery and Aquaculture integrated process (source: internal project documentation)

With the completion of this analysis the conclusion was that endpoints to register, query and update

information about the products would be needed to achieve the purpose of the middleware of

collecting and integrating all the information.

3.2 Middleware Requirements and Early Design

Following up the domain analysis an article[62] describing a possible design for this traceability

middleware was published with the requirements. This first iteration was solely focused on the

integration of the traceability information and split the requirements over 3 user roles and

anonymous users:

1. Platform Admin which must be able to:

a. Create, edit and deactivate Operators

b. Create, edit and deactivate Operator Admins and Operator Users associated to an

Operator

c. Create, edit and delete information related to the global platform

2. Operator Admins which must be able to:

a. Create, edit and deactivate Operator Users from their own Operator

b. Create, edit and deactivate Event Records regarding lots related to their own

Operator

3. Operator Workers which must be able to:

a. Create Product Lots and Event Records for the Operator they work for

b. Edit or delete the Event Records they created

4. Anonymous Users which must be able to:

14

a. Query the middleware for the Event Records related to a Product Lot using the

Lot’s identifiers

Every product lot has an identification number associated. Uniqueness of these numbers is not

guaranteed chain wide, not even inside the universe of identifiers belonging to that operator. To

improve uniqueness of the identifier other attributes like the associated operator and the year of

creation will be used.

Some other requirements regarding the structure of the traceability events were also present during

this iteration but ended up being discarded in later versions to allow for configurable event

structures.

On the non-functional requirements side of the list, it was established that the middleware should:

1. Be able to deal with the insertion of events asynchronously

2. Be able to scale horizontally

Figure 4 Initial Domain Model[62]

The domain model obtained from this draft design of the platform depicted in Figure 4 contains the

main entities which will have information stored in the middleware: the users, events, products, lots

15

and operators. Some of these entities like the operator and event types have many specializations to

tailor the needs to each scenario which we viewed as an hinderance as with every new type of

traceability event or operator added to the middleware, changes to the model would have to be

made that would imply creating a lot of new code and changes to the database schema.

The architecture proposed in this phase consisted of a MongoDB[47] document database for the

persistence needs connected to Kafka Consumers and Producers for the insertion of traceability

events and a Node.js[63] Backend Application for the operations regarding the remaining entities.

Everything was to be deployed using Docker containers. The Backend Application would expose

REST APIs secured with JWT tokens using the Passport.js middleware for authentication.

The redesign of this version of the middleware was motivated by the desire to integrate some other

systems like a wiki engine to store static information useful to the description of the value chains

into the middleware and the changes to the domain to allow for more flexibility regarding the

definition of new traceability event types, which in turn increased the complexity of the system,

motivating the need to do some segmentation of the domain into smaller systems to completely

embrace the microservice paradigm.

3.3 Improved Proposed Architecture

The type of architecture chosen for the development of the middleware was a microservice oriented

architecture. This choice was made due to the diversity of data that will be saved and distributed by

the platform and other advantages related to the scalability and extensibility of the system in

relation to a monolithic architecture.

In a microservice oriented architecture, the complete system is segmented into small independent

components with the least possible complexity. Each of these blocks can be developed

independently, facilitating distributed development. In this architecture, priority should be given to

the division of responsibilities of the components so that there are no repeated features. This type

of architecture is indispensable in the development of applications for a native cloud model, taking

advantage of the latest advances in technologies related to container virtualization and orchestration

to deploy and maintain the system.

Figure 5 shows an example of the components contained in the architecture designed for the

middleware with microservice examples and how they are related and the particularities used in

this project like the Identity Provider component.

16

Microservice 1 Microservice 2

Client Applications

 Persistence
Module

Broker

Identity
Provider

API Managament/Gateway

Service and
business logic

 Persistence
Module

Service and
business logic

Middleware

Figure 5 Middleware reference architecture[64]

The internal communication between the developed components will be done through a message

broker, as is common in this type of system[65]. A message broker is a software component

responsible for receiving messages and forwarding them to their destination. They are generally

used in systems for asynchronous communication, the publish and subscribe standard being the

most used.

Another component present in this type of architecture is an API Manager[66] or API Management

Layer. A disadvantage of this type of architecture is the complexity added to the system due to the

existence of several APIs with different versions that must be managed and maintained, being that

the layer of management facilitates this work and implements the functionalities of the system

transversal to all microservices that will be explained in more detail in the implementation chapter.

Also displayed the architecture diagram example is an Identity Provider that serves as a single

piece to authenticate users in the system during the routing phase and removing the need to

implement security in microservices as long as the deployment isolates the components properly

from outside connections.

3.4 Domain Segmentation

By sticking to the patterns and practices used in a Microservice Oriented Architecture, Domain

Driven Design[67] was used which, as implied by the name itself, focuses primarily on the data

17

domain and the decomposition of this domain in sub-domains to enable the right level of

granularity for each microservice.

During the design step, four domains were identified that should be developed as separate modules.

This segmentation was done focusing primarily on the volume of data and the frequency of change

of the entities present in the data model of the full middleware as well as the relations between the

entities. Following is the list of domains:

1. Information: Mostly static data regarding the businesses, processes, products and people related

to the supply chain. This data can be of any type and unstructured such as long text descriptions,

videos or images.

2. Tracking: Data related to the events and product lots registered by the operators in the value

chain, which is used to create the history of the final product lot and for logging and tracing

purposes.

3. Governance: Comprises the management of the runtime configurations for the traceability event

data structures, related monitoring triggers and internal access control. This approach allows the

operators to adapt the middleware to their needs while maintaining a fixed structure providing

advantages for data warehousing and data mining operations.

4. Users and Access control: Contains information about users, roles and permission and the user

data related to the security mechanisms of the API Gateway.

19

4 Middleware Design and Development

This chapter describes the development phase of the middleware focusing on the final version of

the components as of the moment of writing of this document, starting with a simplified broad

overview of the entire system and the moving to a more detailed description of each domain. An

earlier prototype of this middleware was documented in a published article[64] for the CISTI 2020

conference.

4.1 Full Overview

The domains obtained in section 3.4 were developed as separate systems, each with their own

domain models and entities. The complete class model with all the entities and their cross-domain

relations can be viewed in Figure 6.

Lot

lot_idPK

Operator

operator_idPK

operator_parent_FK

*

1

Event

event_idPK

event_operator_FK

event_user_FK

EventType

event_type_idPK

event_type_name

event_operator_destination
_FK EventInfo

event_info_idPK

event_info_field_FK

event_FK

*

0..1

*

1

event_start_timestamp

EventField

event_field_idPK

event_field_name

event_type_FK
*1

EventTypeMandatoryFields

event_type_mandatory_field_idPK

event_field_FK

event_type_FK
*

1

*

1

*

1

event_info_field_value

event_info_lot_relevant_FK

*1

0..1

*event_end_timestamp

EventOutputLot

event_lot_idPK

external_identifier

event_FK

lot_FK

event_info_timestamp

*1
* 1

event_field_data_type

lot_product_FK

Product

product_idPK

product_wiki_url

*

1

other_external_source

event_type_wiki_url

EventInputLot

event_lot_idPK

external_identifier

event_FK

lot_FK

*

1

*

1

OperatorInfo

operator_info_idPK

operator_FK

operator_info_value

1
*

operator_info_key

1

*

User

user_usernamePK

user_contact_FK

user_first_name

user_surname

user_operator_FK

*

0..1

WikiPage

page_urlPK

WikiInfobox

infobox_keyPK

*

1

*

1

is_role

UserIdentity

user_usernamePK

user_roles

user_claims

11

InformationGovernance TrackingUsers and Acess Control Monitorization

Trigger

SendCondition

Criteria

Action

Configuration

ConfType1

ConfType2

CriteriaType Destination

1

*

1

1

*

1

Domains:

1

*

1

*

1

*

description
aditional_message_to_send

event_type
operator

criteria_type

field
field_type
condition
value
message

action_protocol
action_destination

key
value

key
name

Figure 6 Middleware Class Diagram, adapted from the journal[68]

20

Each domain is colour coded and in the cases of the Information Users and Access Control only

simplified views of the classes inside that specific software were drawn, as they are very complex

tools and the goal here was to provide a view of what information is relevant in the context of the

Middleware.

The final visualization of all the components and their communications is present in Figure 7. The

focus of this diagram is on the flow of information, placing an emphasis on the Kafka broker, with

each rectangle inside representing topics used to create data pipelines.

Governance
REST

Tracking REST

Integration
Processor

integration

governance

Backoffice UI

Integration
REST/File/

MAIL

Integration

Kafka

Governance

Wiki
Main

Replay REST

Triggers REST

Kafka
Connect

Triggers

Kafka
Connect

Wiki
Cargo

Wiki REST

Wiki

Kafka
Connect

Trigger
Processor

Trigger
Notifier

Integration
Notifier

integration-
notification

trigger
notification

trigger
processing

API Manager

Identity
Provider

Users and
APIs

Figure 7 Middleware components and information flow

21

The black connections represent the flow of information from the API Management Layer to each

component that implements an API and then to each data source or sink components. The

connections coloured in blue represent the cross-domain communication of all the information

required in multiple contexts. Red connections are related to the flow of information regarding user

credentials and authentication. Finally, the yellow connections represent the flow of outbound

asynchronous messages sent by the Middleware to external systems.

4.2 API Management and Gateway

For the management and gateway layer, the WSO2 product family was chosen. These products are

designed to support service and microservice-oriented systems. They are open source, highly

versatile and modular, allowing developers to change or add features when they are not yet

provided by the base product.

All components of the WSO2 ecosystem are developed in Java and composed of the WSO2 Carbon

platform and the modules of the necessary functionalities for that component. Figure 8 illustrates

all the tools available with the WSO2 API Manager and the integrations it can do with the backend

services.

Figure 8 WSO2 Core Features (source: wso2.com)

The WSO2 API Manager comes segmented into separate components that are configured to work

together as the gateway and management layer of the middleware. These components can be

deployed in an all-in-one instance or deployed as separate entities to optimize the resource

allocation.

4.2.1 Developer and Publisher Portal

The developer portal (API Developer Portal) allows developers of applications that will

communicate with middleware to consult the specification of the APIs that are available. This

22

portal makes it possible to register client applications to generate the necessary credentials for the

consumption of services. This specification follows the OpenAPI 3.0 standard[69] implemented by

Swagger[70]. Other information available on this portal is documentation written in markup

language, access points to services and self-generated libraries for the consumption of APIs in

various languages. The current list of APIs available from the middleware is shown in the

Developer Portal, as in Figure 9.

Figure 9 WSO2 AM Developer Portal homepage

The management portal (API Publisher) is used by platform administrators to control the entire

operation of each API, such as transport settings, security, permissions, change the specification or

limit the number of requests allowed in a given time interval.

4.2.2 API Gateway and Traffic Manager

The centralization of the various APIs in a single access point is done in the API Gateway. This

Gateway puts into practice the settings selected in API Publisher for each API, mediating between

applications and the backend. During this mediation, the tokens are validated with the Key

Manager.

Traffic Manager monitors the API Gateway and communicates events of system state changes to

the other components, such as blocking APIs above the usage limit, revoking tokens and changing

settings.

4.2.3 Token Generation and Validation

For user authentication in the APIs, the WSO2 API Manager has a key management component

(Key Manager) that can be replaced by the WSO2 Identity Server with the installed Key Manager

package that expands the features available as predefined integrations with other Identity Providers.

23

For authorization purposes, oauth2 tokens and JWT tokens are available and applications can

choose the type that is most convenient for them.

When a request reaches the API Gateway, it queries the Key Manager to validate the token. After

the default validation, the tokens are removed but if the backend needs contextualization of the

application or the user, this is done during the mediation phase by issuing a JWT token specific for

the backend or adding certain metadata to the request, such as the user or application’s information.

4.2.4 Monitorization

Many of the products in the WSO2 family have monitoring components such as API Manager and

Identity Server. There are Analytics Worker components that receive information from the

components to be monitored and store them in a database and the Analytics Dashboards that

queries that database to create graphical visualizations. This information concerns the use of APIs

and applications, as exemplified in Figure 10.

Figure 10 WSO2 AM Analytics Dashboard

4.3 Inter-Domain Communication

Regarding the communication and replication of information shared between domains, the Kafka

distributed system was selected. This system is an event streaming platform and has a high

adoption in microservices oriented architectures. The main advantages are its performance,

scalability and fault tolerance, with the Connect API being a nice extra that eases some

development tasks related to the creation of data pipelines.

24

4.3.1 Kafka in event driven scenarios

Kafka has 3 main capabilities: publish and subscribe to event streams to import or export

information, the storage of event streams and the processing of those events. The communication of

events is done through the exchange of messages using TCP connections.

To use the platform, libraries are available in several languages that use the APIs exposed by Kafka

from which we use the Consumer API, Producer API, and the Kafka Connect API to create data

pipelines, as exemplified in Figure 11.

Messages are organized into topics that can have multiple partitions to share the load between

nodes and replicas for better availability. The messages are stored in the partitions in order of

arrival with the offset being the identifier used. In addition, the message may also have an

associated key that is unique to each topic.

Figure 11 Kafka APIs (source: dzone.com)

4.3.2 Auxiliary components

Within the Kafka ecosystem there are several tools necessary for the cluster to function and others

that facilitate integration between microservices.

Zookeeper is used as the cluster controller; it is there that all settings and metadata of existing

topics are saved. To view this information, dashboards such as Kafka Manager, Lenses IO and

Confluent Control Centre were used.

25

The Schema Registry uses Kafka topics to store additional metadata about the topics and exposes a

query API for that information. This query API can be used by applications to force a certain

structure in the messages for each topic.

By placing a schema in the topics, it is possible to use the Kafka Connect API with modules

already made to establish data pipelines between the system components and Kafka. The main

connector used was the Debezium[71] for SQL Server uses the events generated by the database

engine's monitoring agent and the database's transaction log to create events as changes are made.

Another advantage of Debezium is that it automatically detects the database schema and creates a

corresponding Avro[72] schema in the Schema Registry to facilitate the insertion of that data in

other domains.

The remaining connectors used were JDBC Sink, which allows insertion of data into a relational

database and sinks for ElasticSearch[73] and MongoDB.

4.4 Information Microservice

The goal for this microservice was to collect and provide static information about the businesses,

processes and entities that make up the value chain. This information can be used to enrich the

traceability story presented to the customers during their product selection process.

For this purpose, we decided to configure and deploy a wiki for the middleware. A wiki is a

website that makes use of a wiki engine which works like a content management system. The

content is usually stored in pages usually written in a markup language which can then be grouped

and linked with lists and categories. One of the main advantages of using a wiki is the collaborative

editing capability that can be configured to allow for very open settings so that anyone can produce

content for the wiki. This supresses the need to go through a very extensive data collection process

to properly document the supply chain and shifts that responsibility to the businesses and entities

themselves which can insert any information they see fit and link it to their products or events.

4.4.1 Mediawiki Engine

Several wiki engines exist with the most popular being Mediawiki[74]. Mediawiki is the engine

behind the Wikipedia Project which is a collection of wikis written in multiple languages that

stores information about everything and anything. This engine was written in php and uses a

relational database to store the created pages. Some other engines may only support static content

and use a git repository to store the wiki pages such as Wiki.js[75]. The database engine used

during the development process was MySQL, deployed using Docker. All the extensions necessary

are available on the Mediawiki project website.

26

To install all the necessary components and prepare the Mediawiki environment a Dockerfile was

used to extend the base Mediawiki docker image fetching and installing plugins from the

Mediawiki repositories to the local extension folder. Most of the wiki related configurations are

made in the file LocalSettings.php such as the database connection string, wiki hostname and

security settings.

A complete example of a wiki page created in the middleware is shown Figure 12 with the Sparatus

Aurata page containing descriptive information, some images and some infoboxes for structured

information.

Figure 12 Wiki page (Sparatus aurata)

4.4.2 Infoboxes and Text Extraction

To improve the information insertion and retrieval side of the wiki we used a combination of the

following extensions: Scribunto[76] and Cargo[77] to allow the usage of templated infoboxes with

a fixed structure. One of the many challenges of working with a wiki is the wikitext structure which

is not very friendly to extract data from, as stated in this article[78] about Semantic Mediawiki

which is another extension for Mediawiki that improves the functionality in some key areas:

Consistency of content, Accessing knowledge and Reusing knowledge. Cargo is an extension that

provides similar but simpler functionality and with better reported performance in relation to

Semantic Mediawiki and it allows us to use relational database tables to store and read information

from the wiki. The infobox templates created with the Scribunto parser are modified to make use of

these Cargo tables so any infobox created in a new wiki page gets stored in the corresponding

Cargo Table. Cargo also extends the REST API endpoints available in Mediawiki with services

27

that allow the querying of the infobox tables to allow other applications to use this data. The tables

created are stored in a separate database using the same MySQL database engine as the wiki.

After the installation, the extensions must be configured with the connection properties and

credentials to access the database engine in the LocalSettings.php.

To create an Infobox template there are 2 main components: the visual component and the text

extraction component. The visual component is written in wikitext and includes some html code.

Instead of developing my own visual infobox template I exported the base one from the Portuguese

Wikipedia website and imported it and its dependencies to the middleware’s wiki with some minor

visual adjustments. This base template allows for the usage of a limited set of key value pairs to

create more specific infobox templates and the name of the page in the wiki is Predefinição:Info.

An example of a template needed was a Taxonomy box to insert and display information regarding

fish species. The visual portion of the template is also base on a similar one in the Portuguese wiki

which extends the base Info template and is called Predefinição:Info/Taxonomia. This template

was then again extended with another final layer to add the cargo text storage and extraction

instructions which is located in the page Predefinição:Info/Taxonomia/Cargo. After saving the

cargo template the corresponding database table must be created manually by using the recreate

table button on the template page or the php scripts included by the extension. The final visual

result from this template can be seen in Figure 13.

With another extension called TemplateData we can create metadata for the infoboxes with the list

of fields supported, data type and a brief description. This metadata is used by the Visual Editor

extension to generate forms, as in Figure 14, to allow for a more user-friendly insertion of each

field instead of using wikitext.

Figure 13 Taxonomy Infobox display (Sparus Aurata)

28

Figure 14 Taxonomy Infobox insertion (Sparus aurata)

The REST API provided by Mediawiki and Cargo for information is very extensive and a bit

complex to use as for the extraction of an infobox the developer must know the complete structure

of the infobox which might not always be possible. To simplify this API, we used an Enterprise

Integrator to remove some of the metadata gathering steps and clean some of the internal structure

of the tables that does not need to be extracted from the wiki. The integrator used was WSO2

Micro Integrator as it provides multiple ways to develop the solution with a graphical drag and

drop IDE or xml configuration files. Other advantages are that it is highly compatible with the

other WSO2 products used in the project and it allows for the addition of a Swagger documentation

which is then added to developer portal when the API is deployed.

29

Figure 15 Infobox API Swagger definition

The API only has GET methods and is divided in 2 main groups: Info and Infobox, with the

corresponding Swagger console in Figure 15. The info group has methods to extract content based

on the page it is at. The methods allow for the entire page to be extracted in multiple formats like

html or wikitext or only some metadata such as inboxes that exist on the page which can then also

be extracted. The infobox group is related to the infoboxes themselves such as their fields, list of

entries and other metadata. The information is always exported in JSON as exemplified in Figure

16.

Figure 16 Taxonomy Infobox API extraction (Sparus Aurata)

30

4.4.3 Categorization

One of the main features of the Mediawiki engine for page indexation is Categorization.

Categorization allows for the grouping of pages into categories by using category tags placed in the

wikitext. In our Taxonomy infobox a lot of the fields stored and displayed can also be interpreted

as categories and by adding category tags to the applicable fields in the infobox during the wikitext

generation process we can create Category pages which will automatically list all the species

belonging to that category and since this list is still a page some generic information can also be

added.

4.4.4 Authentication and Permissions

Regarding authentication, the extensions adopted were OpenIDConnect[79] and Plugabble

Auth[80] to implement Single Sign On using our WSO2 Identity Server and the OpenID Connect

standard.

The extensions are configured in the LocalSettings.php files with the OpendID Connect client ID,

client secret and scope, as shown in Figure 17. This php extension uses the authorization code

authentication flow.

Figure 17 Mediawiki SSO configurations

For the wiki permissions we disabled local account creation to use only SSO and enabled account

autocreation to automatically confirm the accounts generated by the extension during a user’s first

login. As of the moment of writing, the feature of the OpenID Connect extension that was used that

would enable the wiki to receive roles for the user from the Identity Server is not fully tested and

not part of the major release so currently, the local wiki groups are being used for that purpose, as

configured in Figure 18. By default, users are not allowed to edit or create pages and must be

31

promoted by an admin to start contributing to the wiki. In the future this can be changed to allow

for public users to send articles that are reviewed by wiki admins and published if appropriate.

Figure 18 Mediawiki permissions configurations

4.4.5 Static Content and Visual Tweaks

The Mediawiki engine allows for the upload of static content such as videos and images, which are

stored in the filesystem mounted to the container while also storing metadata about the content in

the database. For these kinds of files to be uploaded, some request size limits had to be raised. This

had to be done for the wiki engine, php interpreter and for the NGINX reverse proxy allowing

fronting the wiki for public access.

Some visual themes were tested like Tweeki[81] to improve the appearance of the wiki and the

usability, as this theme used bootstrap to make the web application responsive but due to some

incompatibility issues with the infoboxes at the time of writing, the default skin chosen was Vector

which is the current Mediawiki default.

The remaining visual tweaks done were some adjustments to some of the infoboxes and the usage

of the project logos for the footer and icons.

4.5 Governance Microservice

This microservice was not part of the original plans but after the analysis of the draft database

model, concerns were raised that with a limited pre-defined set of event types a lot of

incompatibility issues could appear when integrating operators and they would have to be solved at

the database level and on a case-by-case situation.

To mitigate that problem, we opted instead for this governance component which would allow for

each operator to manage the structure of the information they intend to push to the system. These

new features were grouped with all the management features that were planned from the start

during the domain segmentation phase.

32

4.5.1 Data Model

The ER Diagram in Figure 19 presents the final database model conceived for this data domain.

The Operator entity can represent any entity belonging to the value chain from an entire company

to automated systems. In this domain it is mostly used to define the User’s scope inside the

middleware by only allowing this user to manage configurations inside its own Operator context.

Private information regarding the operators can also be inserted using the OperatorInfo entity as a

key-value store and more descriptive information about the Operator can also be added in the

Information Domain and linked to the corresponding entry in this domain.

The User entity contains replicated information from the User Domain and is present in this

domain for the relation with the Operator entity.

Operator

operator_idPK

operator_parent_FK OperatorInfo

operator_info_idPK

operator_FK

operator_info_value

1

*

*

0..1

User

user_usernamePK

user_contact_FK

user_first_name

user_surname

operator_info_key

1

*

user_operator_FK

EventType

event_type_idPK

event_type_name

event_type_wiki_url

EventTypeMandatoryFields

event_type_mandatory_field_idPK

event_type_FK

event_field_FK

EventField

event_type_idPK

event_field_name

event_type_data_type

Product

product_idPK

product_wiki_url

other_external_source

*

1

*

1

is_role

Figure 19 Governance Database Model

To establish the connection with the information stored in the wiki the Product entity allows for the

management of the wiki page where the description of each product is accessible.

Regarding the event related governance of the system, three Entities were used: EventType,

EventTypeMandatoryFields and EventField. These allow for the definition of Event structures with

a set of mandatory fields which can be of any primitive data type or string.

33

Other permission related entities were planned but not fully implemented and tested as of the

moment of writing. These were to be used to provide even finer granularity to the permissions of

each user like for example allowing only the insertion of a specific type of event. Currently the

access control can be first implemented based only on the Operator the User belongs to and the

user profile they currently have by adding Operator contextualization to the EventType and Product

entities. These users’ profiles are defined and managed in the User Domain and can be: Operator

User, Operator Admin, Platform Admin.

4.5.2 Operator Trees

The Operator entity possesses a foreign key field that points to the same entity that can be used to

specify a parent Operator. The main reason for this implementation was the potential lack of

collaboration, due to lack of means from some of the Operators in the value chain that could

prevent the collection of information from the entire supply chain, allowing for a proxy operator to

manage their information for them. In other cases, like the bigger companies, it also makes sense to

allow for segmentation into multiple operators as a single entity may be responsible for dozens of

stores or warehouses. By allowing Operators to be associated with a parent Operator Trees can be

formed with increasing levels of granularity as the tree is expanded. This allows for the supply

chain to be integrated gradually with the event insertion responsibilities being delegated further

down the tree as it expands.

4.5.3 Architecture and Implementation

For the implementation of all the CRUD operations to the entities of this data domain we opted to

use Microsoft’s .Net Core framework (version 2.2) to implement RESTfull API Controllers for

each entity. These entities were created using the Entity Framework Object-Relation Mapper which

allows for the usage of Object-Oriented Programming’s classes to generate all the database code

required. Thus, the development of this component was done using the code-first methodology

allowing EF Migrations to evolve the database during the development process. For the

deployment process we opted instead to use DACPAC[82] packages with the goal of maintaining

the information in the staging environment and this allowed us more control over that migration

operations in the cases that this process could not be done autonomously.

Figure 20 describes the flow of the information through the components used to implement this

domain. The inbound requests made to the API Gateway are routed to the .Net Core applications

which communicate with the persistence layer to perform the desired operation and generate the

output required for the request’s reply. The remaining components displayed are related to the

34

replication of information across all the domains using Kafka as central component to collect and

distribute this information.

Governance
DatabaseTCPHTTP REST

TCP

API Gateway
REST Controllers

Debezium SQL Source

TCP

Identity Server

HTTP REST
Kafka Connect (jdbc)

TCP

TCP

Figure 20 Governance Microservice Implementation Diagram

4.5.4 Information Exporting

For the information managed in this domain that is also required in other domains we had 2 main

solutions for this problem. Initially we planned to implement the push of all this information

manually using the Kafka Producer API during the CRUD operations of the REST API. After

further research we opted instead to use the database’s transaction logs as this would be easier to

implement with already existing software solutions. Another advantage is that it does not place an

extra load on the engine as it does not constantly query it to retrieve the information.

With Microsoft’ SQL Server this is done by the SQL Agent component which is responsible for

capturing all of the events that occur in the database engine. This feature is only available in the

Developer and Enterprise editions of the software. With the agent enabled the only other

configuration step on the database side is to enable Change Data Capture on the desired databases

and tables with SQL queries.

To push the information from the logs to the Kafka Topics, Debezium was used which is a

distributed platform for change data capture which uses the Kafka connect API to implement

connectors to transfer information from Kafka to a database and vice-versa. In this case we used

the Debezium MSSQL Server Source which observes the transaction log and inserts all the changes

as events to the Kafka platform. These events are organized in topics with each entity having its

own dedicated topic and this allows for any interested party with access to the broker to receive the

events of the entities they require information on.

35

4.5.5 Profile Replication

Regarding the information required in this domain that is managed by other domains, JDBC Sink

Kafka Connectors were used to update those entities in this domain. In this case the user related

information is replicated from the User and Access Control domain which will be described later.

One small difference regarding this information replication in relation to the rest of the project is

that the component that was responsible by the information was not developed internally, thus the

level of control and customization was much lower.

To complete the centralization of the middleware’s operator management related features we were

required to provide a way to manage the user access profile from the Governance API and for that

purpose this feature was implemented in this domain with a proxy to the API that allows this in the

User and Access Control that uses implements the SCIM2[83] standard. We opted for this method

of information replication instead of having this feature handled by this domain and having

connectors manipulating the users’ database. This provides better interoperability in case there was

a need to change the components implementing the User and Access Control domains for other

similar Identity Providers.

4.6 Tracking Microservice

This data domain is responsible for the aggregation of the traceability events that occur in the

supply chain.

4.6.1 Data Model

The data model depicted in Figure 21 shows the tables currently implemented in this domain. The

Product, User, Operator, EventType, EventTypeMandatoryFields and EventField are all replicated

from the Governance domain and are represented in a darker colour. The Event, EvenInfo, Lot,

EvenInputLot, EventOutputLot and EventInfo are the tables used to store all the traceability

information.

36

Lot

lot_idPK

Operator

operator_idPK

operator_wiki_url

*

1

User

user_usernamePK

Event

event_idPK

event_operator_FK

event_user_FK

EventType

event_type_idPK

event_type_name

event_operator_d
estination_FK EventInfo

event_info_idPK

event_info_field_FK (Key)

event_FK

*

0..1 *

1

event_start_timest
amp

EventField

event_field_idPK

event_field_name

event_type_FK
*1

EventTypeMandatoryFields

event_type_mandatory_field_idPK

event_field_FK

event_type_FK
*

1

*

1

*

1

event_info_field_value

event_info_lot_relevant_FK

*1

0..1

*

event_end_timest
amp

EventOutputLot

event_lot_idPK

external_identifier

event_FK

lot_FK

event_info_timestamp

*1
* 1

event_field_data_type

lot_product_FK

Product

product_idPK

product_wiki_url

*

1

other_external_source

event_type_wiki_url

EventInputLot

event_lot_idPK

external_identifier

event_FK

lot_FK

*

1

*

1

Figure 21 Tracking Data Model

4.6.2 Architecture and Implementation

The focus during the implementation of this microservice was enabling asynchronous insertion of

traceability Events through a REST API. The requests from the integration applications are routed

through the API Gateway to a WSO2 Micro-Integrator instance that registers the requests in Kafka

to be processed and persisted in a database. This process is done by a .Net Core application that

consumes requests from Kafka and inserts them to the Microsoft SQL Server engine used with the

Entity Framework ORM (Object Relational Mapper). In later instances of development other

interfaces were created to push traceability information to the middleware using table files. These

files can be sent attached to emails or through a REST API and are then processed into the same

format as the requests from the original API to maintain the remaining event insertion pipeline.

During the insertion of the events to the database the rules configured for that event type are

37

enforced. These configurations are present in this database by using Kafka Connect to replicate the

information managed by the Governance domain.

The complete flow of information requests can be seen in Figure 22, with the client applications on

the left using the API Gateway to send their requests.

TCP

TCP

HTTP

TCP

HTTP
REST TCP

HTTP REST

TCP

TCP

email IMAP

HTTP REST

Mic
ros
oft
Exc
han
ge

Mai
l

Ser
ver

Micro-Integrator

EXCEL

Micro-Integrator JSON

Tracking Database

Event Retrieval

Event Integration

EventAck Notifier

TCP

TCP

Kafka Connect JDBC

API Gateway

API Gateway

Operator
Integration

Applications

HTTP REST

Traceability
Applications

HTTP REST

MiddlewareOperators
and other 3rd parties

Figure 22 Tracking Microservice Implementation Diagram[68]

The reply to the HTTP requests for event insertion only acknowledges that the middleware as

queued the request for processing with the proper identification. The acknowledgement for the

correct persistence of the information or the error report in the non-complying cases is sent via

HTTP to a REST API. This requires the integration applications to implement this functionality

with a REST API to enable this feature.

The event retrieval and traceability reports are exposed through the API Gateway which routes to

REST API implemented with .Net Core and Entity Framework to query the database and return the

result.

4.6.3 Excel/Table File Insertion

This type of insertion was done as an exploratory project and in two different attempts. The attempt

I focused on was done in a push architecture where excel templates were generated for specific

event type definitions in the governance domain. These templates could be requested using that

REST API and would be filled out by an operator to be inserted into the system. For this insertion,

two methods were tested:

1. Email attachments,

38

2. REST API.

The REST API approach was easier to integrate with the other components of the middleware as

the same security features as the other APIs from the API Management layer could be applied.

Other communication protocols were suggested such as FTP, but it would be much harder to

implement a collaborative environment where multiple entities can push files into the same system.

This approach overall I do not think is good as it forces the operators to adopt our Excel templates

while the earlier goal was to provide methods to integrate existing operators’ systems that operate

using this format and perhaps the effort of implementing such solution might be even harder than

just using the REST APIs with JSON payloads. Could still be useful for operators that will

manually insert the information as an alternative to the REST API using forms.

Another approach was attempted with a pull architecture by another developer with a daemon

specifically designed for an operator do pull their daily generated CSV files which was also

abandoned due to lack of cooperation and could have set a precedent where the middleware would

have to take on this effort of integration for each different operator traceability system.

4.7 Monitoring Microservice

This domain is responsible for a post commit analysis of every traceability event inserted into the

middleware. It is composed of three independent applications developed in Node.js that

communicate using Kafka and use MongoDB for the persistence needs

4.7.1 Configuration and Event Definitions

The monitoring of the events is done through triggers that can be configured in the Backoffice

dashboard which uses the API implemented by a monitoring specific governance component. This

component combines the event definitions from the governance domain with the trigger definitions

to make the decisions regarding which events generate alerts and where those alerts are pushed to.

4.7.2 Event Reception and Analysis

The traceability events are received in a Kafka topic from the tracking domain after being properly

validated and inserted. In the Event Analysis component, the rules specified in the configuration

component are applied and if triggered, a notification is generated and pushed to a Kafka topic for

later processing.

Other planned features regarding the analysis of the events were the collection of aggregate data

such as totals of traceability events and amounts of product traced. This would be done by

39

processing the events and storing them in ElasticSearch which is an analytics engine that could

compute those types of aggregate queries if the information is present.

4.7.3 Notifications

A monitoring notification component is responsible for consuming the notifications generated from

the Kafka topic and pushing it to the correct recipient. This can be done through multiple

communication channels, currently supporting Web Push notification or Emails, with the option of

adding more consumers for new types of channels to expand the system.

4.8 Playback Microservice

The purpose of this microservice would be to provide historical data of the middleware’s usage,

mainly using Kafka’s message retention and persistency features. This microservice was not

developed very much as the entity within the project responsible for the data science withdrew very

early on. Nonetheless, a fully working REST API to access this information was still developed

and deployed.

To achieve the purpose of exposing the Kafka messages contained in the topics, Confluent’s Kafka

REST Proxy[84] was considered but with some concerns were raised regarding the customization

of the solution as the initial goals could require custom permissions or filters. Another caveat of

this technology is that it requires a paid license which went against the project priority of using

open-source tools.

The final implementation ended up being done using .Net Core to provide a REST API that allows

for the querying the Kafka cluster using a consumer. This was done in a very generic way as the

arguments for the API are the topic, partition and offset and allow for any messages stored in the

cluster to be exported. This serves as a basis for later development if more specific methods are

required or filters and permissions with also the possibility of merging information for multiple

topics.

4.9 Users and Authentication

In this domain the main goal was to store information about the users registered in the middleware,

their permissions and to provide authentication and authorization methods for the other domains’

services.

40

4.9.1 Authentication and Authorization Standards

Regarding REST APIs over HTTP, there are a few options for authentication and authorization. At

the lowest level, the Authorization header is generally used to transmit some credentials for either

purpose. These headers are usually of the Basic or Bearer type with the first one using encoded

credentials and the latter using cryptography-based tokens generated by the server during login

requests. Both should be used over HTTPS to protect the credentials from a MITM[85] attack.

The advantage of the previous methods is that they can be used to contextualize the user in the API.

Other approaches are also used such as API Keys, an early approach to REST API security that

works well in cases where the APIs are read-only, and no user specific permissions are required

and application authentication is enough.

4.9.2 Single Sign On with OpenIDConnect

Authentication is done through the OpenID Connect[86] protocol. OpenID Connect adds an

authentication layer to the Oauth2 authorization protocol. This authentication is done through an

id_token that contains the user's identifier and some of its attributes.

Client applications are registered with the Identity Server and the attributes to be exported are

defined at the end of the authentication process. There are several flows available for different

types of clients.

In the case of authentication of a human user in web applications, there are the authorization code

and implicit flows that work through redirects to the WSO2 Identity Server authentication pages

and back to the application.

41

Figure 23 Login Page WSO2 Identity Server

Currently the discovery endpoint of information about the Identity Server is https://valormar-

is.web.ua.pt/oauth2/oidcdiscovery/ and is used by some applications to discover the Identity

Provider methods.

For application authentication there is flow client credentials where only the application's

credentials are used.

These flows are documented in WSO2’s documentation website[87] and there are also libraries that

can facilitate the integration of OpenID Connect in client applications.

4.9.3 User Profiles and Claims

The three user profiles planned for the platform were implemented using the groups/roles available

on the WSO2 Identity Server. The great advantage of this is that we can block access to the API

methods at the Gateway through this information.

The platform administrator and operator profiles have access to all methods, while operator users

can only access the methods of reading information and entering events.

https://valormar-is.web.ua.pt/oauth2/oidcdiscovery/
https://valormar-is.web.ua.pt/oauth2/oidcdiscovery/

42

The integration of this functionality with the rest of the system was done through the SCIM2 API

that allows to consult and modify users. When a user's profile is changed by BackOffice, this

change is made in the management domain and then replicated in WSO2 IS with the API. To

ensure the consistency of the information between the 2 systems, data replication in the

management domain is also made when there are changes in the WSO2 version of the information.

This is done with an OSGI bundle developed in java to communicate user changes to a Kafka topic

that is consumed by a connector connected to the Governance domain database.

User attributes are stored in OpenID Connect claims. The predefined list has about 30 attributes

that can be customized. Applications registered through the Developer Portal only receive the

user's identifier in the ID token but any of the claims can be exported if necessary, with different

rules for each application.

4.9.4 Identity Federation and Shibboleth Example

Another concept that we find of interest to middleware related to authentication is federated

authentication. The WSO2 Identity Server allows the delegation of user authentication to another

Identity Provider. In the case of operators with existing Single Sign On systems, this can facilitate

the management of users and the sharing of attributes. The WSO2 Identity Server allows

integration with the protocols SAML, SAML2, Oauth1.0, Oauth2.0, OpenID, OpenID Connect and

includes integrations with some social logins like Google and Facebook that also use the same

protocols.

To test the capabilities of the system, a test integration was made with an Identity Provider

SAML2[88], more specifically the Shibboleth Identity Provider[89] used for SSO at the University

of Aveiro.

4.10 Backoffice Web Application

The backoffice web application allows for the management of the governance related entities of the

middleware. Non-anonymous users may login and the application features are restricted based on

their role. Regular Operator Users only have access to a read-only view of some elements and can

insert traceability events while the Admin roles can create and edit the remaining information.

Figure 24 depicts the backoffice menu where all the operators can be viewed from a Platform

Admin perspective with dummy information from a real-world integration scenario.

43

Figure 24 Backoffice Web Application - Operator menu

This web application is responsive and was developed using ReactJS[90] with the MaterialUI[91]

theme. For the authentication with the Identity Provider the OpenID Connect implicit flow was

used, redirecting the user to the provider’s login page with the application credentials and after the

authentication is successful, the user gets redirected back to the Backoffice application with the

access_token and id_token. This access_token is used in the authentication header for all the

requests made to the APIs via the gateway and the id_token is where the application extracts the

user claims like the username and the roles which limit the user’s permissions in the application.

4.11 External Client Applications

Other entities working in this PPS4 subproject also developed components to interact with the

middleware. FlowTech developed operator integration application that using the .Net framework

for desktop application development.

IPVC developed a kiosk and a mobile application to query and display the traceability information.

The architecture of the kiosk solution is described a published article[92]. This kiosk was designed

to support multiple devices in a shop or supermarket, using a Zero Configuration network model to

keep all the nodes synchronized. Another article was later published[93] with further refinements to

the application and usability tests conducted using the System Usability Scale (SUS) method.

Regarding the mobile application, a journal[68] has been accepted and published by Elsevier to the

Journal of Agriculture and Food Research resulting of a collaborative effort from the middleware

and client application teams that provides an overview of the middleware’s traceability

44

functionalities and its usage with the mobile application along with usability test feedback and load

tests of those traceability APIs which are also present in this document.

45

5 Middleware Operational Management

After the early phases of prototype development, challenges appeared regarding the deployment of

the middleware. The high complexity of the solution developed and the number of distinct

components to manage paired with the requirements of testing the system and maintaining a

staging environment for the application developers to use forced us to adopt technologies and

methodologies that simplify the deployment process. During the early stages, Docker was used as a

container engine. We standardized all the components into containers to ease the manual

deployment process, which was later replaced with container orchestration using Kubernetes

provisioned using automation tools such as Ansible.

5.1 Docker and image creation

Docker containers are lightweight, standalone, ready-to-run software components that package

everything that is strictly necessary to run an application: code, libraries, dependencies and

configurations. One of the first steps taken was to standardize all the software components of the

middleware into Docker images. A lot of the software used was already available in the public

Docker image registry[94]. Some of these images are provided and maintained by the original

developers of the software while others are developed by the community so some caution must be

taken to pick the best image available as some might be missing features or broken.

For the developed applications, some customization that was required with some of the software

we created our own images based on the ones provided by the vendors such as Microsoft’s .Net

Core runtime images and the Mediawiki image.

To distribute these custom images a local Docker Registry was deployed and configured. This

image repository is available for free and maintained by the Docker developers and has the basic

image storage and version control functionalities.

One challenge to install this Docker Registry was the security related configuration since to enable

SSL a properly signed certificate with the corresponding and reachable hostname was mandatory as

46

there were issues when attempting the usage of self-signed certificates. To get around this problem

a valid certificate was requested from the University’s IT department along with the registration of

the hostname in the local DNS server.

For the staging environment, these docker images were deployed across some Ubuntu 18.04 LTS

VMs that acted as docker engines. Initially these VMs were supposed to act as Docker swarm and

the deployment was to be done with horizontal scalability and other availability related features but

due to the lack of knowledge on the clustered deployment of some of the components at the time

and later the decision to adopt Kubernetes for the final production deployment only 1 instance of

most of the components was deployed using either docker-compose or just the standalone container

deployment commands.

5.2 Kubernetes and Container Orchestration

Container orchestration is the automatic management of runtime containers, normally used in

microservice based applications. A container orchestration tool is a centralized software component

that handles the distribution of the applications across the deployment environment’s machines

allowing for the efficient management of resources. As stated at the end of the previous section the

first choice of software for this purpose was Docker Swarm. This choice was made due to Docker

Swarm being more lightweight and easier to learn than Kubernetes. After the first attempts its

limitations started to show, namely the lack of features such as a UI or auto scaling of components.

Although a UI could be installed using Portainer[95] and the auto scaling could be achieved using a

monitoring system and triggers to change the system when under certain conditions, this would

seem to require more effort to implement than to adopt Kubernetes. Other advantages gained from

the change were better volume definition and management functionalities and more advanced load

balancing features.

Just like Docker Swarm, Kubernetes also uses yaml files for the configuration of the components to

be deployed but there seems that a lot more community projects and examples are available for

Kubernetes than for Docker Swarm. Helm[96] can be used for version control of these types of

configurations acting also as a repository. There are many Helm repositories with deployment

configurations for the most popular software being widely available and sometimes even provided

by the vendor themselves.

The development process for this environment consisted of searching for adequate Helm charts for

all the software required as well as developing our own charts for the applications that were

created. Some of the public charts come well prepared and only some configuration tweaks are

required to deploy a cluster of that tool. In other cases, substantial changes were made to the charts

47

to achieve the required purpose and some even were outdated or incompatible with the remaining

setup.

Each Helm chart contains at the root a Chart.yaml file which contains a description of the chart and

some other repository related metadata. The values.yaml file is usually used for all the

configurations related to the software itself along with the deployment specifications. Any entry in

this file can be accessed from the deployment files and this enables the development of dynamic

deployments.

The Helm charts developed required multiple types of Kubernetes resources. For example, a

stateless REST API application requires a Deployment file where the hardware allocation for the

pods is defined as well as the image to be deployed, update strategies and replication constraints.

This Deployment then requires a Service resource for the routing of the requests to all the pods of

that type in the cluster. In the case of stateful applications a StatefulSet is used instead of the

Deployment which creates a set of unique pods with persistence and unique hostnames. To allow

external access to the cluster, an Ingress resource is used which can create HTTPS Nginx reverse

proxies with auto generated certificates and hostnames. These certificates and hostnames can also

be added manually for the final production deployment with a reachable hostname and a valid

certificate. Software related configurations can be added with multiple approaches. For

environment variables and other similar arguments that would be added during the container

deployment these can be passed to the container from the values.yaml file in the Deployment file.

However, for file related configurations which are also common in the software used, configuration

volumes are required which are created using ConfigMap resources. These resources allow the

loading of files from the chart directory for configuration purposes. These files are then mounted

into the containers in the Deployment resources, overriding the defaults present in the image used.

Software that requires persistence of files also required further attention, PersistentVolumeClaim

resources can be used to create volumes access control rules which tailor the type of volume to the

specific use case. This allows for the creation of single shared volume accessible by multiple pods

or assign separate storage blocks to every node in a deployment, commonly used when the software

cluster presents some form of sharding of the persistent information like Kafka or MongoDB.

5.3 Cluster Installation and Automation

The main goal of employing automation tools in this project was to provision a dynamic

Kubernetes environment for the deployment of the complete middleware with the orchestration

detailed in the previous section.

48

Ansible is the automation tool chosen for this purpose as it provided all the features needed and had

a configuration driven approach. There are also many community driven ansible repositories

available with templates to deploy commonly used software such as container engines or databases.

As stated before, the computing resources allocated to this project are in the form of an

OpenNebula private cloud hosted on campus so these automation scripts are specialized to manage

virtual machines on that cloud, but they can easily be adapted to work with another Cloud

Management Platforms. In Ansible the resources are referred to as inventory which can be fixed or

dynamic. This private cloud contains four physical hosts, two with Intel Xeon E5-2670 v3 and the

other two with Intel Xeon X5675 CPUs. Each physical host contains two CPUs, with the total

cloud resources 72 cores, 144 threads and 785.9 GB of RAM.

The inventory is usually described in the inventory file and when the inventory is dynamic there is

a script that interacts with the desired cloud management platform and generates the inventory file.

Templates for inventory generation are available for OpenStack, OpenNebula, AWS, Azure and

Google Cloud so it is possible to interchange or even mix cloud providers while maintaining the

same deployment scripts for the middleware although some of the platforms mentioned provide not

only IaaS but also PaaS which may have other proprietary tools that provide Kubernetes clusters or

even more software specific like database engine clusters.

For OpenNebula the ansible module available is the one_vm_module[97] which allows for the

creation and deletion of virtual machines when provided with proper credentials and the

specification of the virtual machines to be created. After the VM creation the playbook developed

that invokes the one_vm_module generates an inventory script with the hostnames of the generated

VMs.

The VMs were generated using an Ubuntu 18.04 template imported from the OpenNebula

repository although custom templates were also created from scratch by installing the operating

system on an empty VM during development.

After the inventory file is generated the Kubernetes installation playbook may be executed. This

playbook is from the Kubespray[98] project which provides ansible scripts to install Kubernetes

clusters with all the HA features and supports a wide array of Linux distributions.

The inventory file also specifies the roles of each VM in the cluster. HA Kubernetes clusters have

control plane nodes which contain the controller and scheduler components responsible for the

container orchestration as well has the api server that allows the Kubectl client to manage the

deployments. In production environments these nodes might have the deployment of pods disabled

to isolate the control plane features of the cluster from the applications.

49

Another component required in a Kubernetes HA cluster is an etcd[99] cluster. Etcd is a distributed

key value store which Kubernetes uses to store all the information about the configurations and

deployment instructions for the applications. This cluster can be deployed independently from

Kubernetes or stacked with the master nodes. Kubespray’s default settings deploy an uneven

number of etcd nodes stacked with the other components on some VMs. The number of nodes must

ben uneven to avoid deadlocks during the etcd master node election process. The stacked topology

can be viewed in Figure 25.

The worker nodes are the final component responsible for deploying the Kubernetes Pods and are

connected to the master nodes through a load balancer.

The downside of using stacked etcd instead of the standalone deployment is that the cluster loses

redundancy since if one of those nodes fail both an etcd and a control plane node are lost, so the

official recommendation is to have at least 3 stacked etcd and control plane nodes to mitigate this

problem. On the other hand, the standalone deployment would require double the nodes for control

plane and etcd and due to some networking constraints, the cluster would end up not having as

many resources for pod deployment.

Figure 25 Kubernetes HA Topology - stacked etcd (source: kubernetes.io)

Regarding the configurations of the cluster most of the defaults provided by kubespray are enough

to achieve this HA deployment but there were some issues to resolve.

50

One of the issues was ip collisions with the university’s VPN. The VPN uses the ip ranges that

Docker uses by default to create the internal networks so docker configurations were added to the

docker.yml file of the inventory’s group variables.

Some optional features were also enabled such as the dashboard, Helm, metrics server and nginx

ingress to provide layer 7 load balancing to the applications across all the nodes.

Storage wise there are many options of connecting the storage hardware to the Kubernetes cluster

with some plugins specialized for many cloud providers’ storage options like OpenStack Cinder or

AWS Elastic Block Store. In our project there were no storage resources allocated besides the

space allocated for virtual machines so the only way to provide storage for the storage would be

creating a virtual machine dedicated for this purpose and exposing it with an NFS server. To

simplify things as this was just for testing purposes a local volume provisioner was used that would

allow volumes to be created from a node’s storage. These volumes would not be shareable between

pods which was required in some cases so the NFS Server chart was used to use this storage class

to create a new one which would create virtual NFS volumes as needed.

The result was a 5-node cluster with 2 control plane nodes and 3 etcd nodes with all the nodes

being allowed to deploy pods. Each node was allocated 32 GB of RAM and 16 physical CPU units

exposed to the VM as 16 virtual CPU units with a 100 GB storage share of the cloud’s file storage.

Table 1 Kubernetes cluster node roles

Node/Role Control

Plane

Etcd Worker

node1 x x x

node2 x x x

node3 x x

node4 x

node5 x

When testing the cluster some issues appeared with the performance of the cluster. The deployment

of the applications was extremely slow and the etcd nodes would fail making the cluster

unavailable a lot of the time. A lot of troubleshooting was done to find the problem, this was one of

the most challenging roadblocks in the entire project.

51

After touching a lot of the configurations in kubespray and installing the cluster several times in

different operating systems and increasing VM resources the problem continued, sometimes even

forbidding me from connecting to the VMs with ssh. At this point I even wondered if it could be a

physical hardware issue as no other projects were using this cloud for the same purpose, so I

focused my troubleshooting on the virtual machine’s resource usage and spotted that there was

always a ksoftirqd thread with high load. Ksoftirqd is a per CPU kernel thread responsible for

queuing interrupt requests when these arrive in high volume and the OS cannot handle them fast

enough. Heavy network traffic can cause a flood of interrupt requests and in this case the Etcd and

Kubernetes’ components communications were responsible for the cluster’s instability.

To resolve this problem some newer versions of Kubernetes and Etcd were tested to no success

moving on to looking at the VM’s network card drivers. After learning that the virtual network card

installed was based on a Realtek driver and that those drivers were not recommended on heavy load

environments some further research into VM optimization for OpenNebula were done leading to

this blog post[100] which contained instructions on how to switch the default Realtek card to

another more high performance reliant on Red Hat’s virtual networking drivers by changing the

NIC model of the VMs to “virtio” in the configurations.

5.4 Deployment

With the Kubernetes cluster working the next step was to deploy all the software with the same

configuration as the Docker staging environment. For the developed apps custom deployments had

to be created while in the other cases the vendor provided examples were used as a base and

merged with the configurations specific with each software achieved when configuring the staging

environment. These deployments were defined using Helm charts with a chart being used to deploy

each software independently.

5.4.1 WSO2 APIM and IS

The WSO2 Developers provide sample Helm charts for the deployment of clusters of their

software. The charts used in this project are available in the kubernetes-apim[101] and kubernetes-

is[102] repositories in WSO2’s Github account.

Both charts were required as we intended to use WSO2 Identity Server as the Key Manager in the

APIM cluster. Instead of ending up with 2 separate charts highly dependent on each other, the

default Key Manager configurations from the APIM chart were merged with the files from the IS

chart creating a new chart with some configuration changes to tailor the cluster to our requirements.

One component added to the pods was Secrets containing a KeyStore with the certificates to be

trusted and the keys to be used. This was done to ensure that the SSL handshake between the

52

component’s communication would succeed and to allow for the generation of valid JWT tokens

for any entity trusting that self-signed certificate. The default keys included do not allow this as the

corresponding certificate belongs to the localhost hostname.

The remainder of the WSO2 cluster components were deployed with mostly default configurations

with some tweaks to the resource allocation and image versions to use the latest software.

To take full advantage of WSO2 APIM’s feature segmentation, deployment pattern 3 (Figure 26)

was used where each role of the cluster is deployed in a separate pod group. The APIM Docker

image by default uses a standalone deployment where every node can fulfil every role in the

cluster. In pattern 3 the images are specialized for each role with role specific configurations which

are inserted using ConfigMaps.

Figure 26 WSO2 APIM Deployment Pattern 3 (source: github.com/wso2/kubernetes-apim)

With Identity Server acting as the Key Manager, a separate Analytics Server cluster can be added

to monitor this component which was not present in Figure 26.

For each component at least two replicas were deployed to have redundancy with all the

components and allowing for system to operate normally in the case of failure of any node.

In theory, the components that will be put under higher load are the Gateway components,

responsible for the routing of all the middleware’s inbound requests and the Key Manager

components responsible for token generation and validation so these components will be the ones

where we focus our performance evaluation during the load tests. The Traffic Manager components

will not be placed under much load during the validation since we did not adopt rate limiting

policies to any of the APIs.

53

5.4.2 WSO2 Micro Integrator

For the deployment of the WSO2 Micro Integrator instances required the official tutorial[103] was

used as a base for the development of the Kubernetes resources needed which were then added to

each data domain’s respective Helm chart.

Since all the nodes in a WSO2 Micro Integrator cluster is stateless, Deployment, Service and

Ingress roles were created. Software wise no configurations were required due to the CI pipeline

used for the creation of images. These images come with the correct configuration which is created

during the development process in the Integration Studio IDE. The integration projects are

compiled into CAR files which contain the service definitions and registry entries. These projects

can then be further packaged into docker image with the IDE built in tool that generates

Dockerfiles and the WSO2 Micro Integrator configurations in the deployment.toml file.

There were some issues with the IDE’s execution of the Dockerfile build process which uses

maven due to the local Docker host’s configurations which was the main reason for the

development of the pipeline to create and push the Docker images. This pipeline requires a bash

script in the project’s root to run all the Maven commands that are required to package the solution.

For these images to be accessible by the Kubernetes cluster the Helm chart also contains

configurations in the values.yaml file to define the repository and image name to be used as well as

a secret with valid credentials for the project’s private Docker Registry.

5.4.3 .Net Core Services

Just like in the WSO2 Micro Integrator case, all the Docker images for our .Net Core applications

are stored in the private registry and the charts that require these images also contain the credentials

to pull them.

The .Net Core containers are all stateless and contain a Deployment, a Service and an Ingress

Kubernetes roles along with a Config Map that contains the appsettings.json where all the

application specific configuration are defined.

5.4.4 Kafka

Apache Kafka and all the auxiliary components were some of the most complicated components to

deploy. Due to its stateful nature and persistence requirements the Helm charts are much more

complex. Another problem was finding the most suitable open-source images for all these

components as Confluent’s charts are the most complete but require a license after the testing

period of 30 days.

54

The final solution was a chart to deploy the Kafka cluster with the other components in their own

charts as dependencies. Regarding Kafka and Zookeeper, bitnami’s[104] images and charts were

used since they seemed to be the most complete open-source options at the time.

Regarding the Schema Registry, Kafka Connect and dashboard tool, Confluent’s charts were used.

The plan was to emulate the Lenses setup[105] used in the staging environment which provided a

web UI to configure the Kafka connect pipelines as shown in Figure 27.

Figure 27 Lenses IO Fast-Data-Dev Kafka Connect Dashboard

One major issue with the development of these Kafka Connectors was that they contain a lot of

database engine endpoints and credentials which change from one environment to the other. For the

staging and testing environments this change was done manually with the developer having to

create different connector versions for each environment.

The solution for the problem above was having environment variables used in the connectors to

parameterize them and allow for the same version to be used across many environments with each

connector being built as its own image and the environment variables would be inserted during the

container instantiation. This feature was not fully developed and tested as the main goal of this

environment was the load testing and for this purpose, the databases were pre-loaded with all the

required information that would be migrated across domains, so it ended up not being prioritized.

5.4.5 Mediawiki

As stated in the portion of the development section regarding the Wiki, a custom image was created

with all the required extensions. The wiki image is deployed in a Helm chart along with all the

other wiki related components like Parsoid and the MI service converter.

55

The Wiki is stateful as all the requests from the user must be made to the same node to maintain the

correct state of the user’s session, therefore a StatefulSet was created for the mediawiki instanes.

Connected to these pods is a shared ReadWrite volume for the storage of the images which are

usually stored in the filesystem of the machine running the engine with some metadata entries in

the database. The StatefulSet also has a ConfigMap that contains the LocalSettings.php file where

all the wiki’s configurations occur.

Parsoid is stateless and all the required configurations are handled with environment values so only

a Deployment was required. Both Mediawiki and Parsoid were then exposed and load balanced

using a Service and an Ingress Kubernetes resource.

5.4.6 Elastic (ELK) Stack

For the monitorization data domain, ElasticSearch and Kibana[106] clusters had to be deployed.

These instances were not used for the monitorization of the Kubernetes cluster as that component

should be installed in a separate environment for availability concerns. The purpose of

ElasticSearch in the context of the monitorization data domain is to receive information from the

Kafka broker to create an index that enables the usage of aggregation queries over the traceability

events collected. Kibana would be used to create visualizations from the ElasticSearch indexes

generating dynamic graphs that could be embedded in the web applications.

The Elastic Stack developers provide Helm charts for all their software and the default settings are

enough for our purposes. ElasticSearch was deployed with three replicas with a minimum of two

nodes having the master role and Kibana with two replicas and sticky sessions to maintain the

user’s dashboard session. The remaining components of the stack were not required therefore

discarded as none of the data collection components was required since that role would be handled

by Kafka Connect instances pushing information into ElasticSearch but they may be added in the

future if suitable sources of information are available.

5.4.7 Database Engines

Several database engines were used during the development of this project either when developing

new applications or as a requirement of the software. Some of them were used for collaborative

development purposes so credentials and permissions had to be configured and distributed in all

those cases. Some of the technology choices were made due to compatibility constrains, namely

Mediawiki which dropped support for MS SQL Server with the 1.34 release, so MySQL was used

instead, ending up with 2 relational database engines that are very similar to prevent issues in the

future.

56

5.4.7.1 SQL Server

Some compatibility issues prevented SQL Server from being deployed in the Kubernetes cluster.

The image for the container orchestrator supplied by Microsoft at the time of development was not

compatible with the latest version of Kubernetes (v1.18) which had several changes to its

management APIs.

After deciding not to downgrade the cluster due to all the other software already deployed, an

attempt was made to deploy a cluster using Windows VMs but that idea was scrapped after

realizing that Windows VMs were limited to 4 CPU cores.

The final solution was based on Microsoft’s GitHub SQL HA examples[107] which provide

Ansible playbooks to install and configure the cluster on Linux VMs. For this purpose, 4 nodes

with Ubuntu 18.04 images were used with 12 CPUs and 12 GB of RAM. One of the nodes will act

as the master and was configured with 2 virtual networking interfaces with one being dedicated to

the availability group router component of the cluster which is responsible for routing the requests

across the nodes. All the nodes also must have static routes to each other with their hostname since

ansible registers the hostnames of the machines during cluster creation to establish connectivity

between the nodes.

Following the official instructions, the Vault.yml file must be configured with the proper

credentials and the inventory file with the roles for each VM. Before the script can be executed

Microsoft’s repository must be added with the following command: “sudo curl

https://packages.microsoft.com/keys/microsoft.asc | sudo apt-key add -“.

After installation, some tweaks must be done to allow for the horizontal scaling for read operations.

For best performance, the main node was left out of the read only routing group as it is the only

node that can write to the database while the remaining three were all part of the group.

With the cluster configured databases were deployed manually using SMSS and DACPAC files

with sample data to validate the cluster with load tests to the API that consumes the database to

ensure that the read-only transactions were being equally distributed across the worker nodes.

5.4.7.2 MySQL

In the Kubernetes environment MySQL was only used for the WSO2 Registries so far. In

Mediawiki’s case the staging environment was already in use and being populated with

information, so the migration was delayed. The Kubernetes wiki instance uses the same database as

the staging one as it provides usable information for testing.

For the WSO2 Registry the official MySQL chart is included as a dependency in both the APIM

and IS charts with all the credential and database creation process automated. During the

57

performance tests performed there seemed to not be much load placed on the registry with the

workloads applied so the default registry was kept, which does not have redundancy. A new

version of the WSO2 chart may also be created to use the MS SQL server database instead, by

adding the proper libraries to the WSO2 images.

5.4.7.3 MongoDB

MongoDB’s deployment was done following the official documentation that contains a few options

on deploying MongoDB Enterprise with Kubernetes. A Helm chart is available that deploys the

MongoDB Kubernetes Operator which acts as a management daemon to the cluster. Since

MongoDB supports sharding there are master and replica nodes. Each master node contains a

unique shard of the cluster and each master node has a set of replica nodes mirroring all the

information for availability purposes. The usual cluster topology is shown in Figure 28.

Figure 28 MongoDB Cluster Topology (source: mongodb.com)

Completing the cluster are the Query Router modules which are responsible for routing the query

requests to the appropriate node and a Configuration cluster that stores all the MongoDB related

configurations.

5.4.7.4 Neo4j

In Neo4j two kinds of components are deployed: core nodes and replica nodes. The Neo4j HA

architecture represented in Figure 29 presents a cluster of core nodes which can handle any type of

query and uses a majority voting system for master election and transaction commitment decisions.

58

The replica nodes replicate the information from the core cluster asynchronously via transaction

log shipping and they can be used for read-only queries. In case of a complete failure of the core

cluster these nodes can be used to temporarily provide read-only access to the databases.

Figure 29 Neo4j HA Architecture (source: neo4j.com)

The official Helm chart allows for the installation of the cluster with configurable core nodes and

auto scaling replica nodes and no further customizations were required.

5.5 Monitorization

Many monitorization systems were available to monitor the software deployed over the

development of the middleware. The physical machines are monitored by the OpenNebula software

which provides metrics dashboards for CPU and Memory allocation and utilization in real time, as

exemplified in Figure 30 with the metrics of one of the hosts.

Figure 30 OpenNebula – Physical Host Metrics

59

Figure 31 OpenNebula – VM Network Metrics

The virtual machines are also monitored with this dashboard with CPU and memory usage as well

as the virtual network interfaces bandwidth in use like exemplified by Figure 31.

Many iterations of monitorization systems were designed for the project software infrastructure but

there was never a decision on a final implementation. For the docker swarm approach a

cAdvisor[108], Prometheus[109] and Grafana[110] approach was planned and tested. The cAdvisor

agents would expose metrics regarding all the containers and host machines through a REST API.

Prometheus would be then setup to pull the information and store it as it can act as a timeseries

database and Grafana would be used to create web dashboards to display the information and

configure alerts with many communication options like email or calls to a REST API.

With the switch to Kubernetes for the container orchestration the monitorization system choice was

put on hold as there was the option to use Kubernetes’ web-based dashboard[111] which allows the

user to view the status of every node in the cluster as well as view, edit and monitor the metrics of

all resource types in a Kubernetes environment.

Figure 32 Kubernetes UI – Nodes

60

In Figure 32 the view of the cluster’s nodes is present with the status of each node and metrics

regarding the current resource occupation in the table with graphs displaying the metrics of the

entire cluster above. Figure 33 shows a more product specific example, in this case Kafka where

each pod’s state is displayed with the corresponding metrics. The top graphs display total metrics

for the namespaces those pods belong to. In this case all the Kafka cluster components were

deployed in that namespace, so it displays the cumulative metrics of all the pods running that

comprise the cluster.

Figure 33 Kubernetes UI – Kafka Pods

Although the Kubernetes UI is easy to setup and provides plenty of information about the current

state of the cluster it still lacks in features such as persistence of the information as it only shows

real time metrics and alerts. With the goal of improving overall monitorization of the cluster the

planned monitorization architecture for docker swarm was re-evaluated and adapted to fit the new

Kubernetes setup. Prometheus was maintained and deployed using a chart available in a

community repository[112]. This chart also includes instructions for the deployment of Node

Exporter[113] which acts as a daemon in every node to expose the machine’s metrics that

Prometheus pulls. Grafana was deployed using the official charts[114] and some sample

dashboards from the public dashboard library were imported like the example in Figure 34 with

host CPU, memory, storage and networking metrics.

61

Figure 34 Grafana – Kubernetes Cluster Dashboard

As stated before, Grafana can also be used to set thresholds and configure alerts. Figure 35 shows

an example, configuring an alert threshold for when the used memory reaches a certain point. The

alerts are generated and can be sent via multiple channels with some examples present in Figure 36.

Figure 35 Grafana – Alert Configuration

62

Figure 36 Grafana – Alerting Channels

More monitorization features and dashboards can be added to this setup by adding more

information collection systems and integrating them to Prometheus like software specific

monitorization for components like the database engines and Kafka which might also have some

pre-made dashboards available.

Since the ELK stack is also installed, other types of information useful to a system’s monitorization

can be stored and viewed there. This tool is best suited to aggregate information like logs but could

also be used for metrics, although not as good as Grafana for the metrics dashboards. Unlike

Prometheus which functions in a pull metrics monitoring architecture, Elasticsearch is a push-based

system and agents must be configured to push the desired information to this analytics engine.

While the log aggregation could be a nice addition, the pod’s logs are already available centrally to

use with the kubectl tool and via the Kubernetes dashboard so, while planned, ELK was not used

for this purpose yet.

5.6 External Network Access

After the development of the prototype APIs and wiki installation these were deployed in the

staging environment described previously. To enable the other developers’ access to these APIs

some networking configurations and administrative requests had to be placed as the private cloud

used is only accessible from the university’s network with a NGINX instance handling the routing

of traffic from outside the network. DNS names and corresponding certificate-key pair were

requested from the IT department to be used with the NGINX proxies for all the components that

were to be exposed with HTTPS (with auto redirects when attempting to use HTTP). These

components were Wiki, the Backoffice Dashboard, the API Gateway and the APIM management

63

related web applications. These proxy configurations were then sent to the cloud administrator to

be added to the running environment.

5.7 Load Tests

Load tests were applied to the Kubernetes middleware version to validate the integration of all the

components and to evaluate performance gains when scaling the components horizontally and

vertically.

For these load tests JMeter[115] was employed using 4 CentOS VMs as worker nodes with 8 CPUs

and 8 GB of RAM. Due to networking constraints on JMeter’s clusters all the nodes must be in the

same subnetwork, so a Windows VM was used as a master to enable the usage of the JMeter UI to

fine tune the tests and data collected.

A key element to obtaining accurate results was to sync the clocks of all the VMs before starting

the tests since JMeter uses the timestamps of the requests to calculate the throughput. This was

done using CentOS’ ntpdate tool which updated the clock using the university’s local NTP server.

To configure the cluster all the nodes must have the JMeter binaries as well has the proper

configuration with all the nodes’ IPs. To get around the security configuration step, certificate

validation was disabled.

For the best results, the test batch should be executed from the command line and with the least

amount of data collection possible to ensure the best possible performance from the workers,

allowing for a higher load to be applied to the tested components.

The tests were applied to the Tracking API which allows for the retrieval of traceability

information about a product lot. The database was loaded with sample data with some short event

chains and a JMeter test collection was created with a request to retrieve the history of a product lot

which included a valid authorization token in the header. Multiple runs of the tests were executed

with different amounts of concurrent users and tracking application containers with the goal of

evaluating average response times and throughput under load. These tests validate the integration

and performance of the API management, application and persistence layers. Each configuration

was stress tested for at least five minutes and the results are presented in Table 2 and Table 3.

Table 2 Load test results - Throughput and bandwidth

Test

Configuration

Throughput Network (KB/sec)

64

Threads Nodes Transactions/s Received Sent

2000 1 329 478.87 72.46

2000 3 909 1321.16 199.91

2000 5 1156 1679.09 254.07

2000 8 1308 1899.82 287.46

400 1 342 497.84 75.33

400 3 921 1337.39 202.37

400 5 1130 1641.05 248.32

400 8 1248 1813.03 274.34

200 1 342 497.84 75.33

200 3 517 751.76 113.75

200 5 533 775.16 117.29

200 8 574 833.77 126.16

Table 3 Load test results – Response time

Test Configuration Response Times (ms, lower = better)

Threads Nodes Average Min Max Median 90th pct 95th pct 99th pct

2000 1 5927 29 17068 5784.00 7092.00 7245.00 8876.97

2000 3 2183 26 11139 1225.00 1803.00 1922.00 2501.00

2000 5 1712 26 12423 594.00 1565.80 2024.00 3149.99

2000 8 1469 26 7019 1026.00 2114.90 2824.95 3928.99

400 1 568 26 3006 552.00 716.00 799.00 1102.00

400 3 425 27 2910 399.00 565.00 614.00 761.00

400 5 344 26 2454 321.00 526.00 585.95 794.98

400 8 302 26 3456 285.00 445.00 500.00 611.00

65

200 1 568 26 3006 552.00 716.00 799.00 1102.00

200 3 371 26 1860 492.00 640.00 693.00 876.00

200 5 363 25 2130 466.00 667.00 721.00 838.99

200 8 335 25 2366 420.00 582.00 642.00 762.99

Regarding throughput, the results depicted in Figure 37 were slightly lower than expected with the

resources allocated. Some previous tests executed without data and a draft of the application

yielded a much higher transaction throughput. This indicates that even with multiple database

nodes the information retrieval portion of the processing of the request will most likely be the

bottleneck in this scenario. During the tests that yielded 1300 requests/second of throughput the

average throughput of transactions/s in the database worker nodes was over 6000 per second, in

total 18000 which is an average of over 13 database transactions per request.

The differences observed with varying amounts of application nodes were much closer to what was

expected with a nearly linear increase with the increase of resources. This increase is not perfect

though and this might be justified due to the other components being the limiting factor or due to

the hardware configuration used, as this private cloud contains physical machines with varying

specs so some of the containers might have been deployed in slightly slower nodes than others.

Figure 37 Tracking API Load test results – throughput

329

909

1156
1308

342

921

1130

1248

342

517 533 574

0

200

400

600

800

1000

1200

1400

1 3 5 8

Th
ro

u
gh

p
u

t
(r

eq
u

es
ts

/s
)

Number of application nodes

Throughput with horizontal scalling

2000 Concurrent Users

400 Concurrent Users

200 Concurrent Users

66

Figure 38 reports the results regarding response times which were similar for both 200 and 400

concurrent users but with a much higher load of 2000, response times the increase was much higher

which might be noticeable to end users meaning that the system would require more resources for

handle that workload or that one of the other components is the bottleneck.

Figure 38 Tracking API Load test results – average response times

5927

2183

1712
1469

568 425 344 302
568

371 363 335

0

1000

2000

3000

4000

5000

6000

7000

1 3 5 8

A
ve

ra
ge

 r
es

p
o

n
se

 t
im

e
(m

s)

Number of application nodes

Average response time with horizontal scalling

2000 Concurrent Users

400 Concurrent Users

200 Concurrent Users

67

6 Development Process and CI/CD

As I was working with a team of other developers on the middleware involving daily collaboration

and due to the architecture choice of microservices it was beneficial to adopt agile methodologies

for the development of the middleware and DevOps toolchains to automate component integration

processes.

6.1 Scrum Methodology

The agile framework we chose was Scrum[116] as it is lightweight and adequate for software

development. Not all the principles were followed religiously but we tried our best to adhere to the

key principles of small increments.

In our team we were all considered Developers with our advising professor being the Product

Owner. There was no explicit Scrum Master which is supposed to be the person in charge of the

implementation of the scrum methodology as each of us would take that role in turns.

For the sprint planning in the later phases of development we were doing two-month sprints for

development with other tasks in parallel like writing reports and preparing presentations. At the

start of the middleware’s development this was a much harder as we were not as good at estimating

the time it would take for a certain feature to be implemented and there was a long learning process

of all the technologies before a simple but complete prototype with all the components integrated

was ready for us to add small increments to and in those occasions the Scrum methodology was

often ignored for some time.

6.2 Team Foundation Server

The CI/CD tool used for this project was Microsoft’s Team Foundation Server 2017. This choice

was made due to already being installed and maintained by the university’s IT department. This

tool allows for the creation and usage of git repositories where the source code of all the

components and even some configurations were stored.

This platform allows for the creation of continuous integration pipelines called Build Definitions

which can pull from local TFS repositories or externals ones if desired and they allow for triggers

68

on branch changes or depending on schedules to automate the CI process. Some examples

developed and using during the project are present in Figure 39.

Figure 39 TFS CI Pipelines

TFS also allows for the definition of release pipelines triggered by the publishing of new artifacts

which were not used in this project due to the artifacts being packaged straight away into docker

containers. This was done because the automated testing that was being done required docker

images for deployment as many components were being tested at once and, for that reason we

opted to use only CI pipelines as very little would be left to do after the test results as the code was

already packaged in the images in another repository and this option reduced complexity.

Figure 40 TFS Micro Integrator pipeline

The pipelines are executed in TFS Agents which run on Windows and are managed by the

SysAdmin responsible platform. TFS comes pre-configured with plugins for many of their own

tools but many of the technologies like Docker and Maven used in this project were not supported

69

and the agents had to be changed to accommodate for that. The responsible SysAdmin was not

available all the time to make this type of changes, so some alternatives had to be used like the

pipeline in Figure 40 where the code is transferred to a Linux virtual machine tailored to our

project needs and uses scripts from the repository itself to create the remaining of the pipeline

leaving as little tasks as possible for the TFS Agents.

Figure 41 TFS Scrum sprint task board

Figure 41 is an example of a sprint task board that was occasionally used in TFS to implement the

Scrum methodology. Every major task or application had a backlog item associated where tasks

would get created and completed.

6.3 Tests

The test developer developed Integration Tests and Acceptance Tests. In some of these cases some

automation using pipelines was required to assemble the testing environment with the latest

developed middleware components.

Most of the applications that exposed REST APIs had Integration Tests to validate all the methods

and could be executed with ease as the only dependencies required were database engines which

were emulated automatically by .NET’s testing frameworks.

In the Tracking domain the event integration component was more difficult test due to the

asynchronous nature of the event insertion and that component being dependent on Kafka. .Net

core’s Kafka support at the time was very limited. Other frameworks like Spring have much better

testing support with Kafka brokers embedded into the testing environment to allow for the injection

70

of test messages into consuming components and the evaluation of messages inserted into topics by

producers. In our case a whole integration testing environment had to be created for the tracking

domain to test the components.

Lastly, Acceptance Tests were developed using Selenium[117] for the Backoffice web application

that were executed using the cross browser testing tool LambdaTest[118]. This tool is only

available as a service, so the testing environment had the requirement of being accessible from a

public network which meant having DNS registrations and certificates created for a reverse proxy

for this version of the application.

6.4 CI Pipelines

The pipelines we created had two main purposes: automating the deployment of the staging

environment and automating the execution of the tests described in the previous subsections. For

this purpose, four main pipelines were development:

1. Tracking Integration Testing Pipeline:

This pipeline was responsible for compiling and packaging into images the Event Integration,

Event Notifier and Event Retrieval components. These images were then deployed to the testing

environment which also had a database, Kafka cluster and micro integrator instance to complete the

core of that domain required to run the integration tests. The information necessary for the

operation of these components from the governance domain were injected into the testing database

before every test from a script in the repository where the tester could create any information

needed for the test with the database behind cleared before a new test run.

2. Acceptance Testing Pipeline:

In these acceptance tests the important component to test is the Backoffice. The web application is

built and packaged into a docker image and deployed to the testing environment. Before the tests

are executed the databases for this environment are cleared and re-populated using scripts from the

repository that the test developer can customize. Since the LambdaTest tool required either a

tunnel, which was not practical with the TFS pipelines tool, or the website to the accessible

publicly. To have a fully functioning application a full clone of almost the entire middleware had to

be created as the application made calls to many of the APIs. To avoid some configuration hassle,

the sandbox gateway environment of the API Manager was used instead of having to create a

whole new setup for testing purposes. In this sandbox environment the latest versions of all the

APIs are currently deployed and use the databases mentioned previously. To access this sandbox

environment instead of the production one, the web application’s credentials are switched with

ones proper for this environment as the API Manager handles the routing to the different

71

environments based on the application’s credentials. Lastly, the tester was provided with testing

accounts for each of the user profiles that allowed the tests to login with the Identity Provider to

have the proper claims and permissions for all the application’s usage scenarios.

3. Staging Services Deployment Pipeline

All the .Net Core applications are stored in the same solution as of now and are deployed at once.

The pipeline compiles all the code and creates the corresponding docker images for each

component and deploys them to both the production and sandbox environments. In the sandbox

environments the databases are cleared, and the schema is always freshly deployed while for the

production environment the intention was to evolve the schema using migration scripts. This

migration feature was never tested as migration scripts were never created. Finalizing the pipeline

is the update of the swagger definitions of each API in the API Manager which is done using a

REST API with the new swagger file auto-generated by the .Net Core application using

annotations.

The tests are executed in a separate pipeline from this one because the learning and development of

the tests was at best going at the same rate of the middleware development and in many situations

the number of false positives regarding errors identified by the tests preventing a new version from

being deployed outweighed the gain obtained from automated tests.

4. Information Domain Pipeline

This is probably one of the closest examples that were developed for pipelines in a microservice-

oriented scenario as it only deals with components in the information data domain. Here the latest

images for the Mediawiki application and the micro-integrator instance get built, pushed to the

image registry and deployed to the production environment.

5. Monitoring Domain Pipeline

The monitoring domain also follows a more microservice-oriented approach, once again with

docker images being built and pushed to the registry to then be deployed to the necessary

environments.

6. Backoffice Application Pipeline

This pipeline builds and deploys to the production environment the Backoffice web application.

The reason for a pipeline separate from the acceptance tests is that it predates those tests and we

already had some automation needs and more recently it started being used again due to the

licenses to the LambdaTest being limited to a set number of executions which sometimes would

run out.

72

In all these pipelines the compilation of the source codes was always done inside the docker image

creation phase as this decreased the need to manage dependencies in project specific virtual

machines or request changes and additions to the TFS build agents. In the case of the micro-

integrator images for the sake of efficiency the packaging of the solutions was done before the

creation of the images as the only dependency was Maven and due to lack of ability of using the

image layer caching to our advantage the process would take too long as most changes would

require hundreds of packages to be downloaded from the repositories.

73

7 Conclusion

After so many months associated with this project the feeling regarding conclusions it that a whole

new document could be written just for this purpose, but I will try to be concise.

I participated in the development of the middleware from the end of the design phase to the

delivery phase. A lot of the work I did was related to adapting and integrating software solutions in

the project, using tools like Mediawiki and WSO2 to implement the desired features. I also was

responsible for integrating and deploying all the internally developed middleware components into

a staging environment which I had to maintain for the external developers to use (Kiosk and Client

applications). In the final phases of the project, I prepared and tested Helm charts to deploy all the

required components in a Kubernetes for a production environment and validated some of its

performance with load tests. During my participation in this project, I also co-authored two

scientific publications and presented one of them at a conference.

Regarding the overall development of the Middleware I think the results are acceptable with the

main caveats being that a lot of the components could use some further refinement and even some

planned features did not get implemented. More integrated client applications would have helped

with that refinement as it would have placed more pressure on the developers to refine the current

features and improve motivation by seeing the system working but instead, we focused a lot on

adding new things over improving and completing what was already being worked on.

For the operational management side of things, I am very happy with the results of orchestrating

such a big system using Kubernetes (over 100 containers deployed) and having the chance of using

some pretty powerful hardware with some regrets of being sceptic of adopting such technology

earlier on in the project due to its perceived complexity but it could have saved a lot of time with a

lot of tasks.

One of the big lessons learned in this project was working around constrains with all the software

choices imposed but perhaps the biggest lesson was the importance of technical communication

between developers and even with the project manager as many misunderstandings caused a lot of

74

inefficiencies during development. In a lot of situations, especially in the earlier phases, the lack of

understanding of what was asked from the team caused us to go down the wrong path, wasting a lot

of time. Other times not being able to effectively communicate to others the state of my work or

what was needed from them also led to a lot of frustration and slower progress.

Overall, I think this was a very enriching experience and the perfect way to finish my masters, as I

was unsure on what field to work on and this project allowed me to do a bit of everything.

75

References

[1] “Sea Rondus.” [Online]. Available: http://www.seaaroundus.org/data/#/eez. [Accessed: 18-

May-2021].

[2] “Valormar.” [Online]. Available: https://valormar.pt/en/home-2/. [Accessed: 24-May-2021].

[3] “Docapesca.” [Online]. Available: http://www.docapesca.pt/. [Accessed: 30-May-2021].

[4] “Sonae.” [Online]. Available: https://www.sonae.pt/en/. [Accessed: 30-May-2021].

[5] “IPVC - Intituto Politécnico de Viana do Castelo.” [Online]. Available:

https://www.ipvc.pt/en/. [Accessed: 30-May-2021].

[6] “FlowTech.” [Online]. Available: https://flowtech.pt/en/home-3/. [Accessed: 30-May-

2021].

[7] S. Charlebois, B. Sterling, S. Haratifar, and S. K. Naing, “Comparison of Global Food

Traceability Regulations and Requirements,” Compr. Rev. Food Sci. Food Saf., vol. 13, no.

5, 2014.

[8] M. M. Aung and Y. S. Chang, “Traceability in a food supply chain: Safety and quality

perspectives,” Food Control. 2014.

[9] J. Barnett et al., “Consumers’ confidence, reflections and response strategies following the

horsemeat incident,” Food Control, 2016.

[10] T. King et al., “Food safety for food security: Relationship between global megatrends and

developments in food safety,” Trends in Food Science and Technology. 2017.

[11] Y. Duroc and S. Tedjini, “RFID: A key technology for Humanity,” Comptes Rendus

Physique. 2018.

[12] D. Pigini and M. Conti, “NFC-based traceability in the food chain,” Sustain., 2017.

[13] M. J. Hardt, K. Flett, and C. J. Howell, “Current Barriers to Large-scale Interoperability of

Traceability Technology in the Seafood Sector,” J. Food Sci., 2017.

76

[14] H. A. Rothan and S. N. Byrareddy, “The epidemiology and pathogenesis of coronavirus

disease (COVID-19) outbreak,” Journal of Autoimmunity. 2020.

[15] S. A. Sarkodie and P. A. Owusu, “Global assessment of environment, health and economic

impact of the novel coronavirus (COVID-19),” Environ. Dev. Sustain., 2020.

[16] S. J. Daniel, “Education and the COVID-19 pandemic,” Prospects, 2020.

[17] S. MIN, C. XIANG, and X. heng ZHANG, “Impacts of the COVID-19 pandemic on

consumers’ food safety knowledge and behavior in China,” J. Integr. Agric., 2020.

[18] A. Kassahun, R. J. M. Hartog, and B. Tekinerdogan, “Realizing chain-wide transparency in

meat supply chains based on global standards and a reference architecture,” Comput.

Electron. Agric., 2016.

[19] “GS1 Standards.” [Online]. Available: https://www.gs1.org/standards/epcis. [Accessed: 22-

May-2021].

[20] M. P. Papazoglou and W. J. Van Den Heuvel, “Service oriented architectures: Approaches,

technologies and research issues,” VLDB J., 2007.

[21] SAP, “SAP Software & Solutions | Technology & Business Applications,” SAP.com, 2019.

[Online]. Available: https://www.sap.com/index.html.

[22] Y. C. Hsu, A. P. Chen, and C. H. Wang, “A RFID-enabled traceability system for the

supply chain of live fish,” in Proceedings of the IEEE International Conference on

Automation and Logistics, ICAL 2008, 2008.

[23] L. M. Abenavoli, F. Cuzzupoli, V. Chiaravalloti, and A. R. Proto, “Traceability system of

olive oil: A case study based on the performance of a new software cloud,” Agron. Res.,

2016.

[24] K. Korpela, J. Hallikas, and T. Dahlberg, “Digital Supply Chain Transformation toward

Blockchain Integration,” in Proceedings of the 50th Hawaii International Conference on

System Sciences (2017), 2017.

[25] A. Sill, “The Design and Architecture of Microservices,” IEEE Cloud Comput., 2016.

[26] K. Indrasiri and P. Siriwardena, “The Case for Microservices,” in Microservices for the

Enterprise, 2018.

[27] “WSO2.” [Online]. Available: https://wso2.com/. [Accessed: 24-May-2021].

[28] “IBM API Connect.” [Online]. Available: https://www.ibm.com/uk-en/cloud/api-connect.

[Accessed: 24-May-2021].

77

[29] “Azure’s API Management.” [Online]. Available: https://azure.microsoft.com/en-

us/services/api-management/. [Accessed: 24-May-2021].

[30] “Apigee.” [Online]. Available: https://docs.apigee.com/. [Accessed: 21-Jun-2021].

[31] “3scale.” [Online]. Available: https://www.3scale.net/. [Accessed: 21-Jun-2021].

[32] “Kong.” [Online]. Available: https://konghq.com/. [Accessed: 21-Jun-2021].

[33] “Apache Kafka.” [Online]. Available: https://kafka.apache.org/. [Accessed: 24-May-2021].

[34] “ActiveMQ.” [Online]. Available: https://activemq.apache.org/. [Accessed: 24-May-2021].

[35] “RabbitMQ.” [Online]. Available: https://www.rabbitmq.com/. [Accessed: 24-May-2021].

[36] “AMQP.” [Online]. Available: https://www.amqp.org/. [Accessed: 24-May-2021].

[37] “MQTT.” [Online]. Available: https://mqtt.org/. [Accessed: 24-May-2021].

[38] “STOMP.” [Online]. Available: https://stomp.github.io/. [Accessed: 24-May-2021].

[39]. “Net Framework.” [Online]. Available: https://dotnet.microsoft.com/. [Accessed: 24-May-

2021].

[40] “JakartaEE.” [Online]. Available: https://jakarta.ee/. [Accessed: 24-May-2021].

[41] “Spring.” [Online]. Available: https://spring.io/. [Accessed: 24-May-2021].

[42] “Azure Functions.” [Online]. Available: https://azure.microsoft.com/en-

us/services/functions/. [Accessed: 24-May-2021].

[43] “AWS Lambda.” [Online]. Available: https://aws.amazon.com/lambda/.

[44] “SQL Server.” [Online]. Available: https://www.microsoft.com/en-us/sql-server/sql-server-

2019. [Accessed: 25-May-2021].

[45] “MySQL.” [Online]. Available: https://www.mysql.com/. [Accessed: 21-Jun-2021].

[46] “Neo4j.” [Online]. Available: https://neo4j.com/. [Accessed: 21-Jun-2021].

[47] “MongoDB.” [Online]. Available: https://www.mongodb.com/. [Accessed: 30-May-2021].

[48] “Docker.” [Online]. Available: https://www.docker.com/. [Accessed: 25-May-2021].

[49] “OpenShift rkt.” [Online]. Available: https://www.openshift.com/learn/topics/rkt.

[Accessed: 24-May-2021].

[50] “Apache Mesos.” [Online]. Available: https://mesos.apache.org/. [Accessed: 24-May-2021].

[51] “Docker Swarm.” [Online]. Available: https://docs.docker.com/engine/swarm/. [Accessed:

78

25-May-2021].

[52] “Kubernetes.” [Online]. Available: https://kubernetes.io/. [Accessed: 25-May-2021].

[53] “Ansible.” [Online]. Available: https://www.ansible.com/. [Accessed: 25-May-2021].

[54] “Chef.” [Online]. Available: https://www.chef.io/. [Accessed: 25-May-2021].

[55] “Puppet.” [Online]. Available: https://puppet.com/. [Accessed: 25-May-2021].

[56] “OpenNebula.” [Online]. Available: https://opennebula.io/. [Accessed: 25-May-2021].

[57] “OpenStack.” [Online]. Available: https://www.openstack.org/. [Accessed: 25-May-2021].

[58] “Azure DevOps.” [Online]. Available: https://azure.microsoft.com/en-us/services/devops/.

[Accessed: 25-May-2021].

[59] “Jenkins.” [Online]. Available: https://www.jenkins.io/. [Accessed: 25-May-2021].

[60] E. F. Cruz, A. M. Rosado Da Cruz, and R. Gomes, “Analysis of a traceability and quality

monitoring platform for the fishery and aquaculture value Chain,” in Iberian Conference on

Information Systems and Technologies, CISTI, 2019.

[61] M. Chinosi and A. Trombetta, “BPMN: An introduction to the standard,” Comput. Stand.

Interfaces, 2012.

[62] A. M. Rosado Da Cruz et al., “On the design of a platform for traceability in the fishery and

aquaculture value chain,” in Iberian Conference on Information Systems and Technologies,

CISTI, 2019.

[63] “Node.js.” [Online]. Available: https://nodejs.org/en/. [Accessed: 30-May-2021].

[64] D. Da Silva, J. Costa, B. Assuncao, V. Kuprych, and C. Teixeira, “Microservice-based

Middleware for Collaborative Supply Chain Tracing,” in Iberian Conference on

Information Systems and Technologies, CISTI, 2020.

[65] K. Indrasiri and P. Siriwardena, “Inter-Service Communication,” in Microservices for the

Enterprise: Designing, Developing, and Deploying, Berkeley, CA: Apress, 2018, pp. 63–88.

[66] K. Indrasiri and P. Siriwardena, “APIs, Events, and Streams,” in Microservices for the

Enterprise: Designing, Developing, and Deploying, Berkeley, CA: Apress, 2018, pp. 293–

312.

[67] K. Indrasiri and P. Siriwardena, “Designing Microservices,” in Microservices for the

Enterprise: Designing, Developing, and Deploying, Berkeley, CA: Apress, 2018, pp. 19–61.

[68] J. Oliveira et al., “Traceability system for quality monitoring in the fishery and aquaculture

79

value chain,” J. Agric. Food Res., vol. 5, p. 100169, 2021.

[69] “OpenAPI 3.0.0 Specification.” [Online]. Available: https://spec.openapis.org/oas/v3.0.0.

[Accessed: 30-May-2021].

[70] “Swagger.” [Online]. Available: https://swagger.io/. [Accessed: 30-May-2021].

[71] “Debezium.” [Online]. Available: https://debezium.io/. [Accessed: 30-May-2021].

[72] “Avro.” [Online]. Available: https://avro.apache.org/. [Accessed: 30-May-2021].

[73] “ElasticSearch.” [Online]. Available: https://www.elastic.co/elasticsearch/. [Accessed: 30-

May-2021].

[74] “Mediawiki.” [Online]. Available: https://www.mediawiki.org/wiki/MediaWiki. [Accessed:

29-May-2021].

[75] “Wiki.js.” [Online]. Available: https://js.wiki/. [Accessed: 30-May-2021].

[76] “Scribunto.” [Online]. Available: https://www.mediawiki.org/wiki/Extension:Scribunto.

[Accessed: 30-May-2021].

[77] MediaWiki, “Extension:Cargo/Cargo and Semantic MediaWiki - MediaWiki.” [Online].

Available:

https://www.mediawiki.org/wiki/Extension:Cargo/Cargo_and_Semantic_MediaWiki#Faster

_performance. [Accessed: 01-Dec-2019].

[78] M. Krötzsch, D. Vrandečić, M. Völkel, H. Haller, and R. Studer, “Semantic Wikipedia,”

Web Semant., 2007.

[79] “Mediawiki Extension: OpenID Connect.” [Online]. Available:

https://www.mediawiki.org/wiki/Extension:OpenID_Connect. [Accessed: 30-May-2021].

[80] “Mediawiki Extension: Pluggable Auth.” [Online]. Available:

https://www.mediawiki.org/wiki/Extension:PluggableAuth. [Accessed: 30-May-2021].

[81] “Tweeki.” [Online]. Available: https://www.mediawiki.org/wiki/Skin:Tweeki. [Accessed:

27-May-2021].

[82] “DACPAC.” [Online]. Available: https://docs.microsoft.com/en-us/sql/relational-

databases/data-tier-applications/data-tier-applications?view=sql-server-ver15. [Accessed:

17-Jun-2021].

[83] “SCIM2 Standard.” [Online]. Available: https://tools.ietf.org/html/rfc7644. [Accessed: 30-

May-2021].

80

[84] “Kafka REST Proxy.” [Online]. Available: https://docs.confluent.io/platform/current/kafka-

rest/index.html. [Accessed: 30-May-2021].

[85] “MITM Attack.” [Online]. Available: https://en.wikipedia.org/wiki/Man-in-the-

middle_attack. [Accessed: 30-May-2021].

[86] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore, “Openid connect

core 1.0,” OpenID Found., 2014.

[87] “WSO2 IS OpenId Connect Flows.” [Online]. Available:

https://is.docs.wso2.com/en/5.9.0/learn/openid-connect-authentication/ . [Accessed: 30-

May-2021].

[88] “SAML2.” [Online]. Available: http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-

tech-overview-2.0.html. [Accessed: 25-Jun-2021].

[89] “Shibboleth Identity Provider.” [Online]. Available:

https://wiki.shibboleth.net/confluence/display/IDP4/Home. [Accessed: 25-Jun-2021].

[90] “ReactJS.” [Online]. Available: https://reactjs.org/. [Accessed: 27-May-2021].

[91] “Material UI.” [Online]. Available: https://material-ui.com/. [Accessed: 27-May-2021].

[92] J. Oliveira, A. M. R. Da Cruz, and P. M. Faria, “Zeroconf Network Retail Kiosk for Fish

Products Traceability,” in Iberian Conference on Information Systems and Technologies,

CISTI, 2020.

[93] J. Oliveira, P. M. Faria, and A. M. Rosado da Cruz, “User Experience in Kiosk Application

for Traceability of Fishery Products,” in Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

2020.

[94] “Docker Hub.” [Online]. Available: https://hub.docker.com. [Accessed: 27-May-2021].

[95] “Portainer.” [Online]. Available: https://www.portainer.io/. [Accessed: 30-May-2021].

[96] “Helm.” [Online]. Available: https://helm.sh/. [Accessed: 30-May-2021].

[97] “Ansible one_vm module.” [Online]. Available:

https://docs.ansible.com/ansible/latest/collections/community/general/one_vm_module.html

. [Accessed: 29-May-2021].

[98] “Kubespray.” [Online]. Available: https://github.com/kubernetes-sigs/kubespray.

[Accessed: 29-May-2021].

81

[99] “etcd.” [Online]. Available: https://etcd.io/. [Accessed: 30-May-2021].

[100] “VM Performance Optimization for OpenNebula.” [Online]. Available:

https://storpool.com/blog/vm-performance-optimization-for-opennebula-with-kvm.

[Accessed: 29-May-2021].

[101] “Kubernetes APIM Charts.” [Online]. Available: https://github.com/wso2/kubernetes-apim.

[Accessed: 29-May-2021].

[102] “Kubernetes IS Charts.” [Online]. Available: https://github.com/wso2/kubernetes-is.

[Accessed: 29-May-2021].

[103] “WSO2 Micro Integrator - Kubernetes.” [Online]. Available:

https://wso2.com/library/articles/deploying-wso2-micro-integrator-on-kubernetes/.

[Accessed: 25-Jun-2021].

[104] “Bitnami.” [Online]. Available: https://bitnami.com/. [Accessed: 30-May-2021].

[105] “LensesIO Fast Data Dev.” [Online]. Available: https://github.com/lensesio/fast-data-dev.

[Accessed: 30-May-2021].

[106] “Kibana.” [Online]. Available: https://www.elastic.co/kibana. [Accessed: 30-May-2021].

[107] “Microsoft’s SQL Server HA Ansible Playbook Examples.” [Online]. Available:

https://github.com/microsoft/sql-server-samples/tree/master/samples/features/high

availability/Linux/Ansible Playbook. [Accessed: 28-May-2021].

[108] “cAdvisor.” [Online]. Available: https://github.com/google/cadvisor. [Accessed: 29-May-

2021].

[109] “Prometheus.” [Online]. Available: https://prometheus.io/. [Accessed: 29-May-2021].

[110] “Grafana.” [Online]. Available: https://grafana.com/. [Accessed: 29-May-2021].

[111] “Kubernetes Web UI.” [Online]. Available: https://kubernetes.io/docs/tasks/access-

application-cluster/web-ui-dashboard/. [Accessed: 29-May-2021].

[112] “Prometheus Community Charts.” [Online]. Available: https://github.com/prometheus-

community/helm-charts/tree/main/charts. [Accessed: 29-May-2021].

[113] “Node Exporter.” [Online]. Available: https://github.com/prometheus/node_exporter.

[Accessed: 29-May-2021].

[114] “Grafana Charts.” [Online]. Available: https://github.com/grafana/helm-charts. [Accessed:

29-May-2021].

82

[115] “JMeter.” [Online]. Available: https://jmeter.apache.org/. [Accessed: 30-May-2021].

[116] “Scrum.” [Online]. Available: https://www.scrum.org/resources/what-is-scrum. [Accessed:

27-May-2021].

[117] “Selenium.” [Online]. Available: https://www.selenium.dev/. [Accessed: 27-May-2021].

[118] “LambdaTest.” [Online]. Available: https://www.lambdatest.com/. [Accessed: 27-May-

2021].

