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Finite volume schemes for non-coercive elliptic
problems with Neumann boundary conditions

Claire Chainais-Hillairet 1, Jérôme Droniou 2.
09/12/2008

Abstract

We consider a convective-diffusive elliptic problem with Neumann boundary con-
ditions: the presence of the convective term entails the non-coercivity of the contin-
uous equation and, because of the boundary conditions, the equation has a kernel.
We discretize this equation with finite volume techniques and in a general frame-
work which allows to consider several treatments of the convective term: either
via a centered scheme, an upwind scheme (widely used in fluid mechanics prob-
lems) or a Scharfetter-Gummel scheme (common to semiconductor literature). We
prove that these schemes satisfy the same properties as the continuous problem
(one-dimensional kernel spanned by a positive function for instance) and that their
kernel and solution converge to the kernel and solution of the PDE. We also present
several numerical implementations, studying the effects of the choice of one scheme
or the other in the approximation of the solution or the kernel.

Keywords: convection-diffusion equations, Neumann boundary conditions, finite
volume schemes, numerical analysis.

1 Introduction

We are interested in the finite volume approximation of the following convection-diffusion
equation with Neumann boundary conditions:

{
−∆ū + div(Vū) = g in Ω
∇ū · n − (V · n)ū = 0 on ∂Ω

(1.1)

where
Ω is a bounded polygonal connected domain of R

d (d ≥ 2),
g ∈ L2(Ω) ,

V ∈ Lp(Ω)d with 2 < p < +∞ if d = 2 and p = d if d ≥ 3.
(1.2)

The solution to (1.1) is understood in the usual weak sense






ū ∈ H1(Ω) ,

∀ϕ ∈ H1(Ω) ,

∫

Ω

∇ū · ∇ϕ −

∫

Ω

ūV · ∇ϕ =

∫

Ω

gϕ.
(1.3)
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The study of such convection-diffusion problems is not difficult if we assume that div(V) ≥
0 in Ω and V ·n ≤ 0 on ∂Ω (in weak senses, if V is not regular). Indeed, in this case, the
bilinear form in (1.3) is clearly coercive and the Lax-Milgram theorem can be applied.
These conditions can in fact be relaxed a little bit because the bilinear form remains
coercive if div(V) and −V · n are not too negative. But, the problem becomes more
complex if we impose no assumption on these quantities: the bilinear form in (1.3) is then
not coercive in general and the existence of a solution to this equation is not obvious.
This situation can appear if we consider a passive scalar quantity which simultaneously
diffuses into a compressible flow and is convected by it: in this case, the scalar satisfies the
transient form of (1.1) and, if we look for a stationary regime, we arrive at (1.1) without
any specific assumption on div(V) (because of the compressibility of the flow).
Despite the lack of assumption on V, existence and uniqueness of the weak solution to
(1.1) has been proved by J. Droniou and J.-L. Vázquez in [7]. The same result had been
previously obtained by J. Droniou in [4] in the case of Dirichlet, Fourier and mixed bound-
ary conditions. The main difference between the two families of boundary conditions is
that in one case (Dirichlet/Fourier/mixed) there always exists a unique solution, whereas
in the other (Neumann), the right hand side of (1.1) must satisfy

∫

Ω

g = 0

in order that there exists a weak solution, and this solution is never unique (the operator
has a kernel). Moreover, for Dirichlet, Fourier or mixed boundary conditions, the existence
of a solution is obtained via direct explicit estimates (see [4]), while this is not the case for
Neumann boundary conditions ([7] relies on abstract functional analysis — the Fredholm
theory, mainly). Indeed, if we consider (1.1) with a lower order term:

{
−∆ū + div(Vū) + γū = g in Ω
∇ū · n − (V · n)ū = 0 on ∂Ω

(1.4)

with γ > 0, it becomes possible to make direct estimates to prove the existence and
uniqueness of a solution to the weak formulation of (1.4) (this has been done in [4], and
the technique can be adapted to Neumann boundary conditions). In fact, the study of
(1.1) requires to make estimates on (1.4) at least for a large γ.

As shown in the book by R. Eymard, T. Gallouët and R. Herbin [10], finite volume
schemes are based on the conservation of physical quantities (conservation and balance
of the fluxes, for example), and are therefore well suited to discretize equations coming
in particular from fluid mechanics (the finite volume techniques are particularly popular
in the oil engineering field). In this paper, we intend to propose some finite volume
schemes for the numerical approximation of (1.1) and to establish their convergence. As
a by-product, we also get the convergence of some schemes for (1.4).
In finite volume methods, the proof of convergence of a subsequence of approximate
solutions toward the solution ū of the PDE usually does not require theoretical results
on the PDE itself: the classical finite volume techniques rely on a priori estimates and
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compactness properties which are proved on the approximate solution by simply adapting
some continuous functional analysis to the discrete setting. Thus, the study of these
schemes gives, as a by-product, the existence of a solution to the PDE (see [10]). For
example, the technique of [4] (for non-coercive elliptic equations with Dirichlet boundary
conditions) was adapted to the discrete setting in [6] by J. Droniou and T. Gallouët.
The situation for (1.1) is quite different: because the technique of estimate in [7] is quite
abstract, we cannot adapt it to find direct estimates in the discrete setting. During the
study of the scheme for (1.1), we will therefore much more rely, even only to prove a priori
estimate on the solutions to the scheme, on the known results of [7] on (1.1). The proof of
convergence we propose in this paper is therefore not classical for finite volume methods.

There exists several studies of numerical methods to approximate non-coercive problems,
either in a general setting [17] or more specifically for convection-diffusion equations [14]
or the Helmholtz equation [15, 11]; to our best knowledge, these studies concern finite
element or discontinuous Galerkin methods, which are either conformal (i.e. the approx-
imate solutions belong to the same space as the solution to the continuous problem) or
close to conformal approximations. Moreover, they all require that the continuous vari-
ational problem (and its adjoint) has a unique solution, and they only ensure that the
linear system corresponding to the scheme is solvable for a mesh size small enough (an
estimate of this smallness can be made, but it does not seem very explicit or easy to use
in practice, see [1]). In the present situation, [7] shows that (1.1) has a unique solution
in the space of functions in H1(Ω) with mean value zero, and the results in the literature
thus ensure that, using for example a conformal finite element approximation of (1.1)
in this space, we would obtain a scheme which converges to the unique solution of (1.1)
with mean value zero. However, the existence of the approximate solution would only
be ensured for a mesh size small enough, and this method would not provide a practical
approximation of the kernel of the PDE.
The finite volume approximation we suggest here does not require to eliminate from the
start the kernel of (1.1) and, as a consequence, makes it possible to approximate not only
the solution (with mean value zero) to this problem, but also its kernel. Moreover, thanks
to the maximum principle satisfied by the finite volume method, no restriction on the
mesh size is required to establish the solvability of the finite dimensional linear system
giving the approximate solution.

The paper is organized as follows. In the next chapter, we introduce the finite volume
schemes for (1.1) and (1.4); we use a general formulation which allows for several differ-
ent discretizations of the convection term, such as the centered, upwind or Scharfetter-
Gummel discretization (we give the expressions of each of these specific schemes). We
conclude this next section by stating the main theoretical results of the paper: existence,
uniqueness and convergence of the approximate solutions. As said above, Problem (1.1)
has a kernel, and we also include in the study of the solutions to the scheme the fact
that the kernel of the discretization converge to the kernel of (1.1). In Section 3, we give
some properties of the matrices associated with the schemes, which allow us to study
the existence and uniqueness of the solutions and the kernel of the schemes. Section 4 is
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devoted to obtaining estimates on these solutions, first for large γ and then for any γ ≥ 0,
and to prove the convergence of the scheme (along with its kernel) toward the continu-
ous problem. We provide in Section 5 numerical results obtained with the scheme; we
illustrate both the convergence of the solution and of the kernel, giving numerical orders
of convergence for various choices of schemes (centered, upwind or Scharfetter-Gummel).
Finally, an appendix (Section 6) gives the proof of a discrete Sobolev inequality needed
during the theoretical study of the schemes.

2 The finite volume schemes

We first define the notion of admissible discretization of Ω, following Definition 5.1 in [10].

Definition 2.1 (Admissible mesh) An admissible mesh M of Ω is given by a finite family
T of disjoint open convex polygonal subsets of Ω (the control volumes), a finite family E
of disjoint subsets of Ω (the edges) consisting in non-empty open convex subsets of affine
hyperplanes and a family P = (xK)K∈T of points in Ω such that:

• Ω = ∪K∈T K,

• each σ ∈ E, is contained in ∂K for some K ∈ T ,

• for all K ∈ T , denoting EK = {σ ∈ E , σ ⊂ ∂K}, ∂K = ∪σ∈EK
σ,

• for all K 6= L in T , either the (d − 1)-dimensional measure of K ∩ L is zero or
K ∩ L = σ for some σ ∈ E, which is then denoted σ = K|L,

• for all K ∈ T , xK ∈ K,

• for all σ = K|L ∈ E, the straight line (xK , xL) is orthogonal to σ,

• for all σ ∈ E such that σ ⊂ ∂Ω ∩ ∂K, the line which is orthogonal to σ and goes
through xK intersects σ.

It will be useful to introduce a few more notations associated with an admissible mesh.
In the set of edges E , we distinguish the set of interior edges Eint (the edges contained in
Ω) and the set of boundary edges Eext (the edges contained in ∂Ω). The d-dimensional
measure of a control volume K is m(K); similarly, the (d− 1)-dimensional measure of an
edge σ is m(σ). For a control volume K ∈ T , we denote by EK,int = Eint∩EK the set of its
interior edges and by N(K) the set of its neighbouring control volumes (i.e. the control
volumes L such that K ∩L is an edge of the discretization). For σ ∈ EK , nK,σ is the unit
normal to σ outwards K. If σ ∈ EK,int, it means that σ = K|L and we then denote dσ the
distance d(xK , xL). The size of the mesh is size(M) = supK∈T diam(K). See Figure 1 for
the illustration of some of these assumptions and notations.
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K

L
xK

xLσ = K|L

dσ

Figure 1: Illustration of the assumptions and notations on the discretization.

We will need discrete Sobolev inequalities (see Lemma 6.1), which depend on the constant
ζ appearing in the following assumption.

∃ζ > 0 such that ∀K ∈ T , ∀σ ∈ EK , d(xK , σ) ≥ ζdσ. (2.5)

The principle of finite volume schemes for convection-diffusion problems is to write a flux
balance, using quantities FK,σ which approximate

∫
σ
(−∇ū ·nK,σ + (V ·nK,σ)ū). In order

to do so, we will need discretizations of the fluxes of V through the edges of the mesh:

vK,σ =
1

m(Dσ)

∫

Dσ

V · nK,σ dx, (2.6)

where Dσ is the diamond around σ, i.e. the convex hull of σ and {xK , xL} if σ = K|L ∈ Eint

or the convex hull of σ and xK if σ ∈ EK,int.

Remark 2.2 Other definitions of vK,σ are possible. In the case where V is continuous, a
classical choice is vK,σ = 1

m(σ)

∫
σ
V ·nK,σ or vK,σ = V(xσ) ·nK,σ (with xσ ∈ σ). If V comes

from a potential Φ (V = ∇Φ), we can also choose vK,σ = Φ(xL)−Φ(xK)
dσ

(see the interest of
this choice in Remark 3.3). As one can convince himself by reading the proofs below, all
these different choices (provided that V is regular enough so that they make sense) entail
very little changes in the study of the scheme.

We need now to explain how to construct the approximation of the fluxes FK,σ, using
only approximate values (uK)K∈T of the solution inside the control volumes (these will be
the unknowns of the system describing the scheme). Let us first consider three particular
and well-known cases.
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2.1 Centered fluxes

A simple definition of the numerical flux can be

FK,σ =
m(σ)

dσ

(uK − uL) + m(σ)vK,σ
uK + uL

2
, ∀σ = K|L ∈ Eint.

Assuming that uK (resp. uL) is an approximation of ū at xK (resp. xL), the orthogonality

between (xK , xL) and σ ensures that m(σ)
dσ

(uK − uL) is a consistent approximation of∫
σ
−∇ū · nK,σ. The quantity m(σ)vK,σ

uK+uL

2
is a simple approximation of the convective

flux
∫

σ
ūV · nK,σ, taking as value of ū on σ the average of the values on both sides of the

edge.

Note that by defining Bce(s) = 1 −
s

2
, these fluxes can be written

FK,σ =
m(σ)

dσ

(
Bce(−vK,σdσ)uK − Bce(vK,σdσ)uL

)
.

The centered scheme introduces very little numerical diffusion in the discretization of the
convective term, but is therefore also not very stable if the convection is much stronger
than the natural diffusion (a Peclet condition must be imposed to prove the stability of
the approximate solution). Other fluxes are therefore usually considered.

2.2 Upwind fluxes

Another definition of the numerical flux can be

FK,σ =
m(σ)

dσ

(uK − uL) + m(σ)(v+
K,σuK − v−

K,σuL), ∀σ = K|L ∈ Eint,

where s+ = max(s, 0) and s− = max(−s, 0) are the positive and negative parts of a real
number s. The discretization of the diffusive part is the same as before, but an upwind
dicretization is used for the convective part, which stabilizes the scheme (at the cost of
the introduction of an additional numerical diffusion).
Defining Bup(s) = 1 + (−s)+ = 1 + s−, the fluxes of the upwind scheme can be written

FK,σ =
m(σ)

dσ

(
Bup(−vK,σdσ)uK − Bup(vK,σdσ)uL

)
.

2.3 The Scharfetter-Gummel fluxes

The fluxes we now introduce are well-known in the semiconductor framework. They
have been proposed by D.L. Scharfetter and H.K. Gummel in [16] for the numerical
approximation of the 1D drift-diffusion model and numerical simulation of a silicon Read
diode (see [13] for a detailed presentation). We also refer to the work by A.M. Il’in [12]
where the same kind of fluxes is introduced for 1D finite difference schemes.
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In a multidimensional context, the numerical fluxes of Scharfetter and Gummel are ob-
tained by solving a one-dimensional ODE on the staight line [xK , xL]. On this line, we set
u(x) = u(xK + θ(xL − xK)) = ũ(θ) with θ ∈ [0, 1]. Therefore ũ′(θ) = dσ∇u(xK + θ(xL −
xK)) · nK,σ. Solving





−

1

dσ

ũ′(θ) + vK,σũ(θ) =
FK,σ

m(σ)
, θ ∈ [0, 1],

ũ(0) = uK .

we get

ũ(θ) =
FK,σ

m(σ)vK,σ

+

(
uK −

FK,σ

m(σ)vK,σ

)
evK,σdσθ , ∀θ ∈ [0, 1],

and the flux FK,σ is then defined by imposing ũ(1) = uL, which leads to

FK,σ =
m(σ)

dσ

(
Bsg(−vK,σdσ)uK − Bsg(vK,σdσ)uL

)
, ∀σ = K|L, (2.7)

where Bsg =
s

es − 1
is the Bernoulli function.

An extension of the Scharfetter-Gummel scheme has been studied by R. Eymard, J.
Fuhrmann and K. Gärtner [8] in the case where the convection and diffusion terms are
nonlinear.

2.4 Definition of the generic scheme

We notice that the functions Bup and Bsg satisfy

B is Lipschitz-continuous on R, (2.8)

B(0) = 1 and B(s) > 0 , ∀s ∈ R, (2.9)

B(s) − B(−s) = −s , ∀s ∈ R. (2.10)

The function Bce also satisfies (2.8) and (2.10), but (2.9) only if s < 2 (since Bce is applied
to vK,σdσ, this translates into the Peclet condition: the convection must not be too large
with respect to the diffusion).
The generic form of finite volume schemes for (1.1) therefore consists in defining

gK =
1

m(K)

∫

K

g(x) dx

and in writing the following system on (uK)K∈T :

∑

σ∈EK,int

FK,σ = m(K)gK , ∀K ∈ T , (2.11)

FK,σ =
m(σ)

dσ

(
B(−vK,σdσ)uK − B(vK,σdσ)uL

)
, ∀σ = K|L, (2.12)
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where B is a function satisfying (2.8)–(2.10). The first equation (2.11) comes from the
physical balance of fluxes; it can also be obtained, if we recall that FK,σ approximates∫

σ
(−∇ū · nK,σ + (V · nK,σ)ū), by integrating the PDE in (1.1) and using Stokes’ formula

and the boundary conditions. The second equation (2.12) defines the approximate fluxes.
Note that the homogeneous Neumann boundary condition in (1.1) is taken into account
in the fact that the sum in (2.11) is restricted to the interior edges of each control volume:
in fact, the boundary condition consists in imposing FK,σ = 0 for σ ∈ EK ∩ Eext.

Remark 2.3 We could easily (both in (1.1) and in its discretization (2.11)–(2.12)) con-
sider non-homogeneous Neumann boundary conditions ∇ū · n − (V · n)ū = h. It is well
known that it simply adds a supplementary term in the right-hand side of the weak for-
mulation (1.3) and in the balance of fluxes (2.11), which becomes

∑

σ∈EK,int

FK,σ = m(K)gK +
∑

σ∈EK,ext

∫

σ

h dx.

It will also be useful to notice that, since vK,σ = −vL,σ whenever σ = K|L, the fluxes
defined by (2.12) are conservative:

FK,σ = −FL,σ , ∀σ = K|L.

Obviously, the scheme for (1.4) consists in replacing (2.11) by

∑

σ∈EK,int

FK,σ + γm(K)uK = m(K)gK , ∀K ∈ T . (2.13)

Remark 2.4 It is also possible to consider an heterogeneous and/or anisotropic version
of (1.1), in which −∆u is replaced by −div(A∇u) with A : Ω → Md(R) a bounded mea-
surable uniformly elliptic matrix. If A(x) = a(x)I (isotropic case), the modification of
the scheme is minimal; if A is anisotropic, then one must change the notion of admissi-
ble discretization of Ω (the orthogonality between (xK , xL) and σ = K|L should then be
understood with respect to a scalar product defined using A, see [10]).

2.5 Main results

In the following, we freely identify a vector u = (uK)K∈T with the piecewise-constant
function u equal to uK in K ∈ T .
In the continuous case, it is known (see [7]) that (1.4) has a unique solution for all γ > 0
and all g ∈ L2(Ω). On the other hand, (1.1) has a kernel (i.e. a set of solutions with
g = 0) of dimension 1, spanned by an everywhere positive function, and has a solution
only if

∫
Ω

g = 0; this solution is unique if its mean value is fixed (for example to zero).
Theorems 2.5 and 2.6 state that the discretizations of these continuous problems enjoy
the same properties. Theorems 2.7 and 2.8 state convergence results.
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Theorem 2.5 (Existence of a solution for the scheme on (1.1)) Assume (1.2), and let
M be an admissible mesh of Ω.

1. The kernel of the scheme (2.8)–(2.12) has dimension 1 and is spanned by a function
û = (ûK)K∈T which is everywhere strictly positive.

2. If
∫

Ω
g = 0, then there exists a unique solution u = (uK)K∈T of (2.8)–(2.12) such

that
∫

Ω
u = 0.

Theorem 2.6 (Existence of a solution for the scheme on (1.4)) Assume (1.2) and let
M be an admissible mesh of Ω. Then, for any γ > 0, there exists a unique solution
u = (uK)K∈T to ((2.8)–(2.10),(2.12),(2.13)) .

Theorem 2.7 (Convergence of the kernel and the solution for the scheme on (1.1)) As-
sume (1.2) and let (Mn)n≥1 be a sequence of admissible meshes which satisfy (2.5) with
ζ not depending on n, and such that size(Mn) → 0 as n → ∞.

1. Let ûn be the unique positive element, with norm in L2(Ω) equal to 1, in the kernel of
(2.8)–(2.12) for M = Mn. Then, as n → ∞, ûn → ̂̄u in L2(Ω), where ̂̄u ∈ H1(Ω)
is the unique positive element, with norm in L2(Ω) equal to 1, in the kernel of the
operator in (1.1) (i.e. a weak solution to this problem with g = 0).

2. Assume that
∫

Ω
g = 0 and let un be the unique solution to (2.8)–(2.12) with zero

mean value. Then, as n → ∞, un → ū in L2(Ω), where ū ∈ H1(Ω) is the unique
weak solution to (1.1) with zero mean value.

Theorem 2.8 (Convergence of the solution for the scheme on (1.4)) Assume (1.2) and
let (Mn)n≥1 be a sequence of admissible meshes which satisfy (2.5) with ζ not depending
on n, and such that size(Mn) → 0 as n → ∞. Let γ > 0 and un be the unique solution
to ((2.8)–(2.10),(2.12),(2.13)) . Then, as n → ∞, un → ū in L2(Ω), where ū ∈ H1(Ω)
is the unique weak solution to (1.4).

3 Existence and uniqueness of the solutions to the

schemes

We intend here to prove Theorems 2.5 and 2.6 by means of linear algebra tools. The
scheme (2.8)–(2.12) leads to a linear system of equations, which can be written

AU = G
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where U = (uK)K∈T , G = (m(K)gK)K∈T and A is the square matrix of size Card(T ) ×
Card(T ) with entries

AK,K =
∑

σ∈EK,int

m(σ)

dσ

B(−vK,σdσ) , ∀K ∈ T ,

AK,L = −
m(σ)

dσ

B(vK,σdσ) , ∀K ∈ T ,∀L ∈ N(K), with σ = K|L,

AK,L = 0 , ∀K ∈ T ,∀L 6∈ N(K).

(3.14)

The scheme ((2.8)–(2.10),(2.12),(2.13)) for (1.4) also leads to a linear system of equations
AγU = G where, for all γ > 0, the matrix Aγ is defined by Aγ = A + γD with D the
diagonal matrix whose diagonal entries are DK,K = m(K). Theorems 2.5 and 2.6 are thus
easy consequences of the following proposition.

Proposition 3.1 The matrix A of the scheme (2.8)–(2.12) satisfies:

1. Ker(A) has dimension 1 and, if U = (uK)K∈T ∈ Ker(A)\{0}, then either uK > 0
for all K ∈ T or uK < 0 for all K ∈ T .

2. Ker(A∗) = R(1, 1, · · · , 1)∗ ( ∗ denotes the transpose) and thus

Im(A) =

{
(GK)K∈T ;

∑

K∈T
GK = 0

}
.

3. For all γ > 0, the diagonal coefficients of Aγ are positive, the extra-diagonal coeffi-
cients of Aγ are non-positive, and the sum of the coefficients in each column of Aγ

is positive. Therefore, Aγ is an M-matrix and is invertible.

Proof of Proposition 3.1

Thanks to (3.14) and (2.9), we notice that all the diagonal entries of A are strictly positive,
whereas the extra-diagonal coefficients are non-positive; this is thus also the case for Aγ

for all γ > 0. Moreover, since vL,σ = −vK,σ whenever σ = K|L ∈ Eint, we have

AK,K = −
∑

L∈N(K)

AL,K , ∀K ∈ T . (3.15)

In other words, in each column, the diagonal term is the opposite of the sum of the
extra-diagonal terms. This has two consequences:

• (1, 1, · · · , 1)∗ ∈ Ker(A∗), and thus Ker(A∗) and Ker(A) have at least dimension 1.

• the sum of the coefficients in the column K of Aγ is equal to γm(K), and Item 3 of
the proposition is satisfied.
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It remains to prove that Ker(A) has dimension 1 and that any non-zero vector inside
this kernel is either strictly positive or strictly negative. This could be done by adapt-
ing the technique used in [7] for the continuous equation, but since there is no issue of
regularity of solutions in the discrete setting we prefer to use a different (and probably
more straightforward) technique; notice that, in the case of regular solutions to (1.1), the
following technique could be used in the continuous case.
Let us take U = (UK)K∈T ∈ Ker(A) which is not zero; upon changing U in −U , we can
assume that one of the coefficients of U is strictly positive. Denote then

T +
U = {K ∈ T ; UK > 0} 6= ∅,

T −
U = {K ∈ T ; UK ≤ 0}.

Since U ∈ Ker(A), by (3.15) we have, for all K ∈ T ,

AK,KUK +
∑

L∈N(K)

AK,LUL = −
∑

L∈N(K)

AL,KUK +
∑

L∈N(K)

AK,LUL = 0.

Let us sum these equations over K ∈ T −
U :

−
∑

K∈T −

U

∑

L∈N(K)

AL,KUK +
∑

K∈T −

U

∑

L∈N(K)

AK,LUL = 0.

We now gather this sum by edges; an edge σ = K|L between two control volumes in T −
U

brings two contributions to this sum, namely −AL,KUK+AK,LUL and −AK,LUL+AL,KUK ,
which cancel out each other. Hence, in this sum, the only remaining contributions are
those of edges between control volumes in T −

U and T +
U ; denoting T −+

U = {σ = K|L ∈
Eint , K ∈ T −

U , L ∈ T +
U }, this leads to

−
∑

σ=K|L∈T −+
U

AL,KUK +
∑

σ=K|L∈T −+
U

AK,LUL = 0

(where, in concordance with the preceding notations, for each edge σ = K|L ∈ T −+
U , K

is the control volume in T −
U and L is the control volume in T +

U ).
But, if T −+

U is not empty then, by (2.9) and (3.14),
∑

σ=K|L∈T −+
U

AL,KUK ≥ 0 and∑
σ=K|L∈T −+

U
AK,LUL < 0, which lead to a contradiction. Hence, T −+

U = ∅ and, since

Ω is connected and T +
U is not empty, this implies that T −

U is empty; all the coefficients of
U are therefore strictly positive.
It follows that Ker(A) is of dimension at most 1: indeed, if U 6= 0 and V belong to Ker(A),
then so does V + λU for all λ ∈ R; all the coefficients of V + λU must therefore be either
strictly positive, or strictly negative, or zero. Since it is always possible to choose λ such
that one coefficient at leat of V + λU is zero, such a choice gives V + λU = 0, that is to
say the colinearity of U and V . The proof is then concluded.
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Remark 3.2 (Extension of the results of Proposition 3.1 to the centered scheme) The
results of Proposition 3.1 remain true for the centered scheme if Bce(−vK,σdσ) > 0 and
Bce(vK,σdσ) > 0 for every interior edge σ of the mesh. Using the definition of Bce for the
centered scheme, it rewrites as a Péclet condition:

|vK,σdσ| < 2, ∀K ∈ T , ∀σ ∈ EK,int. (3.16)

Remark 3.3 (The kernel in the case of the Scharfetter-Gummel scheme with a gradient
velocity) Assume that V = ∇Φ with Φ ∈ C1(Ω̄). Then it is easy to check that the kernel
of the continuous problem (1.1) is ReΦ; for the Scharfetter-Gummel scheme, this property
is also valid at the discrete level. Indeed, if we associate with Φ the vector, also denoted
by Φ, defined by Φ = (ΦK = Φ(xK))K∈T and if we take

vK,σ =
ΦL − ΦK

dσ

, ∀σ = K|L,

then, plugging u = eΦ in (2.7) we obtain FK,σ = 0 for all σ = K|L, and thus Ker(A) =
ReΦ.

Proof of Theorems 2.5 and 2.6

Theorem 2.6 is an immediate consequence of Item 3 in Proposition 3.1.
The first item of Theorem 2.5 follows from the first item in Proposition 3.1. By Item 2 in
this proposition, we know that, as soon as

∫
Ω

g = 0 =
∑

K∈T m(K)gK , G = (m(K)gK)K∈T
belongs to Im(A). Therefore, there exists at least one solution to the scheme, denoted by
u0. By Item 1 in Theorem 2.5, all the solutions to (2.8)–(2.12) can be written u = u0 +λû
with λ ∈ R, and the fact that

∫
Ω

û 6= 0 shows that there is only one solution which satisfies∫
Ω

u = 0: it corresponds to the choice λ = −
∫

Ω
u0/(

∫
Ω

û).

4 Convergence of the schemes

4.1 Estimates for large γ

The estimates on finite volume schemes are usually performed using an adequate H1-semi-
norm associated with the scheme. The H1-semi-norm of u = (uK)K∈T is here defined by

|u|1,M =




∑

σ=K|L∈Eint

m(σ)

dσ

(uK − uL)2




1/2

. (4.17)

The following proposition and corollary check that our schemes enjoy properties which are
well-known for the continuous equations, namely: if γ is large enough, it is easy to obtain
a priori estimates on the solution to (1.4) and, for any γ, the L2 norm of the gradient of
the solution to (1.4) is always controlled by the L2 norm of the solution. Of course, the
main difference with respect to the continuous case is that, at the discrete level, we have
to make sure that these estimates do not depend on the size of the mesh.
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Proposition 4.1 Assume that (1.2) holds and that M satisfies (2.5). There exists γ0 =
γ0(Ω,V, B, ζ) > 0 and C1 = C1(Ω,V, B, ζ) > 0 such that, for all γ ≥ γ0, if u is a solution
to the scheme ((2.8)–(2.10),(2.12),(2.13)) for (1.4), then

|u|21,M + ||u||2L2(Ω) ≤
C1

γ
||g||2L2(Ω).

Remark 4.2 In the case of an upwind flux B = Bup, then a simple adaptation of the
technique in [6] allows to see that one can in fact take γ0 = 0.

Proof of Proposition 4.1

All the constants Ci appearing in this proof only depend on Ω, V, B and ζ. We multiply
(2.13) by uK and sum over K ∈ T . Thanks to the conservativity of the fluxes and to
(2.12), gathering by edges we find

∑

σ=K|L∈Eint

m(σ)

dσ

[
B(−vK,σdσ)uK − B(vK,σdσ)uL

]
(uK − uL) + γ||u||2L2(Ω)

≤ ||g||L2(Ω)||u||L2(Ω).

Subtracting and adding B(0) = 1 to B(−vK,σdσ) and B(vK,σdσ) and using the Lipschitz-
continuity of B we obtain, thanks to the Cauchy-Schwarz and Young’s inequalities,

∑

σ=K|L∈Eint

m(σ)

dσ

(uK − uL)2 +
γ

2
||u||2L2(Ω)

≤
1

2γ
||g||2L2(Ω) + C2

∑

σ=K|L∈Eint

m(σ)|vK,σ| (|uK | + |uL|) |uK − uL|

≤
1

2γ
||g||2L2(Ω) + C2




∑

σ=K|L∈Eint

m(σ)

dσ

(uK − uL)2




1/2

×




∑

σ=K|L∈Eint

m(σ)dσv
2
K,σ (|uK | + |uL|)

2




1/2

.

We deduce, using Young’s inequality,

|u|21,M + γ||u||2L2(Ω) ≤
C3

γ
||g||2L2(Ω) + C3

∑

σ=K|L∈Eint

m(σ)dσv
2
K,σ (|uK | + |uL|)

2. (4.18)

We now take M > 0 and define vM
K,σ = 1

m(Dσ)

∫
Dσ

1{|V|≥M}V · nK,σ; we notice that |vK,σ −

vM
K,σ| ≤ M and Estimate (4.18) therefore gives

|u|21,M + γ||u||2L2(Ω) ≤
C3

γ
||g||2L2(Ω) + C4M

2
∑

σ=K|L∈Eint

m(σ)dσ(|uK |2 + |uL|
2)

+C5

∑

σ=K|L∈Eint

m(σ)dσ(vM
K,σ)2(|uK | + |uL|)

2.

13



But, from (2.5), we have
∑

σ∈EK
m(σ)dσ ≤ 1

ζ

∑
σ∈EK

m(σ)d(xK , σ) = d
ζ
m(K) for all K ∈ T

and therefore, gathering by control volumes,

|u|21,M + γ||u||2L2(Ω) ≤
C3

γ
||g||2L2(Ω) + C6M

2||u||2L2(Ω)

+C6

∑

σ=K|L∈Eint

m(σ)dσ(vM
K,σ)2(|uK | + |uL|)

2. (4.19)

Let p > 2 be the exponent given by (1.2). Using Hölder’s inequality with exponents p
2

and p
p−2

, we find

∑

σ=K|L∈Eint

m(σ)dσ(vM
K,σ)2(|uK | + |uL|)

2 ≤




∑

σ=K|L∈Eint

m(σ)dσ|v
M
K,σ|

p




2/p




∑

σ=K|L∈Eint

m(σ)dσ(|uK | + |uL|)
2p

p−2




(p−2)/p

.

We use once more
∑

σ∈EK
m(σ)dσ ≤ d

ζ
m(K), apply Jensen’s inequality to |vM

K,σ|
p =

| 1
m(Dσ)

∫
Dσ

1{|V|≥M}V · nK,σ|
p and use the fact that m(Dσ) = m(σ)dσ

d
to deduce

∑

σ=K|L∈Eint

m(σ)dσ(vM
K,σ)2(|uK | + |uL|)

2 ≤ C7||1{|V|≥M}V||2Lp(Ω)d ||u||2
L

2p
p−2 (Ω)

.

By assumption on p, we can apply Lemma 6.1 (in the appendix) with q = 2p
p−2

to find
∑

σ=K|L∈Eint

m(σ)dσ(vM
K,σ)2(|uK | + |uL|)

2 ≤ C8||1{|V|≥M}V||2Lp(Ω)d(|u|21,M + ||u||2L2(Ω))

and, coming back to (4.19),

|u|21,M + γ||u||2L2(Ω) ≤
C3

γ
||g||2L2(Ω) + C6M

2||u||2L2(Ω)

+C9||1{|V|≥M}V||2Lp(Ω)d(|u|21,M + ||u||2L2(Ω)).

We notice that, as M → ∞, ||1{|V|≥M}V||Lp(Ω)d → 0; we can thus fix M = M(Ω,V, B, ζ)
such that C9||1{|V|≥M}V||2

Lp(Ω)d ≤ 1/2 and the proof is complete if we take γ0 = C6M
2 +1

and C1 = 2C3.

Corollary 4.3 Assume that (1.2) holds and that M satisfies (2.5). Then there exists
C10 = C10(Ω,V, B, ζ) such that, for all γ ≥ 0, if u is a solution to the scheme ((2.8)–
(2.10),(2.12),(2.13)) for (1.4) then |u|1,M ≤ C10(||g||L2(Ω) + ||u||L2(Ω)).

Proof of Corollary 4.3

Take γ0 given by Proposition 4.1 and remark that if u is the solution to the scheme ((2.8)–
(2.10),(2.12),(2.13)) for some γ, it is also solution to the same scheme with γ replaced
by γ + γ0 ≥ γ0 and g replaced by g + γ0u. Proposition 4.1 gives thus C11 such that
|u|1,M ≤ C11||g + γ0u||L2(Ω) and the corollary is proved.
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4.2 Estimates for any γ

Let us first begin with a lemma, which basically states that if a sequence of approximate
solutions given by the schemes converges, then its limit is a solution to the initial problem
(1.3). This lemma will be useful both in obtaining estimates on the approximate solutions
and, of course, in proving their convergence toward the solution of the continuous problem.

Lemma 4.4 Let Mn be a sequence of discretizations such that size(Mn) → 0 as n → ∞
and which satisfy (2.5) with ζ not depending on n. Let un = (un

K)K∈T be such that
(|un|1,Mn

+ ||un||L2(Ω))n≥1 is bounded and un → ū in L2(Ω) as n → ∞, with ū ∈ H1(Ω).

Then, for all ϕ ∈ C∞(Ω),

∑

σ=K|L∈En
int

m(σ)

dσ

(
B(−vK,σdσ)un

K − B(vK,σdσ)un
L

)
(ϕ(xK) − ϕ(xL))

−→

∫

Ω

∇ū · ∇ϕ −

∫

Ω

ūV · ∇ϕ as n → ∞ (4.20)

(in this equation, En
int denotes the interior edges of Mn).

Proof of Lemma 4.4

We have, by (2.10),

B(−vK,σdσ)un
K − B(vK,σdσ)un

L = B(−vK,σdσ)(un
K − un

L) + vK,σdσu
n
L

and
B(−vK,σdσ)un

K − B(vK,σdσ)un
L = vK,σdσu

n
K + B(vK,σdσ)(un

K − un
L),

so that, averaging these two quantities,

B(−vK,σdσ)un
K−B(vK,σdσ)un

L

=
B(−vK,σdσ) + B(vK,σdσ)

2
(un

K − un
L) + vK,σdσ

un
K + un

L

2

= (un
K − un

L) + vK,σdσ
un

K + un
L

2
+ Rn

K,σ

where, since B(0) = 1 and B is Lipschitz-continuous, |Rn
K,σ| ≤ Lip(B)dσ|vK,σ| |u

n
K − un

L|.
Therefore, we can write

∑

σ=K|L∈En
int

m(σ)

dσ

(
B(−vK,σdσ)un

K −B(vK,σdσ)un
L

)
(ϕ(xK)−ϕ(xL)) = T n

1 + T n
2 + Lip(B)T n

3 .

with

T n
1 =

∑

σ=K|L∈En
int

m(σ)

dσ

(un
K − un

L)(ϕ(xK) − ϕ(xL)),

T n
2 =

∑

σ=K|L∈En
int

m(σ)vK,σ
un

K + un
L

2
(ϕ(xK) − ϕ(xL)),

|T n
3 | ≤

∑

σ=K|L∈En
int

m(σ)|vK,σ| |u
n
K − un

L| |ϕ(xK) − ϕ(xL)|.
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By regularity of ϕ, there exists C12 only depending on ϕ such that

|T n
3 | ≤ C12size(Mn)

∑

σ=K|L∈En
int

m(σ)|vK,σ| |u
n
K − un

L|

≤ C12size(Mn)




∑

σ=K|L∈En
int

m(σ)

dσ

(un
K − un

L)2




1/2 


∑

σ=K|L∈En
int

m(σ)dσv
2
K,σ




1/2

and the bound on |un|1,Mn
and the fact that V ∈ L2(Ω)d imply that T n

3 tends to 0 as
n → ∞.
The convergence of T n

1 and T n
2 respectively toward

∫
Ω
∇ū · ∇ϕ and −

∫
Ω

ūV · ∇ϕ is
quite classical. It can be proved, for example, using the approximate gradient introduced
equivalently in [2, Lemma 4.4], [5, Lemma 6.5] or [9, Definition 2] : the approximate
gradient ∇Mn

v of a function v = (vK)K∈Tn
is defined as a piecewise constant function,

equal to m(σ)
m(Dσ)

(vL − vK)nK,σ on each diamond Dσ around the interior edges σ = K|L

(and, for example, to 0 on the diamonds corresponding to boundary edges). Thanks to
the bound on |un|1,Mn

and the regularity of ϕ, one can see (as in [2] and [5] (3)) that
∇Mn

un → ∇ū weakly in L2(Ω)d and ∇Mn
ϕ → ∇ϕ weakly-∗ in L∞(Ω)d as n → ∞

(∇Mn
ϕ being constructed from the values (ϕ(xK))K∈Tn

). Up to errors which tend to 0 as
n → ∞, we have T n

1 ≈
∫

Ω
∇Mn

un · ∇ϕ and T n
2 ≈ −

∫
Ω

unV · ∇Mn
ϕ and the passage to

the limit n → ∞ is then straightforward, since the convergence of un in L2(Ω) and the
fact that V belongs to L2(Ω)d ensure that unV → ūV in L1(Ω)d.

We can now prove, by way of contradiction, a priori estimates on the solutions to the
schemes.

Proposition 4.5 Let (Mn)n≥1 be a sequence of discretizations such that size(Mn) → 0
as n → ∞, and such that Mn satisfies (2.5) with ζ not depending on n. Let γ ≥ 0 and
un be the solution of ((2.8)–(2.10),(2.12),(2.13)) for M = Mn. If γ = 0, we moreover
assume that

∫
Ω

un = 0. Then (|un|1,Mn
+ ||un||L2(Ω))n≥1 is bounded.

Proof of Proposition 4.5

By Corollary 4.3, we only need to prove that (un)n≥1 remains bounded in L2(Ω). If
this is not the case then, up to a subsequence, we can assume that ||un||L2(Ω) → ∞ as
n → ∞. We notice that wn = un

||un||L2(Ω)
is the solution to ((2.8)–(2.10),(2.12),(2.13))

with g replaced by g
||un||L2(Ω)

and, since ||wn||L2(Ω) = 1, Corollary 4.3 then shows that

(|wn|1,Mn
+ ||wn||L2(Ω))n≥1 is bounded. As in Step 1 in the proof of [10, Theorem 10.3],

we infer that, upon extracting a subsequence, wn → w̄ in L2(Ω), with w̄ ∈ H1(Ω) and
||w̄||L2(Ω) = 1. If γ = 0, each wn having a zero mean value, this is also the case for w̄.

3The different boundary conditions we consider here, with respect to these references, modify nothing
to the proof.
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Let ϕ ∈ C∞(Ω), multiply (2.13) for wn by ϕ(xK), sum over K ∈ T and gather by edges
using the conservativity of the fluxes. This gives

∑

σ=K|L∈En
int

m(σ)

dσ

(B(−vK,σdσ)wn
K − B(vK,σdσ)wn

L)(ϕ(xK) − ϕ(xL))

+γ
∑

K∈T
m(K)wn

Kϕ(xK) =
1

||un||L2(Ω)

∑

K∈T
m(K)gKϕ(xK).

Passing to the limit n → ∞ thanks to Lemma 4.4, to the convergence in L2(Ω) of (wn)n≥1

and to the fact that ||un||L2(Ω) → ∞, we obtain

∫

Ω

∇w̄ · ∇ϕ −

∫

Ω

w̄V · ∇ϕ + γ

∫

Ω

w̄ϕ = 0,

that is to say w̄ is a weak solution to (1.4) with g = 0. But, if γ > 0, Problem (1.4) has
a trivial kernel (see [7, Proposition 5.1]) and, if γ = 0, (1.4) is (1.1), whose only element
with zero mean value in the kernel is the zero function (see [7, Proposition 2.2]). Hence,
in either case we see that w̄ = 0, which is a contradiction with ||w̄||L2(Ω) = 1. This proves
that (un)n≥1 is bounded in L2(Ω) and concludes the proof.

The proof of the convergence of the schemes is now easy.

Proof of Theorems 2.7 and 2.8

Let us first consider the convergence of the kernel in Item 1 of Theorem 2.7. By choice,
(||ûn||L2(Ω))n≥1 is bounded and Corollary 4.3 thus shows that (|ûn|1,Mn

)n≥1 is also bounded
(ûn satisfies ((2.8)–(2.10),(2.12),(2.13)) with γ = 0, g = 0 and M = Mn which satisfies
(2.5) with ζ not depending on n). Hence, as in the proof of Proposition 4.5, Step 1 in
[10, proof of Theorem 10.3] shows that, up to a subsequence, ûn → ̂̄u in L2(Ω), where
̂̄u ∈ H1(Ω). Then ̂̄u is non-negative (since ûn is positive for all n ≥ 1) and has an L2

norm equal to one (since this is the case for ûn for all n ≥ 1). We now write (2.8)–(2.12)
on M = Mn with g = 0 for ûn, multiply the flux balance (2.11) by ϕ(xK) for some
ϕ ∈ C∞(Ω) and sum over the control volumes K ∈ T . Gathering by edges, we obtain
that the left-hand side of (4.20) with un = ûn is equal to zero; we can pass to the limit
thanks to Lemma 4.4 to see that, for all regular ϕ,

∫

Ω

∇̂̄u · ∇ϕ −

∫

Ω

̂̄uV · ∇ϕ = 0.

This means that ̂̄u belongs to the kernel of the operator in (1.1); since there is only
one element in this kernel which is non-negative and has an L2 norm equal to 1 (see [7,
Proposition 2.2]; this element is in fact positive) and since the preceding reasoning can
be done along any subsequence of (ûn)n≥1, this shows that the whole sequence (ûn)n≥1

converges to ̂̄u and concludes the proof of Item 1 in Theorem 2.7.
To prove Item 2 of the same theorem, we notice that Proposition 4.5 gives a bound on
(|un|1,Mn

+ ||un||L2(Ω))n≥1 and thus, as before, we can assume that, up to a subsequence,
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un → ū in L2(Ω) with ū ∈ H1(Ω) with zero mean value (since each un has a zero mean-
value). Also following the preceding reasoning, we multiply the scheme satisfied by un

by the values at the center of the control volumes of a regular function ϕ, sum over the
control volumes and gather by edges, and we obtain

∑

σ=K|L∈En
int

m(σ)

dσ

(
B(−vK,σdσ)un

K − B(vK,σdσ)un
L

)
(ϕ(xK) − ϕ(xL)) =

∑

K∈Tn

m(K)gKϕ(xK).

Passing to the limit n → ∞ in this equation (thanks to Lemma 4.4 for the left-hand side
and to the regularity of ϕ for the right-hand side), we see that ū is a weak solution to
(1.1); since there is only one such weak solution with zero mean value, this proves that
the whole sequence (un)n≥1 converges to ū and concludes the proof of Theorem 2.7.
The proof of Theorem 2.8 is completely similar and is therefore omitted.

Remark 4.6 From the bound on the L2 norm and on the discrete H1 semi-norm of
(ûn)n≥1 and (un)n≥1 and the discrete Sobolev inequalities, we see that the convergence of
these functions holds not only in L2(Ω) but also in Lq(Ω) for all q < +∞ if d = 2 and all
q < 6 if d = 3, and also weakly in L6(Ω) if d = 3.

5 Numerical results

In this section, we present numerical results obtained with the scheme (2.8)–(2.12) for
(1.1). The different choices of the function B correspond to the upwind, the centered
and the Scharfetter-Gummel fluxes (we recall that in the case of the centered fluxes, B
satisfies (2.9) only if s < 2). We are interested in the computation of a function spanning
the kernel of (2.8)–(2.12) and also of solutions to this scheme for g 6= 0.
In all the test cases, the domain Ω is the square [0, 1] × [0, 1] and we use a sequence of
triangular meshes numbered from 1 to 7. The initial mesh is made of 56 triangles and the
other meshes come from successive refinements of Ω in squares, each one being partitioned
in triangles using the initial mesh (Figure 2 shows a drawing of the first three grids; the
size of mesh i is half the size of mesh i − 1, and the size of mesh 1 is 0.25). All these
meshes are admissible in the sense of Definition 2.1.
For the initial mesh, we have maxσ∈E dσ ≤ 0.15. It follows that for the mesh i, we have
maxσ∈E dσ ≤ 0.15

2i−1 . Therefore, when V is bounded, we set V = supx∈Ω ‖V(x)‖ and the
Péclet condition (3.16) is satisfied if

i ≥
ln(0.15V)

ln(2)
. (5.21)

5.1 Computations of the kernel

In this section, we consider three test cases for which we compute a numerical approx-
imation of the kernel by the different schemes. In the three cases, the convection field
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Figure 2: Meshes 1, 2 and 3 used in the numerical tests.

V is continuous and we may choose vK,σ = V(xσ) · nK,σ, where xσ is the center of the
edge σ (choice 1). But when V comes from a potential Φ (Test cases 1 and 2), we may

also choose for the Scharfetter-Gummel scheme vK,σ = Φ(xL)−Φ(xK)
dσ

(choice 2).
The element of the kernel of (2.8)–(2.12) we consider is the one given by Item 1 in Theorem
2.5, normalized so that ||û||L2 = 1 (there is only one such element in the kernel). To
compute it, we notice that, as it is usual in Neumann boundary problems, the sum of the
lines of A vanishes (see Item 2 in Proposition 3.1); hence, solving all the equations but one
of the system AU = 0 is equivalent to solving the whole system; moreover, as the kernel
of A has dimension 1 and is spanned by a positive vector, there exists a unique vector
in this kernel such that

∑
K∈T m(K)uK = 1. These constatations ensure that the system

obtained by replacing any one of the lines of AU = 0 by the line
∑

K∈T m(K)uK = 1 is
invertible and provides a vector in the kernel of A. Then, we multiply the obtained vector
by a positive number in order to normalize it in L2.
For the upwind or Scharfetter-Gummel scheme, as we have proved in Theorem 2.5 and
as we will see in Test 3, this gives the unique positive normalized element û in the kernel
of (2.8)–(2.12). The centered scheme does not necessarily have a positive solution in its
kernel, but we use the same technique to compute a “would-be positive” solution.

Test case 1.

V(x, y) =

(
10
0

)
= ∇Φ with Φ(x, y) = 10x.

The kernel is spanned by the function ̂̄u(x, y) = exp(10x). As V is constant, the two
different choices for vK,σ coincide. In this case, the condition (5.21) is satisfied by every
mesh.
In Table 1, we present the error in L2-norm between ̂̄u and û (both functions being
normalized to 1) for B = Bce, Bup or Bsg. It shows that the Scharfetter-Gummel scheme
is exact in this case (as proved in Remark 3.3) and, recalling that the size of each grid
is half the size of the preceding grid, that the centered scheme converges with an order
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around 2 and the upwind scheme converges with an order around 1 (this is expected and
well-known in other applications of finite volume methods).

Table 1: Error between the function ̂̄u spanning the continuous kernel and its numerical
approximation û (both chosen positive and normalized to 1), for the test case 1.

Mesh Number of ‖û − ̂̄u‖L2(Ω) ‖û − ̂̄u‖L2(Ω) ‖û − ̂̄u‖L2(Ω)

triangles centered scheme upwind scheme SG scheme
1 56 4.48e-02 1.66e-01 5.73e-16
2 224 1.26e-02 1.05e-01 8.28e-16
3 896 3.14e-03 5.88e-02 8.48e-15
4 3584 7.51e-04 3.04e-02 6.84e-15
5 14336 1.84e-04 1.55e-02 2.35e-14
6 57344 4.85e-05 7.83e-03 6.26e-14
7 229376 1.14e-05 3.94e-03 6.78e-14

Table 2: Error between the function spanning the continuous kernel ̂̄u and its numerical
approximation û (both chosen positive and normalized to 1), for the test case 2.

Mesh ‖û − ̂̄u‖L2(Ω) ‖û − ̂̄u‖L2(Ω) ‖û − ̂̄u‖L2(Ω) ‖û − ̂̄u‖L2(Ω)

centered scheme upwind scheme SG scheme 1 SG scheme 2
1 8.15e-03 3.29e-02 1.00e-02 1.29e-15
2 2.07e-03 1.50e-02 2.74e-03 5.60e-15
3 5.46e-04 7.22e-03 7.50e-04 1.30e-13
4 1.46e-04 3.56e-03 2.04e-04 2.72e-13
5 3.91e-05 1.77e-03 5.52e-05 5.80e-13
6 1.04e-05 8.81e-04 1.48e-05 5.73e-13
7 2.77e-06 4.40e-04 3.93e-06 1.39e-12

Test case 2.

V(x, y) =





1 − 2y

x + y − 2xy

1 − 2x

x + y − 2xy



 = ∇Φ with Φ(x, y) = log(x + y − 2xy).

The kernel is spanned by the function ̂̄u(x, y) = x+y−2xy. In this case, V really depends
on x and y and we can test the two choices of vK,σ for the Scharfetter-Gummel scheme.
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Table 2 confirms that the centered scheme converges with an order around 2, while the
upwind scheme converges with an order 1. The Scharfetter-Gummel scheme is exact with
the choice 2 of vK,σ while it converges with an order slightly less than 2 with the choice 1.
In this case, the convective field V is not bounded on the domain and we cannot use the
weak Péclet condition (5.21). Nevertheless, we can compute for each mesh the maximal
value of |vK,σdσ| on the interior edges. We obtain from mesh 1 to mesh 7 the following
values : 0.6156, 0.6768, 0.7048, 0.7182, 0.7247, 0.7280, 0.7296. It shows that the Péclet
condition (3.16) is satified on all the meshes.

Test case 3.

V(x, y) = 10p




−(y − 0.5)

(x − 0.5)





We propose here a convection field which does not derive from a potential. Let us note
that div(V) = 0 but that V · n does not remain nonpositive on the boundary of Ω (so
that the operator associated with (1.3) is not necessarily coercive). The variation of the
parameter p permits to study the effects of an increased convection strength. Figure 3
shows the positive normed generator of the kernel of (2.8)–(2.12) for B = Bsg and p = 1,
2 and 3.

Figure 3: A solution in the kernel for the test case 3 (p = 1, 2, 3) computed with the
Scharfetter-Gummel scheme on Mesh 7.

This test case also shows (see Table 3) that the positivity of an element spanning the kernel
of the scheme, as stated in Theorem 2.5, is satisfied by the practical implementations of
the upwind and Scharfetter-Gummel schemes, but not by the centered scheme unless a
condition between the size of the mesh and the convection holds. In this case, we have
V =

√
2

2
10p and the weak Péclet condition (5.21) is satisfied by every mesh for p = 1, from

Mesh 4 for p = 2 and only by Mesh 7 for p = 3. This result is illustrated in Table 3.
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Table 3: Minimum and maximum values of û obtained by the different schemes for the
test case 3 with p = 3.

Mesh Centered scheme Upwind scheme SG scheme
min max min max min max

1 -1.56e-02 1.55e+00 2.15e-01 1.35e+00 2.03e-01 1.34e+00
2 -7.86e-02 1.38e+00 4.41e-02 1.52e+00 3.47e-02 1.48e+00
3 -2.20e-01 2.08e+00 2.62e-03 1.87e+00 1.15e-03 1.80e+00
4 -7.70e-02 2.69e+00 4.67e-05 2.37e+00 5.09e-06 2.37e+00
5 -2.77e-03 3.24e+00 7.94e-07 2.85e+00 6.50e-09 2.96e+00
6 -1.07e-09 3.52e+00 1.82e-08 3.19e+00 1.24e-10 3.39e+00
7 1.00e-11 3.61e+00 9.44e-10 3.42e+00 2.34e-11 3.58e+00

5.2 Computations of solutions with non-vanishing right-hand

sides

In this section, we compute approximate solutions for (1.1) using the scheme (2.8)–(2.12)
with B = Bce, Bup and Bsg (with the two choices for vK,σ when V comes from a potential).

Test case 4.

V(x, y) =

(
4(x − 0.5)2

0

)
= ∇Φ with Φ(x, y) =

4

3
(x − 0.5)3,

g(x, y) = exp(x)(4(x − 0.5)(x + 1.5) − 1).

The exact solution of (1.1) is ū(x, y) = exp(x); the mean value of this function whose
mean value is not equal to 0, so we compute the solution u to the scheme (2.8)–(2.12)
(with gK = g(xK)) which satisfies

∑

K∈T
m(K)uK =

∑

K∈T
m(K)ūK (instead of 0).

Table 4 shows the errors for the schemes; the order of convergence is near 1 for the upwind
scheme and near 2 for all other schemes.

Test case 5.

V(x, y) = 10p




−(y − 0.5)

(x − 0.5)





g(x, y) = cos(2πx) cos(2πy)

The convection field is the same as for the test case 3. Figure 4 shows, for p = 1, 2 and
3, the solution to (2.8)–(2.12) (for B = Bsg) which has a vanishing mean value.
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Table 4: Error in L2-norm between the exact solution ū and its numerical approximation
u, for the test case 4.

Mesh ‖u − ū‖L2(Ω) ‖u − ū‖L2(Ω) ‖u − ū‖L2(Ω) ‖u − ū‖L2(Ω)

centered scheme upwind scheme SG scheme 1 SG scheme 2
1 5.67e-03 4.04e-03 5.63e-03 8.81e-03
2 1.34e-03 2.56e-03 1.33e-03 1.90e-03
3 3.46e-04 1.37e-03 3.45e-04 4.63e-04
4 8.85e-05 7.05e-04 8.83e-05 1.16e-04
5 2.23e-05 3.59e-04 2.23e-05 2.91e-05
6 5.61e-06 1.81e-04 5.59e-06 7.29e-06
7 1.40e-06 9.10e-05 1.40e-06 1.82e-06

Figure 4: A solution of the test case 5 (p = 1, 2, 3) computed with the Scharfetter-
Gummel scheme on the mesh 7.

Test case 6 We finaly consider a case where V does not come from a potential and
where div(V) is (strongly) negative in Ω:

V(x, y) = −100




x + y

y − x





The right hand side g and the boundary conditions h (which are here non homogeneous,
see Remark 2.3) have been chosen such that the exact solution is ū(x, y) = 30x(1−x)y(1−
y) (‖ū‖L2(Ω) = 1) and Table 5 shows the approximation errors for the different schemes.
Once again, despite the strong non-coercivity of the operator in (1.3) for this test case,
the orders of convergence are 1 for the upwind scheme and 2 for the other schemes. Let
us also note that, in this case V = 200 and that the condition (5.21) is satisfied from
Mesh 5.
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Table 5: Error in L2-norm between the exact solution ū and its numerical approximation
u, for the test case 6.

Mesh ‖u − ū‖L2(Ω) ‖u − ū‖L2(Ω) ‖u − ū‖L2(Ω)

centered scheme upwind scheme SG scheme 1
1 3.01e-01 1.09e+00 2.15e+00
2 8.30e-02 3.93e-01 3.43e-01
3 2.17e-02 1.81e-01 9.64e-02
4 5.74e-03 9.14e-02 2.76e-02
5 1.49e-03 4.72e-02 7.40e-03
6 3.78e-04 2.42e-02 1.89e-03
7 9.50e-05 1.23e-02 4.76e-04

6 Appendix

Discrete Sobolev inequalities are classical tools for the study of finite volume discretiza-
tions of elliptic equations; they are especially useful when one has to handle a more
difficult case that the simple Laplace equation with a L2 right-hand side. In the frame-
work of Dirichlet boundary conditions, discrete Sobolev inequalities are proved in [3]; the
following lemma gives corresponding inequalities for functions which do not vanish on ∂Ω.

Lemma 6.1 (Discrete Sobolev inequalities for non-Dirichlet boundary conditions) Let Ω
be a bounded polygonal open subset of R

d and let M be an admissible mesh (in the sense
of Definition 2.1) which satisfies (2.5). Let q < +∞ if d = 2 and q = 2d

d−2
if d ≥ 3. Then

there exists C = C(Ω, ζ, q) such that, for all u = (uK)K∈T ,

||u||Lq(Ω) ≤ C(|u|1,M + ||u||L2(Ω)),

where | · |1,M is the discrete H1 semi-norm defined by (4.17).

Proof of Lemma 6.1

Unless otherwise mentioned, all the constants Ci in this proof only depend on Ω, ζ and
q. We define the discrete W 1,1 semi-norm of a function v = (vK)K∈T by

NM(v) =
∑

σ=K|L∈Eint

m(σ)|vK − vL|.

Step 1: we first prove that, for any v,

||v||
L

d
d−1 (Ω)

≤ C13

(
NM(v) + ||v||L1(Ω)

)
. (6.22)

The idea is first to obtain such an estimate with ||v||L1(Ω) replaced by the L1 norm of a
trace of v on ∂Ω and then, using a trace result similar to [10, Lemma 10.5, p 807], to
replace this boundary norm with an interior norm.
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Let (ei)i=1,...,d be the cartesian basis of R
d and, for σ ∈ E , χi

σ(x) = 1 if σ ∩ (x + Rei) 6= ∅
and χi

σ(x) = 0 otherwise. Summing all the jumps of u encountered from x to the exterior
of Ω following the direction of ei, we have, for all i = 1, . . . , d,

|v(x)| ≤
∑

σ=K|L∈Eint

χi
σ(x)|vK − vL| +

∑

σ∈Eext

χi
σ(x)|vK(σ)| := W i(x)

where, for σ ∈ Eext, K(σ) is the unique control volume such that σ ∈ EK . We infer

that |v(x)|
d

d−1 ≤
∏d

i=1(W
i(x))

1
d−1 and, noticing that χi

σ(x) does not depend on the i-th
coordinate of x, we can apply the Gagliardo-Nirenberg inequality to see that

∫

Ω

|v|
d

d−1 ≤
d∏

i=1

(∫

Ωi

W i

) 1
d−1

(6.23)

where Ωi is the projection of Ω on the hyperplane {xi = 0}. Since χi
σ does not vanish

only on a cylinder of base σ and direction ei, we have
∫

Ωi χi
σ ≤ m(σ) and therefore∫

Ωi W i ≤ NM(v) + ||γ̄(v)||L1(∂Ω), where γ̄(v) is the trace of v defined by γ̄(v) = vK(σ)

on σ ∈ Eext. Coming back to (6.23), this gives ||v||
L

d
d−1 (Ω)

≤ NM(v) + ||γ̄(v)||L1(∂Ω).

Following the proof of [10, Lemma 10.5, p 807], it is quite easy to see that ||γ̄(v)||L1(∂Ω) ≤
C14(NM(v) + ||v||L1(Ω)) (this is in fact more straightforward than the L2 trace inequality
in this reference), which concludes the proof of (6.22).

Step 2: we conclude from (6.22) by an induction process.
Let u = (uK)K∈T , s ≥ 3

2
and define v = |u|s. Since | |uK |s − |uL|

s| ≤ s(|uK |s−1 +
|uL|

s−1)|uK − uL|, the Cauchy-Schwarz inequality and a gathering by control volumes
show that

NM(v) ≤
∑

σ=K|L∈Eint

m(σ)s(|uK |s−1 + |uL|
s−1)|uK − uL|

≤ s




∑

σ=K|L∈Eint

m(σ)dσ(|uK |s−1 + |uL|
s−1)2




1/2

|u|1,M

≤ s




∑

K∈T
2|uK |2(s−1)

∑

σ∈EK,int

m(σ)dσ




1/2

|u|1,M.

Using (2.5) and the fact that
∑

σ∈EK,int
m(σ)d(xK , σ) ≤ dm(K), we infer

NM(v) ≤ C15s||u||
s−1
L2(s−1)(Ω)

|u|1,M.

Hence, for any s ≥ 3
2

(which implies 2(s− 1) ≥ 1), using v = |u|s in (6.22) and taking the
power 1/s of the resulting inequality, we obtain

||u||
L

s d
d−1 (Ω)

≤ C16

(
||u||

s−1
s

L2(s−1)(Ω)
|u|

1
s

1,M + ||u||Ls(Ω)

)
.
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Assume now that s ≤ 2(d−1)
d−2

; then 2(s − 1) ≤ s d
d−1

and the L2(s−1) norm of u can be

bounded by its Ls d
d−1 norm (with a multiplicative constant only depending on Ω and

s). We infer from Young’s inequality applied with exponents s
s−1

and s that, for all
3
2
≤ s ≤ 2(d−1)

d−2
(s finite), there exists C17(s) = C17(s, Ω, ζ) such that

||u||
L

s d
d−1 (Ω)

≤ C17(s)
(
|u|1,M + ||u||Ls(Ω)

)
. (6.24)

The conclusion now follows from successive applications of this inequality. With s =
2 d

d−1
≤ 2(d−1)

d−2
, it gives

||u||
L

2( d
d−1

)2
(Ω)

≤ C18

(
|u|1,M + ||u||

L
2 d

d−1 (Ω)

)
.

Using (6.24) with s = 2 we can bound the last term in this inequality and we obtain

||u||
L

2( d
d−1

)2
(Ω)

≤ C19

(
|u|1,M + ||u||L2(Ω)

)
. (6.25)

We can then apply (6.24) with s = 2( d
d−1

)2 provided that 2( d
d−1

)2 ≤ 2(d−1)
d−2

(which is

always true for d ≥ 2); using (6.25) to bound the L2( d
d−1

)2 norm of u appearing in the
left-hand side, this leads to

||u||
L

2( d
d−1

)3
(Ω)

≤ C20

(
|u|1,M + ||u||L2(Ω)

)
.

A simple induction then shows that, as long as 2( d
d−1

)r ≤ 2(d−1)
d−2

, we have

||u||
L

2( d
d−1

)r+1
(Ω)

≤ C21(r)
(
|u|1,M + ||u||L2(Ω)

)
. (6.26)

If d = 2, then any r satisfies 2( d
d−1

)r ≤ 2(d−1)
d−2

= +∞ and, since ( d
d−1

)r → ∞ as r → ∞,

this gives the desired result (for any q < ∞, we can find r such that 2( d
d−1

)r+1 ≥ q and

the estimate (6.26) on the L2( d
d−1

)r+1

norm gives an estimate on the Lq norm). If d ≥ 3,

we take r0 the greatest integer such that 2( d
d−1

)r0 ≤ 2(d−1)
d−2

(such a r0 is finite), so that

(6.26) holds with r = r0; applying (6.24) with s = 2(d−1)
d−2

, we can write

||u||
L

2d
d−2 (Ω)

≤ C22

(
|u|1,M + ||u||

L
2(d−1)

d−2 (Ω)

)
(6.27)

and, since 2(d−1)
d−2

≤ 2( d
d−1

)r0+1, (6.26) with r = r0 allows to bound the right-hand side of
(6.27) and to conclude the proof.
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[6] Droniou J., Gallouët T., Finite volume methods for convection-diffusion equa-
tions with right-hand side in H−1, M2AN Math. Model. Numer. Anal. 36 (2002), no.
4, 705-724.

[7] Droniou J., Vázquez J. L., Noncoercive convection-diffusion elliptic problems
with Neumann boundary conditions, to appear in Calculus of Variation and Partial
Differential Equations.
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