

Universidade de Aveiro

2021

Diogo José
Domingues Regateiro

Acesso Remoto Dinâmico e Seguro a Bases de
Dados com Integração de Políticas de Acesso
Suave

Dynamic and Secure Remote Database Access with
Soft Access Policies Integration

Universidade de Aveiro

2021

Diogo José
Domingues Regateiro

Acesso Remoto Dinâmico e Seguro a Bases de
Dados com Integração de Políticas de Acesso Suave

Dynamic and Secure Remote Database Access with
Soft Access Policies Integration

 Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Doutor em Informática, realizada sob a
orientação científica do Doutor Óscar Mortágua Pereira, Professor auxiliar do
Departamento de Eletrónica, Telecomunicações e Informática da Universidade
de Aveiro e do Doutor Rui Aguiar, Professor associado com agregação do
Departamento de Eletrónica, Telecomunicações e Informática da Universidade
de Aveiro.

 Apoio financeiro da FCT no âmbito da
bolsa SFRH/BD/109911/2015.

Dedico este trabalho a todos os que me ajudaram nestes últimos anos.

o júri

presidente Doutor Victor Miguel Carneiro de Sousa Ferreira
Professor Catedrático, Universidade de Aveiro

vogais Doutor Marco Paulo Amorim Vieira
Professor Catedrático, Universidade de Coimbra

 Doutor Rui Luís Andrade Aguiar (Coorientador)
Professor Catedrático, Universidade de Aveiro

 Doutor Jorge Miguel de Matos Sousa Pinto
Professor Associado com Agregação, Universidade do Minho

 Doutor José Manuel Matos Moreira
Professor Auxiliar, Universidade de Aveiro

 Doutor Paulo Jorge Machado Oliveira
Professor Adjunto, Instituto Superior de Engenharia do Porto

agradecimentos

Gostaria de agradecer ao meu orientador Prof. Dr. Óscar Mortágua Pereira e
ao meu co-orientador Prof. Dr. Rui L. Aguiar, por me guiarem pelo caminho
correto durante todos estes anos. Gostaria também de agradecer ao Instituto
de Telecomunicações por me proporcionar um ambiente de trabalho
estimulante e as ferramentas necessárias para o meu trabalho de investigação
e desenvolvimento desta tese.

palavras-chave

segurança informática, controlo de acesso, controlo de acesso difuso,
arquitectura de software, engenharia de software, sistemas distribuídos,
sistemas difusos, middleware, bases de dados, engenharia de software
baseada em componentes, engenharia de software automatizada, otimização
de algoritmos.

resumo

A quantidade de dados criados e partilhados tem crescido nos últimos anos,
em parte graças às redes sociais e à proliferação dos dispositivos inteligentes.
A gestão do armazenamento e processamento destes dados pode fornecer
uma vantagem competitiva quando usados para criar novos serviços, para
melhorar a publicidade direcionada, etc. Para atingir este objetivo, os dados
devem ser acedidos e processados. Quando as aplicações que acedem a
estes dados são desenvolvidos, ferramentas como Java Database
Connectivity, ADO.NET e Hibernate são normalmente utilizados. No entanto,
embora estas ferramentas tenham como objetivo preencher a lacuna entre as
bases de dados e o paradigma da programação orientada por objetos, elas
concentram-se apenas na questão da conectividade. Isto aumenta o tempo de
desenvolvimento, pois os programadores precisam dominar as políticas de
acesso para escrever consultas corretas. Além disso, quando usado em
aplicações de bases de dados em ambientes não controlados, surgem outros
problemas, como roubo de credenciais da base de dados; autenticação de
aplicações; autorização e auditoria de grandes grupos de novos utilizadores
que procuram acesso aos dados, potencialmente com requisitos vagos; escuta
da rede para obtenção de dados e credenciais; personificação de servidores
de bases de dados para modificação de dados; manipulação de aplicações
para acesso ilimitado à base de dados e divulgação de dados; etc.

Uma arquitetura capaz de resolver esses problemas é necessária para
construir um conjunto confiável de soluções de controlo de acesso, para
expandir e simplificar os cenários de aplicação destes sistemas. O objetivo,
então, é proteger o acesso remoto a bases de dados, uma vez que as
aplicações de bases de dados podem ser usados em ambientes de difícil
controlo e o acesso físico às máquinas/rede nem sempre está protegido.
Adicionalmente, o processo de autorização deve conceder dinamicamente as
permissões adequadas aos utilizadores que não foram explicitamente
autorizados para suportar grupos grandes de utilizadores que procuram aceder
aos dados. Isto inclui cenários em que a definição dos requisitos de acesso é
difícil devido à sua imprecisão, geralmente exigindo um especialista em
segurança para autorizar cada utilizador individualmente. Este objetivo é
atingido no processo de decisão de controlo de acesso com a integração e
auditaria das políticas de acesso suaves baseadas na teoria de conjuntos
difusos. Uma prova de conceito desta arquitetura é fornecida em conjunto com
uma avaliação funcional e de desempenho.

keywords

information security, access control, fuzzy access control, software
architecture, software engineering, distributed systems, fuzzy systems,
middleware, databases, component-based software engineering, automated-
software-engineering, algorithm optimization.

abstract

The amount of data being created and shared has grown greatly in recent
years, thanks in part to social media and the growth of smart devices.
Managing the storage and processing of this data can give a competitive edge
when used to create new services, to enhance targeted advertising, etc. To
achieve this, the data must be accessed and processed. When applications
that access this data are developed, tools such as Java Database Connectivity,
ADO.NET and Hibernate are typically used. However, while these tools aim to
bridge the gap between databases and the object-oriented programming
paradigm, they focus only on the connectivity issue. This leads to increased
development time as developers need to master the access policies to write
correct queries. Moreover, when used in database applications within non-
controlled environments, other issues emerge such as database credentials
theft; application authentication; authorization and auditing of large groups of
new users seeking access to data, potentially with vague requirements;
network eavesdropping for data and credential disclosure; impersonating
database servers for data modification; application tampering for unrestricted
database access and data disclosure; etc.

Therefore, an architecture capable of addressing these issues is necessary to
build a reliable set of access control solutions to expand and simplify the
application scenarios of access control systems. The objective, then, is to
secure the remote access to databases, since database applications may be
used in hard-to-control environments and physical access to the host
machines/network may not be always protected. Furthermore, the authorization
process should dynamically grant the appropriate permissions to users that
have not been explicitly authorized to handle large groups seeking access to
data. This includes scenarios where the definition of the access requirements is
difficult due to their vagueness, usually requiring a security expert to authorize
each user individually. This is achieved by integrating and auditing soft access
policies based on fuzzy set theory in the access control decision-making
process. A proof-of-concept of this architecture is provided alongside a
functional and performance assessment.

i

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Research Questions . 6
1.4 Contributions . 7
1.5 Dissertation Outline . 8

2 Background 9
2.1 Previous Work . 9

2.1.1 Compilation Phase . 10
2.1.2 Pre-Execution Phase . 11
2.1.3 Execution Phase . 11

2.2 Soft Requirements and Access Control Models . 12
2.2.1 Classical Model Adaptation . 12
2.2.2 Concept Specific Inference . 13
2.2.3 Generalized Inference . 13

2.3 Summary . 14

3 State of the Art 15
3.1 Crisp and Soft Access Control . 15

3.1.1 Crisp Access Control Models and Systems . 15
3.1.2 Soft Access Control Models and Systems . 26
3.1.3 Database Schema Protection . 33

3.2 Authentication and Communication Security . 34
3.2.1 Transport Layer Security . 34
3.2.2 Virtual Private Network . 35
3.2.3 Other Authentication Protocols . 36
3.2.4 SSL/TLS Session-aware User Authentication . 36
3.2.5 Multi-context TLS . 37
3.2.6 High-Availability JDBC . 38
3.2.7 Biometrics in Authentication . 38

3.3 Summary . 39

ii

4 Secure Remote Data Access 41
4.1 Operation Execution Protection . 43

4.1.1 Operation Protection . 44
4.1.2 Parameter Protection . 45

4.2 Operation Sequencing . 47
4.2.1 Definitions . 48
4.2.2 Stepping Scenarios . 50
4.2.3 Information Flow . 51

4.3 Architecture Security . 54
4.3.1 Credential Protection . 55
4.3.2 Communication Security . 59

4.4 Summary . 60

5 Fuzzy Access Control Decision Making 63
5.1 Binary Decision FIS . 64

5.1.1 Fuzzy Rule Determination . 64
5.1.2 Input Fuzzification and Rule Strength . 65
5.1.3 Consequence Determination . 65
5.1.4 Consequence Combination and Defuzzification 67
5.1.5 Conceptual Overview . 68
5.1.6 Type-N BDFIS Abstraction . 69
5.1.7 BDFIS Policy Definition . 70

5.2 Policy Correctness Auditing . 71
5.2.1 The Auditing Problem . 72
5.2.2 Theorems and Definitions . 73
5.2.3 Algorithm Techniques . 77
5.2.4 Integrated Overview . 81
5.2.5 Type-N BDFIS Generalization . 81

5.3 Security Considerations . 83
5.4 Summary . 84

6 Access Control System Architecture and Evaluation 85
6.1 Access Control System Architecture Implementation . 85

6.1.1 Business Schema Interface Generation . 86
6.1.2 Business Schema Interface Implementation . 89
6.1.3 Business Schema Usage . 91
6.1.4 Operation Sequencing . 92
6.1.5 Remote Execution . 94
6.1.6 Communication Security and Data Integrity . 95

6.2 Configuration and Usability Costs . 101
6.2.1 Configuration Tools . 102

iii

6.2.2 Alternative Configuration Methods . 104
6.3 Correctness Evaluation . 104

6.3.1 Test Subject and Policies . 105
6.3.2 Correctness Scenarios . 108

6.4 Performance Assessment . 112
6.4.1 Testing Environment . 113
6.4.2 Connection and Interface Generation . 113
6.4.3 Database Querying . 114
6.4.4 Auditing . 115

6.5 Architecture Literature Positioning . 119
6.6 Summary . 121

7 Discussion and Conclusions 123
7.1 Interface Generation and Implementation . 123
7.2 Operation and Parameter Protection . 124
7.3 Database Credentials and Secure Communication . 125
7.4 Operation Sequencing . 126
7.5 Interface Abstraction for Generic APIs . 126
7.6 Dynamic Permissions and Soft Requirements . 127

A Example Policy File Using FCL 129

Bibliographic References 133

v

List of Figures

2.1 S-DRACA overview. 10

3.1 JDBC architecture. 16
3.2 XACML architecture and sample authorization flow. 25
3.3 VPN connectivity overview. 35
3.4 HA-JDBC overview [103]. 38

4.1 Example Database Access API. 44
4.2 Operation protection block diagram. 45
4.3 S-DRACA parameter protection example code. 46
4.4 Online shop sequence of actions example[31]. 48
4.5 Trivial stepping example with pseudo-code[31]. 50
4.6 Splitting stepping example with pseudo-code[31]. 50
4.7 Merging stepping example with pseudo-code[31]. 51
4.8 Cycling stepping example with pseudo-code[31]. 51
4.9 Inter-flowchart example[31]. 53
4.10 Credential protection architecture diagram. 56
4.11 Connection protocol diagram using credential protection. 57
4.12 TLS protocol diagram using certificates[38]. 60

5.1 BDFIS conceptual block diagram[32]. 68
5.2 Type-N BDFIS conceptual block diagram[37]. 69
5.3 Example increasing and decreasing function. 73
5.4 Input variable domain partitioning[37]. 78
5.5 Algorithm flow diagram[37]. 82

6.1 S-DiSACA overview. 86
6.2 S-DiSACA layered interface generation example. 88
6.3 S-DiSACA proxy interface example. 89
6.4 S-DiSACA Business Schema interface example. 89
6.5 S-DiSACA Business Schema implementation example. 90
6.6 S-DiSACA Business Schema implementation example with result cache. 91
6.7 S-DiSACA client example. 92
6.8 S-DiSACA remote execution diagram with operation sequencing. 93

vi

6.9 S-DiSACA remote execution call flow. 94
6.10 APIResult class methods and fields. 96
6.11 Java server-side TLS pre-shared key application[38]. 97
6.12 Java client-side TLS pre-shared key application[38]. 97
6.13 TLS key modification procedure for Oracle Java 8. 98
6.14 Mutual challenge-response authentication protocol. 99
6.15 PolicyDB relational schema. 102
6.16 Policy management tool interface. 103
6.17 AuthDB (left) and UserDB (right) relational schemas. 103
6.18 User management tool interface. 104
6.19 CorrectArticle flowchart. 106
6.20 BDFIS output for the test subject. 107
6.21 Invalid parameter insertion implementation. 109
6.22 Invalid result insertion implementation. 109
6.23 Signature modification implementation. 110
6.24 Operation change implementation. 110
6.25 Result reuse between flowcharts implementation. 111
6.26 S-DiSACA initialization performance results. 114
6.27 S-DiSACA querying performance results. 115
6.28 Number of calls to the evaluation engine given different policies. 116
6.29 Number of calls to the evaluation engine given variable order permutations. 117
6.30 Number of calls to the evaluation engine. 119
6.31 Evaluation calls made by the optimized algorithm in the risk scenario. 120

vii

List of Tables

3.1 Fuzzy sets used in the input fuzzification step. 29

6.1 Test case flowcharts. 105
6.2 Test case flowchart security levels. 106
6.3 Test machine specifications. 113
6.4 S-DiSACA initialization performance results. 114
6.5 S-DiSACA querying performance results. 115
6.6 Input variables range partitioning. 118
6.7 Output rules in the risk-based policy. 119
6.8 Soft access control models comparison. 121

ix

List of Listings

2.1 Example Mamdani-type and Sugeno-type rule comparison. 14
3.1 Example Ur/Web CRUD expression. 17
3.2 Example Hippocratic PostgreSQL query. 19
3.3 Example Java variable declaration using Jif. 20
3.4 Java EE roles example. 21
3.5 Standard RBAC example. 22
3.6 Object-oriented RBAC example. 22
3.7 SQL example with predicated grants. 23
3.8 λDB permission example. 24
4.1 Example SQL query. 41
4.2 Example code for a medical database scenario. 43
5.1 Example type-1 BDFIS abstract layer rules. 70
5.2 Example type-1 BDFIS output layer rules. 70
5.3 Set of example binary output rules. 75
5.4 Set of example binary output rules. 79
6.1 API metadata JSON schema. 87
A.1 First function block in example FCL policy. 129
A.2 Second function block in example FCL policy. 130

xi

List of Abbreviations

ABAC Attribute Based Access Control
API Application Programming Interface
BDFIS Binary Decision FIS
COG Center Of Gravity
COGS Center Of Gravity for Singletons
CRUD Create, Read, Update, Delete
FCL Fuzzy Control Language
FDC Fuzzy Decision Component
FIS Fuzzy Inference System
IDE Integrated Development Environment
IoT Internet of Things
JDBC Java DataBase Connectivity
LINQ Language Integrated Query
NoSQL Not only SQL
ORM Object-Relational Mapping
PAP Policy Administration Point
PDP Policy Decision Point
PEP Policy Enforcement Point
PIP Policy Information Point
PRP Policy Retrieval Point
RADIUS Remote Authentication Dial-In User Service
RBAC Role Based Access Control
RMI Remote Method Invocation
S-DiSACA Secure, Dynamic and Distributed Soft Access Control Architecture
S-DRACA Secure, Dynamic and Distributed Role-based Access Control

Architecture
SQL Structured Query Language
SSL Secure Sockets Layer
TLS Transport Layer Ssecurity
VPN Virtual Private Network
XACML eXtensible Access Control Markup Language
XML eXtensible Markup Language

1

Chapter 1

Introduction

Access control has always been an important feature on any system, be it physical or digital, as it
restricts the access to a location or resource in a controlled and selective manner [1]. In the digital
landscape, the storage and processing of data by businesses is a crucial step towards providing better
services and gaining a competitive edge. Thus, being able to create new services and applications fast
and effectively based on this data is an important aspect to master.

Thus, these services and applications must be able to access and operate on the data. This process
is usually accomplished using predefined operations, such as create, read, update, and delete (CRUD)
expressions, that are executed through database access tools such as Java Database Connectivity
(JDBC) [2], Language Integrated Query (LINQ) [3], ADO.NET [4] and Hibernate [5], among others.

On the one hand, most of these tools allow developers to write and execute their operations,
however, they forsake the access policies set in place. This may lead to authorization errors being
issued by the database during execution if the operations access unauthorized data. Thus, developers
must master the database schemas and what they are authorized to do with the data, leading to
increased development and quality assurance time. On the other hand, tools that feature object-
relational mapping, such as Hibernate, map the underlying database schema and relations to objects
in an object-oriented domain model. These tools allow developers to write applications without
having to master the database schema but at the cost of disclosing the schema in the application code.
This information can be used to learn what information is being processed by a business or even to
carry out attacks on the database. Furthermore, network eavesdropping, server impersonation and
credential theft are issues that are commonly not addressed by these tools, and the issue with the
access control policies not being reflected on the data access application programming interface (API)
also remains.

To add to these issues, in recent years the quantity and complexity of data that needs to be stored
and processed have increased considerably. This has led many new application scenarios, each with
their specific data access policies and security requirements, to use more specialized tools to access
and process data such as Not Only SQL (NoSQL) data stores [6]–[8] and MapReduce frameworks
[9]–[11]. Moreover, more and more subjects are interested in accessing data, be it for commercial
purposes, research, hobbyism, etc., which is also a challenging aspect to manage and handle effectively.
Authorizing and auditing the access to an ever-increasing amount of information by subjects with

2 Chapter 1. Introduction

different backgrounds and purposes for the data is complicated, and often relies on soft requirements
that are not easily translated into traditional access control policies.

Put together, a path leading to better development tools and security deployment can be found by
tackling these issues.

1.1 Motivation

Since the aforementioned issues emerge during the development of database applications and the
enforcement of access control policies, let us consider a database application development scenario.
In this scenario, an application is being developed to directly access and manipulate the data that is
stored in a database, which contains a schema that may evolve if the requirements change.

The application developer may typically either write the queries that access and manipulate the
data manually or use an object-relational mapping (ORM) tool such as Hibernate to create a model of
the database schema in the application code. The first option, while granting the developer greater
control over the model, comes with many drawbacks. First, the developer is required to master the
database schema to write the queries. Second, he must also be aware of the application permissions to
not write queries that attempt to access unauthorized data. Third, a lot of development time is spent
writing and debugging the code that connects and manipulates the data in the database. Finally, if the
schema in the database ever changes, it may require the developer to modify the queries manually to
comply with the new schema. The second option can reduce the development time by automatically
creating the code that connects to the database, however, the developer must be careful to try not
to access unauthorized data, as ORM tools do not ensure the enforcement of the database access
permissions on the code layer.

The security of the solution must also be considered. Typically, database connectivity tools do not
encrypt the connection to the database, which can be problematic if the applications that use them
are running on machines located on (semi-)public locations. This fact can easily lead to database
credentials being stolen via network eavesdropping to potentiate a later attack on the database itself.
Furthermore, applications may have to use hard-coded queries to perform their data manipulation
needs. A malicious user could tamper with these queries to achieve various goals in multiple ways,
from the manipulation of the parameters passed to them to outright changing the entire query.

Other common scenarios include the intention to monetize the data owned, either because it
holds scientific importance or because can be used for marketing purposes, or building a large set of
community-managed data. This may lead to many different subjects requesting access to the data,
each with slightly different purposes for it. The level of access to the data may change depending on
the subject and may depend on policies that are not as clear cut as traditional access control policies
usually allow. This puts a large amount of pressure on the security experts that normally have to
grant access to each subject manually.

Thus, the central research focus is to create an architecture solution capable of generating secure
data access APIs tailored to each subject that is also capable of enforcing access control policies with
soft requirements to handle new subjects seeking access to the data. By taking the access control

1.2. Objectives 3

policies into account when generating the data access APIs, a developer would no longer have to
master the database schema or its access permissions. However, this architecture is not limited to
generating these APIs. Additional security features can be built on over it, such as validating the
queries and the parameters used to access the data, communication encryption with the database, etc.
Furthermore, its access control decision-making system should be able to quickly map permissions to
new subjects requesting access to data, instead of having permissions mapped to known users a-priori.
This would, in turn, allow the data access APIs to be tailored to each subject at runtime without the
constant need for a security expert to manually evaluate which permissions to grant, increasing the
data availability and decreasing the management complexity.

1.2 Objectives

To actualize such an architecture, a subject should be able to extract a set of standard interfaces that it
can use to access the data, which are only implemented at runtime. The extraction process validates the
subject and obtains the permissions that were granted to it. Each permission is associated with a set of
operations so that the data access interfaces can be generated containing only the operations allowed
to that subject. Thus, the subject can utilize the interfaces in the application during development.
When the subject runs the application, the interfaces are implemented and dynamically loaded, so
that modifying the interfaces before execution is not possible.

Since the operations are predefined and the subject only has access to those that it is allowed to
execute, this approach decreases the time spent in quality assurance to find and fix related errors.
Moreover, the developers no longer have to master the database schema to write the operations.
However, this architecture is intended to be deployed as an access control solution. While many
standard security features can be trivially implemented (encrypted communication, subject authen-
tication, etc.) researching solutions to enhance their effectiveness, usability, or adapting them to
be deployed in scenarios with special security requirements is worthwhile. Such scenarios include
community-managed data (e.g. Wikipedia), where data can be accessed and modified by anyone.
Manual authorization of every subject requesting access to modify data is impractical given a large
number of requests, however, having no access control system in place leads to data being modified
maliciously (i.e. vandalism [12]). In this light, it is also important to determine how access control
policies based on soft requirements can be defined to reach a balance: to allow subjects to be granted
access to data in real-time without it being easily vandalized; and without needing constant manual
authorization.

As such, several research goals were identified to realize such an architecture:

1. Automate the extraction of the interfaces to guarantee the latest access control policies are always
reflected;

2. Use the access interfaces as parameters for operations to ensure that the values passed are
correct;

4 Chapter 1. Introduction

3. Push the database operations to the server-side so that a subject cannot modify them on the
application;

4. Push the database credentials to the server-side so that they cannot be stolen from the client
applications;

5. Implement a secure communication channel based on pre-shared keys for situations where
certification authorities cannot be trusted;

6. Allow defining the order in which the operations should be executed to follow predefined use
cases;

7. Support for different databases and adjust the interface generation and implementation process
for generic APIs;

8. Design an access control decision-making component that supports dynamic attribution of
permissions and soft requirements.

Goal 1 is a core step to the architecture that aims to allow access control policies to be modified
and reflected automatically on the client application development code. This way, developers are
not required to keep updating the data access interfaces manually. Once an access control policy is
modified, an integrated development environment can highlight the existing errors due to the change
in permissions during compilation, instead of having the errors appear only at runtime. This not only
reduces the burden on the application developers by not having to master the data access operations
they are authorized to use but also reduces the time spent debugging the application and increases
the overall quality of the final product.

Goal 2 aims to prevent applications from entering invalid or incorrect values as parameters into
operations. Consider two operations identified by the labels A and B. Furthermore, operation B
requires a parameter whose value can be obtained by executing operation A. Instead of relying on the
application to get the value from operation A and passing it to operation B, and possibly changing it
with malicious intent, the application selects a data entry from the operation A result set. Then, when
the operation B execution is requested, the architecture can take the value selected in the result set
and apply it as a parameter for operation B.

The intent of goal 3 is to prevent malicious subjects from modifying the operations that are executed
on the data. Since the operations were initially sent to the client application, which then connected
directly to the database through the generated data access interfaces, the data access logic was not
secure. While the data access logic was only implemented at runtime, reflection mechanisms can
be used to modify this it at runtime. Thus, by creating functions that execute the operations on the
database and sending to the client application tokens that reference said functions (e.g. the function
name), the data access logic is kept on the server. This change means that instead of using the actual
operation, the client requests their execution using the token that cannot be modified without being
rejected by the server.

Goal 4 is similar to goal 3, except the objective is to protect the database credentials. This related to
an issue found primarily in applications used within a business, where they connect to a database

1.2. Objectives 5

directly and store the credentials with them. However, some machines may operate in semi-public
locations such as a reception desk, meaning that any user could potentially get access to it. Instead
of having the client application connect to the database directly, which would require the database
credentials to be known, the credentials should be stored on a server-side application that connects to
the database in its stead. This way, if the client application is attacked and exploited, the database
credentials remain safe.

Goal 5 comes as an attempt to enable secure communication between components without having
to rely on third-parties. The most common method of securing communication is through the use of
digital certificates, which allows a client and a server to establish a secure communication channel.
For these certificates to be trustworthy, they must be signed by a certification authority to prevent
a malicious user from creating its own certificate and stating it belongs to the server. However,
a certification authority must be trusted to not issue a certificate that allows a malicious user to
impersonate the server. This trust dependency may not be acceptable in every scenario. Furthermore,
the issuing of these certificates may also not come cheap depending on the certification authority.
Thus, researching another method of establishing secure communication channels is desired.

The purpose of goal 6 is to incorporate the use case logic in the access control layer. Since data
access should not be done outside the established use cases, each use case could be defined as a
sequence of operations. These sequences are then incorporated into generated interfaces and the
developers are forced to follow them to access the data. This prevents operations from being executed
in unexpected arrangements that could potentially disclose sensitive information.

Goal 7 is concerned with support custom data access APIs within the architecture. This approach
is intended to enable support for any database, including non-relational ones which have acquired a
larger presence in recent years. Since the interfaces being generated were initially based on JDBC and
were therefore built to access relational databases, these interfaces and their definition process have to
be overhauled to broaden the applicability of the automatic generation of data access interfaces to
more scenarios.

Finally, goal 8 aims to evolve the architecture to be able to dynamically grant or deny permissions
to subjects, possibly based on soft requirements, as they issue access requests. Without this, every
time a new subject requests access to data it must be manually granted the permission to do so. This
delays access to the data and increases management complexity. This complexity can be so great that
some scenarios where the data is not sensitive just grant access to everyone and revokes the access
later if an issue arises. An example of such a scenario is the Wikipedia, as it allows anyone to edit its
pages, and later rollbacks changes and revokes access to individual contributors when malevolent
modifications (vandalism) are made. This example also showcases a possible soft requirement, where
users that are considered to be vandals should not be granted permission to modify pages.

The initial architecture and goals 1 to 6 were the focus of existing previous works [13]–[18],
culminating in the Secure, Dynamic and Distributed Role-based Access Control Architecture (S-
DRACA). In this thesis, the work on goals 2 to 6 is continued while goals 7 and 8 are first achieved.
Thus, this thesis focuses on two major sections. The first section details the improvements achieved in
the architecture itself, which includes how the operations and their parameters can be protected from
outside tampering, how operations can be sequenced to prevent operations to be used together in

6 Chapter 1. Introduction

unexpected ways that may disclose sensitive data, database credential protection from being disclosed
from the client applications and overall communication security. The second section focuses on the
incorporation of fuzzy logic for access control decision making, which includes the development of
a generic fuzzy inference system capable of making binary decisions that can be configured using
definition files, and the development of an optimized auditing algorithm for this system to ensure the
correctness of its policies.

1.3 Research Questions

With the motivation layed out, the goals that were set for the data access architecture naturally raise
several questions. Some of these questions were addressed in the previous iteration of this work, but
not all. Furthermore, the intent of supporting soft access control requirements adds to these questions
as well to further expand the application scenarios of access control systems. After analysing every
goal set forth, the following research questions remain to be answered:

• RQ1: How to disconnect the architecture from the data storage solution so that it is no longer
tied to relational databases while providing developers with the same error-free data access
interface?

• RQ2: Can the credentials to the data store be protected in such a way that internal attacks on
the server-side cannot expose them?

• RQ3: How to design the custom data access interfaces so that developers can follow them easily
while developing applications and integrating the sequences of operations with the operation
parameter protection?

• RQ4: Since the underlying data stores may not have any access control features, how can
the access control policies be designed so that they can be modified at runtime, new users
that request access to data have an access decision made automatically, and soft data access
requirements can be satisfied?

• RQ5: Can soft access control policies be audited for correctness before deployment?

• RQ6: How do these changes impact the security of the system and the confidentiality of the
data?

With RQ1 the intent is to generalize the architecture to support any underlying data storage
solution, whilst providing an access control error-free API to access the data contained within. This
implies creating an abstraction layer that can access the specific data store used and obtain the required
data, Furthermore, the client-side API interface and implementation mechanics need to be overhauled
to allow data access through this API and not just mediated directly to a relational database.

RQ2 intends to find a way to protect the data store access credentials. Since the server has to host a
data access API, the data store credentials must be present to enable this. However, this opens the
door to potentially malicious users to obtain these credentials from the server in internal attacks.

1.4. Contributions 7

RQ3 aims to research a way to make customized, easy to follow data access API interfaces available
to the developers while preventing potential malicious users from modifying the data access logic.
The previous work already had a basic solution to this, which consisted of sending a token that
identified existing stored procedures in the relational database that could be executed. However,
this solution is no longer valid given RQ1. Another aspect related to this research is how to create
protected parameters that contain data previously obtained from the API. Since data is obtained under
specific data access control policies, the data that is obtained can be used to access other related data.
This enables the client applications to potentially modify the values for these parameters, which could
allow them to access more data than intended. Parameters should be able to flow in the sequences
without being modifiable.

RQ4 focuses on the access control policies, which were still statically defined in the previous work.
Since the underlying data store is unknown, the architecture needs to deploy its specific access control
model and allow policies to be modified at runtime. To remain relevant with recent advances in
data storage, processing, and access requirements referenced in this chapter, the access control model
must be able to loosely map users to data access permissions. Thus, when a new user requests access
to some data, its parameters can be used to determine if that user has permission to do so or not,
meaning that each user does not have to be given permission explicitly. Furthermore, the application
of this architecture in scenarios that cannot deploy existing access control models due to soft access
control requirements is also intended to be supported.

RQ5 targets a drawback of supporting application scenarios that have soft access control require-
ments that was discovered while researching RQ4. Since soft data access requirements cannot be
crisply defined, there is always a degree of vagueness in the access control rules that are defined in the
associated policies. Therefore, a mechanism or algorithm capable of analysing the policies written for
this architecture that outputs the groups of input values that grant or deny permissions is important
to increase the trustworthiness of the access control policies.

Finally, RQ6 aims to highlight other security and confidentiality issues that arise given the char-
acteristics of the proposed enhancements to the goals identified for the architecture and to provide
possible solutions.

1.4 Contributions

The search for the answers to the research questions led the work in this thesis through several lines
of research: from the analysis of existing access control models [19]–[25]; the proposal of different
methods of enforcing access control policies [18], [26]–[32]; and the study of several database and
access control related security issues [25], [33]–[36].

These lines of research resulted in several contributions:

1. A formal definition of the sequence access control model that governs the order in which
operations can be executed on the data store [31], which evolves the work presented in [26].

2. A method to protect data store access credentials so a malicious user has to break into two
different servers to acquire them [35], [36].

8 Chapter 1. Introduction

3. Further enhancements to security features [34] and formalization of others [28].

4. The development of a Binary Decision Fuzzy Inference System (BDFIS) [32] that is able to handle
soft access control requirements during the decision making process.

5. The design of a Secure, Dynamic and Distributed Soft Access Control Architecture (S-DiSACA)
that evolves a previous work [18] and incorporates the BDFIS as its decision-making mechanism.

6. An optimized search algorithm to audit the correctness of the policies built for the BDFIS [37] and
other non-standard decision-making methodologies [29], which is arguably the most important
contribution made with this thesis.

7. Surveying and addressing security and data confidentiality issues by leveraging the work done
with the S-DiSACA [30], [38] and other collaboration work [25], [39].

1.5 Dissertation Outline

This dissertation is divided as follows: section 2 provides the background on the previous work
leveraged in this thesis and on fuzzy logic and fuzzy set theory; section 3 provides the necessary
insight into the current state of the art regarding models that deal with vague concepts and/or deal
with dynamically assigned permissions; section 4 details the security requirements and associated
issues with the type of access control system presented, alongside the designed first-step solutions
for them; section 5 introduces the BDFIS and explore the security issues that arise from using such
a system; section 6 presents the proof-of-concept of the S-DiSACA along with some performance
evaluation; finally, section 7 discusses the goals and results of the thesis.

9

Chapter 2

Background

In this chapter, the necessary background information to fully understand the remainder of this work
is provided.

The background information is divided into two sections: the previous work in section 2.1, which
is used as a base for many of the security-related contributions achieved in this work; and the fuzzy
sets and fuzzy logic information in section 2.2, which introduces the most common approaches to
incorporate soft requirements in access control models.

2.1 Previous Work

The previous work this thesis builds upon is an access control architecture called Secure, Dynamic and
Distributed Role-based Access Control Architecture (S-DRACA) [18], which was developed targeting
applications that use tools such as Java Database Connectivity [2], Hibernate [5] or ADO.NET [4] to
access data stored in databases using Role-Based Access Control (RBAC). The main issue was that
while these tools bridge the gap between the relational databases and the object-oriented programming
paradigms, they do not incorporate into their interfaces the applied access control policies. Thus, to
use these tools, developers must master the applied access control policies to be able to write correct
applications.

Figure 2.1 shows the S-DRACA and its usage is divided into three major phases:

1. Compilation Phase, where data access interfaces called Business Schemas are generated from
the applied access control policies.

2. Pre-Execution Phase, where the Business Schemas are implemented from the applied access
control policies.

3. Execution Phase, where the implemented Business Schemas are used to access the data, respect-
ing the applied access control policies automatically.

The Business Schemas mirror the application programming interface (API) provided by the
standard tools used to access the data in relational databases, the difference being that the data access
functions that were not allowed to be executed by the target application did not exist in the interface of

10 Chapter 2. Background

FIGURE 2.1: S-DRACA overview.

the Business Schema. Thus, the developers did not have to master the applied access control policies,
lowering the time spent in development and debugging.

A short description of each phase is provided next, which explains the function of each block in
Figure 2.1.

2.1.1 Compilation Phase

In the compilation phase, the developers configure the application with the credentials granted by the
server. These credentials are used to authenticate the application and determine the associated role
and to determine which Business Schemas to use.

Since different tables in the database can have several create, read, update, and delete (CRUD)
expressions associated with them (to select different fields, to filter results, etc.), each CRUD expression
is handled by a unique Business Schema. This Business Schema then allows the application to
set parameters (if any) to queries, and depending on the CRUD expression to explore the results,
update/insert/delete rows, etc.

Therefore, at compile-time, the compiler uses the Policy Extractor (see Figure 2.1) to first authenticate
the application with the Policy Manager and then request the Business Schemas metadata that the
application is allowed to use (1). Then, using the architectural model and the received metadata, it
automatically generates the interfaces of the Business Schemas (2). The architectural model differs

2.1. Previous Work 11

between programming languages and defines the data access functions and how each one should be
implemented.

The Policy Manager resides on the server, and in this phase, it accesses the Policy Server database
where the access control policies are stored (including the Business Schema metadata, CRUD expres-
sions and application information) to authenticate the application and send the data required by the
Policy Extractor to generate the Business Schema interfaces.

The key difference from similar tools is that this approach can (and should) be used before the
application development process begin. By creating the Business Schemas first, the development of
the application that follows benefits from the security-aware data access interfaces that they provide.
Thus, development is faster, since there is less time spent writing and correcting CRUD expressions,
and easier, since developers are no longer required to master the database schema and access control
policies from the start. Furthermore, each time the application is compiled, any changes made to
the access control policies are automatically reflected in the code and any errors that need correcting
displayed when using an Integrated Development Environment (IDE).

2.1.2 Pre-Execution Phase

In the pre-execution phase, the application implements the Business Schema interfaces which are used
during the execution phase to access the stored data.

First, the application uses the Business Manager to authenticate itself with the Policy Server on
the server-side. Then, the application requests the Business Schema metadata that it is allowed to
use (3). Once the metadata is received, the Business Manager implements the Business Schemas
according to the architectural model (4), and any disparities between the implemented interfaces and
the compile-time interfaces used by the application result in an exception.

Once all the Business Schemas are implemented and all match the existing interfaces, the applica-
tion can move on to the execution phase.

2.1.3 Execution Phase

In the execution phase, the application uses the implemented Business Schemas to access and manipu-
late the stored data.

The application can request the Business Manager to instantiate a particular Business Schema,
identified by the CRUD expression associated with it, and then use it to access the stored data.

As mentioned before, the Business Schemas mirror the standard data access APIs, allowing
developers to quickly adapt to this architecture. For example, in the Java language, the Business
Schemas mirror the Connection and ResultSet object APIs, two highly used database connectivity
APIs.

However, the Business Manager includes a Sequence Controller, a module that controls the order
in which Business Schemas are used. This is a previous iteration of the work presented in [31] and
leverages the idea that CRUD expressions may be put together by malicious developers in ways that
were not expected, allowing sensitive information to be leaked. By defining high-level use cases first,
it is possible to determine which operations are required to be executed and in which order to perform

12 Chapter 2. Background

each use case. When a Business Schema is instantiated, the Sequence Controller checks to see if it is one
of the available Business Schema according to the current sequence (5). Moreover, to make sure that
the developers do not have to master the sequences, each Business Schema can instantiate the next
Business Schema in the sequence.

Finally, once a Business Schema is instantiated, it can be used to query and explore the data or do
something else, depending on the associated CRUD expression (6). To make sure that the data stored
in the database on the server remains secure, the application never knows the database credentials.
Thus, the Policy Manager functions as a proxy to connect to the database, meaning that the database
credentials never leave the server.

2.2 Soft Requirements and Access Control Models

While access control models as a subject are fairly well known and studied early on in security-related
courses, it is usually applied together with crisp logic to define very clear rules regarding what prop-
erties a subject must possess to be granted some permissions over the data. However, as previously
argued some application scenarios may fall outside this context, possessing soft requirements that are
not as easily defined as crisp access control rules.

There are many attempts in the literature at unifying these two concepts to create an access control
model capable of handling soft requirements, usually through fuzzy sets and fuzzy logic theory. In this
section, the most common approaches used to achieve this unification are introduced and discussed
in terms of their benefits and drawbacks to provide some necessary background. For further reading
on both of these topics individually, a summary of well-known access control models is provided in
[18] and an introduction to fuzzy logic, sets and control systems in [40].

2.2.1 Classical Model Adaptation

One of the simplest approaches to incorporate soft requirements in access control is to replace the
Boolean logic used in an existing access control model by a multi-valued logic such as fuzzy logic.

As an example, instead of having a set of users that belong to a particular role in a role-based
access control model, the users have a degree of membership to each role as shown below instead.

USERS× ROLES −→ [0, 1]

Then, depending on the degree of membership each user may be granted the associated permis-
sions or not. This decision process may use some sort of threshold where the given role is granted
to a user above a certain membership degree, or the user may retain the partial membership to each
role. In the latter case, different permissions may require different minimum membership degrees to
be granted to a user. An example of such a model is presented in [41] and partially in [42]. Both are
further detailed in the state of the art.

While this approach has the benefit of being easy to produce and somewhat familiar to use given
that it is based on existing access control models, it has the drawback of being restricted to the concepts

2.2. Soft Requirements and Access Control Models 13

used in the base model. For example, in the case of an adapted role-based access control model, the
soft requirements have to be based on the roles and nothing else. Another benefit of this approach is
that auditing the access control policies is also easier to do, as the set of users is expected to be known.
This means that the membership degrees can be read for each mapped user and their permissions
evaluated.

Regardless, these types of models are an interesting stepping stone to learn about and research
more complex fuzzy-based access control models.

2.2.2 Concept Specific Inference

Another very common approach to developing access control models based with support for soft
requirements is to create a model for specific use cases. The biggest drawback of adapting an existing
model is the restriction that it imposes on the possible concepts that can be used to define the access
control rules, thus the idea of using an inference system based on carefully chosen concepts.

Many access control models follow this approach, such as the work presented in [23], [43] and
[44]. These models take in specific parameters from the subjects requesting access to the data and
sometimes even from other sources, such as the history of the interactions with that subject in past, the
sensitivity of the data being requested, the severity of the action to be performed, etc. This information
is used to calculate vague concepts such as the risk associated with an access attempt or the trust the
system has on the subject, and the access requests can be granted or denied depending on membership
degrees involved.

While this approach allows creating fuzzy-based access control models based on any concepts,
each model focuses on just a few specific ones. Thus, an access control model created in this way is
meant to be used in a very specific scenario, limiting its usability outside of it. Another drawback is
that auditing the correctness of the rules is harder since generally there is no fixed set of users that
are meant to access the system and any combination of input parameters may occur. However, these
models are good when applied to the specific scenarios they were developed for and tend to be easier
to fine-tune with expert knowledge.

2.2.3 Generalized Inference

The inference systems used for specific use cases are usually instances of more general fuzzy inference
systems (FIS) where the rules, the input and the output variables have been specified. The more
widely known and used FIS are the Mamdani-type FIS [45]; and the Sugeno-type FIS [46]. A quick
comparison of these two system types follows.

While the input variables are treated the same way in both cases, the difference lies in how the
output values are calculated. For instance, the Mamdani-type FIS can be used in multiple-input
single/multiple-output systems, the Sugeno-type FIS can only be used in multiple-input single-output
systems. This point alone makes the Mamdani-type FIS more appealing for access control as there can
be multiple permissions that need to be evaluated. However, if the permissions are determined by a
single factor, for example the level of risk, then the Sugeno-type FIS could be used as well.

14 Chapter 2. Background

Another difference lies with the fact that the Mamdani-type FIS has more expressive power and
interpretable rule consequent than the Sugeno-type FIS. This is evident if the rules are compared
side-by-side as shown in Listing 2.1.

LISTING 2.1: Example Mamdani-type and Sugeno-type rule comparison.

Mamdani : IF S e r v i c e IS E x c e l l e n t THEN Tip IS High
Sugeno : IF S e r v i c e IS E x c e l l e n t THEN Tip IS F (E x c e l l e n t)

While in the Mamdani-type FIS it is clear that the rule is meant to convey a high tip as a consequent,
the Sugeno-type FIS loses this power by simply applying a crisp function. In an access control context,
being able to interpret the rules is an important aspect to help ensure the that they are correct.

Finally, the Mamdani-type FIS has a non-continuous output surface while the Sugeno-type FIS has
a continuous one. While this point means that the Sugeno-type FIS is better suited for mathematical
analysis and systems that require a continuous output, for access control systems the Mamdani-type
FIS is most of the time better as they usually only need to determine if a permission is granted or
denied.

2.3 Summary

In this chapter, the previous architecture that was built upon in this work was introduced to provide
background knowledge of its previous features and to help determine how it evolved. Furthermore,
an explanation of how access control models are typically developed to incorporate soft requirements
was provided to understand the major benefits and drawbacks of each approach. Finally, a quick
overview of the differences between the Mamdani-type and Sugeno-type FIS including their benefits
and drawbacks for application in access control contexts was also presented.

15

Chapter 3

State of the Art

In this chapter, the state of the art revolving around the various topics researched during this thesis and
how the methods and systems presented in this dissertation enhance or complement it are carefully
detailed and argued.

Some of these topics are included in the fields of access control and authentication/communication
security. The former includes both crisp and soft-based access control, as well as the mechanisms that
can be employed to protect the database schema from being disclosed. The latter focuses on both
widespread technologies used to secure authentication schemes and communication protocols and
solutions presented in the literature.

Therefore, this chapter is divided as follows: section 3.1 details the various crisp and soft access
control models, as well as the various database schema protection mechanisms; section 3.2 details
the various technologies, solutions and protocols used/proposed to provide secure authentication
schemes and secure communication; and section 3.3 summarizes the findings of the chapter.

3.1 Crisp and Soft Access Control

Access control is the process of restricting access to a resource in a selective manner [1], usually by
giving a subject proper authorization to be able to access said resource. There are many facets to
access control that must be taken into consideration to make it secure, such as subject identification
and authentication, encrypted communication channels, a correct access management system, etc.

In this section, several works related to these facets of securing access control is succinctly presented
and discussed.

3.1.1 Crisp Access Control Models and Systems

In this section, a more detailed look into existing models, tools and related works that enable applica-
tions to access data stored in databases is presented.

Starting with tools that are widely available and used, Java Database Connectivity (JDBC) [2] is
a Java-based technology that enables applications to access data stored in a database. As such, it is
a prepackaged application programming interface (API) for the Java programming language that
provides methods for querying, inserting, updating and deleting data in relational databases.

16 Chapter 3. State of the Art

FIGURE 3.1: JDBC architecture.

As shown in Fig. 3.1, the application interacts with JDBC only through its API. For JDBC to handle
multiple different databases, it uses a driver manager that selects the proper driver according to the
database that it is connected to. Each driver manages the database-specific communication protocol,
and new drivers can be dynamically loaded so they can be used.

JDBC allows applications to execute standard Structured Query Language (SQL) statements, such
as SELECT Name FROM People which would select the name column value for every entry in the table
People. The result of executing a query comes in the form of a table, with each row containing a single
data entry that satisfies the query. To handle the result of query execution, JDBC uses the ResultSet
object, which allows the application to iterate over each row in the query result.

ADO.NET [4] is another tool that comes prepackaged with the C# programming language and
is equivalent to JDBC with just some different class naming conventions. Since these tools are more
focused on being compatible with multiple relational databases rather than reflecting the access
control policies set in place, attempting to access a table that the application does not have permission
to access raises an error only while attempting to execute the query. Thus, to write an application
using these tools the developers must master the database schema and what data they are allowed to
access.

More sophisticated object-relational mapping tools exist that map the object-oriented domain
model with the relational paradigm used in relational databases, such as Hibernate [5], Language
Integrated Query (LINQ) [3], Java Persistence API [47] and EclipseLink [48]. These tools create objects
that map to database tables (or vice-versa) and provide persistence engines that allow modifications
made to the objects to be transparently carried over to the associated database tables. However, while
the object creation process does take the access control policies into account (since objects are mapped

3.1. Crisp and Soft Access Control 17

to tables the application is allowed to access) if the policies are modified at any point after the mapping
has to be remade. This process not only needs to be triggered manually, but such changes to the access
control policies are still only detected during execution through access permission errors.

Ur/Web

Chlipala et al. [49] created a tool, Ur/Web, which allows create, read, update, and delete (CRUD)
expressions to be extended to check the access control policies in a system backed by a DBMS as they
are executed.

Using this tool, programs can be developed and checked to ensure that the data that is retrieved
and manipulated by the CRUD expressions are accessible through some policy. The extension allows
CRUD expressions to be parameterized to capture the "secrets that user knows", thus allowing the
same CRUD expressions to be used with different users.

Listing 3.1 shows how this extension accomplishes that by using the predicate known, which
models what information the users are already in possession of. This information is used to decide
what information can be disclosed to each user.

LISTING 3.1: Example Ur/Web CRUD expression.

pol i cy sendClient {
S e l e c t *
From user
Where known(user . pass)

}

In the listing example, the policy sendClient governs a CRUD expression that retrieves information
about users. However, the user requesting this data receives the information only for users that he
already knows the password of.

This approach allows to ensure that data flows according to the access control policies, but the
Where clauses themselves are not checked. This may allow protected data to be leaked implicitly,
for example by changing the known clause and comparing the results. Furthermore, the validation
process occurs only at compile-time, so the developers still have to master the database schemas and
the defined access control policies to write the applications.

Integrating access control policies within database development

Abramov et al. [50] present an approach where the security aspects are defined at the early stages
of software development, instead of at the end as is commonly the case. To achieve this, a model is
presented that infers and applies access control policies.

A new methodology is proposed that enables security patterns to be clearly defined using common
modelling techniques and using modelling languages such as the unified modelling language and the
object constraint language.

18 Chapter 3. State of the Art

The methodology is divided into four major phases: preparation, analysis, design, and implemen-
tation. While the latter three occur at the application development level, the preparation phase is
carried out at the organizational level.

The preparation phase concerns the security officers and domain experts, which specify the
organizational security patterns and transformation rules. These patterns are later enforced during
the development of any application and database schema, while the transformation rules specify
how to transform the application model based on the patterns into database code. The analysis
phase includes the creation of a conceptual data model, which is based on the user’s requirements,
and a functional model, which is based on functional requirements. This phase also includes the
specification of the security constraints, expressed as a table that aggregates all access privileges. In
the design phase, the models created during the analysis phase are transformed into a coherent model
that adheres to the organizational model. This includes the refinement of the data model, where the
initial class diagram and the access privileges specification are unified into a single class diagram,
and conformance checking, which validates the unified class diagram against the specified security
patterns. Finally, a developer at the implementation phase has access to a conceptual data model
that is augmented with the security constraints and that is compliant with the organizational security
patterns. The transformation rules can then be applied to implement the security specifications into
the database code.

However, while this approach allows creating software that has the security aspects defined and
incorporated early in the development life-cycle, the development of the application still requires the
developers to master the database schema and access control policies to correctly write the necessary
database queries.

Hippocratic Databases

Hippocratic databases are databases that are designed to incorporate privacy policies into their
architecture, and they are defined by ten principles [51]:

• Purpose specification. Data collection operations must have associated the purpose for which
the data is being collected;

• Consent. The donor of the data must consent the associated purpose;

• Limited collection. The amount of data collected must be the minimal amount that satisfies the
purpose;

• Limited use. Only queries that are consistent with the associated purpose must be allowed to
be executed;

• Limited disclosure. The data shall not be disclosed outside the database for any reason other
than the consented purpose;

• Limited retention. The data collected can only be retained for the minimal amount of time
necessary to satisfy the purpose;

3.1. Crisp and Soft Access Control 19

• Accuracy. Data must be up-to-date and correct;

• Safety. Data must be protected against theft and unauthorized access by security mechanisms;

• Openness. A subject must always have access to all data it is the donor of;

• Compliance. The donor of some data must be able to verify the compliance of the principles.

These principles have been tested with PostgreSQL [52], and Listing 3.2 shows an example query
that could be executed in that database system.

LISTING 3.2: Example Hippocratic PostgreSQL query.

S e l e c t s . saleNumber , s . saleValue , s . taxValue
From S a l e s s
Purpose audi t ing
Rec ip ient salesManager

The query shown in this listing produces a result that has its columns restricted for both the
purpose and the recipient. Furthermore, only the data intended to be used for auditing is shared.
Thus, it is clear that Hippocratic databases handle a more unusual aspect of access control, i.e. privacy,
as it lets the donors of some data specify how, when and for what purpose it can be disclosed for.

LeFevre et al. [53] presents a method to limit the data disclosed in Hippocratic databases by
employing the query rewriting technique. The policies are defined using either EPAL [54] or P3P
[55], and it specifies who can access the data and for what purpose through rules. When a query is
submitted and the database returns the result, the application processed the records and filters out
any that contains prohibited information.

SESAME

SESAME [56] is a dynamic context-aware access control mechanism for pervasive GRID applications.
Based on the user’s context, it can dynamically grant and adapt permissions to complement existing
authorization mechanisms.

To enable this approach, an extension to the classic Role-Based Access Control (RBAC) model is
used, called dynamic RBAC. When users log in, it assigns to each user a default role hierarchy and
then proceeds to monitor their context to assign roles as needed. The context used in this approach
can be either an object context or a subject context. The object context contains information such as the
user’s location, time, local resources and link-state, while the subject context contains information
such as the system’s current load, connectivity to a resource and availability.

While this approach can assign roles dynamically to each user as needed, it does not change the
application development flow like most works presented in this section.

SELINKS

SELINKS [57] extends the LINKS [58] programming language, which is a language similar to LINQ
that can be used in the development of secure web applications.

20 Chapter 3. State of the Art

A program written with LINKS is compiled to create the byte-code for each tier of the application
alongside the security policies. User-defined functions on the RDBMS are then created, which encode
these and check at runtime what actions each user is allowed to execute. Programmers can define
security labels, i.e. types that define the metadata, that are used by functions that enforce the policies
to mediate the access to the data. To ensure that the data is accessed only after the proper policy
enforcement function is invoked, a type system called Fable [59] is used.

SELINKS improves upon LINKS by integrating a security context in every application tier, using
Fable to ensure security policies are followed. This is optimized to reduce network load by carrying
out the permissions check on the user-defined functions in the database, instead of transferring the
data to the webserver to check. Furthermore, it is a single tool, lowering the toll on developers from
having to learn multiple tools.

However, since the security labels a group-based access control policy that only distinguishes
between read and write operations, it is not possible to apply the restrictions on the more abstract
query level.

Jif

Jif [60] is a programming language that is security-typed and extends Java to provide support for
information flow control and access control, both at compile-time and runtime. Java is extended
through the use of labels that express the access control policies that are in effect and that should be
enforced, as well as how the information may be used.

Listing 3.3 shows a variable declaration in Java extended with Jif, in which the x variable is
declared as an integer alongside a security policy.

LISTING 3.3: Example Java variable declaration using Jif.

i n t { Alive → Bob } x ;

In this scenario, the label expresses that the information stored in x is controlled by the principal
Alice and that the information may be accessed by the principal Bob. Therefore, the Jif compiler is
capable of analysing the information flow within programs to ensure that the policies expressed as
labels are followed. Alongside labels and principals, Jif also supports principal hierarchies, integrity
and confidentiality constraints, authority delegation between principals, confidentiality, integrity
downgrade and a form of label polymorphism.

However, while this language manages the information flow at the application level, other tools
and mechanisms must be used to manage the data access to databases.

Reflective Database Access Control

Olson et al. [61] presents the Reflective Database Access Control. Instead of defining user permissions
for each table through access control lists, this model expresses privileges as database queries. This
approach has the benefit of making permissions depend on data elsewhere on the database, and not

3.1. Crisp and Soft Access Control 21

be statically defined. The reflective access control policies are expressed using the Transaction Datalog
[62] to provide formalism, and implementation of this access control model was presented in [63].

While this model takes a very similar approach to the Secure, Dynamic and Distributed Role-based
Access Control Architecture (S-DRACA), it still lacks many of the additional features, such as the
client-side data access interface generation and implementation, parameter flow protection, query
sequencing enforcement, etc. Furthermore, the permissions are bound to the querying language used
by the database. If the database needs to be replaced, the permissions have to be redefined. S-DRACA
also suffers from this issue, as permissions are statically defined as SQL CRUD expressions, and is
tackled by the work presented in this dissertation.

Security-driven Model-based Dynamic Adaptation

Morin et al. [64] presents a security-driven model-based dynamic adaptation to address an issue
where even if the separation between the policies and the application code is done in theory, the reality
is that it is never fully accomplished in practice. The consequence of this problem is that some of the
policies end up being expressed directly in the application code.

The approach presented uses meta-models, which defines both the access control policies and
application architecture. It also defines how to statically and dynamically map from the access control
policies meta-model to the application architecture meta-model.

However, that is the entire scope of the presented work. Thus, it does not implement secure and
dynamic security mechanisms for data access.

Java EE

Java Enterprise Edition [65] is an extension of the standard edition of Java used to build enterprise
software. In this edition of Java, annotations can be used to enforce RBAC policies directly in the
application code at the method level. These annotations allow developers to declare roles and to
specify which of those roles are allowed to invoke certain methods.

Listing 3.4 shows how this can be done at a basic level. The roles Administrator, Manager, and
Employee are declared in the Product class using the @DeclareRoles annotation. The setDiscount()
function is declared in this class, which is annotated with @RolesAllowed. This annotation states that
only users with the Administrator role are allowed to invoke this method.

LISTING 3.4: Java EE roles example.

@DeclareRoles ({ " Administrator " , " Manager " , " Employee " })
public c l a s s Product {

@RolesAllowed (" Administrator ")
public void setDiscount (double p r i c e) {

. . .
}

}

22 Chapter 3. State of the Art

However, the specific users that invoke these annotated methods are not identified, meaning
that anyone who has one of the allowed roles has access to the protected method. Furthermore, this
approach only checks if a user is allowed to execute a method at runtime, meaning that developers
have no way to validate that their code adheres to the access control policies statically.

Annotated Objects

Fischer et al. presents in [66] Object-sensitive RBAC, an extension of RBAC that can be used with
object-oriented programming languages. It attempts to address some of the shortcomings in the
current RBAC model and associated frameworks such as the Java Enterprise Edition discussed in this
chapter.

Listing 3.5 shows some sample code using the standard RBAC in Java Enterprise Edition. The
intent is that the doctor of a patient and the patient himself should be allowed to access its data.
However, any user with the role of Doctor or Patient is allowed to invoke the method. Thus, it is clear
that the access control policy cannot be implemented as intended.

LISTING 3.5: Standard RBAC example.

public c l a s s P a t i e n t {
private i n t p a t i e n t I d ;

@RolesAllowed ({ " Doctor " , " P a t i e n t " })
public s t a t i c P a t i e n t g e t P a t i e n t (i n t pid) {

. . .
}

}

Object-oriented RBAC addresses this shortcoming as shown in Listing 3.6. In this scenario, the
roles DoctorOf and Patient are used, and both of them are parameterized by a patient identifier as
shown in the @Requires annotation. Thus, when the method is invoked with a specific patient identifier,
the user must be the doctor of a patient with that identifier or be that patient.

LISTING 3.6: Object-oriented RBAC example.

public c l a s s P a t i e n t {
@RoleParam public f i n a l i n t p a t i e n t I d ;

@Requires (r o l e s ={ " DoctorOf " , " P a t i e n t " } , params ={ " pid " , " pid " })
@Returns (roleparams=" p a t i e n t I d " , va l s=" pid ")
public s t a t i c P a t i e n t g e t P a t i e n t (@RoleParam f i n a l i n t pid) {

. . .
}

}

This work also possesses a type system that allows developers to write access code knowing if
they are violating any access control policy or not.

3.1. Crisp and Soft Access Control 23

In a complementary work, Zarnett et al. [67] presents a method to control access to methods of
remote objects via Java remote method invocation [68], which allows an application to use objects that
exist in a different application, possibly running in a different machine. By enriching the objects with
metadata about the roles that are authorized to use them through annotations, the proxy objects that
handle the requests to execute methods can be generated following the access control policies. Since
the proxy objects are tailored to each user with only the method they are allowed to execute, users
cannot attempt to execute methods that they are not allowed to.

However, none of these solutions eases the writing of queries to the database as developers must
still master the database schema and associated access control policies to do so.

Predicated Grants

Chaudhuri et al. [69] proposed adding predicates to grants to achieve a fine-grained authorization
model. The approach allows defining which records a user can access within a table, what the public
can see, etc.

Listing 3.7 shows a simple example of a query using this approach, where each employee can
access their employee information and all other data is nullified so it cannot be read.

LISTING 3.7: SQL example with predicated grants.

grant s e l e c t on Employee
where (employeeID=userID ())
e l s e n u l l i f y to publ ic

An advantage of this model is that it addresses cell-level security by nullifying values. It also
enables predicates to be used in any kind of grant, such as CRUD expressions, stored procedures and
functions. Furthermore, aggregation functions can also be authorized while restricting access to the
underlying data and it also has mechanisms to handle large numbers of users can database objects.

While this model does enhance the privacy of the data by ensuring that data is only disclosed to
a user if it satisfies the predicated grants, it does not help the software developers to write the data
access queries without having to master the schema and the access control policies.

λDB

Caires et al. presented in [70] a programming language for data-centric programs that can enforce
data access control policies through static typing. It uses data structures known as entities that are
checked against the access control policies and another context-dependent information at compile-
time. Permissions are associated with entities, which are comprised of: the action granted (i.e. either
read or write), the attributes of the entity, and a logic condition. Listing 3.8 shows an example of such
an entity.

24 Chapter 3. State of the Art

LISTING 3.8: λDB permission example.

e n t i t y Person [user id : s t r i n g ; publ ic : s t r i n g ; photo : p i c t u r e ; s e c r e t : s t r i n g]
. . .
read publ ic where true ;
read s e c r e t where Auth (uid) and uid = user id ;
read photo where Auth (uid) and Friends (userid , uid) ;
wri te where Auth (user id) ;

This entity is named Person and is defined by four attributes: userid, public, photo, and secret.
The conditions shown define that the public attribute can be always read, the secret attribute can be
read-only by its owner, and that the photo attribute can be read by its owner and its friends. The
condition for the write permission applies to all attributes and only allows the owner to update the
attributes.

This approach provides only a single action capable of authorizing update, insert and delete
operations (i.e. the write permission) on the attributes, so it is not possible to differentiate them.
However, the where clauses can be protected in contrast to previously shown solutions, such as
Ur/Web.

Assurance Management Framework

A solution similar to the approach used in this work is presented by Ahn et al. in [71] where a tool
that can generate some source code from a security model is defined in order to validate it. Therefore,
this generated code can be used to check if the model and policies violate consistency or validity. It
does so with four tasks:

1. Model representation. The security model is represented in the Unified Modeling Language.

2. Policy specification. Perform visual and logic-based policy specification, which is then trans-
lated into an high-level policy specification to be integrated into the system design.

3. Model and policy validation. The security models and policies are checked in terms of their
consistency and validity through a set of system states applied against them.

4. Conflict detection and resolution. Resolve any conflicts found between policies to ensure that
a policy does not conflict with other existing policies.

This framework is concerned with validating the policies that the applications are meant to follow
for data access and not how the developers should write the application code that does so. This way,
the developers still need to master the database schema and to write the database queries themselves.
This thesis aims to complement frameworks such as this one, by generating the source code that
accesses the database from the access control policies.

3.1. Crisp and Soft Access Control 25

FIGURE 3.2: XACML architecture and sample authorization flow.

XACML

The extensible access control markup language (XACML) [72] is a declarative access control policy
language that is implemented using extensible markup language (XML) and a processing model that
describes how requests should be evaluated according to the rules defined in the policies. It uses the
model shown in Fig. 3.2 to enforce access control policies.

When a user issues a data access request, the Policy Enforcement Point (PEP) intercepts it and
communicates with the Policy Decision Point (PDP) to check whether or not the user is authorized
to do so. The PDP then requests the policies to the Policy Retrieval Point (PRP) (not shown in the
figure) and any necessary additional information from the Policy Information Point (PIP). Once the
PDP determines if the user is allowed to access the requested data, the decision is sent back to the PEP
which enforces the decision. When the access request is granted, the PEP uses some static business
logic to handle the request. The Policy Administration Point (PAP) is used for administration purposes
such as managing the access control policies. However, changes made to the access control policies
are not reflected automatically in the PEP logic, so it must be updated in advance.

Other Works

Others works related to access control enforcement include a new technique and a tool called Mohawk
that can detect errors in the RBAC policies through abstraction refinement proposed by Jayaraman et
al. [73]. This tool adds roles to the abstraction in refinement steps in order to find errors. Wallach et al.
also proposes new semantics for stack inspection that aims to solve issues with the traditional stack

26 Chapter 3. State of the Art

inspection [74], such as the detection of dangerous system calls (e.g. to the file system) or verify if it is
allowed.

The work presented in this dissertation aims to complement these, as there is no mechanism in
place yet to check for errors in the actual data access policies or the usage of dangerous methods in
the application code that is not related to data access. It is important to check that the access control
policies defined for S-DiSACA are correct, as the application code generated to access the data is
completely dependent on them.

3.1.2 Soft Access Control Models and Systems

The fuzzy set theory is a topic that has been researched in recent years to tackle scenarios where the
information that needs to be processed is vague, which can include operations research, management
science, politics, social psychology, artificial intelligence, and access control, among others [75]. While
there are some applications of fuzzy set theory in access control systems, which are shown in this
chapter, no research was found around their correctness auditability for or the security challenges that
arise from the application of fuzzy logic.

Adaptive Risk-based Access Control

Atlam et al. presents in [44] an adaptive risk-based access control model for the Internet of Things
(IoT) based on fuzzy logic and expert judgment. This model estimates the security risk associated
with each access request and as such tackles the problem of optimizing the risk estimation techniques.
It is also stated that the goal of IoT is to increase information sharing and that an access control system
must also be auditable. To this end, the model accepts four different inputs: user context; resource
sensitivity; action severity; and risk history.

User context contains real-time features that represent the user/agent with contextual attributes
while it makes the access request, such as location and time. Different user context has distinct risk
values.

Resource/data sensitivity conveys the level of importance of the data, which affects how much
risk associated with an access request is tolerated. As the authors point out, mapping data sensitivity
levels to data is a subjective process that depends on how valuable the data is to its owner. To simplify
this process, the solution of using security experts to categorize the data is proposed.

Action severity indicates what is the impact of the action that the user/agent wants to perform
over the data with its access request. Security experts can categorize the available actions and map
them to a severity metric. This way, a risk metric is applied to each action over a specific resource.

The user risk history is a history of the risk values associated with the previous access requests
made by a particular user. This is used to monitor the user’s behaviour patterns and to differentiate
good users from malicious users.

A risk estimation module takes these inputs and uses them to estimate the overall risk value
related to the access request. The risk value is then compared within the risk policies to make access
control decisions. The risk policies are defined with thresholds that determine that an access request
should be granted if the risk value is lower, or should be denied if it is greater.

3.1. Crisp and Soft Access Control 27

The authors also define auditability as the process of collecting evidence of the various access
operations performed by each user. While this is enough for access control models where the
permissions associated with each user are explicit in its policies, the concept of auditability should
be expanded once anyone is allowed to issue access requests and the access control decisions are
performed using fuzzy logic on a request by request basis. This is especially true if there are no
security experts available. Thus, it becomes important to understand under which conditions do user
requests get accepted to determine the correctness of the policies. Other security issues that should be
considered when using this model are also not discussed.

Fuzzy Role-based Access Control

In [41], the authors introduce Fuzzy Role-based Access Control, which uses fuzzy relations between
users-roles and roles-permissions. The authors use the following notations and definitions:

• USERS is a set of users.

• ROLES is a set of roles.

• OBS is a set of resources (objects).

• OPS is a set of operations.

• PRMS = 2OBS×OPS is a set of permissions.

• UA ⊆ USERS× ROLES is a set of user-role assignments.

• PA ⊆ PRMS× ROLES is a set of role-permission assignments.

These notations and definitions are then used to define the user-role and role-permission assign-
ments, which forms the core of this model:

• UA : USERS× ROLES −→ [0, 1]

• PA : ROLES× PRMS −→ [0, 1]

This approach allows for users to have partial permission assignments, which are then used to
calculate the access degree they have to resources. Then, if the access degree is used directly to control
access to a resource, the resource itself must have fractional access, defined using the following access
function:

• access : USERS×OPS×OBS −→ [0, 1]

When access cannot be fractional, i.e. it must be either granted or denied, we enter the context of
this thesis which aims to make the output a binary access control decision. In such cases, the authors
define a function that takes a threshold variable δ (i.e. a value between 0 and 1) and returns “grant” if
the access degree is greater than δ or “deny” if not.

28 Chapter 3. State of the Art

In summary, the authors adapted the classic role-based access control model, which requires an
explicit mapping between users and their roles to exist before any access attempt. This makes auditing
this model trivial, as the membership degrees can be read for each user and a determination of which
permissions they are granted or denied can be made. However, in the case of systems where such
mappings between users and permissions are made in runtime according to user parameters, this is
not possible. Previous users can be easily audited but their parameters may change between requests,
and new users may request access at any time. Thus, from a security standpoint, it becomes important
to discover which input parameter ranges grant permissions and have an expert determine their
correctness. This thesis aims to complement this work in this regard.

Fuzzy Trust-based Access Control

In [23] a work was proposed by Mahalle et al. in which trust level of devices is quantified, so a fuzzy
approach to trust-based access control could be achieved. This is done by capturing information about
the devices to determine the vague concepts Experience (EX), Knowledge (KN) and Recommendation
(RC), and several fuzzy sets (linguistic terms) were defined for each one. The following values for
each concept are calculated for a particular context c between two devices A and B and then used as
inputs for the membership functions of the linguistic terms.

EX depends on the history of interactions vk between A and B, where k ∈ [0, n], incrementing
every time a positive interaction occurs and decrements otherwise:

(EX)c =
∑n

k=1 vk

∑n
k=1|vk|

KN is calculated with the help of direct knowledge (d), indirect knowledge (r), and their respective
weights (Wd, Wr), where d, r ∈ [−1, 1], Wd, Wr ∈ [0, 1], and Wd + Wr = 1:

(KN)c = Wd ∗ d + Wr ∗ r

The RC is calculated by device A based on the summation of the RC values from n other devices
about device B. Wi and (rc)i are weights assigned by device A to the recommendation of ith device
and the RC value of ith device respectively, where rc ∈ [−1, 1] and Wi ∈ [0, 1]:

(RC)c =
∑n

1 Wi ∗ (rc)i

∑n
1 (rc)i

These fuzzy sets are then used to determine the level of trust that a user or another device can
have to that device. Different permissions can be mapped to different levels of trust, so depending
on the level of trust the granted permissions change. This is achieved by defining an ordered set
with access rights, where its cardinality is equal to the number of trust levels, then a specific trust
level has specific access rights. While this is a valid approach, it makes access decisions solely based
on the level of trust. If there are other access conditions, they need to be considered separately as
the system is only built to handle the concept of trust. Furthermore, no discussion over the various
security aspects associated with an access control system is made.

3.1. Crisp and Soft Access Control 29

TABLE 3.1: Fuzzy sets used in the input fuzzification step.

Input Fuzzy Sets

Data Sensitivity
Low

Medium
High

Action Severity
Not Sensitive

Sensitive
Highly Sensitive

Risk History
Low

Moderate
High

Fuzzy Risk-based Access Control

Another work was carried out by Li et al. that uses fuzzy set theory to calculate a measure of risk
and applies it to enhance the access security of eHealth cloud applications [43]. This fuzzy set
theory application comes from the "urgent need for effective access control to protect highly sensitive
healthcare information over a cloud computing environment." While other approaches are mentioned
by the authors that incorporate risk management into the access control decision making, they argue
that these approaches have the drawback of using different factors to estimate risks and that the risk
levels are mainly qualitative. Fuzzy set theory is an alternative technique to address the uncertainty
and the qualitative nature of the risk levels during the risk assessment.

To achieve this, three different inputs are used: data sensitivity; action severity; and risk history.
These inputs are fuzzified into three different fuzzy sets each, as shown in Table 3.1.

Next, a set of rules is applied to calculate the level of risk associated, which can apply to five
different fuzzy sets that define the risk levels: negligible, low, moderate, high, and unacceptable high.
These rules are determined by experts.

A crisp output value is then determined by applying a defuzzification technique, which indicates
the overall level of risk as a percentage. However, the process to determine whether the access should
be granted given a risk level is not detailed. Furthermore, correctness auditability is not mentioned in
the paper, which could be a deterring factor, especially when dealing with healthcare applications. The
security risks related to the application of fuzzy logic in access control scenarios should be considered.

Fine-grained Data Access Control with Attribute-hiding Policy

In [76], Hao et al. address a security issue with ciphertext-policy attribute-based encryption (CP-ABE),
which is an approach that provides fine-grained access control to data in IoT, such as data exported to
the cloud. CP-ABE achieves this by enabling data owners to encrypt their data under certain access
control policies over a set of attributes. Then, the recipients of the data are allowed to decrypt the data
if their attributes satisfy the access control policy associated with the ciphertext.

The issue with this approach lies with the fact that access policies are usually explicitly appended
to the ciphertext, which enables anyone who obtains the ciphertext to be able to potentially infer some

30 Chapter 3. State of the Art

information about the contents of the data or who are the recipients from the policy. This results in the
disclosure of the underlying ciphertext and potential recipients.

To handle this problem, the authors propose hiding the whole attributes from the policies. This is
achieved by removing the mapping function ρ from the linear secret sharing scheme-based access
policy (M, ρ), which effectively hides the attribute information. However, this is not enough. While
legitimate recipients can query if an attribute is in a policy through a Bloom filter, this approach is
still susceptible to dictionary attacks. Thus, the authors propose using a fuzzy attribute positioning
mechanism based on a garbled Bloom filter. In this approach, legitimate recipients can query the row
numbers for their attributes and are capable of verifying the results by successful decryption while
unauthorized recipients are unable to compromise the confidentiality of any valuable attribute.

This work focuses on a particular security issue related to data that is outsourced to the cloud and
how that data can be kept private while providing access to legitimate recipients. While the data can
be encrypted, the access control policies may disclose some information about the data or who the
intended recipients are. The model designed in this dissertation has a somewhat similar approach in
the sense that the mapping function between the recipients and the data is not explicitly defined in
each policy. Instead, the model uses fuzzy inference systems to infer whether or not a recipient is to
be given certain permissions over the data or not based on their attributes.

One key difference is that the policies used in [76] use crisp attributes in their rules, which aims
to provide a more fine-grained selection of the recipients of the data. The model proposed in this
dissertation aims to be more flexible by determining the membership degree of each user requesting
access to the data to a set of fuzzy sets, and the access control decisions are then made based on fuzzy
rules. Thus, it is intended to be used in situations where defining crisp access control policies is not
feasible, such as preventing users with a recent history of vandalism from having write permissions
on Wikipedia pages.

However, the possibility exists that if unauthorized users can get access to the access control
policies, they could potentially learn which attributes to manipulate to obtain the permissions they
desire. Thus, protecting access control policies is an important step to raise the security of the system
using this model.

A Fuzzy Logic Based Trust-ABAC Model

An access control model based on the Attribute-Based Access Control (ABAC) model was proposed
in [77] by Ouechtati et al. to address security and confidentiality issues stemming from the fact that a
large number of life devices are integrated into heterogeneous networks (IoT).

When it comes to accessing these devices, it is difficult to ascertain whether or not objects are
honest or malicious. Thus, the authors leverage the recommendations and social relations of users,
which can effectively deal with some types of malicious behaviour that aims to deceive other nodes.
In particular, the authors aim to address specifically the collusion attack, an attack where several
objects can cooperate to increase or decrease their level of trust artificially.

This is achieved in two ways: by evaluating the trust level associated with recommendation
messages; and by detecting collusion attacks to filter out the inappropriate recommendations.

3.1. Crisp and Soft Access Control 31

The evaluation of the recommendations is performed based on the communities to which the
object belongs since objects in the same communities have stronger links or have common affinities.
This separation also allows to determine the similarity between recommendations to identify and
limit the sources of attacks. Thus, recommendations are divided as follows:

1. The OOR recommendations, which are recommendations that come from objects that share the
same ownership relationship with the recommended object.

2. The C-LOR recommendations, which are recommendations that come from objects that are
physically co-located with the recommended object.

3. The C-WOR recommendations, which are recommendations that come from objects that meet
the recommended object in the owner’s workplace.

4. The SOR recommendations, which are recommendations that come from objects that meet the
recommended object frequently, sporadically or continuously.

From this, the inputs Internal Similarity and External Similarity are calculated from which the
output Recommendation Value Credibility is obtained using fuzzy logic. Then, the Recommendation Value
Credibility is used again as input, alongside the Degree of Social Relationship, to obtain the Trust Level.

Compared to other approaches shown in this chapter, this work does not deal with many input
variables. This allows the authors to show diagrams with the correlation between the inputs and the
output for all possible values, allowing to easily verify if the model is correct or not. However, this
simplicity means that this model is specialized in calculating trust levels, which is then be used in
an ABAC-based access control system. It is also not possible to use custom vague concepts to make
access control decisions with. Thus, while it is a promising approach in some IoT scenarios, it cannot
process other variables that may be required to take into account during the decision-making process
in other scenarios.

Context-aware Access Control with Imprecise Context Characterization

Context information can also be of high importance when making access control decisions. In [42],
Kayes et al. argue that while some contextual information can be derived from crisp sets (such as the
co-location of a patient and a nurse trying to access some of the medical records belonging to that
patient), equally important contextual information cannot, such as how critical the health condition of
the patient is.

To address this issue, the authors propose a Context-Aware Access Control using Fuzzy Logic (FCAAC)
approach. To do so, four different stages are required in FCAAC:

1. Capture Low-level Data.

2. Derive Conditions.

3. Mapping Multiple Sources.

4. Make Access Decision.

32 Chapter 3. State of the Art

In the first stage, the low-level contextual facts are captured from relevant context sources. These
facts are then used in the second stage, where the relevant contextual conditions (both fuzzy and crisp)
are derived from. In the third stage, all local data sources are unified to use the same data scheme.
Finally, in the fourth stage, all the relevant contextual conditions are used to make context-sensitive
access control decisions.

Looking at the FCAAC policy model, defined below, it is possible to see that it is denoted by a
4-tuple relation.

FCAAC = 〈U, R, CC, P〉

In this relation, U represents the set of system users that can request resources, R represents a set
of roles, CC represents a set of contextual conditions, and P represents the set of permissions that
allows the users to perform some operations over the requested resources.

This work aims to remain as close to traditional and more accepted access control models, namely
RBAC, given how roles are used to denote a policy. Furthermore, there is a set of users that can
potentially request access to the resources. The objective is to allow for contextual information to alter
which permissions are made available to a user at a given point in time, for example, so an emergency
doctor can get access to a patient’s health information if the patient enters the emergency room in
critical condition. The fact that the patient is in critical condition is a contextual piece of information
that alters the data access needs of an emergency doctor.

This thesis has a broader scope and aims to provide an access control model that can be applied in
situations where the set of users is constantly growing so that the data can be protected while being
made available to any user that wishes to access it. While the objective of both models is quite distinct,
both can use contextual information to alter the access control decision to a given user, so they can
complement each other in this way.

Machine-learning Fuzzy-based Access Control

There are other approaches to build fuzzy systems capable of making decisions. One such approach is
fuzzy decision trees [78], which were introduced in an attempt to adapt decision trees, one of the most
popular methods used for learning and reasoning, to support and deal with uncertainties. This type
of model, and others like it, could be used to make decisions once trained, however, a training dataset
must be available. Furthermore, if the system learns continuously from the data it processes, then it
is no longer deterministic since the decisions made can change over time for the same set of input
values.

This is a problem because it becomes much harder to determine which input values are granted
access to the resources at a given time. Even if this is not the case, there is no proposed method to
verify that the access control decisions are correct for every possible combination of input values
and that no outlier exists. Continuous learning only compounds this problem, requiring constant
monitoring and auditing to ensure that the correctness of the system is maintained in the event the
model is poisoned by learning from incorrect data.

3.1. Crisp and Soft Access Control 33

Soft Systems Optimization

In [79], the authors apply an algorithm to optimize the fuzzy output function to improve the per-
formance of rule-based fuzzy routing algorithms in wireless sensor networks. An aspect that has
been lacking from every soft access control system discussed so far is the correctness auditing of the
policies. This is partially caused by the complexity of the task, which would have to provide a security
expert with the set of inputs that grant or deny each permission. These points are explained at length
in section 5.2.

The approach of optimizing the output functions to improve performance has merit, as a similar
approach was used during the development of the Binary Decision Fuzzy Inference System (BDFIS) to
make it better suited for access control contexts. However, optimizing the policy auditing procedure
requires further work and a careful analysis of the BDFIS as a whole. This attempt at analysing the
whole system to try to predict binary output decisions has not been found in related literature.

3.1.3 Database Schema Protection

This section presents the different approaches used to secure the database schema. Regarding database
schema, a lot of effort has been put into mapping the schema (the relational model) to the object-
oriented paradigm usually present in applications [14], [80], [81]. For this, there are solutions such
as Hibernate [5] and Eclipse Link [82], and even object-oriented databases [83]. They aim at freeing
developers from the need to master the database schema, but they do not directly protect the schema
used in the database. Programmers can still write CRUD expressions and evaluate the results of their
execution.

A possible reason for the lack of effort put into protecting the database schemas is because there
is already a commonplace solution present in most database management systems, which are the
stored procedures [84]–[86]. Stored procedures do protect the database schema by encapsulating
the CRUD expressions in the server-side. However, they also have some problems. Among them,
the use of stored procedures does not scale well because in complex database applications, since the
number of stored procedures would increase (to some degree) with the number of CRUD expressions.
Another issue, potentially the most relevant, is that their names are static, meaning that they cannot
be randomized. Due to this, users can try to execute them once they know their names.

There is also the possibility of using views to access the data on a database [69], [87], [88]. Views
are defined with a select expression and users access the data provided by that expression, instead
of accessing the tables directly. Nevertheless, the use of views does not scale well, their number
also increases as the number of CRUD expressions increases, and are also usually only supported by
relational databases.

One argument is that usually client applications do not access the database directly anymore since
a multi-tier architecture allows the application processing and data management to be physically
separated. While this scheme does not allow a client to connect directly to the database, the server
the client application connects to does. Given that the server can be the target of malicious attacks,
simply storing the data store queries in them is still not secure. Furthermore, developers for the server

34 Chapter 3. State of the Art

application can still write and execute CRUD expressions, thus raising the chance of a successful
internal attack.

Finally, in [15], [27] is presented an architecture where business logic is dynamically built at
runtime and per the established access control policies. Thus, CRUD expressions are deployed in each
application but only at runtime. Nevertheless, malicious users can resort to reflection mechanisms to
disclose the database schema. S-DRACA, which was built on the concepts presented in part by these
works, resolved this issue when applied to relational databases [34]. However, it relies on features
that do not exist in every data store.

3.2 Authentication and Communication Security

This section introduces various standard solutions in regards to authentication and communication
security, as well as solutions proposed in published works. The objective is to show that while the
standard solutions fill the need for the majority of scenarios, there are some assumptions made that
do not always hold up. Furthermore, programming languages and tools do not implement every
proposed authentication and data encryption schemes.

3.2.1 Transport Layer Security

The Transport Layer Security (TLS) [89], [90] is an evolution of the now deprecated Secure Sockets
Layer (SSL) [91], which is a cryptographic protocol created to provide security to communications in a
computer network.

The primary goal of this protocol is to provide secure communication channels between two peers,
such as a web browser and a web server, and such a channel provides the following properties:

• Authentication: The server should always be authenticated, while the client can be optional.
This authentication can be performed using a variety of secure algorithms;

• Confidentiality: The data that is sent between two peers connected using a TLS channel should
only be visible to them;

• Integrity: Data sent over an established TLS channel cannot be modified by a malicious entity
without being detectable.

Due to these properties, this protocol has seen widespread use to secure everyday actions such as
web browsing, emailing, instant messaging and voice calls over the internet (i.e. voice over IP).

However, many of these applications of TLS utilize an algorithm based on digital certificates
to authenticate the servers and to establish a secure communication channel. Digital certificates
can certify that an entity is whom they claim to be by using asymmetric encryption. Asymmetric
encryption relies on two keys, a public and a private key, and data encrypted using one can only be
decrypted by the other. So, if a server provides its digital certificate (which carries the public key) and
encrypts a piece of information that the client knows, the client can use the provided public key to
decrypt it and validate it to authenticate the server.

3.2. Authentication and Communication Security 35

FIGURE 3.3: VPN connectivity overview.

The issue is that any malicious entity could potentially create their own certificates stating that
they are the server. To prevent this from being possible, a public key infrastructure [92] was designed
that maintains trust anchors known as Certificate Authorities, amongst other features. These can
verify the identity of a server before issuing their digital certificates, which are now signed by the trust
anchor. The idea is that the certificates of these trust anchors come pre-installed in the client devices,
allowing to validate the authenticity of a server’s certificate, and a version of JDBC with integrated
SSL has been proposed in the past [93].

The problem comes from scenarios where trusting a Certificate Authority to not issue certificates
to servers that are not whom they claim to be is not acceptable. Indeed, Certificate Authorities have
existed that did that, either by mistake or malicious intent [94], and other issues can also be raised [95].
In these cases, attempting to use different methods of establishing TLS channels can be frustrating,
as programming languages such as Java rely solely on digital certificates. Furthermore, requesting a
certificate to be signed by a Certificate Authority can also be a costly venture. One of the goals of this
work is to address this situation.

3.2.2 Virtual Private Network

Virtual Private Networks (VPN) [96] are used to extend private networks across public networks such
as the internet, allowing users to access data and services as if they were connected directly to the
private network where they reside, as shown in Fig. 3.3.

Since a VPN allows remote users to access private networks and potentially confidential data
can flow through it, the connection is often encrypted and both the VPN server and the user are
authenticated to ensure that the data remains private and is disclosed only to allowed users. Therefore,
using a VPN to allow applications to access data stored in a database directly is a possible solution.

However, there are several problems with using a VPN for this purpose. A private network may
have other services running alongside a database, and if other users are given access to the network
through the VPN, they may attempt to access the database. This naturally reduces the security of the
solution. A login layer could be applied on top of the database, but in this situation, the database
access application needs to store these credentials, which could potentially be stolen and used in an

36 Chapter 3. State of the Art

internal attack. If the database service is served by a VPN, then similarly to the previous login layer
solution the database is vulnerable to internal attacks. Furthermore, if the VPN server is compromised,
then the database becomes much more exposed to attacks, and if looking at the application code
discloses the credentials used to access the database, then the data becomes accessible.

A solution capable of securing the database credentials outside the database access applications is
preferable. Solutions that connect directly to the database cannot be secured for remote access using
a VPN given the reasons above, which includes the previous work S-DRACA. While the S-DRACA
utilizes a proxy server to not store the database credentials on the database access application, they
could still be disclosed in an internal attack. This is a security aspect analysed and improved with this
thesis.

3.2.3 Other Authentication Protocols

Other authentication protocols have been proposed and standardized, such as Kerberos [97] and the
Remote Authentication Dial-In User Service (RADIUS) [98].

Kerberos authenticates users using an authentication server, separate from the server a user may
want to connect to use some service. Once users authenticate with the authentication server, they
receive a Ticket-Granting-Ticket. This ticket can be used on a ticket-granting server to issue Client-To-
Server tickets to the services the user wishes to access. These tickets can then be used on the service
servers themselves to authenticate the user himself and the server, after which the user can start
issuing requests.

RADIUS is a client/server protocol that provides Authentication, Authorization and Accounting
management for users. On the one hand, the clients are responsible for providing the RADIUS
servers with user information and to process returned responses. The servers, on the other hand,
are responsible for handling user connection requests, authenticating the user, and all configuration
information required so the user can access the service requested. Communication between clients
and servers are encrypted using a shared secret, and several authentication mechanisms are supported.
However, a note in [98] warns that data can be lost and performance can degrade when the protocol is
deployed in large scale systems.

While these protocols can be used to authenticate users to use a protected service [99], their
application in the S-DRACA would not prevent the proxy server from still having to store the database
credentials.

3.2.4 SSL/TLS Session-aware User Authentication

In [100], Oppliger et al. introduces a session aware user authentication to enrich SSL/TLS communi-
cation channels with a technique to prevent Man-In-The-Middle attacks from being carried out. A
Man-In-The-Middle attack, as the name implies, consists of an attacker intercepting the communica-
tion between two entities and relaying it between them. This scenario has the effect of destroying any
confidentiality benefit to be gained from encrypting the communication, as the attacker impersonates
each entity and can read the data while sending it back and forth.

3.2. Authentication and Communication Security 37

As previously mentioned, SSL/TLS communication channels use digital certificates to authenticate
the server and optionally the client, thus preventing this kind of attack. However, Oppliger et al.
argues that this is only true if both entities perform the authentication correctly. If a user does not
check that he is connected to the correct server (and was not redirected to a similar server posing as
the correct one with its own digital certificate), then the attack is still possible. This is especially true
since the user is seldom authenticated by the server.

The proposed idea is twofold: to enable user authentication while coupling its secret credentials to
the SSL/TLS connection state, which is different between connections. Thus, since in a Man-In-The-
Middle attack scenario there are two SSL/TLS communication channels used (user↔ attacker and
attacker↔ server), if the user authentication depends on the connection state then the server is able
to determine that the user credentials were not sent on the same communication channel. The server
can then conclude that an attack is likely taking place on the connection. This work was later revisited
[101] to introduce further improvements.

While this approach does authenticate the users and introduces additional safeguards against
attackers, it does not address the issues of internal attacks services running on the server (such as a
database), in which case an internal direct connection is enough to allow a malicious user to access
the data if the credentials are obtainable from the client application.

3.2.5 Multi-context TLS

In [102], Naylor et al. propose the multi-context TLS, an extension to the TLS protocol to support the
middleboxes to be introduced in the middle of TLS connections. While the work presented in section
3.2.4 aimed to prevent Man-In-The-Middle attacks, this work aims to leverage of ability to be able to
read data in the communication channel by purposely introducing entities across the connection.

The author argues that while the current TLS protocol provides entity authentication, data confi-
dentiality and integrity, it assumes that all functionally reside on the endpoints. In reality, middleboxes
are used along the path to provide a variety of services such as intrusion detection, caching, parental
filtering, etc. While these services should be provided by the endpoints, it is not always optimal or
possible due to the service requiring network visibility or because the endpoint does not have enough
resources. Thus, the multi-context TLS presented in this work aims to securely and explicitly include
these middleboxes in TLS sessions instead. Moreover, it allows entities to dynamically choose which
portions of content are exposed to the middleboxes (e.g., content headers vs. body), to allow select
middleboxes to modify the data while retaining its authenticity and integrity through read and write
permissions, and to be deployed incrementally.

While this work does not deal directly with user authentication, it shows how important the role
of middleboxes can be, especially when integrated carefully. This work adds weight to the approach
used in this thesis, where a connection to access data in a database is enriched with additional services
using services that stand between the user and the database.

38 Chapter 3. State of the Art

FIGURE 3.4: HA-JDBC overview [103].

3.2.6 High-Availability JDBC

High-Availability JDBC, or HA-JDBC, [103] is an existing JDBC proxy project that has been imple-
mented, is readily available and provides many features on top of what JDBC currently supports. Fig.
3.4 illustrates how it works.

HA-JDBC functions as a middle-layer between the Java application and the JDBC objects that
connect to the databases. In doing so, it can manage a connection to each database in the cluster while
providing the application with an interface that is identical to JDBC. When clusters are accessed by
multiple Java applications, cluster membership changes are distributed using a JGroups channel.

However, HA-JDBC only focuses on being light-weight, transparent, and providing fault-tolerant
clustering capabilities to the underlying JDBC driver. Therefore, it still requires the client application
to use the database credentials. In this light, it differs from the work done for this thesis in which the
client authenticates with the proxy itself using a server-generated token and never uses the database
credentials directly.

3.2.7 Biometrics in Authentication

User biometric data could be used to prevent client applications from having to store the database
credentials. However, it is not necessarily safer or more convenient than the alternatives [104].

For example, if a system uses face recognition to authorize users, then a malicious user could
attempt to find a photo of a legitimate user online and use that to bypass the system. The system could
be tweaked to detect when a photo is being used and deny access in those scenarios, but that increases
the likelihood of false negatives. Consequently, some legitimate users might be denied access and the
usefulness of the system reduced.

Other kinds of biometric data have their problems. Databases containing this data can be leaked
[105], which similarly to password database leaks can allow malicious users to access the exposed
systems. This thesis focuses on protecting database credentials in the form of passwords from this
kind of exposure, but it could be potentially adapted to protect biometric data if necessary.

3.3. Summary 39

3.3 Summary

In this chapter, various works related to access control models and various other facets of security
were presented and discussed. These included traditional access control models, which are related to
the base architecture used in the previous work and whose capabilities were found to be lacking to
ease the development of data access applications. Included as well were access control models based
on soft requirements, which were shown to be very specific in scope.

Confidentiality concerns were also discussed, given the possibility that disclosing database
schemas could provide malicious users with the information they need to perform attacks with
a higher chance of success or to infer sensitive information from carefully crafted queries. Authentica-
tion and communication standards and works were also discussed as shown to either be ineffective,
difficult to set up or not adequate for some scenarios.

All of these issues are present in this thesis as well in search of the goal of expanding the application
scenarios for access control, however, they were addressed in ways that always complement or enhance
the solutions found in the current state of the art. The remote database access methods found lack
a way to indicate to a developer when access to a method has been lost until an error occurs at
runtime, which this thesis aims to resolve with policy-aware data access interfaces. Furthermore,
every single soft access control system was a specialized system for a particular scenario and lacked a
proper way to validate that the policies written for them were correct. This thesis aims to complement
these works by presenting a soft access control model with general applicability and to provide a
mechanism to validate its policies. Finally, no real methods to protect database credentials in database
applications was found, which are usually just stored with them and could be stolen if the applications
are exploited. This thesis aims to enhance this aspect by designing a new authentication scheme for
databases integrated with the remote execution.

41

Chapter 4

Secure Remote Data Access

There are many layers to accessing remote data, and many of them suffer from issues that not only
increases the development time of applications that need to access data remotely, but also introduces
potential security vulnerabilities if the developers are not thorough, such as how to store the data
store credentials. This chapter presents and discusses the research and advances made towards easing
the development burden of application that access remote data.

Since vulnerabilities are going to be identified and addressed, it is important to know who are the
expected attackers and how they are going to exploit a remote data access system. The client in this
model is a database application that is exposed to public medium, like a web-server connected to the
internet. The server, then, is the database server itself. With this scenario in mind, it is clear that the
client host machine could be exploited if improper configuration or out-of-date libraries introduces a
vulnerability into the system. Here, an attacker on the internet could connect to the client, exploit the
vulnerability and potentially access the client database application. However, another scenario is also
considered. A rogue employee or a business where an attacker can infiltrate and access the internal
network could access the client database application and even the database server. This way, they
could eavesdrop the network or perform man-in-the-middle attacks to learn database credentials to
connect to the database directly.

The general requirements surrounding the Secure, Dynamic and Distributed Soft Access Control
Architecture (S-DiSACA) iteration have emerged from the research done to ease the development
burden of relational database applications so that developers do not have to master the database
schema to write database operations or about securing their client applications for the scenarios
described above. This is the major benefit that this architecture brings over other solutions that a
developer may use.

To illustrate the point of the burden of having to the learn the database schema, consider the
Structured Query Language (SQL) query shown in Listing 4.1.

LISTING 4.1: Example SQL query.

SELECT Address
FROM Customers
WHERE CustomerName = ?

42 Chapter 4. Secure Remote Data Access

This very simple query requires the developer to know not only the name of the table where the
customer data is stored (Customers) but what data is stored there and the name of the corresponding
columns (CustomerName and Address). If the context is extended to include tens or hundreds of
tables, this quickly becomes a problem.

Notice as well how the query accepts one parameter, the customer name. This filters the output of
the query so the address returned matches that of the customer name. However, database connectivity
tools do not apply any kind of restrictions over the values passed to this parameter. Application
logic can be used to regulate which values are used, for example by allowing a user to select values
obtained from a previous query. Regardless, if the application is vulnerable someone could be able to
use reflection mechanisms[106], [107] to inject their own values into the parameter. This would allow
them to access data that otherwise should not be available.

Furthermore, behind this query are access control processes to verify that the application running
this query is authorized to access the data, which can generate runtime exceptions if it is not. These
exceptions only occur at runtime, so they are impossible to detect normally during compilation.
Considering that queries can be much more complex, the problem can only be compounded further.

Another issue arises when considering that to run this query, the application must have an open
connection to the database and that it must be authenticated. This is usually achieved using standard
database connectivity tools such as Java Database Connectivity (JDBC), and the authentication is
performed via a username and password credential pair. However, these credentials must be stored
somewhere in the application, the host that runs it, or provided by the user of the application. In the
first two cases, the credentials are prone to be stolen if the host machine is breached or if it is running
in a semi-public location where anyone could access it, such as a reception desk. In the latter case,
different issues apply. The user may select a weak password or if forced to use a strong password,
write it down somewhere so it cannot be forgotten. Password policies have been designed to try to
counter this issue [108]. Unfortunately, they are rarely applied.

Another point of contention is that the database connectivity tools used rarely support any kind of
encryption. Internal attacks on the networks could expose the data being accessed via eavesdropping
or even modify it via impersonation attacks.

Thus, the general requirement for the S-DiSACA is to address all of these issues by providing the
following solutions:

• Operation Execution Protection: operations and parameters should be protected so that only
allowed values can be used and operations cannot be modified to produce different results;

• Operation Sequencing: following the previous solution, some operations are meant to provide
values for another. Therefore there should be a way to regulate the order in which operations
are executed to prevent unexpected outcomes;

• Data Store Credential Protection: a solution to prevent the database credentials from being
stolen by exploiting any one single component in the S-DiSACA;

• Communication Security: a secure method to transport data between the client application and
the database should be made available.

4.1. Operation Execution Protection 43

Each of these points are discussed in this chapter, which is divided as follows: section 4.1 introduces
the steps taken to protect both the database operations and the parameters passed in those operations;
section 4.2 shows how operations can be sequenced to have use cases explicit during development;
section 4.3 details the enhancements made to protect the database credentials and the architecture
security as a whole; finally, section 4.4 provides a summary of the research performed.

4.1 Operation Execution Protection

In this section, the method by which the developer burden or protecting the operations and parameters
from modification with the S-DiSACA is detailed. This topic is tackled in two fronts: first, how to
protect the operations; and second, how to protect the parameters used by those operations.

Protection in this context refers to making the operations immutable from those that are defined in
the access control policies, and to assure that the values passed to these operations are also immutable
when their origin is another operation.

To illustrate this point, consider the code shown in Listing 4.2 that shows some example Java code
that accesses a database to retrieve a list of patients, from which a doctor can select one to see its
history.

LISTING 4.2: Example code for a medical database scenario.

1 PreparedStatement s e l P a t i e n t s = conn . prepareStatement (
2 "SELECT id , Name FROM P a t i e n t s WHERE DoctorToken = ? "
3) ;
4 s e l P a t i e n t s . s e t S t r i n g (1 , token) ;
5 R e s u l t S e t p a t i e n t s = s e l P a t i e n t s . executeQuery () ;
6
7 i n t p a t i e n t I d = disp layAndSelec tPat ient (p a t i e n t s) ;
8
9 PreparedStatement s e l H i s t o r y = conn . prepareStatement (

10 "SELECT * FROM P a t i e n t H i s t o r y WHERE P a t i e n t I d = ? "
11) ;
12 s e l H i s t o r y . s e t I n t (1 , p a t i e n t I d) ;
13 R e s u l t S e t p a t i e n t H i s t o r y = s e l H i s t o r y . executeQuery () ;
14 d i s p l a y P a t i e n t H i s t o r y (p a t i e n t H i s t o r y) ;

The first three lines prepare a SQL select query to be executed. In line 4 the application sets a
doctor identifier (e.g. a token obtained from a smart card that uniquely identifies the doctor) and in
line 5 the query is executed and the results saved in the variable patients. The doctor then selects one
patient, and the application retrieves its associated id. Then the application prepares the next select
query to obtain the patient history in lines 9 to 11 and sets the selected patient id in line 12. Finally, it
executes the query and saves the history of the patient in the variable patientHistory in line 13 and
displays the information in line 14.

This example shows several potential problems. On the one hand, the parameters are not restricted
in any way, allowing a malicious user to modify the program to potentially alter the parameter values.

44 Chapter 4. Secure Remote Data Access

FIGURE 4.1: Example Database Access API.

On the other hand, and perhaps worse still, the queries are hard-coded into the application logic.
This means that the database accepts any query sent to it for execution, so the application could be
modified maliciously to execute different queries. Each of these problems are discussed in turn.

4.1.1 Operation Protection

Considering the hard-coded queries problem, one simple idea to avoid them is to use stored proce-
dures, which are subroutines available on the database that execute one or more queries. This way,
the application needs only to know the stored procedure names to execute the associated queries
and since the actual queries are stored in the stored procedures that cannot be modified from the
application side, they are protected.

This was the approach used in the Secure, Dynamic and Distributed Role-based Access Control
Architecture (S-DRACA), which was enough when dealing with only relational databases. However,
the first research question (RQ1) mentioned in section 1.3 was intended to break this dependency
with relational databases, so the S-DiSACA has a wider range of applications. Since it is not known
what type of underlying data storage used, stored procedures may not be available. Thus, the stored
procedure solution needs to be adapted.

The simplest solution is to implement a feature similar to stored procedures, where the client
applications receive function labels that they can execute. These functions are then implemented in a
data store application programming interface (API) that resides in the Policy Manager, the S-DiSACA
server-side component. This is an approach very similar to remote method invocation (RMI) [109],
except it is enriched with several security features that are not usually considered in RMI, namely the
parameter protection, communication security, and the operation sequencing that are discussed later
in this chapter.

The first step to implement an RMI-based solution is to implement a database access API to be
made available to the client applications. These APIs are specific to each application scenario and
implement the data access logic to the particular data store in use. Fig. 4.1 shows one such API
interface.

4.1. Operation Execution Protection 45

FIGURE 4.2: Operation protection block diagram.

This API allows to access and manipulate a Wikipedia dataset of articles and users. As mentioned,
the implementation of this API is specific to the application scenario, and thus it is not very relevant.
Suffice it to say that the code executes the database-specific procedures to achieve the intended
outcome of the API method and instantiates an APIResult object. An APIResult object is a generic
object that handles API results and augments them with security features that are discussed in a later
section.

Fig. 4.2 shows a block diagram of the operation protection solution. Once the client application
Business Manager connects to the Policy Manager for compilation, the Policy Manager sends the
public methods in the registered API as metadata. The Business Manager on the application side
then recreates the API interface, allowing the client application to use it. Its implementation is quite
different, however, as it simply sends an "Execute" command to the Policy Manager, along with the
method name and potential parameter values. Upon reception, the Policy Manager uses an API
Handler that executes the intended method on the registered API via Java Reflection and returns the
generated APIResult object after several security checks.

This approach also has some implications in the S-DiSACA lifecycle, as the implemented API to
access the database now needs to be processed to extract the public methods to be sent to the client
application as metadata. The client application then also uses a different interface and implementation
strategy. These changes are further detailed in section 6.1 where the overall final architecture is
presented.

4.1.2 Parameter Protection

The other issue left to consider is the potential modification of the parameters passed to the queries,
which can differ depending on their origin. Parameters can be user-provided, in which case they
cannot be protected, or they can come from data obtained in previously executed queries.

Fig. 4.3 illustrates how the parameter protection was achieved in the previous iteration. It shows
an initial business schema (S_Cust_1) being instantiated (line 75) and executed (line 76) to obtain a list
of customers. Then, a second business schema (S_Orders) was also instantiated (line 77) and then also
executed (line 79) to obtain a list of orders placed by a customer and shipped to a specific country.

46 Chapter 4. Secure Remote Data Access

FIGURE 4.3: S-DRACA parameter protection example code.

Note that the first business schema is passed to the execution of the second (line 79), along with a
second parameter ("Portugal"). In this scenario, the S_Orders business schema retrieves the current
value in S_Cust_1, and since it was not modified it is the first customer returned by the database.

This example also showcases another aspect of this problem. When the values for some parameter
are not obtained through a previous business schema, the client application has no choice but to either
pass it hard-coded or to request the value to the user (e.g. "Portugal" in line 79). There is nothing that
can be done in these cases. Thus, sensitive parameters should have their values obtained from the
database to restrict the range of possible values while ensuring that any parameters requested to the
user cannot be used to disclose any sensitive information.

However, this approach does not protect against malicious intent, as reflection mechanisms
can still be used to modify the values stored in the S_Cust_1 business schema before passing it to
S_Orders. Preventing the queries from being executed with invalid parameters is one of the goals of
the S-DiSACA, and as such two modifications to this approach are presented:

1. Build an internal cache of business schema results;

2. Have both the Business Manager and the Policy Manager manage their own cache, so both can
check for input value modifications.

With a cache, the system is capable of automatically obtaining the parameter values that rely
on previous operation executions. Thus, by keeping the same record of the returned results on the
server-side Policy Manager, it can verify if the parameter value received is contained in one of the
previous records. If it is not, then the execution of the operation is stopped and the potential malicious
intent thwarted. A client-side cache is also used so that any legitimate client application cannot
send an invalid parameter value to the server, reducing server load while easing the development
process. While the client-side cache remains susceptible to reflection attacks, the server-side cache is
not accessible from the client applications, increasing the trust on the validity of the parameters.

It is worth noting that the cache is not required to maintain every result sent to a client application
forever. Since operations are meant to be executed in the context of a sequence and the data retrieved
is not meant to be used outside that context, once a sequence is completed the cache for that client
application can be emptied. This operation sequencing feature is introduced in the next section to
explain how it was achieved and how data flows between operations.

4.2. Operation Sequencing 47

4.2 Operation Sequencing

The issues addressed in this chapter until now have dealt with protecting the operations and their
parameters so that if they are maliciously modified they cannot be executed on the data. However, a
more subtle approach that can lead to sensitive information being disclosed can still be carried out that
most developers are not even aware of. If the system defines the operations that can be executed, the
order in which they are executed is normally not considered. This can be exploited to leak sensitive
information, as shown in [110].

Thus, to avoid the operations allowed to the user to be used in unexpected contexts, an initial
iteration of operation sequencing was implemented in the S-DRACA, where each sequence was
defined as a particular use case in the application scenario. This iteration, however, only supports
sequences of operations that did not have any divergence, i.e. two or more operations could not
be allowed to be executed after another at the same time, only one. Not only that, these sequences
were dependent on the Role-Based Access Control (RBAC) policies, which are also intended to be
generalized.

Thus, the concept of operation sequencing is generalized and modelled using graph theory. These
ideas have also been used to design a sequence-based access control model, described in [31]. Thus, a
sequence in this context is defined as follows:

• By a set of actions A and their input parameters P;

• By a set E of directed transition relations between actions;

• And by a set of users U allowed to execute the sequence.

The set of users can be explicitly defined, or implicitly through some condition that they must
satisfy, such as playing some role, possess the correct set of attributes, etc. This way, a policy for the
S-DiSACA only needs to associate permissions with a set of sequences, and since permissions are
granted or denied to each user automatically it is possible to determine which sequences they are
allowed to execute.

Consider the following use case in an online shop. First, a client is authenticated into his online
account (A), and then checks his existing cart of items (B). However, his method of payment needs to
be updated, and so he proceeds to update it (C). Finally, the client can proceed to checkout and order
the items on the cart (D). This scenario can be defined as a sequence of actions, as shown in Fig. 4.4.

The client started with action A, authenticating itself, which is mandatory. Then he opened the
cart to verify the items within and to proceed to checkout, which is also considered mandatory. This
is shown in the figure as a directed relation from A to B. Then he noticed that his payment option
needed to be updated, a step that is not always necessary before checkout, but one that can happen.
Thus, two directed relations exit from B, one to C where the client updated their payment option,
and one to D to finalize the checkout. Finally, to allow the client to checkout right after updating the
payment option, a directed relation also exists from C to D.

If a malicious user can breach the client application and attempts to execute the operation associated
with action C to access the payment options in the database, he is unable to do so as action C is in the

48 Chapter 4. Secure Remote Data Access

FIGURE 4.4: Online shop sequence of actions example[31].

middle of a sequence and the Policy Manager should report a sequence violation. If the malicious user
tries to follow the sequence instead, action A requires him to authenticate, which means that he must
have stolen the authentication credentials as well. Finally, even if he can follow the sequence, action C
can be defined to automatically use the identifier of the user returned by action A. If the malicious
user attempts to modify it, the Policy Manager is able to detect the change through the parameter
protection feature discussed previously and deny the execution. Modifying any of the operations
associated with the actions is not possible either due to the operation protection feature.

4.2.1 Definitions

The operation sequencing was formally defined in [31], where it was used to propose a sequence-based
access control model. The same ideas were applied in the Sequence Manager in the S-DiSACA, and
thus the concepts and definitions behind the graph-based approach are explained in this section.

Formally, at the core of this approach is a set of action flowcharts that are mapped to the users that
are allowed to use them. First, consider Eq. 4.1 and Eq. 4.2 that define a set of actions and a parameter,
respectively.

A = {a1, a2, ...aN} (4.1)

P = (name, datatype) (4.2)

Each action is associated with an operation that can be executed, and a parameter is a tuple that
contains the name associated with the parameter and its datatype. With this, the set of action nodes V
in an flowchart is defined as shown in Eq. 4.3:

V = {(a, {P})}, a ∈ A (4.3)

A node in an action flowchart is then comprised of an action and a set of parameters that it accepts,
and it allows a user authorized to execute it to access or modify the data.

However, the actions alone are not sufficient to define the flowcharts. A set of directed relations
between the actions is still needed. These directed relations can be defined using ordered 2-element
tuples from V, and a set E of these tuples defines the directed relations between action nodes. Eq. 4.4
defines E.

4.2. Operation Sequencing 49

E = {(u, v) : u, v ∈ V} (4.4)

Eq. 4.5 defines a flowchart G given the previous definitions, which is a tuple of the set of action
nodes V along with the set of directed relations E between them.

G = (V, E) (4.5)

The additional functions TransitionSet(G) and ActionSet(G) are used to refer to the set E and the
set V from a flowchart G, respectively.

In any given application scenario, each of these flowcharts G are used to define a distinct use case.
Thus, a set of flowcharts SOF is defined in Eq. 4.6 which contains every flowchart G. Finally, Eq. 4.7
defines SOFu, a subset of SOF that a user u in the set of authorized users U is given access to. SOFu

determines the entire set of actions that the user U is allowed to execute and in which order they can
be executed.

SOF = {G1, G2, ...GM} (4.6)

SOFu ⊆ SOF, u ∈ U (4.7)

However, a way to track a user along each sequence is also needed so the system can validate
if the execution of a particular action node is allowed or not. Moreover, the method by which this
tracking is updated between action node executions is also important to define, as the set of available
parameter values is important for parameter protection purposes. Thus, Def. 4.1 defines a User Access
Pointer (UAP) which is used to determine in which flowchart and action node a user is currently on.

Definition 4.1. User Access Pointer: Given a SOF, the UAP is a tuple of elements (G, v) that uniquely
identifies a flowchart G ∈ SOF and the current action node v ∈ V the user has used.

A user that has not begun executing any sequence of operations is said to have a UAP on step 0
(UAP0) and it does not reference any flowchart or action node. When the user selects a flowchart to
execute, the UAP is updated to step 1 (UAP1) and it references the root node of the selected flowchart.
The process of updating the UAP to allow a user to execute different actions is known as Stepping and
it must always follow a directed transition in the flowchart, as defined in Def. 4.2:

Definition 4.2. Stepping: Consider a flowchart G and that its UAP is on step n of the flowchart
traversal, denoted UAPn. Stepping is a process in which UAPn+1 is generated by satisfying the
implication in Eq. 4.8:

∀x∀y(UAPn = (G, x) ∧UAPn+1 = (G, y)⇒ (x, y) ∈ TransitionSet(G)) (4.8)

There are many scenarios in which Stepping can occur depending on the in-degree and the out-
degree of the action nodes, i.e. the number of relations going into and out of a node, respectively.

50 Chapter 4. Secure Remote Data Access

1 execute A
2 execute B

FIGURE 4.5: Trivial stepping example with pseudo-code[31].

1 execute A
2 i f (condi t ion) then
3 execute B
4 e l s e
5 execute C
6 end i f

FIGURE 4.6: Splitting stepping example with pseudo-code[31].

These scenarios also correspond to particular use case logic scenarios, and the relation between both
are explored in the next section.

4.2.2 Stepping Scenarios

This section describes the various scenarios in which the Stepping procedure can occur and translate
them to the equivalent pseudo-code.

Fig. 4.5 shows the simplest type of Stepping that can appear, and it is the trivial case in which the
out-degree of node A and the in-degree of node B are both equal to 1. If UAP points to node A, then
by Def. 4.2 the user is forced to execute the action in node B next since the relation (A, B) is the only
relation that can satisfy it. The pseudo-code shows that this case is equivalent to executing the actions
in the nodes sequentially.

Fig. 4.6 shows the second possible case that can appear, called Splitting, where a node has an
out-degree of 2 or higher. This means that the execution branch can split, because if the UAP points to
one such node then there is more than one relation that satisfies Def. 4.2. If the UAP points to node A
in Fig. 4.6, then the user can execute either the action in node B or C. This translates into pseudo-code
as a conditional branch in the application logic. After executing A (line 1), then the application either
executes B (line 3) or C (line 5) based on some condition (line 2).

The next case is the reverse of the previous case, where a node has an in-degree of 2 or higher. Fig.
4.7 shows this scenario, called Merging. This means that the execution branch can rejoin or synchronize,
because the UAP has to eventually point to that node, regardless of the node that precedes it. To
illustrate, if the UAP points to node A in Fig. 4.7, then the user has execute the action in node C next.

4.2. Operation Sequencing 51

1 i f (condi t ion) then
2 execute A
3 e l s e
4 execute B
5 end i f
6 execute C

FIGURE 4.7: Merging stepping example with pseudo-code[31].

1 while (condi t ion) then
2 execute A
3 execute B
4 . . .
5 end while

FIGURE 4.8: Cycling stepping example with pseudo-code[31].

If UAP pointed to node B instead, the same would be true. This translates into pseudo-code as a
conditional branch in the application logic that leads to further logic that is common to both branches.
After executing A (line 2) or B (line 4) based on some condition (line 1), the application would always
execute node C (line 6).

Finally, transitions do not need to point always towards new nodes. When a node has a transition
to another node that has already been executed, then the flowchart contains a Cycle. Fig. 4.8 shows
this scenario, where any number of nodes can exist in the cycle. This is not a new Stepping case,
but it translates to a new logic construct in the pseudo-code, where the same actions (lines 2-4) are
executed while the condition remains true (line 1). This also allows for the same node to be executed
any number of times sequentially if a node has a relation to itself, creating a Loop.

All these scenarios can be mixed to create complex use cases that can easily be translated into
the application logic. The benefit of this approach is that this logic is stored in the access control
policies and not in the application itself, which prevents malicious users from being able to bypass it.
However, given that the parameter protection feature requires data from each node execution to be
available to nodes later in a flowchart, it is important to define how this can be achieved.

4.2.3 Information Flow

This section discusses the information flow within a flowchart and between flowcharts, which allows
for values obtained from past accessed nodes to be used by other nodes. This process is essential to
support the parameter protection feature as discussed in section 4.1.

52 Chapter 4. Secure Remote Data Access

Since the information that is allowed to flow must come from nodes that have been accessed, the
definition of an accessed node is given by Def. 4.3:

Definition 4.3. Accessed(G, v): A node v ∈ ActionSet(G) for a given flowchart G is said to have been
accessed when a user’s UAP possessed a reference to node v on at least one step leading up to the
current step N as shown in Eq. 4.9:

∀v∈ActionSet(G)∃n≤N(Accessed(G, v)⇒ UAPn = (G, v)) (4.9)

Additionally, the information that flows within a flowchart also depends on the user that is
executing it, since a different user may execute different nodes depending if there are any Splitting
scenarios. Thus, a User Context is also defined in Def. 4.4:

Definition 4.4. User Context: Given a user u and each graph G from its set of flowcharts SOFu, its user
context (UCu) is a pair of elements containing its current UAP on step N (UAPN) and the set of nodes
previously accessed by user u as shown in Eq. 4.10:

UCu = (UAPN , {v : v ∈ (ActionSet(G) ∧ Accessed(G, v))}) (4.10)

The set of nodes accessed by a particular user is referenced using the predicate AccessedSet(UCu).
Thus, the UCu is updated every time a Stepping occurs and it can be used to obtain the values to
parameterize the data access. An action is only required to specify which parameters receive their
value from another node (in the parameter type) and from which node (in the parameter name). This
way, the process of passing parameter values from other nodes can be automatic, ensuring that the
user cannot provide invalid or unexpected values either by mistake or with malicious intent.

When a user completes the execution of a flowchart, the UCu needs to be reset back to step 0 to
allow for another flowchart to be executed and to prevent data to be used outside of its context (i.e. in
another flowchart). This process is shown in Eq. 4.11:

Reset(UCu) : UCu = (UAP0, ∅) (4.11)

Finally, since the flowcharts are meant to define sequences of operations that address real-world
use cases, the idea of reusing flowcharts that resolve/perform a common issue/task in more complex
flowcharts naturally follows.

Inter-Flowchart Stepping

Fig. 4.9 shows an example of an inter-flowchart scenario, in which the node labelled A′ is a reference
to the initial node of another flowchart.

In this situation, when Stepping from one flowchart to another, the current UCu is saved in a stack
and a new UC′u created for the sub-flowchart. The sub-flowchart then uses the new UC′u as normal
until it terminates, in which case any data required by the parent flowchart should be returned to it.
This process is shown in Eq. 4.12 where the original UCu is updated to contain the data it contained
and the data returned by the sub-flowchart in its UC′u.

4.2. Operation Sequencing 53

FIGURE 4.9: Inter-flowchart example[31].

UCu = (UAPn, AccessedSet(UCu) ∨ AccessedSet(UC′u)) (4.12)

Note that the UAP of the original UCu, which was on step n, remains the same throughout the
execution of the sub-flowchart. This UAPn allows the system to know to which flowchart and which
node within that flowchart it should return to after the sub-flowchart is executed and terminates.

Information Flow Restriction

Since some flowcharts can be used as part of more complex flowcharts, the information flow within
those more complex flowcharts should be controlled when executing passes to the sub-flowchart.

This control is provided by revocation lists, as defined in Def. 4.5.

Definition 4.5. Revocation List: Given a flowchart G ∈ SOF, a revocation list R is a set of previously
accessed nodes in ActionSet(G) that must prevent further access to their data, as shown in Eq. 4.13:

R = {v : v ∈ ActionSet(G) ∧ Accessed(G, v)} (4.13)

Given this new set of nodes whose results can no longer be accessed, the UCu definition should be
updated to exclude the nodes in the revocation list R, as shown in Eq. 4.14:

UCu = (UAPN , {v : v ∈ (ActionSet(G) ∧ Accessed(G, v)) \ R}) (4.14)

The revocation list R can be stored in either the transition relations between nodes (Eq. 4.15) or in
the nodes themselves (Eq. 4.16). However, for inter-flowchart purposes storing it in the transition
relation is preferable, as the revocation list can be personalized to each flowchart that calls another
more easily. This also applies to when a sub-flowchart terminates, allowing to specify exactly what
data should be made available to the parent flowchart as it transitions back.

E = {(u, v, R) : u, v ∈ V} (4.15)

54 Chapter 4. Secure Remote Data Access

V = {(a, {P}, R)}, a ∈ A} (4.16)

Furthermore, two types of inter-flowchart Stepping are defined: dependent and independent. The
dependent type requires information from the parent flowchart to execute, and thus require the list
of accessed nodes from the original UCu to be copied over to the sub-flowchart user context UC′u.
Note that the approach mentioned above to revoke any unnecessary information when copying the
UCu can be used. However, this type of inter-flowchart Stepping is discouraged, as it prevents the
sub-flowchart from being used on its own. The independent type, as the name implies, does not
require any data from its parent flowchart, and so it can use a freshly created UCu with an empty set
of accessed nodes.

4.3 Architecture Security

Having discussed how the remote execution of operations can be enhanced from its previous iteration,
the question now turns towards the authentication and authorization of the client applications, an
aspect of application development that tends to be left to the last minute but that can be disastrous if
done incorrectly.

In previous iterations, the client applications would simply connect directly to the database.
This had several security issues, namely that the database credentials were hard-coded into the
client applications, the database had to be directly accessible, and the communication between every
component in the system was not encrypted, allowing several attacks to be possible (e.g. man-in-the-
middle attacks, impersonation, network eavesdropping, etc.).

As discussed in section 3.2, solutions such as Transport Layer Security (TLS) and Virtual Private
Network (VPN) can be used to authenticate and authorize applications. However, they are not without
their drawbacks. In the case of TLS, authentication is achieved using digital certificates and the PKI.
However, CA issued certificates are not free and trust must be placed on the CA that it won’t issue
the same certificate to other entities. In the case of a VPN, the VPN server only protects the internal
networks from unauthorized access from external networks. Thus, attacks that occur on the internal
networks are not within this scope, and the VPN server is a single point of failure security-wise.

Thus, the last iteration introduced the concept of pushing the credentials to access the database
to the server-side while allowing client applications to still use JDBC to access the database. This
solution, however, goes against the research question RQ1 as the system was not easily adaptable
to new interfaces and relied heavily on JDBC. Furthermore, the credentials could still be obtained if
the authentication server was compromised. A solution based on applying a pre-shared key to an
established TLS connection was also proposed to counter the PKI related issues discussed. Unfortu-
nately, this solution relies on reflection mechanisms to accomplish such a task, as TLS connections
based on pre-shared keys are not usually available, and the solution breaks for newer versions of Java.
Thus, modelling how the pre-shared key is applied to a TLS connection is important to allow future
implementations of TLS to potentially include this approach.

4.3. Architecture Security 55

The solutions developed for the S-DiSACA to address the issues discussed and achieve the
following tasks are introduced in this section:

1. The credentials must remain protected even if one component in the architecture is exploited;

2. Connections to the Policy Manager can only be made after a client successfully authenticates
with an authentication server;

3. The mechanism that calculates new connection keys using a pre-shared key should be formally
defined, and a fallback solution proposed in case the application of the pre-shared key fails via
reflection.

4.3.1 Credential Protection

A method to protect credentials such that a single component being exploited cannot leak them to
a malicious user is discussed in this section, along with how connections to the data store via the
S-DiSACA can only be attempted after a user has been successfully authenticated.

Since the idea is to create an authentication scheme where the database credentials are protected
from being disclosed from the application, it is clear that these credentials need to be stored elsewhere.
Thus, the initial approach was to create an authentication service that stores them and provides them
to the data access server once the application is authenticated. The work presented in [35] and [36]
explains this procedure, bridging the previous JDBC-based iteration to the security requirements
discussed above. This procedure is explained here taking into consideration the research question
RQ1 while addressing RQ2 and RQ3, meaning the JDBC proxying is replaced by a generic data access
API. Since this API is generated on the client application much like the JDBC API was, this does not
influence the approach described and the results achieved in the published works.

Fig. 4.10 shows a diagram of the credential protection generic architecture for the S-DiSACA, and
it is composed of three major components:

• The Policy Manager, which connects to the data store and handles API method execution
requests from the client application;

• The authentication service, which authenticates and generates a token for each client applica-
tion. It can also request the Policy Manager to open an endpoint to which the client application
may connect and present its token;

• The client application, which contains no relevant information for authentication with the
database. However, the user of the client application must know the credentials to the authenti-
cation service.

Thus, the presented solution must be able to protect the database credentials even when either the
Policy Manager or the authentication service are compromised. The only exception is if the data store
itself is compromised, in which case access can be obtained without proper authentication.

To achieve this goal, both the Policy Manager and the authentication must be given an asymmetric
key pair each, and the public component of those keys disseminated between them. Furthermore,

56 Chapter 4. Secure Remote Data Access

FIGURE 4.10: Credential protection architecture diagram.

each client application is also provided with a unique symmetric key C when it is registered in the
system. These keys and sensitive information is divided as follows:

• The Policy Manager has access to the database credentials, encrypted with the client symmetric
key C, and its own private key.

• The authentication service has access to the symmetric key C, encrypted with the Policy Man-
ager public key Ppub via RSA, and the client credentials (username, MD5(password + salt), salt,
Ppub(C)).

Having defined the overall architecture for credential protection, the communication protocol and
an attack scenario analysis follow.

Connection Protocol and Key Usage

The connection and authentication procedure that a client application must follow with the architecture
is shown in Fig. 4.11. Note that every request is acknowledged and any errors encountered terminate
the process.

The client application initiates the connection process by connecting to the authentication service
and establishing an encrypted communication channel. This process is described in the next section.

The client application then requests the salt value associated with its password, so that it can
generate the password hash MD5(p + salt) to authenticate with the authentication service. If the
authentication succeeds, the client application can then request a token T that allows it to connect to
the Policy Manager. The authentication service, upon receiving this request, asks the Policy Manager
to open an endpoint for the client. The username is sent both encrypted and signed, so the Policy
Manager can guarantee that the authentication service sent the request and that only it can read the
data. Once an endpoint is open, the associated port p is sent back to the authentication service in a
similar manner.

Finally, the authentication service can generate the token T and send it to the client application.
The client application then connects to the Policy Manager, establishing an encrypted communication
channel. The client application then presents the token T that identifies it, and after the Policy Manager
carefully validates its contents, the process of generating the operation flowcharts and everything else
can follow.

4.3. Architecture Security 57

FIGURE 4.11: Connection protocol diagram using credential protection.

The token T generated by the authentication service is used to identify the client application when
it attempts to connect to the Policy Manager. This token is necessary because the Policy Manager
requires more than just a pair of identification credentials from the client application. As mentioned
in the previous section, it requires the symmetric key C stored in the authentication service to decrypt
the database credentials associated with the client application. Thus, the token T is generated with the
following fields:

• username: The name of the client application attempting to connect. This is a field encrypted
with the Policy Manager public key Ppub.

• created: The timestamp when the token was created.

• expires: A timestamp of the instant when the token expires and should no longer be accepted.

• nounce: A random 32-bit integer.

• endpoint: The IP address and port to which the client application was authorized to connect of
the Policy Manager.

58 Chapter 4. Secure Remote Data Access

• C: The symmetric key associated with the client application, required to decrypt the database
credentials stored in the Policy Manager. This is a field encrypted with the Policy Manager
public key Ppub.

• sig: The authentication service signature of the token. Obtained by hashing the token and
encrypting the result with the authentication service private key Apriv.

The username and C fields are encrypted so that only the Policy Manager can read them, while the
sig field allows the Policy Manager to validate that no field in the token was modified in transit.

Server Attack Analysis

An analysis of this approach considering several attack scenarios is provided in this section to
demonstrate that the discussed requirements are satisfied.

To do so, let us consider which sensitive information is disclosed when the data stored in each of
the servers and the client application are disclosed in turn. As a reminder, it is only expected that the
database credentials remain secure if the data in one of the servers is compromised, as compromising
both servers would lead to the database credentials being disclosed.

In the case that the client application is compromised and a set of credentials are disclosed (e.g.
through a key logger that registers the credentials as they are typed in). A malicious user is now
able to initiate a connection to the system and authenticate, being given access to the operations that
the stolen credentials grant to the client application. However, the malicious user is restricted to
the operations provided by the S-DiSACA and the credentials obtained do not allow him to connect
directly to the database in any way. This is the worst-case scenario where some data may be disclosed,
but this risk is unavoidable as an impersonated client cannot be distinguished from a legitimate client.

If the authentication server is compromised instead, the malicious user has access to the usernames,
hashed passwords, salts and the encrypted keys C for each application. With this information, the
malicious user is capable of running brute-force attacks on the hashed passwords to crack them
to impersonate legitimate users, but the same restrictions as the previous case still apply. Finally,
the encrypted keys C are useless as they do not contain any information regarding the database
credentials. They are randomly generated and encrypted with the Policy Manager public key Ppub,
meaning that the Policy Manager is the only entity able to decrypt them anyway.

Finally, in the case where the Policy Manager itself is compromised, the malicious user would have
access to the database credentials encrypted with the client symmetric keys C, which are randomly
generated. Thus, attempting to crack the keys is almost impossible given large enough keys, not to
mention that the database credentials can also be random.

The private keys must remain secure even if one of the servers is compromised to prevent their
impersonation. Impersonating the Policy Manager, for example, would indirectly compromise the
authentication server as well, as it sends information that only the legitimate Policy Manager should be
able to access. This information includes the symmetric keys C sent during a client connection process,
which would allow a malicious user to eventually decrypt database credentials. This can be detected
by monitoring the connection attempts made to the authentication server and the Policy Manager,

4.3. Architecture Security 59

among other techniques. If any mismatch in the information or missing requests are detected, then
corrective action should be taken immediately.

Another approach is to provide the authentication service and the Policy Manager with signed
digital certificates that identify the IP addresses authorized to use those keys. These digital certificates
could be signed using an in-house certificate authority to avoid placing trust on an external entity,
however, the client application should not be provided with one for authentication purposes. As
argued before, these client applications can run on semi-public spaces which could lead to the
certificates being stolen or replaced, thus the approach proposed here.

4.3.2 Communication Security

An encrypted communication channel could be easily implemented using Secure Sockets Layer
(SSL)/TLS and digital certificates. As mentioned in the previous section, the authentication service
and the Policy Manager could both be given a digital certificate signed by an in-house certificate
authority, which would allow an SSL/TLS communication channel to be used.

However, this approach would only authenticate the servers, not to mention that it could be
possible for a malicious user to install a new certificate authority on the client application since they
can run in semi-public spaces. By installing one such authority, a malicious user could easily create his
own certificates stating that they are the legitimate server and impersonate them. Attempting to use a
digital certificate on the client applications to authenticate them is a very bad idea, as these certificates
could be easily stolen for the same reason a new certificate authority could be installed.

Still, the SSL/TLS protocol to establish a secure communication channel is a good starting point.
Versions of the SSL/TLS protocol that use pre-shared keys instead of digital certificates are been
proposed[111], but they remain unavailable in most programming languages. Fig. 4.12 shows the TLS
protocol messages exchanged between a client and a server when using certificates.

In broad strokes, the client and the server begin by exchanging "Hello" messages, which includes
the TLS version and the cyphers supported. Then the server sends the public certificate with its
public key to the client, which it uses to encrypt a master key S. Then both parties perform a
"ChangeCipherSpec" operation, which creates a set of read and write keys from this key S. After that,
data can be transmitted between them encrypted.

However, it is possible to establish an SSL/TLS protocol without using certificates. This is achieved
by using the Diffie-Hellman key exchange protocol [112] in anonymous mode. This approach ensures
that one key is generated and shared between the client and the server without network eavesdroppers
being able to know that key. However, neither the client nor the server is authenticated in anonymous
mode, potentially leading to man-in-the-middle attacks.

To resolve this issue, a key modification procedure is employed that not only prevents man-in-the-
middle attacks but also authenticates the client and the server. If the pre-shared key between the client
and the server is PSK and the key agreed through Diffie-Hellman is S, then the new secret S′ used
to encrypt the communication is calculated according to Eq. 4.17. Where H is a hash function and F
alters the pre-shared key with some random value, like a salt, to prevent the application of rainbow
tables [113].

60 Chapter 4. Secure Remote Data Access

FIGURE 4.12: TLS protocol diagram using certificates[38].

S′ = H(S + H(F(PSK))) (4.17)

Since only the client and the server are supposed to know the pre-shared key PSK, if they can
communicate after the agreed key S is modified to S′ then they are authenticated. In the case of a
man-in-the-middle attack, since the pre-shared key PSK is unknown to the attacker, all that is visible
is the encrypted communication.

4.4 Summary

In this chapter, the changes made to the S-DRACA to enhance its security features were presented
and bundled into a new architecture called S-DiSACA.

Approaches to generalize and protect the operations being executed on the data, along with
some of the parameters required to execute them, were proposed and discussed to address RQ1.
Moreover, the overall security of the architecture was discussed, including a new approach to protect
the database credentials from being stolen on the client applications and alternative ways to establish
encrypted network communication channels, addressing RQ2 and some of RQ3. Lastly, the final
overall architecture of the S-DiSACA was presented and its life-cycle discussed, along with the new

4.4. Summary 61

Business Schema interface generation, implementation and usage procedures. This addressed the
remaining aspects of RQ3.

However, some research questions remain, such as how to build flexible access control policies
that can be modified at runtime to widen the application scenarios for this system (RQ4) and how can
these systems be audited for correctness when users are loosely mapped to access control permissions
(RQ5). The following chapter discusses and proposes solutions to these points.

63

Chapter 5

Fuzzy Access Control Decision
Making

In this chapter, the research performed to integrate soft access control requirements into access control
policies and how can these policies be enforced on an access control system.

To achieve this goal, an inference system capable of handling soft rules was studied and adapted
into a decision making inference system that was integrated into the Secure, Dynamic and Distributed
Soft Access Control Architecture (S-DiSACA) as its Policy Decision Point (PDP) (see Fig. 6.1), allowing
the architecture to support application scenarios where the access control rules are hard to define
clearly. To not tie this inference system to any application scenario, the concepts and rules used are
defined via policy files, thus allowing to use it in any context provided that a policy has been created.
This approach also makes it easier to integrate changes made to the access control requirements since
only the policy files need to be modified instead of the access control system itself.

Several soft inference systems were evaluated [23], [41]–[44], [76]–[78], but two quickly showed to
be the potential best candidates for adaptation and integration into an access control system, which
were compared in section 2.2.3: the Mamdani-type Fuzzy Inference System (FIS) [45]; and the Sugeno-
type FIS [46]. The reason that these two approaches are the best candidates for adaptation is that they
are generic systems, whereas all the others specialize to deal with some specific problem. Moreover,
both of these inference systems are usually distributed with fuzzy inference libraries while the others
are not. Between the Mamdani and the Sugeno types, the Mamdani was chosen to be adapted since it
has more widespread use and its output layer can be easily modified to produce binary outputs.

The application of this type of logic in access control comes with a steep price, which is the higher
system auditing complexity. With this logic, it is difficult to determine beforehand which combinations
of input variable values lead to a grant or a deny decision for a given request. Therefore, auditing
policies based on this type of logic requires an exhaustive search over the input domain to ensure
its correctness, which is problematic if the input variables have large domain sizes. This fact makes
auditing difficult, and in turn, makes choosing this type of access control system less desirable. Here
is where the biggest contribution to the scientific community is made with this thesis: an algorithm
based on novel optimization techniques capable of enabling a security expert to audit the access
control policies based on fuzzy logic is provided.

64 Chapter 5. Fuzzy Access Control Decision Making

Therefore, this chapter discusses how the Mamdani-type FIS can be modified to produce binary
outputs, analyses the approach for potential problems, and discusses the security considerations
that must be made when integrating soft requirements into access control systems. It is divided
as follows: section 5.1 discusses the changes made to the Mamdani-type FIS that led to the Binary
Decision Fuzzy Inference System (BDFIS); section 5.2 discusses the problem of auditing the correctness
of access control policies for BDFIS and presents the auditing algorithm; section 5.3 discusses the
security considerations one must make when using BDFIS in an access control system; and section 5.4
summarizes the chapter.

5.1 Binary Decision FIS

A Mamdani-type FIS goes generally through six steps to produce an output from a set of input values.
From these, one can determine that the output membership functions have a direct bearing on the
output value, as they are truncated using the rule strengths and then combined to calculate a crisp
output using a defuzzification method. Thus, these steps are evaluated in terms of what must be
changed to support binary (i.e. grant/deny) outputs.

5.1.1 Fuzzy Rule Determination

The first step involves the determination of the fuzzy rules to be used by the FIS. The fuzzy rules use
the input linguistic terms and their membership degrees, and by applying fuzzy logic a rule strength
can be computed. This rule strength is then applied to an output membership function.

Since the idea is to have the FIS generate a binary output, the input linguistic terms can remain
effectively the same. This allows any attribute to be used as an input and does not narrow the
applicability scope of the BDFIS. This approach contrasts with some of the FIS used in some of the
related work, where the input parameters are set a-priori. The output variables and their linguistic
terms, however, have a direct bearing on the output domain. When it comes to an access control
system, the output must be to either grant or deny a permission to a resource. To do this with BDFIS,
each permission is defined as an output decision according to Def. 5.1.

Definition 5.1. Access permissions in a BDFIS are output variables associated with exactly two
linguistic terms, called the fuzzy decision components (FDC): one for a positive decision FDC+ (yes /
grant); and one for a negative decision FDC− (no / deny).

Not only does this allow permissions to be directly integrated into the fuzzy rules, but also to state
which decision a given rule applies to each permission. Thus, a fuzzy rule written for the BDFIS takes
the form "if A is LTA and/or B is LTB then Z is FDC±", where A and B are input variables, LTA and
LTB respective linguistic terms, and Z is an output permission variable. For example, "if Expertise is
High and Activity is Moderate then Read is Granted".

This example shows how BDFIS can be used to easily define soft access conditions: given a set of
vague concepts about a subject (e.g. Expertise, level of Activity, etc.), the permissions (Read, Write,

5.1. Binary Decision FIS 65

etc.) to the resources are defined as output variables that are either granted (FDC+) or denied (FDC−)
by each rule. How each rule influences the final decision is discussed next.

5.1.2 Input Fuzzification and Rule Strength

Before the fuzzy rules can be applied to calculate the rule strengths, the input variables need to
be fuzzified. Fuzzification is the process that qualifies the input variables in terms of the defined
linguistic terms. Thus, given a set of linguistic terms Ti for an input variable i, the membership degree
of i to each linguistic term t ∈ Ti is obtained the associated membership function µt as shown in Eq.
5.1:

µt(i) : t→ [0, 1], t ∈ Ti (5.1)

The membership functions µ should be defined by an expert in the context of the application
scenario in which the BDFIS is used, since soft requirements such as the Expertise of a subject can
change depending on the context.

After the membership degree is calculated for each of the linguistic terms, the fuzzy rules can be
applied to determine the rule strength associated with each FDC according to Def. 5.2.

Definition 5.2. Given a set of fuzzy rules R, the rule strength of each rule r ∈ R is determined by
applying the fuzzy logic operators AND, OR, and NOT to the membership degrees of the input
linguistic terms used in it. When more than one rule applies to the same FDC, the combined rule
strength can be calculated by applying the OR fuzzy operator over every individual rule strength that
pertains to it.

Thus, the fuzzification process of the input variables into membership degrees for each of the
defined linguistic terms requires simply the application of the membership function associated with it.
Then, these values are processed using the logic operators defined in the fuzzy rules, following, for
example, the Łukasiewicz-Tarski logic, to generate the rule strength for each rule. Finally, in the case
that more than one rule applies to the same output permission variable and FDC, the rule strength of
each of these rules are combined using the OR fuzzy logic operator.

With the rule strengths associated with each output linguistic term calculated, the process of
determining the consequence of each output permission variable can take place.

5.1.3 Consequence Determination

The consequences of an output permission variable are obtained simply by truncating the membership
functions of each output linguistic term with the rule strength that was calculated on the last step.

Since it is intended for the output of the BDFIS to be binary, the FDC membership functions can be
predefined to encode both a Deny and a Grant values. By pre-defining these membership functions,
the behaviour of the BDFIS is the same regardless of the context it is used in (i.e. the output domain of
the system is the same). The question is which membership functions to use for the FDC+ and FDC−
linguistic terms.

66 Chapter 5. Fuzzy Access Control Decision Making

Since these functions need to be truncated and later combined to be defuzzified, a way to simplify
the process is to assign a singleton membership function. Def. 5.3 defines a singleton function.

Definition 5.3. A function f (x) is called a singleton function if its output is 0 in its entire domain
except for a single input value x0, for which the output is 1 as shown in Eq. 5.2:

f (x) =

1, if x = x0

0, if x 6= x0

(5.2)

Thus, a singleton function allows assigning each FDC a single output value. The value chosen for
the FDC− and FDC+ was 0 and 1, respectively. The reason why these particular values were chosen
is that they help to simplify the defuzzification process even further, a process that is explained in the
next subsection.

The membership functions for the FDC− (µ−(x)) and the FDC+ (µ+(x)) are then singleton func-
tions as shown in Eq. 5.3 and 5.4, respectively.

µ−(x) =

1, if x = 0

0, if x 6= 0
(5.3)

µ+(x) =

1, if x = 1

0, if x 6= 1
(5.4)

Having defined the membership function for both FDC+ and FDC− the process of determining
the consequence can now be explained. The consequence is calculated through a truncation process,
which is explained in Def. 5.4.

Definition 5.4. The process of truncating a given function f at the value y = y0 generates a new
function g that has the same output as f except that any output value greater than y0 becomes y0, as
shown in Eq. 5.5.

g(x) = min(f (x), y0) (5.5)

Since singleton functions only have one input value (x = x0) where the output is not 0, then only
one value needs to be truncated. Furthermore, the FDC membership functions µ− and µ+ are defined
to output 1 on x = 0 and x = 1, respectively, and the rule strengths always lie in the [0, 1] range due to
being the result of the application of fuzzy logic. The consequence function C, then, is determined
simply by replacing the output value 1 in µ± by the rule strength RS± that applies to their respective
FDC±, shown in Eq. 5.6 and 5.7.

C−(x) =

RS−, if x = 0

0, if x 6= 0
(5.6)

C+(x) =

RS+, if x = 1

0, if x 6= 1
(5.7)

5.1. Binary Decision FIS 67

These consequence functions can then be used in the defuzzification step to generate a single, crisp
output value. This simple value replacement explains in part why the usage of singleton functions
simplifies the computation of the final decisions. However, further benefits are shown to be obtained
during defuzzification in the next subsection.

5.1.4 Consequence Combination and Defuzzification

The next step is the consequence combination, which involves combining both the C− and C+ functions
into an output distribution function θ for each output permission variable. This step is not always
required in a Mamdani-type FIS, and as such, it is also not required in a BDFIS. This allows a system
that uses the BDFIS to read the output of the consequence functions and to apply a more complex
decision-making strategy. For example, human intervention may be required when the rule strengths
for both FDCs are close to one another. However, if a simple strategy supported by the BDFIS is
enough, the system can let the BDFIS produce a single output per permission variable.

To output a single crisp value, the output distribution function θ is first calculated as defined in
Def. 5.5.

Definition 5.5. Given the consequence functions C− and C+ of an output permission variable O, the
output distribution function θ associated with O is the result of applying an accumulative function S,
as shown in Eq. 5.8.

θ(x) = S(C−, C+) (5.8)

In the case of the BDFIS, and considering that the consequence functions of a given output
permission variable Z are the C− and C+ shown in Eq. 5.6 and 5.7, respectively, then the resulting
output distribution function θZ is given by Eq. 5.9:

θZ(x) =

RS−, if x = 0

RS+, if x = 1

0, if x 6= 0∧ x 6= 1

(5.9)

Once a single function for the output permission variable is obtained, a defuzzification method
can be applied to extract a crisp output decision value. This is where the value 0 and 1 for the
membership functions µ− and µ+ matter the most. For example, let us consider that the centre of
gravity defuzzification algorithm, one of the most used, is applied to the above function θ. Since the
functions involved are singletons the discreet version of the center of gravity for singletons (COGS)
formula is used instead, which the general formula is given in Eq. 5.10.

COGS(θZ) =
∑x x ∗ θZ(x)

∑x θZ(x)
(5.10)

Where each value x is a value for which the function θZ does not output a 0. Note that had
singleton functions not be used the calculation of integrals would have been required, increasing the
complexity of this step considerably. Moreover, since the x values that do not output the value 0 in θZ

are x = 0 and x = 1, the previous equation can be expanded and simplified, as shown in Eq. 5.11.

68 Chapter 5. Fuzzy Access Control Decision Making

FIGURE 5.1: BDFIS conceptual block diagram[32].

COGS(θZ) =
0 ∗ θZ(0) + 1 ∗ θZ(1)

θZ(0) + θZ(1)
=

θZ(1)
θZ(0) + θZ(1)

(5.11)

Therefore, with the careful selection of the FDC membership functions, the defuzzification step
was simplified from having to calculate integrals to a simple division using two different values.

However, the above defuzzification method does not produce a 0 or 1 output, but some value that
may be in-between as well. The closer that output value is to 0 the stronger the decision to deny the
permission becomes, and likewise the closer it is to 1 the stronger the decision to grant the permission
becomes. Here, several approaches can be used, such as applying a threshold δ (e.g. δ = 0.5) to make
a clear decision, or request the intervention of a human expert if the output is close to the threshold
value. Any other method to derive a decision is valid, as well as using a defuzzification method that
outputs a clear decision such as the first or last of maxima.

5.1.5 Conceptual Overview

This section presents a conceptual overview of everything that has been presented on the BDFIS so far.
Fig. 5.1 shows a diagram of the conceptual model of the BDFIS. Just like a Mamdani-type FIS, a

list of crisp input values (A...B) is first fuzzified into its input linguistic terms (LT1A, LT2A, etc.) using
the associated membership functions. The membership degrees to each of the linguistic terms are
then used in a set of rules, which generate the rule strengths to be applied to each FDC (FDC+,1,
FDC−,1, etc.) for permissions P1, P2, etc. These can be accessed directly by the system to make an
access control decision, or they can be defuzzified first. This process applies a defuzzification method
to output a crisp output value per permission X∗P1, X∗P2, etc.

5.1. Binary Decision FIS 69

FIGURE 5.2: Type-N BDFIS conceptual block diagram[37].

From this diagram, it is clear that the BDFIS simply alters the output layer of the Mamdani-type
FIS by pre-defining the output variables linguistic terms as FDCs and their membership functions as
the singleton functions discussed in the previous subsection. However, while these changes allow
the BDFIS to be easily used in contexts where decisions must be made from soft requirements, it
was discovered that they also reduce the expressibility of the system as a whole. Since this approach
requires the output decisions to be made from the input linguistic terms directly, it is is not possible to
use more abstract concepts such as the Expertise of the user.

While this drawback may not impact simpler application scenarios, it can impact the interpretabil-
ity of the fuzzy rules. Consider the rule "if Number_of_Publications is High then Expertise is High". A
newly hired expert looking at this rule would immediately know what it is expressing: the expertise
of the user. However, the BDFIS would require its rules to look like "if Number_of_Publications is High
then Write is Granted". The concept of Expertise is implied in this case, and may be more challenging
to interpret from this point of view.

Therefore, the idea of adding more layers to the BDFIS to support such expressibility was re-
searched and is discussed in the next section.

5.1.6 Type-N BDFIS Abstraction

A problem with the expressibility of the BDFIS was mentioned where abstract concepts could not
be defined and the input variable linguistic terms had to be used to make access control decisions
directly.

A solution is proposed to allow BDFIS to support multiple abstract layers, which can be referenced
by the name type-N BDFIS where N is the number of abstract layers. Thus, the BDFIS proposed until
now was the type-0 BDFIS. The conceptual architecture of the type-N BDFIS is shown in Fig. 5.2.

70 Chapter 5. Fuzzy Access Control Decision Making

As the figure illustrates, each new layer introduces a set of rules and abstract variables (along
with their linguistic terms), forming a chain between the input and output layers of the BDFIS. Let us
consider a type-1 BDFIS. With this type of BDFIS, it is now possible to define the Expertise of a subject
mentioned in the previous section example within BDFIS, as shown in Listing 5.1.

LISTING 5.1: Example type-1 BDFIS abstract layer rules.

IF NoP IS Low AND NoC IS Low THEN E x p e r t i s e IS Low
IF NoP IS Low AND NoC IS High THEN E x p e r t i s e IS High
IF NoP IS High AND NoC IS Low THEN E x p e r t i s e IS Medium
IF NoP IS High AND NoC IS High THEN E x p e r t i s e IS High

This listing shows some example rules that may exist in an abstract layer that defines the abstract
variable Expertise from the Number_of_Publications (NoP) and Number_of_Citations (NoC) variables. The
process is the same as before, the rule strengths are calculated to each linguistic term, except now they
are the linguistic terms of abstract variables, and the consequence combination and defuzzification
processes do not take place. Instead, the rule strength for each abstract linguistic term is used directly
in the next set of rules that now apply to the output FDCs, as shown in Listing 5.2.

LISTING 5.2: Example type-1 BDFIS output layer rules.

IF E x p e r t i s e IS Low AND A c t i v i t y IS Low THEN Write IS Deny
IF E x p e r t i s e IS Low AND A c t i v i t y IS High THEN Write IS Deny
IF E x p e r t i s e IS Medium AND A c t i v i t y IS Low THEN Write IS Deny
IF E x p e r t i s e IS Medium AND A c t i v i t y IS High THEN Write IS Grant
IF E x p e r t i s e IS High AND A c t i v i t y IS Low THEN Write IS Grant
IF E x p e r t i s e IS High AND A c t i v i t y IS High THEN Write IS Grant

In this example, the Expertise and the Activity abstract variables are used to grant / deny the Write
permission. At this stage, the rule strengths can be calculated and the same process of determining
and combining the consequence functions for defuzzification can take place. However, these two sets
of rules make it very clear what concepts are being used and how they impact the output decision.
The input variables are fuzzified and used to determine the Expertise and the level of Activity of the
subject, which in turn can grant the Write permission if they are high enough.

Moreover, if additional concepts are required that depend on previously defined abstract variables,
then additional abstract layers can be used to define them.

5.1.7 BDFIS Policy Definition

So far, the BDFIS and its type-N generalization were presented and discussed. However, the policies
that are going to be defined for this system have yet to be considered.

As mentioned in the previous chapter, the S-DiSACA PDP can access a policy data store, called the
Policy Server, where policies are stored and that an administration component can manage. These
policies can be modified at runtime, meaning that the BDFIS must be capable of reloading the policies
and rebuilding its internal state with possibly new variables, linguistic terms and rules.

5.2. Policy Correctness Auditing 71

Since the BDFIS follows the well known Mamdani-type FIS, it was natural to research the existing
solutions in terms of how Mamdani-type FIS can be defined and implemented. A standard language
exists that defines these systems, called Fuzzy Control Language (FCL) [114]. Thus, BDFIS policies are
defined using this standard language, an example of which is shown in Appendix A.

Since an FIS can be automatically generated from these files, upon a user request the S-DiSACA
queries the Policy Server for the FCL policy files, implements them as BDFIS, and then executes
them using the user parameters. Since each BDFIS outputs decisions for the permissions they are
responsible for, the results can be cached for that user. After a certain amount of time, the policy files
are retrieved again, the associated BDFIS reimplemented, and then executed to update the cache.

This approach can be used even if the access control decision-making engine is not a BDFIS but
some other model, allowing the S-DiSACA to have flexible policies. When a policy is changed and a
client application receives the associated error message, it can warn that it needs to be updated. A
developer of the application, on the other hand, compiles the application using the new Business
Schemas. Since the functions available in the Business Schemas are only those that were authorized by
the PDP, the developer quickly knows what changed via compilation errors or Integrated Development
Environment (IDE) hints and shorten the development time.

5.2 Policy Correctness Auditing

So far, an FIS capable of generating binary outputs was proposed to handle the access control decisions
in scenarios that possess soft access control requirements. However, one of the desired features of
access control that has not been discussed is permission auditing, which comprises of reviewing the
capabilities of subjects and their permissions over resources [115]. This is also known as “before
the act audit” and it is one of the most important features found in access control models such as
Role-Based Access Control (RBAC).

As previously mentioned this application of fuzzy logic in access control comes with higher system
auditing complexity. Since these systems use fuzzy logic, it is difficult to determine beforehand which
combinations of input variable values lead to a grant or a deny decision for a given request. Auditing
the policies requires an exhaustive search over the input domain to ensure its correctness, which is
problematic if it has several input variables with large domains. This fact makes auditing difficult,
and in turn, makes choosing this type of access control system less desirable.

Three-dimensional graphs of the output of a fuzzy system given two of the input variables are
sometimes used in the literature to show the relation between them, such as in [43]. However, these
graphs usually have low-granularity, even with relatively small input variable domains. Furthermore,
these graphs do not take into account the local minima and maxima of the membership functions.
This can translate into missed output changes in binary systems, with special importance for access
control auditing.

Thus, in this section, optimization techniques for auditing BDFIS and other fuzzy systems that rely
on binary outputs are proposed [37]. These techniques aim to reduce the search space to exhaustively
verify the correctness of the policies and counter the aforementioned issues.

72 Chapter 5. Fuzzy Access Control Decision Making

5.2.1 The Auditing Problem

To better explain the increased complexity in auditing an access control system based on access control,
the non-trivial issues that must be addressed are discussed in this subsection.

In a crisp access control model, the input variables can be used directly in the rules and the way
they affect the output is very clear. For example, "if age is greater than 18 then read is granted"
clearly shows that if the subject is over 18 years old, then he is granted the read permission over some
resource. Moreover, the 18-year-old condition is either completely true or false for any given subject.

While these models are used in scenarios where the list of subjects is known and permissions
can be mapped explicitly, fuzzy models can be used to enforce access control in scenarios where
permissions need to be associated with subjects at runtime. This process is carried out using the
subject’s attributes and the existing access control policies, determining how true certain statements
about the subject are (e.g. the subject’s expertise is high) and determining the subject’s permissions
from these statements. Since the subject attribute values can vary even between access attempts for
the same subject, any permission auditing mechanism must determine the input variable values that
lead to either a granted or denied access decision.

However, the impact of each input variable (i.e. the subject attributes) on the output decision
is dependant on the other variables since they are all fuzzified and used in fuzzy rules. Consider
the following set of five fuzzy rules, which calculates the level of Expertise based on the number of
publications (NoP) and the number of citations (NoC). A Write permission is then granted or denied
based on the level of Expertise.

1. IF NoP IS Low THEN Expertise IS Low

2. IF NoP IS High AND NoC IS Low THEN Expertise IS Medium

3. IF NoC IS High THEN Expertise IS High

4. IF Expertise IS Low OR Expertise IS Medium THEN Write IS Deny

5. IF Expertise IS High THEN Write IS Grant

Since fuzzy logic allows for partial truths, a subject can be somewhere in between a low and high
number of publications and citations. This translates into different membership degrees associated
with each linguistic term, which would activate every rule presented. Thus, the subject can have low,
medium and high Expertise at the same time (with different degrees). Since the output functions
for each linguistic term are added together to determine the final output, even if only the number of
citations is increased to add strength to the high expertise linguistic term (through rule 3) the number
of publications influences the decision turning point by adding strength to the low and medium
expertise linguistic terms (rules 1 and 2).

Therefore, a naïve approach to accurately determine which combinations of input variables lead to
a granted or denied decision is to perform a brute-force search over the entire domain. A brute-force
approach is, obviously, not scalable to a big number of variables. If the average size of the domain
for a variable D is |D| and there are N variables, then the search space approximates |D|N , which

5.2. Policy Correctness Auditing 73

FIGURE 5.3: Example increasing and decreasing function.

grows exponentially. Moreover, searching the entire domain without considering the local minima
and maxima the membership functions can lead to missed changes in the output decision.

To solve this problem a careful analysis of the linguistic term membership functions together with
the fuzzy rules where each term appears in is required. An initial optimization procedure to reduce
the search space was researched, and several useful properties of the FIS were found that do allow for
this optimization to take place. The following sections present this analysis and incorporate its results
as a pre-processing step into an optimized auditing algorithm.

5.2.2 Theorems and Definitions

Before the techniques used to optimized the search space can be presented, the theorems and defini-
tions used to development must be introduced and discussed. Since the main problem being faced
is the difficulty in interpreting how changes to the input variables affect the output decisions, the
following assumptions are made:

1. Only one variable is updated at a time between permission evaluations, and the update cannot
move from an increasing portion of the membership function to a decreasing portion or vice
versa without stopping at a point where the derivative is 0 or undefined.

2. The defuzzification method is consistent in the sense that if the “Grant” FDC rule strength
increases more than the “Deny” FDC rule strength, then the final decision cannot change from
“Grant” to “Deny” and vice versa.

Assumption 1 guarantees that when the search algorithm updates a variable, no permission
changes go unchecked. To exemplify this point, consider Fig. 5.3 which shows a very simple
membership function. In the range 0 < x < 2, the function is increasing, while in the range 2 < x < 4

74 Chapter 5. Fuzzy Access Control Decision Making

it is decreasing. Assumption 1 states that the algorithm cannot move from the first range to the second
without passing by a point where the derivative is 0 or undefined. This point in the figure is x = 2
where the two ranges meet. This always represents a local maximum or minimum of the function,
and if it is not checked a decision output change could be missed.

Assumption 2 is used to correlate changes in the input values with changes in the output decision.
If the rule strength to the FDC+ increases while the FDC− decreases or remains the same, then it
should not be possible for a decision to change from “Grant” to “Deny”.

Thus, to optimize the search algorithm the membership functions should be partitioned into
domain ranges that either increase, decrease or keep the membership degree constant. This process
allows to classify how each membership function affects the output decision according to some
domain range, and the points were these ranges meet include every local minima and maxima of the
function. However, it is necessary to show first that any membership function can be partitioned into
domain ranges where this is true, known as monotonic sub-domains.

Theorem 5.1. All membership functions are partitionable into monotonic subdomains.

Consider a membership function µ : D → [0, 1] with domain D ⊆ R. A monotonic function
is defined as a function where the signal of its derivative never changes signal, i.e. it is always
non-decreasing or non-increasing.

If µ is continuous, it either is already monotonic for its entire domain or not. If it is not a monotonic
function, then there exists a point x where its derivative µ′(x) = 0 and the signal of µ′(x− ε) and
µ′(x+ ε) differ. These points are the local minima or maxima by definition. If the domain is partitioned
at each point x where this occurs, then by definition each subdomain is monotonic.

If µ is not continuous, then there are discontinuity points. By partitioning the domain at each
one of these discontinuity points they are removed from each subdomain, therefore each subdomain
must be continuous. Since each subdomain is continuous, then they must also be partitionable into
monotonic subdomains as shown above. QED

As stated in Theorem 5.1, any membership function can be divided into monotonic subdomains.
In the extreme case where the function is discontinuous at every value of its domain, then the
result would be a set with every point of its domain. However, this is not a common occurrence as
membership functions tend to model natural concepts and thus are usually defined using normal
distribution functions, piecewise linear functions or other continuous functions.

Having proved that membership functions can always be partitioned into monotonic subdomains,
the question now is how an input variable value can be updated to check for output decision changes
while ensuring that assumption 1 remains true. Def. 5.6 introduces how this can be achieved.

Definition 5.6. Consider an input variable A with a current fixed value xn that needs to be updated
to the next value xn+1 and a set of membership functions UA, one for each linguistic term. The update
must guarantee that xn+1 is within the same monotonic domain range as xn for each µA ∈ UA.

From this definition comes that each point that divides two different monotonic domain ranges
must always be checked when transitioning between them since these are the only points that are
considered to be in both. Thus, given that each range is monotonic, assumption 1 is always satisfied.

5.2. Policy Correctness Auditing 75

Linguistic Term Contribution

Having discussed how each variable must be updated to yield consistent results, the question now
lies in how each monotonic sub-domain partition affects the output. To answer that question, each
linguistic term must be classified in terms of which rules they are used in, and which FDC these rules
affect as consequences.

Definition 5.7. A bipolar linguistic term is a linguistic term that exists in at least two rules whose
outcomes can make the rule strengths of both FDCs change in the same direction (increasing or
decreasing).

A bipolar linguistic term, then, has the capability of increasing or decreasing both the “Grant” and
“Deny” FDC rule strengths for a given permission at the same time. Therefore, any linguistic term
that is non-bipolar either does not change the FDC rule strengths, changes just one, or changes both in
opposite directions.

LISTING 5.3: Set of example binary output rules.

IF A IS A1 AND B IS B1 THEN P IS Grant
IF A IS A1 AND B IS B2 THEN P IS Deny

To exemplify this, consider the rules shown on Listing 5.3. Two input variables were used, A
and B, plus one single output variable P. Each variable also has several linguistic terms: A1, B1, B2,
Grant, and Deny. It is possible to see that the linguistic terms A1 and B1 are used to determine the
rule strength to the Grant FDC, while the linguistic terms A1 and B2 are used to determine the rule
strength to the Deny FDC. The Grant and Deny FDCs belong to the output variable P.

Thus, the linguistic terms B1 is only used to determine the rule strength to a single FDC (Grant).
Likewise, linguistic terms B2 is only used to determine the rule strength to a single FDC (Deny). The
linguistic term A1, however, is used in two rules that apply to opposite FDCs of the same output
variable.

Given this scenario, A1 is a bipolar linguistic term, as it affects the rule strength to both the Grant
and Deny FDCs. Since this does not happen for the linguistic terms B1 and B2 they are considered
non-bipolar.

Knowing that a linguistic term is bipolar or non-bipolar, the question now is how these affect the
output decisions of the system when the associated variable is updated. Instead of tackling how every
linguistic term affects the output as a whole, the contribution of each linguistic term is defined across
its domain first.

Definition 5.8. Consider a non-bipolar linguistic term, its associated input variable A and membership
function µA. When xn is updated to xn+1 it is defined that:

• If µA(xn) − µA(xn+1) < 0 (i.e. a negative discreet derivative), then the contribution of the
linguistic term increases.

• If µA(xn) − µA(xn+1) > 0 (i.e. a positive discreet derivative), then the contribution of the
linguistic term decreases.

76 Chapter 5. Fuzzy Access Control Decision Making

• If µA(xn)− µA(xn+1) = 0 (i.e. a discreet derivative equal to 0), then the linguistic term has no
contribution.

However, knowing how the contribution changes for a given update is not enough, as the mem-
bership function can support the "Grant" and/or the "Deny" FDC. Def. 5.9 shows how to determine
which FDC is supported by a positive, negative or no contribution update.

Definition 5.9. Consider a non-bipolar linguistic term. It is said that updating the value of the
associated variable supports a specific FDC if:

• The rule strength increases for that FDC.

• Or the rule strength decreases for the opposite FDC.

These two situations are the same in terms of the overall effect on the output decision change,
hence both being classified as the linguistic term supporting the same FDC. However, an update must
change the input value associated with a variable, and each variable may possess more than one
linguistic term. Therefore, the linguistic terms must all be considered to determine how a variable
update ultimately affects the output.

Variable Update Support

Having defined how each domain range is classified and how it affects each FDC, it is now possible to
start proposing and proving some theorems on how updating a variable within these domain ranges
can affect the output.

Theorem 5.2. If the variable A, at a current value x, is updated and all its linguistic terms have no
contribution, then the update does not change the final decision.

Consider a rule R : In 7→ FDC that takes a set of antecedent linguistic terms I and outputs the
value for the consequent FDC.

Using Assumption 1, it is known that only one variable can be updated at a given time. All other
variables are then constants.

From Def. 5.8 comes that a linguistic term with no contribution does not change its rule strength
output from the update to the input variable A. Therefore, if all linguistic terms for the variable A
have no contribution to the update, then the output is constant.

Since all rule strengths are constant for the update, there can be no change in the FDC rule strengths
and therefore the final decision must be the same. QED

Theorem 5.3. If the variable A, at a current value x, is being updated and all its linguistic terms
support the same FDC or have no contribution, then the update either changes the final decision to
the FDC being supported or does not change it.

First, the linguistic terms that have no contribution were demonstrated to not change the final
decision with Theorem 5.2.

Regarding the linguistic terms that support the same FDC, they change the rule strength output of
the rules in two different ways:

5.2. Policy Correctness Auditing 77

• They increase the rule strength in rules that support the specified FDC.

• Or they decrease the rule strength in rules that support the opposite FDC.

Since all other linguistic terms from other variables do not change and are therefore constant in
the update, the rule strength either increases for the specified FDC, decreases for the opposite FDC or
remains the same due to some constant being greater/lesser than the updated membership degree,
depending on the minimum/maximum functions.

Therefore, the gap between the “Grant” and “Deny” FDC rule strengths either remains the same,
the rule strength to the specified FDC increases or the rule strength to the opposite FDC decreases.
Due to Assumption 2 and since the FDC with the greatest rule strength sets the output decision, the
decision can either change from the opposite FDC to the specified FDC or not change at all. QED

This result implies that if the decision made is already the supported FDC, then the update cannot
change the decision. This also means that if the decisions are known for the entire domain of one
variable A and another variable B is updated in which all its linguistic terms support a specific FDC,
then the ranges for which variable A had a decision made in favour of the specified FDC do not need
to be reevaluated.

Thus, each input variable should have its domain partitioned into ranges where all linguistic term
membership functions have no contribution, or all support the same FDC. Ranges where none of
these occur are considered to have an unknown contribution to the decision-making process and must
be checked. However, the designed algorithm makes the most out of this partitioning, a process that
is explained in the next section.

Put together, Theorem 5.2 and Theorem 5.3 form the basis for the optimization of the search space,
which is identified and built into a search algorithm where entire ranges from each variable domain
can be skipped.

5.2.3 Algorithm Techniques

In this subsection, the designed algorithm techniques are presented. These include the method by
which the input variables have their domain partitioned and an analysis of how each partition reduces
the domain range.

Range Partitioning

The process of variable range partitioning is an important one for the implementation of the optimized
search algorithm and is detailed in this section. In short, a partition [a, b] must possess a consistent
FDC contribution that allows the algorithm to determine if the domain values in the partition interval
must be evaluated or can be skipped.

Figure 5.4 shows an example input variable membership functions for the linguistic terms 1, 2 and
3. The domain ranges from 0 to 100 on the x-axis, while the y-axis shows the membership degrees
that a given input value has to each linguistic term.

Per Theorem 5.2, a variable has no contribution (NC) on a given value if all LTs have a discreet
derivative equal to 0. The discreet derivative is equal to 0 if the function is constant, which means that

78 Chapter 5. Fuzzy Access Control Decision Making

FIGURE 5.4: Input variable domain partitioning[37].

the value ranges [0, 4] and [10, 30] have no contribution to any decision. Therefore, once the decision
is known for a single value within each range, then the decision for the other values is the same.

Then per Theorem 5.3, the information regarding the rest of the ranges depends on the contribution
of the linguistic terms that do have some sort of contribution. This applies to the following ranges:

• [4, 10]: Depends on the linguistic terms 1 and 2, as linguistic term 3 has no contribution.

• [30, 40]: Depends solely on linguistic term 3, as both linguistic terms 1 and 2 have no contribution.

• [40, 80]: Depends on both linguistic terms 2 and 3. Linguistic term 1 has no contribution.

• [80, 100]: Depends solely on linguistic term 3, as both linguistic terms 1 and 2 have no contribu-
tion.

On these ranges, only when all the linguistic terms contribute to the same FDC at a given range is
it possible to decide that a range contributes to one FDC. Otherwise, the contribution is unknown and
the decision may change more than once.

To explain why the contribution is unknown, consider that linguistic terms 1 and 2 in the range
[4, 10] contribute to opposite FDCs and that they belong to the input variable A. Even when piecewise
linear membership functions are used, where updating the input variable means that the rate at which
the membership degree of the subject to the Granted and Denied FDCs changes is the same, other
variables (with constant membership degrees) can be used within the defined rules, such as the input
variable B in the rules shown in Table 5.4.

5.2. Policy Correctness Auditing 79

LISTING 5.4: Set of example binary output rules.

IF A IS A1 AND B IS B1 THEN P IS Grant
IF A IS A2 AND B IS B2 THEN P IS Deny

Consider that the fuzzy operator AND applies the minimum function to calculate the rule strength.
While µA1 < µB1 and µA2 < µB2 , any update to variable A affects the rule strength to both FDCs,
which can lead to the final decision to change unexpectedly.

However, there may come a point where one of the rule strengths stops changing, such as µA1

or µA2 becoming greater than µB1 or µB2 respectively. In this case, if for example µA2 > µB2 and the
current decision output is "Deny", then rule strength from the second rule becomes constant (because
B is constant and the AND operator takes the lowest of the two) and any further updates to variable A
can only increase the contribution to the Grant FDC due to the first rule. This may eventually trigger
the final decision to be changed to "Grant" as A is updated.

These final decision changes are hard to predict, as they depend on the current membership
degrees of each linguistic term in each rule plus the rate at which each membership degree changes
when a variable is updated. Adding more rules only compounds the problem. Therefore, since the
decision may change several times, it is unknown how updating a variable in a region of unknown
contribution affects the decision outcome. Finally, non-linear membership functions may be used,
which increases the complexity of this problem by allowing the contribution to each FDC to change at
different rates each time an input variable is updated.

Analysis and Variable Ordering

Since the algorithm must search every input variable, the easiest way to implement a search algorithm
is via a recursive function. This implies that a variable has its entire domain checked before the next
one is updated, and the impact of the variable order on the optimization efficacy is analyzed in this
section. Finally, since the algorithm determines the decision output of the system each time a variable
is updated, each decision is assumed to be stored and accessible in some way.

Consider the following definitions for a given policy:

• E is the number of calls to the evaluation engine required to analyze the policy;

• I is the number of input variables;

• N0(x), N1(x), and N2(x) are the number of separate ranges of no contribution, single contribu-
tion and unknown contribution of the xth input variable, respectively;

• R0(x, n), R1(x, n), and R2(x, n) are the size of the nth range of no contribution, single contribution
and unknown contribution of the xth input variable, respectively.

80 Chapter 5. Fuzzy Access Control Decision Making

Given these definitions, the number of evaluation calls in the worst-case scenario (a brute-force
search) is given by Eq. 5.12.

E =
I

∏
x=1

[
N2(x)

∑
n=1

R2(x, n) +
N1(x)

∑
n=1

R1(x, n) +
N0(x)

∑
n=1

R0(x, n)

]
(5.12)

In this scenario, the number of calls to the evaluation engine E is the product of the size of the
domain of each input variable. The domain size is obtained by taking the size of each separate range
of no contribution, single contribution, and unknown contribution, and add them all together.

The first summation describes the ranges of unknown contribution, the second describes the
ranges of single contribution and the third the ranges of no contribution. Each summation is analyzed
in turn, to see how the proposed algorithm affects it.

Consider the third summation, as it describes the total size of the ranges of no contribution, can be
removed almost in its entirety since these ranges do not change the decision output. However, the
algorithm must evaluate at least one value from each of these ranges. Thus, the number of evaluation
calls can be optimized as shown in Eq. 5.13.

E =
I

∏
x=1

[
N2(x)

∑
n=1

R2(x, n) +
N1(x)

∑
n=1

R1(x, n) + N0(x)

]
(5.13)

Consider now the second summation, which describes the total size of the ranges of single
contribution for each input variable. Since these ranges support only one of the two possible decision
outputs, every time a variable is updated from an to an+1 within one of these ranges it is possible to
skip every value combination that used an and resulted in the decision supported by the range.

If every decision output matches the supported decision, then the rest of the range can be skipped.
This means that every variable, including the first one, can have parts of its domain skipped by some
factor βx, βx ∈ [0, 1], which can be different for each variable.

Furthermore, if the second variable also has ranges of single contribution, then the factor βx of
that variable and the ones that follow it can only grow closer to 1 since it adds to the range of values
that can be skipped. Therefore, the βx factors satisfy the following relation:

0 ≤ β1 ≤ β2 ≤ · · · ≤ β I ≤ 1

Thus, Eq. 5.14 shows the new formula that generates the number of evaluation calls when applying
all the shown optimizations.

E =
I

∏
x=1

[
βx

(
N2(x)

∑
n=1

R2(x, n) +
N1(x)

∑
n=1

R1(x, n) + N0(x)

)]
(5.14)

Since the single contribution ranges of the first variable affect all the following variables in the
order, the variable with the largest size of single contribution ranges should be placed first. The
variables should be ordered by the decreasing size of their single contribution ranges, as their impact

5.2. Policy Correctness Auditing 81

diminishes as they get closer to be the last variable (smaller ranges leave results in a smaller amount
of values that can be skipped). This way, the βx factors are maximized as much as possible early on.

Given this, the variables should also be ordered by the increasing size of their unknown contri-
bution ranges. Since unknown contribution ranges (described by the first summation) cannot be
optimized on their own, the largest ranges should be applied to the highest βx factor possible to
reduce their impact.

This can be problematic when the same variable has both the largest size of the unknown contribu-
tion and single contribution ranges. Thus, a possible heuristic to the ordering of the variables is to
order them based on the normalized ratio of single contribution ranges to their unknown contribution
ranges.

5.2.4 Integrated Overview

In this section, every step necessary to optimize the search space for the auditing algorithm is put
together and shown from a holistic perspective. Fig. 5.5 illustrates this approach using a flow diagram,
starting from the linguistic term analysis until the application of the algorithm itself.

There are two major flows: the pre-processing flow and the algorithm application flow. In the
pre-processing flow, the first derivatives of the membership functions are analyzed to find the domain
ranges where they are monotonic (Theorem 5.1). At the same time, the linguistic terms are classified
by their bipolarity, as defined in Def. 5.7. These results are used to determine the contribution and
support of each domain range in the next phase using Def. 5.8. If the function is constant then it has no
contribution, and if it has a single contribution (because it is not bipolar) then the support is obtained
by applying Def. 5.9. Otherwise, it must be bipolar and has an unknown contribution. Finally, the
support of each variable update can be determined. First, the variable domain is partitioned according
to the partitions of all its membership functions (as shown in Fig. 5.4). Then, Theorem 5.2 and 5.3 are
applied to determine how every membership function in a given range affects the output when put
together.

In the algorithm application flow, the data obtained from the pre-processing flow is used to
optimize the domain search. The first variable is updated according to Def. 5.6 and then the support
associated with the update is checked. If it supports no decision, then every decision evaluated in
the previous update remains the same (Theorem 5.2). If it supports a single decision, then every
case where that decision was outputted remains the same (Theorem 5.3). Otherwise, every output
decision must be evaluated. The decision outputs for this update are saved, and if no more variables
or updates are pending, the algorithm ends.

5.2.5 Type-N BDFIS Generalization

The optimizations shown so far were made for fuzzy systems that contain a single layer of rules and
therefore the input linguistic terms are mapped directly to the output decision FDCs.

However, this is not the case for systems with more than one layer of rules, like the type-N BDFIS,
where N > 0. In this case, there are N layers of abstract variables and linguistic terms between the

82 Chapter 5. Fuzzy Access Control Decision Making

FIGURE 5.5: Algorithm flow diagram[37].

5.3. Security Considerations 83

input variables and the output decision variables. This means that the input linguistic terms are
mapped to the linguistic terms of the variables in the first abstract layer.

Thus, to determine the contribution of each input linguistic term it is necessary to know to which
FDC the abstract linguistic terms on the first layer contribute towards.

Consider a type-N BDFIS, where there are N layers of abstract variables. Since the rules map them
to the decision FDCs, the domain partitioning procedure described in chapter 5.2.3 could be applied
to the last abstract layer to determine the contribution of each abstract linguistic term.

Then, on the layer N − 1, the linguistic terms are mapped to another set of linguistic terms that
have their contribution determined. The contribution of the linguistic terms of the variables in the
layer N − 1 can then be determined as detailed in Def. 5.10.

Definition 5.10. Consider the set of linguistic terms LTn that are defined in the nth layer of abstract
variables. The FDC contribution of a linguistic term LTn

i , LTn
i ∈ LTn given the FDC contribution of

the linguistic terms in LTn+1 is determined as follows:

• If all linguistic terms in LTn+1 that LTn
i is mapped to have no contribution, then LTn

i has no
contribution.

• If at least one linguistic term in LTn+1 that LTn
i is mapped to contributes to the same FDC and

the rest have no contribution, then LTn
i contributes to that FDC.

• If at least one linguistic term in LTn+1 that LTn
i is mapped to has unknown contribution, then

LTn
i has unknown contribution.

• If at least two linguistic terms in LTn+1 that LTn
i is mapped to contributes to different FDCs, then

LTn
i has unknown contribution.

Thus, by applying the above rules repeatedly to each layer from the output layer to the input layer,
it is possible to determine the contribution of every linguistic term in the system including the input
linguistic terms. This allows the optimizations found in the previous chapter to be applied once again.

5.3 Security Considerations

Until now, the methods by which soft access control requirements can be incorporated into an access
control system such as the S-DiSACA has been explored. However, the very nature of the systems
used to handle these requirements raise questions regarding their applicability to access control in the
first place.

In the last section, techniques to optimize the domain search for a policy correctness algorithm
were presented, and while it opens the door to future enhancements and additional optimizations, it
also shows that these type of systems are not easy to fully control. Certain combinations of rules may
grant or deny access to some unexpected users when certain decision outputs change briefly next to
local minima and maxima of the membership functions.

Therefore, when deploying the S-DiSACA a security expert must evaluate what kind of decision-
making engine (crisp or fuzzy-based) fits best a given application scenario. While the BDFIS presented

84 Chapter 5. Fuzzy Access Control Decision Making

can define crisp access control requirements (by using singleton input membership functions) such
as roles, a RBAC model may be better suited instead. Not only would that allow a security expert
to quickly determine who has access to the resources, but a scenario where roles are used also tends
to have a set of users that is known to the system at all times as well. These features increase the
trust that the system always makes reliable decisions and should be used to protect highly sensitive
information.

A fuzzy-based decision-making system like BDFIS, on the other hand, can grant and deny access to
any user that attempts to access a resource as the mapping between users, permissions and resources
are loosely defined with fuzzy rules. This approach is better deployed in application scenarios where
the data is not very sensitive but can be accessed and modified by anyone, or in situations where
users can go rogue. These scenarios include community-maintained data (such as Wikipedia) and the
Internet of Things (IoT) where devices can malfunction or be exploited, altering their behaviour. The
proposed policy correctness auditing techniques close a gap in the deployment of fuzzy-based access
control systems in these scenarios, where it is now possible to analyse their expected behaviour and to
validate the policies before deployment.

Another aspect to consider is the formal verification of the inference chains. As shown in this
chapter, rules can conflict with each other in such a way that input variables can support different
output decisions at the same time, leading to ranges of Unknown support that must be checked.
Formal verification of these inference chains not only allows to verify if the set of rules in the policy
are consistent with each other, but it also enhances the gains of the optimization techniques for the
auditing algorithm by addressing the Unknown support ranges.

5.4 Summary

In this chapter, the possibility of supporting and incorporating soft access control requirement in the
S-DiSACA was discussed and analysed, along with the applicability of such requirements in access
control scenarios.

A binary decision FIS called BDFIS was developed that adapted the well-known and ubiquitous
Mamdani-type FIS to produce binary outputs for access control purposes. Since FIS can be used to
loosely map users to permissions based on policies defined on a database that can be modified at
runtime, its development was able to address RQ4.

Regarding the policy correctness auditing of BDFIS, techniques based on theorems identified from
these types of systems were researched and developed that allowed to reduce the domain space that
needed to be searched to verify every input combination. These techniques can greatly reduce the
time spent checking the situations in which permissions are granted or denied while guaranteeing
that every decision change is found. This allows a security expert to evaluate the policy correctness
and answers RQ5.

Finally, a short discussion of the implications of using fuzzy-based access control systems was also
carried out to address RQ6. A proof of concept of the S-DiSACA integrated with a BDFIS as its PDP
follows in the next chapter to demonstrate the features presented so far.

85

Chapter 6

Access Control System Architecture
and Evaluation

In this chapter, a proof of concept1 for the correctness and performance evaluation of every methodol-
ogy and approaches mentioned so far are presented. The proof of concept of the Secure, Dynamic and
Distributed Soft Access Control Architecture (S-DiSACA) uses Wikipedia article data and a custom
application programming interface (API) that provides access to it, as well as several different policies.
A client application was also developed, which shows the behaviour of the architecture in normal and
abnormal contexts.

First, the implementation details of the architectural features discussed in chapter 4 are presented,
alongside some deployment and usability cost observations. Second, the correctness evaluation
focuses on testing the architecture in abnormal contexts and ensuring that the expected behaviour
is observed, such as attempting to forcefully modify a parameter value obtained from a previous
operation or attempting to subvert the defined sequence of operations. Finally, the performance
assessment focuses on the amount of time that is required to realize each of the steps in the life-cycle
of the architecture to authenticate, obtain the metadata, initialize the sequence controller, generate the
business schemas, and to compile them. Furthermore, the time required to issue operation requests
until they are served is also measured, along with the performance optimization gained in the policy
correctness auditing algorithm with the proposed techniques.

This chapter is divided as follows: section 6.1 details the implementation of the architectural
features; section 6.2 elaborates on the deployment and usability costs; section 6.3 demonstrates a
client application and evaluates the correctness of the architecture; section 6.4 shows the performance
assessment results; and lastly, section 6.5 compares the final architecture with the related works from
the state of the art.

6.1 Access Control System Architecture Implementation

In this section, the S-DiSACA evolution and its life-cycle since the business schema interfaces are
requested and generated until the application can execute operations over the data are presented.

1https://code.ua.pt/projects/s-draca/repository?rev=phd

https://code.ua.pt/projects/s-draca/repository?rev=phd

86 Chapter 6. Access Control System Architecture and Evaluation

FIGURE 6.1: S-DiSACA overview.

Furthermore, the interface generation and implementation processes is also detailed for the new data
access API.

Fig. 6.1 shows the new architecture, which is a direct evolution from the Secure, Dynamic and
Distributed Role-based Access Control Architecture (S-DRACA) shown in Fig. 2.1 that includes the
changes and new features presented in the previous chapters.

The most notable changes are on the server-side of the diagram, where a controller and API handler
were added to the Policy Manager to account for the changes discussed for operation sequencing.
An optional user data store was also introduced, which may contain the data about the users, as
well as an external user data provider that can provide this data instead. The authentication service
was also included to reflect the changes discussed in section 4.3, and a new Policy Decision Point
(PDP) component was added to handle the access control decisions from the policies stored in the
policy data store. The administration component allows manipulating the policies stored in the policy
data store and the data ingestion & classification component allows to insert data into the system.
One important aspect of this PDP is that it is now connected to a policy data store. This means that
policies can now be changed through the administration component at runtime, and the PDP can
automatically detect new policies and enforce them.

The following subsections detail how these components work together during the life-cycle of an
application that uses the S-DiSACA.

6.1.1 Business Schema Interface Generation

The most important feature in the S-DiSACA is the automatic generation of the data access APIs called
Business Schemas. Since these interfaces are tailored to each client application, a method is necessary
to provide them with the interfaces for the development process.

6.1. Access Control System Architecture Implementation 87

When a client application being developed, a tool can be used to connect to the Policy Manager
and to generate the Business Schema interfaces. It connects and authenticates using the procedures
detailed in this chapter, and once that process is completed, the API metadata is requested.

The metadata received by the client application is shown in Listing 6.1 and is comprised of the
flowcharts that it is authorized to execute ("sequences" JSON object) and the API function names,
parameters and their data types ("interface" JSON object). The decision of whether a client application
is authorized to execute a given flowchart is made by the PDP during the metadata generation process,
using the access control policies defined in the Policy Server data store.

LISTING 6.1: API metadata JSON schema.

1 {
2 " i n t e r f a c e " : [{
3 "name" : " op_name " ,
4 " returnType " : "< return_type >" ,
5 " modif iers " : "< modif ierss >" ,
6 " parameters " : [{
7 "name" : "<param_name>" ,
8 " type " : "<param_type >" ,
9 " modif iers " : "< param_modifiers >"

10 } , . . .]
11 } , . . .] ,
12 " sequences " : {
13 "<sequence_name >" : {
14 " ! entryPoint " : "<op_name>" ,
15 "<op_name>" : {
16 " cacheCode " : "< cache_code >" ,
17 " nextOps " : [
18 "<next_op_name_1 >" ,
19 "<next_op_name_2 >" ,
20 . . .
21]
22 }
23 }
24 }
25 }

The "interface" JSON array is quite straightforward. It contains a list of JSON objects, one for each
operation, that contains its name (line 3), a return type (line 4), modifiers (line 5) and parameters
(lines 6-10). The "parameters" entry is also a JSON array of objects that contains the name, type, and
modifiers of each parameter.

The "sequences" JSON object contains an object for each sequence indexed by its name (line 13).
This object indexes the starting operation of the sequence with the "!entryPoint" key (line 14), and
stores another JSON object entry per operation in the sequence (line 15). This object contains an entry
called "cacheCode" (line 16) that indicates from which previous operations a parameter is needed
from the result cache, and the "nextOps" key contains an array of operation names that can follow this
operation (lines 17-21).

88 Chapter 6. Access Control System Architecture and Evaluation

FIGURE 6.2: S-DiSACA layered interface generation example.

It is from this metadata that the Business Schemas interfaces are generated and implemented.
However, the interface generation process cannot just create a single Business Schema interface with
all the received operations, as one of the objectives is to ease the development burden of not having to
master the defined sequences. Thus, the Business Schemas are generated in layers, as shown in

Fig. 6.2 shows an example implementation of a set of Business Schemas from a very simple set of
flowcharts. Two types of interfaces are generated, a ProxyAPI interface meant to be instantiated by the
client application and a set of flowchart Business Schema interfaces.

The flowchart Business Schemas follow a naming convention of the type "S_<flowchartName>
_<id>". The "S" indicates that this class refers to a sequence of operations, and distinguishes this type
of Business Schemas from those implemented previously. "<flowchartName>" states which flowchart
the interface belongs to and finally "<id>" uniquely identifies the flowchart. Thus, "S_FindArticle_0",
which can be instantiated from the ProxyAPI, is the root (id 0) Business Schema of the "FindArticle"
flowchart. After executing an operation in this Business Schema, the "S_FindArticle_1" Business
Schema is automatically instantiated which contains the next available operations according to the
flowchart.

Fig. 6.3 shows an example interface declaration of the ProxyAPI, and it contains a function for each
flowchart that the client application is authorized to execute. These functions instantiate the Business
Schema associated with the root node in each respective flowchart, which allows executing the associ-
ated operation. The functions have the naming convention "<flowchartName>_<operationName>()",
so "FindArticle_searchArticles()" instantiates a Business Schema that allows to execute the "searchArti-
cles" operation related to the "FindArticles" flowchart.

Lastly, the final step during the compilation process of the client application is to generate the
Business Schema interfaces, an example of which is shown in Fig. 6.4.

The Business Schema interfaces have two types of functions declared: a single "execute" function,
which executes the operation associated with this Business Schema; and a set of other functions
whose name corresponds to other operations in the flowchart and that instantiates the next respective
Business Schema. The execute function can be implemented with any number of parameters, in
this case, the "searchArticles" operation requires a "query" parameter to find related articles for. The
"consumer" parameter is always present and allows the client to process the reply. The "execute"

6.1. Access Control System Architecture Implementation 89

FIGURE 6.3: S-DiSACA proxy interface example.

FIGURE 6.4: S-DiSACA Business Schema interface example.

function also returns a reference to the same Business Schema, which allows the client to chain function
calls. All other functions used to instantiate the next Business Schemas take no parameters.

After all Business Schema interfaces are generated, the client application can finish its compilation
process and any changes to the access control policies are reflected in the Business Schemas available.

6.1.2 Business Schema Interface Implementation

After the Business Schema interfaces have been generated and the client application developed using
them, the client application is ready to be used. The client application begins by configuring the
Business Manager, which requests once again the most updated metadata from the Policy Manager
(after connecting and authenticating) and proceed to implement the Business Schemas.

Fig. 6.5 shows the implementation of the "S_FindArticle_0" interface. The ProxyAPI is not shown
but its functions are similar to the "getArticlebyTitle()" function, where a Business Schema factory
is used to instantiate a particular Business Schema and validates that the flowchart is indeed being
traversed correctly. The Business Schemas also have access to the Sequence Controller (line 11) and a

90 Chapter 6. Access Control System Architecture and Evaluation

FIGURE 6.5: S-DiSACA Business Schema implementation example.

Remote Executor that sends the "Execute" command to the Policy Manager and handles the remote
execution process.

Thus, the "execute" function simply invokes the "remoteExecute()" function in the Remote Executor,
passing the flowchart name, operation name, and any parameters it receives. The result of this call is
then sent to the consumer so that the client application can easily process it (line 23). Fig. 6.6 shows a
slightly different implementation of the "execute()" function, which belongs to the "S_FindArticle_1"
Business Schema. This Business Schema is associated with the "getArticleByTitle" operation, and as
such one would expect it to receive as a parameter the "title" of the article to search for. However,
since a previous Business Schema is used to obtain a list of articles titles, the "title" parameters can
come from the result cache.

This process is shown in this figure, where the Remote Executor is still used to execute the un-
derlying operation, but the "title" parameter is obtained from the result cache within the Sequence
Controller (line 24). The relevant sequence data is obtained and the cached result from the "searchArti-
cles" operation is used. Note that the operation names from where to obtain the required parameters
are sent in the "cacheCode" entry of the metadata associated with each operation (Listing 6.1).

With this implementation process completed, the Business Manager is then able to compile the

6.1. Access Control System Architecture Implementation 91

FIGURE 6.6: S-DiSACA Business Schema implementation example with result cache.

generated classes and to instantiate each of them as necessary, allowing the client to issue the execution
of operations over the data until termination.

6.1.3 Business Schema Usage

To show how all of these classes and interfaces are put together and used, an example client application
is shown in Fig. 6.7.

The figure shows the main class, named "Example", that is annotated with a custom "DACAMan-
agedApplication" annotation (lines 20-23). This annotation is the compilation tool that manages the
generation of the Business Schema interfaces every-time the application is compiled (note that even
though the password is hard-coded for display purposes, in a real application it would be requested
to the user).

Looking at the main function, the first important piece of code is in lines 32 and 33, where the
Business Manager is configured by passing the authentication credentials and the IP address of
the authentication service. This prompts the implementation of the generated interfaces, and any
mismatch between them results in an exception at this stage. After this process is complete, the
application is now able to access and manipulate the data.

First, the client application should instantiate the ProxyAPI discussed previously using a special
"instantiateProxyAPI()" function in the Business Manager (line 35), which uses a class loader to instan-
tiate the interface from its implementation. Then, the client application can select the "searchArticles"
operation from the "FindArticles" flowchart and execute it with the provided article name (line 38).
Note that since the ProxyAPI contains only the authorized flowcharts, a developer can easily identify
which use cases are available and what the first operation is expected to be. The client application
then provides a consumer, which in this case simply filters the results to find an article name identical
to the one desired (lines 39-40). If such a title name is found, then it is set as a parameter in the reply
(line 41).

After this is done, the client application requests the next Business Schema in the flowchart
("getArticleByTitle", line 42) and executes it passing another consumer that prints the article and
the error message received (lines 43-45). Note that the interface allows only to get operations that
follow the current flowchart, meaning that a developer can easily follow a flowchart without having
to master any of them. Additionally, the client application does not set the article title when executing,
as the desired title was already set in the previous step as a protected parameter.

The client application then executes a different flowchart, requesting the 5 most recent modified
articles (lines 49-51), and terminates.

92 Chapter 6. Access Control System Architecture and Evaluation

FIGURE 6.7: S-DiSACA client example.

6.1.4 Operation Sequencing

Similarly to the parameter protection feature, the operation sequence in the S-DRACA was only
applied on the client application for ease of use. It allowed the application developers to quickly
follow the defined use cases without mistakes. However, it could be easily bypassed by using reflection
mechanisms to disable the sequence controller. Thus, in the S-DiSACA a sequence controller was also
placed on the Policy Manager to ensure that the data access followed the predefined sequences of
operations. This sequence validation process is performed during the validate call in Fig. 6.9 and is
more clearly detailed in Fig. 6.8.

The diagram shown in this figure shows most of the process required to execute an operation.
First, the Business Manager in a client application connects to the Policy Manager worker responsible
to handle its requests, which performs some credential validation (explained in the next section).

6.1. Access Control System Architecture Implementation 93

FIGURE 6.8: S-DiSACA remote execution diagram with operation sequencing.

After the client is authenticated, the Policy Manager instantiates a sequence controller for the client,
generating in the process the operation sequences that the client application is authorized to execute.
These sequences are stored as graphs that the sequence controller can easily navigate.

From these sequences, the Business Manager can implement the various Business Schemas that
the client application was written to use. These are then used by the application to execute various
operations, sending the "Execute" command along with the sequence name S being executed, the
method name M (i.e. the action in a flowchart context) and a flag indicating if a new sequence is being
initiated (R). The Policy Manager then handles the request by checking with the sequence controller
if the sequence and the method both exist, resets the sequence if the flag R indicates that the client
is starting a new sequence (resetting the user context) and if the method indicated is in one of the
nodes that follow the current node in the sequence. If everything checks out, the Policy Manager then
requests the execution of the method to the API handler and obtains an APIResult object.

Before sending the APIResult object to the client application, the Policy Manager signs it, a crucial
step in the communication security that is explained in section 4.3. The APIResult is then sent both to

94 Chapter 6. Access Control System Architecture and Evaluation

FIGURE 6.9: S-DiSACA remote execution call flow.

the client application for processing and the sequence controller to cache the valid results that can be
used in posterior executions as parameters.

The client application also performs these checks locally to prevent any attempt to execute methods
that violate the defined sequences, and the Business Schemas are implemented in such a way that
the provided interface prevents methods from being executed out of order. This aims to ease the
development burden that such an approach would bring.

6.1.5 Remote Execution

In this section, the implementation approach regarding the remote call execution of operations
through the Business Schemas along with the protection of the operation queries and their parameters
is detailed.

The call flow used in the S-DiSACA to remotely execute a database access method is shown in
Fig. 6.9. It begins at the point where the client application executes a method in one of the Business
Schemas. This method sends an "Execute" command to the Policy Manager requesting the execution
of the operation with the same name. The Policy Manager then validates the request, ensuring that
the method name exists and that the number of parameters matches, along with several other security
checks that are detailed in the next section. If every security check is satisfied, the Policy Manager
requests the execution of the method to the API Handler, which can invoke said method via reflection.
The invoked API implementation method then performs its logic to query the underlying database.

Once the API implementation receives the result, the API Handler constructs an APIResult object,
which the Policy Manager then processes and sends back to the client application. The APIResult

6.1. Access Control System Architecture Implementation 95

processing, among other things, saves the result in its result cache so that it can validate future
execution calls if necessary.

The Business Schema also processes the result to cache it to validate future execution calls of other
Business Schemas when necessary. Note that this process can be manipulated by malicious users
as previously mentioned. However, since the Policy Manager now also verifies each execution and
the parameters used, such an attempt results in a runtime execution error contained in the received
APIResult object.

6.1.6 Communication Security and Data Integrity

The communication security in the S-DiSACA is concerned mostly with the confidentiality and
integrity of the data used within the architecture. These are broad terms that can be applied in
multiple layers of the architecture, some already discussed.

However, the question of how an encrypted communication channel can be created that authen-
ticates both the server and the client application as legitimate entities yet stands, as well as how
to guarantee that the data returned by the database is used accurately within the architecture for
parameter protection. Both of these concepts are analysed and discussed in this section.

Data Integrity

The process by which the S-DiSACA can remotely execute operations has been detailed, however the
way that the results obtained from the database are stored and their integrity guaranteed has yet to be
discussed.

As previously mentioned, the database results are transmitted through the network as APIResult
objects. Fig. 6.10 shows the methods and fields used by this class.

Most of these methods and fields are straightforward, they are used to store the operation that
generated the results, the results to be used as parameters in a follow up operation and the eventual
error message. However, a malicious user may be able to attack these objects and modify any of these
fields to achieve various results.

Fortunately, the operation and the parameters are already protected as discussed earlier in this
chapter. However, it could still try to alter the sequence identifier sequenceUUID in an attempt to
manipulate the available parameters and the operation to execute next by using an APIResult from
one flowchart in another. Since the same application can try to execute different flowcharts at the
same time, this would be possible.

To prevent this type of attack, the APIResult objects are created with the safekeeping of the data
integrity in mind. To achieve this goal, the APIResult objects must be signed by the Policy Manager.
This signature exists in the object itself and it depends on the operation, results, error message, and
sequenceUUID fields. This field is set using the sign method, which also sets the Policy Manager
sequence identifier. Then, anyone with the Policy Manager public key can use the verifySignature
method to verify the signature on the object and to ensure that none of the related fields have been
modified.

96 Chapter 6. Access Control System Architecture and Evaluation

FIGURE 6.10: APIResult class methods and fields.

Note that the parameters field is not verified with the signature, this is because the results to be
used as parameters are set by the client application, not the Policy Manager. However, the client
application cannot modify the sequence identifier without the Policy Manager detecting, and the
parameter protection feature of the S-DiSACA ensures that the parameters set are always valid.

Encrypted Communication

In this section, the implementation of encrypted communication via Secure Sockets Layer (SSL)/Transport
Layer Security (TLS) with a pre-shared key is further detailed.

To reiterate, the approach discussed in section 4.3.2 introduced the idea of modifying the SSL/TLS
master key S with a pre-shared key PSK known only to the legitimate client and server. This means
that once this process completes and the communication remains intelligible then both parties are
authenticated.

Eq. 4.17 has shown the process by which the master key S can be modified. Therefore, it is only
required to call the "ChangeCipherSpec" procedure on the SSL/TLS socket used for communication
to ensure that the read and write cyphers are updated. Fig. 6.11 and 6.12 show how this process can
be achieved at a high level in a server and a client application, respectively.

6.1. Access Control System Architecture Implementation 97

FIGURE 6.11: Java server-side TLS pre-shared key application[38].

FIGURE 6.12: Java client-side TLS pre-shared key application[38].

Once a socket is created, a cypher suite of the type "TLS_DH_anon..." is used. This cypher states
that the key exchange protocol used is Diffie-Hellman, but more importantly that no authentication is
performed (anon), which means that certificates are no longer required to establish the connection.
Then, the object responsible for setting the connection key is obtained from the socket via reflection
(the handshaker object in the example) and accessed to manually modify the key agreed between the
client and the server.

Fig. 6.13 shows the process of changing the TLS key for the Oracle Java 8 implementation of
the TLS protocol. While this process is different from other implementations, the underlying idea
remains the same. For reference, reading or modifying a field through reflection requires 3 steps:
first, a reference to the field or method of a class must be obtained (e.g. line 85); second, the field or
method must be set as accessible (line 86); and third, the reference can be used to get, set, or invoke
the respective instance on an object of the associated class (line 87).

Lines 85 to 87 save the connection state of the socket, which is needed later. Then, the masterSecret
is obtained from the socket (line 90-93). This masterSecret is our key S and as such it is modified using
the pre-shared secret secret (lines 96-99).

Then, a reference to the changeConnectionKeys method is obtained and invoked with the new key S
(lines 107-110). This creates two separate internal keys, one for reading and another for writing data.
Once these two internal keys are generated, they must be used to create the read and write cyphers.
This process requires the handshaker to be set with the state cs_HANDSHAKE (lines 113-118). Lastly,
the references to the changeReadCiphers and changeWriteCiphers are obtained and invoked so that the
TLS socket effectively uses the new keys (lines 121-128) and the previous connection state is reset (line
131).

In the example above for Oracle Java 8, the secret had already been transformed and hashed with a
salt value, so secret = H(F(PSK)), and the process that modifies the masterSecret (S) just hashes both
of these values together, changing S into S′.

98 Chapter 6. Access Control System Architecture and Evaluation

FIGURE 6.13: TLS key modification procedure for Oracle Java 8.

This approach was presented in [38]. However, since it uses reflection mechanisms to modify the
TLS keys, it is dependent on the TLS implementation and may not work once the development kit for
a programming language is updated. Thus, a fallback method is also presented in Fig. 6.14, which
uses a public key from the server to encrypt a randomly generated secret s. This secret is sent by the
client to the server to use as the encryption key for the communication going forward.

However, this fallback approach does not authenticate the client and malicious users may be capa-
ble of impersonating the servers by installing their own certificate authority on the client applications.
To authenticate both of them, a simple challenge-response mechanism is used to ensure that both

6.1. Access Control System Architecture Implementation 99

FIGURE 6.14: Mutual challenge-response authentication protocol.

parties know the pre-shared secret.
After the communication is encrypted, this mutual authentication takes place. To the left and right

of the vertical lines is shown what pieces of information the client and the server owns, respectively,
and when they acquire it. First, the client generates the client challenge cc and the server challenge sc
randomly. The client sends its challenge cc to the server, which it uses to calculate the client challenge-
response ccr. It then sends the sc and the ccr to the client. The client calculates the expected client
challenge-response and compares it to the received value. If they are the same, then the server has
proven to know the pre-shared key and the process continues, otherwise, the connection is dropped.
Then, the client calculates the server challenge-response scr from the sc and sends it to the server,
which also calculates the expected value and compares it to the one received from the client. Once
again, if they are the same then the authentication succeeded, otherwise the connection is dropped.

If the challenge-response exchange succeeds, then data may be exchanged in the encrypted
communication channel. The major downside of the fallback method to the TLS with pre-shared key
proposed above is that it does not follow a standard, and could be vulnerable to more obscure attacks.

This process has also been secured against one common attack known as a reflection attack. This
attack has a malicious user connect to the server until he receives the server challenge sc. Then, a
secondary connection is established where the client sends the challenge sc back to the server to obtain
the correct response scr. That response is then sent to the server on the first connection to authenticate
successfully. To prevent this attack, the cc and the sc challenges are modified so they always end in 0
and 1, respectively. This way, during the second connection in the above attack scenario, the server
can detect that it was sent a server challenge instead of a client challenge and drop the connection
immediately. Finally, Man-In-The-Middle attacks are also prevented by the initial encrypted secret s
that only the legitimate server can decrypt.

100 Chapter 6. Access Control System Architecture and Evaluation

Security Considerations

It is important to consider the implications that these two approaches have on the security of the
communication. In [111], three security considerations are presented that should be taken into account
when dealing with communication protocols such as SSL/TLS.

The first consideration is regarding perfect forward secrecy [116] and it expresses the property of a
communication protocol to not compromise past session keys if the long-term keys are compromised.
Considering that the adapted protocol uses the Diffie-Hellman private key exchange, which generates
a different key S for each handshake of the protocol, when the key S′ is compromised it is only possible
to decrypt that communication session, given that the malicious user is also in possession of the client
pre-shared key. Since the agreed keys S are independent of one another, all past communications
remain uncompromised, providing perfect forward secrecy. The same applies to the fallback method
since the key generated by the client that is encrypted using the servers public key is randomly
generated for every new communication channel created and they are all independent of one another.

The second consideration regards to brute-force and dictionary attacks. The use of a fixed shared
secret of limited entropy such as a pre-shared key chosen by a human (e.g. a password) may allow a
malicious user to perform a brute-force or dictionary attack to recover the shared secret. This may
be executed as an off-line attack (against a captured TLS handshake message) or as an on-line attack
where the malicious user attempts to connect to the server and tries different keys. In the case of a
protocol that uses Diffie-Hellman, such as the first method proposed, the malicious user can only
obtain the message it requires by getting a valid client to connect to him, for example by using a
Man-In-The-Middle attack. The same can happen in the fallback method when the malicious user
impersonates the server by installing his own certificate authority on the client application. While
a weak pre-shared key can be obtained from such methods, only future communications between
the client and the server are vulnerable, since the key S changes every time a new connection is
established in both methods.

Additionally, since a Man-In-The-Middle attack is required to obtain the data needed for an offline
attack, it is always detectable because the malicious user won’t be able to replay the communication
before carrying out the attack. Given that the authentication fails for that first Man-In-The-Middle
attack, if the system triggers a forced pre-shared key reset then future communications are not
vulnerable. However, as with many other protocols, a malicious user could carry out a denial of
service attack by making Man-In-The-Middle attacks on every communication attempt.

Finally, considering identity confidentiality, currently both approaches send the client identity
encrypted with the server public key. However, since the client identity is required for the server
to know which pre-shared key to use to modify the agreed key S, this method would only prevent
eavesdroppers from knowing the communicating parties. In a Man-In-The-Middle attack scenario,
the malicious user would still be able to know the identity of the client.

6.2. Configuration and Usability Costs 101

6.2 Configuration and Usability Costs

One critical aspect that has not been addressed yet is the usability cost of using an architecture such as
the one presented here. Every feature that aims to improve the security of a system always brings
some sort of drawback, such as overhead on computational resources (i.e. CPU time, memory, storage,
etc.) and/or usability complexity in the form of additional configuration steps and prompts.

When it comes to the usability complexity, increasing the security requirements may lead to users
struggling with using the architecture [108], which in turn makes them choose more convenient and
functional solutions. Alongside security, usability played a key role in the design of the architecture
that lead to the careful design of the interface of the generated Business Schemas and ProxyAPI.
Furthermore, the configuration of the policies to be used in the Binary Decision Fuzzy Inference
System (BDFIS) to grant permissions to each user was also made easier by a couple of simple tools.

The usage of the ProxyAPI and the Business Schemas was already covered in section 6.1, including
how they are generated, implemented and used. Section 6.1.3 also demonstrates how these interfaces
allow a developer to follow the different flowcharts without having to master any of them.

The main outstanding issue that remains is the cost of configuring this architecture to be used by
developers, which includes the following steps:

1. Create the access control policies;

2. Implement a server-side data access API;

3. Define the operations used in the data access API and the flowcharts that use them;

4. Define the permissions and associated flowcharts;

5. Create a record for each new user/application.

These steps naturally incur a cost to be carried out when compared to simpler solutions already
available. However, these are one time costs that will result in lower application development,
debugging, and user management times as most of the policy-aware data access code generation
is automated. Furthermore, the generated interfaces allow developers to easily follow the defined
flowcharts, which naturally satisfies the access control policies. Lastly, if more than one application
needs to be developed that accesses the same data, every common flowchart and operation can be
reused to automatically generate the client-side data access layer.

While access control policies can be written using standard Fuzzy Control Language (FCL) and
the server-side data access API implemented using an IDE, the relations between the access control
policies, their permissions, the flowcharts and the data access API operations still need to be defined.
In this proof-of-concept, a simple tool was used to insert and manage these relations in an SQLite
database, a file-based relational database. The architecture can read the relations from this database
to initialize the flowcharts internally and then associate the authorized flowcharts with the users.
While a similar tool was also used to manage the users, they should be automatically registered in a
real world scenario to avoid human intervention. These tools are first described in this section, and
possible better alternatives discussed afterwards.

102 Chapter 6. Access Control System Architecture and Evaluation

FIGURE 6.15: PolicyDB relational schema.

6.2.1 Configuration Tools

Since there are tools available to parse and validate FCL files and an Integrated Development Environ-
ment (IDE) can be used to write the data access APIs, what remains is to create the user/application
records and the mapping between the policies, permissions, flowcharts and operations.

Fig. 6.15 shows the database schema used to map the written policies with the permissions,
flowcharts and operations. First, a policy must be written in FCL and then the Java tool can insert it
into the policy database. A policy must be associated with a security level, a label used to describe the
policies applicable to the data being protected. An hash of the FCL policy is also stored alongside it to
allow the architecture to quickly detect changes in policies. The permissions that a particular FCL
policy makes access control decisions for are also stored in the Permissions table.

The flowcharts are stored in the Sequences and SequenceRelations tables. The former stores the
flowchart name and the first operation. The latter stores the edges of the flowchart by associating
an operation with the next allowed operation. The cacheCode is used by the architecture to retrieve
a parameter from a previous operation with the specific label from the results cache. Finally, the
Operations table stores every operation available in the data access API and the PermSeqs table relates
permissions with the flowcharts they authorize. The Java tool requests all the necessary information
and stores it in this database for the architecture to use.

Fig. 6.16 shows the available commands on the policy management tool. It allows to list, add and
remove operations, sequences and policies. When adding sequences or policies, the operations that
they use or reference must have already been defined. For sequences, the tool requests the sequence
name and then the first operation. Afterwards, it will display the first operation and request the
operations allowed to execute after it, repeating for each new operation referenced. Finally, when
adding policies it will request the security level and a path to the FCL file, which is parsed and
validated before being stored. The permissions handled by each policy are also requested at this step.

Regarding the user and authentication data, Fig. 6.17 shows the database schemas of the databases
resposible for storing them. The authentication database is used by the authentication service, which

6.2. Configuration and Usability Costs 103

FIGURE 6.16: Policy management tool interface.

FIGURE 6.17: AuthDB (left) and UserDB (right) relational schemas.

is meant to store the user credentials and the user encoded key C mentioned back in section 4.3. The
user database stores the database credentials for each user in the table Users and the data used to feed
to BDFIS to determine which permissions are granted in the table Data. The latter can be obtained
from a trusted third-party instead if available.

Fig. 6.18 shows the commands available in the tool that manages the users. It simply allows to
register a new user, which requests the username, password and other user specific data required by
the BDFIS for the access control decision making process. The database credentials are automatically
generated and stored encrypted by the symmetric key C as previously discussed.

104 Chapter 6. Access Control System Architecture and Evaluation

FIGURE 6.18: User management tool interface.

6.2.2 Alternative Configuration Methods

The development of these tools were not the main focus of this thesis, and as such only a basic
solution was developed to showcase the proof-of-concept. However, using the tools shown above in a
real-world scenario poses some problems.

It is not always the case where a database application is developed from scratch. In many cases, a
codebase already exists that accesses the database directly and it already adheres to the access control
policies if it was validated, albeit implicitly. In these scenarios, instead of a tool that allows to define
the policies a parser could be used. The parser could analyse the codebase and infer the flowcharts
used.

However, a tool to validate the policies both created manually and potentially generated by parser
is necessary. Considering that projects can model their requirements using UML diagrams, a tool that
maps the designed diagrams with the access control policies, flowcharts and permissions would be
essential to increase the trustworthiness of the security experts in the system using the architecture.

While the initial cost of using this architecture is greater than using simple database connectivity
tools and solutions, the initial time investment can be reduced with these (and other) more sophis-
ticated tools. Furthermore, it is important to understand that the time is compensated at the later
stages of application development, as the data access layer code is mostly automatically generated,
correct and robust, allowing developers to quickly and easily follow the established access control
requirements and policies. Finally, the soft access control policy support also enables users to be
quickly authorized provided a trustworthy source of user data is available, reducing the management
load in scenarios with highly desired data.

6.3 Correctness Evaluation

In this section, the correct operation of the S-DiSACA as presented is evaluated. The implementation
was made in Java and follows the architecture shown in Fig. 6.1.

6.3. Correctness Evaluation 105

TABLE 6.1: Test case flowcharts.

Flowchart Operations

1 FindArticle searchArticles -> getArticleByTitle
2 BanUser getUsers -> banUser
3 UnbanUser getUsers -> unbanUser
4 UpdateArticle updateArticle
5 GetLastModifiedArticles getLastModifiedArticles
6 GetNumberOfArticles getNumArticles
7 CorrectArticle see Fig. 6.19
8 DeleteArticle deleteArticle
9 ArticleStatistics getArticleModificationCount

The client application is built upon the example shown in Fig. 6.7, where each attempt to access
the Wikipedia article data stored in a MongoDB instance is modified in some way to test a separate
security feature. The MongoDB was chosen to store the Wikipedia articles because it is optimized to
store documents and it would also allow testing the architecture with a non-relational data store. The
PDP is a BDFIS, built using the jFuzzyLogic library, that is created using policy files written in FCL.
The policy server and user data stores were implemented using SQLite.

6.3.1 Test Subject and Policies

While the complete API to access the articles is shown in Fig. 4.1, when using a subject it should only
have access to the subset of operations it is authorized to use.

This authorization is determined by three different aspects: the subject’s parameters that are
provided to the system; the FCL policy files that define how those parameters influence whether a
permission is granted or denied; and which flowcharts are associated with each permission.

The subject’s parameters can be obtained in a myriad of ways, from self-collection to requesting
them to a trusted third-party. This is crucial to ensure that each subject is correctly authorized,
however, it is very context-dependent. In this proof of concept, the attributes of the test subject were
stored in the user data store manually. In terms of the FCL policy files, three were created for this
test scenario: the researcher, business, and administrative policies. Each of these policies also has a
Read and Write permission output and are applied to a security level of the same name. Each of the
defined flowcharts was then given a specific security level and permission that would be required to
access them. A public security level was also created, but no FCL policy file was defined since any
flowchart with this particular security level is meant to be always available to every subject. Finally,
nine distinct flowcharts were created that allow a subject to access and manipulate articles and other
associated data, shown in Table 6.1.

This table enumerates each defined flowchart and the sequence of operations that defines them.
Flowcharts 4, 5, 6 and 8 are single operation sequences, and allow the subjects to execute that operation
standalone. Flowcharts 1, 2, and 3 have sequences of two operations, and flowchart 7 is shown in
Fig. 6.19 since it is considerably more complex to show in the table. Flowchart 7 allows a subject to

106 Chapter 6. Access Control System Architecture and Evaluation

FIGURE 6.19: CorrectArticle flowchart.

TABLE 6.2: Test case flowchart security levels.

Flowchart Permission Security Levels

1 FindArticle Read public
2 BanUser Write administrative
3 UnbanUser Write administrative
4 UpdateArticle Write researcher

5 GetLastModifiedArticles Read researcher
business

6 GetNumberOfArticles Read public
7 CorrectArticle Write administrative
8 DeleteArticle Write administrative

9 ArticleStatistics Read
researcher
business

administrative

correct multiple articles by getting an article, possibly checking its previous versions and updating it
or reverting it to one such version.

Table 6.2 shows the defined security levels and which permission is required from each security
level to authorize a subject. It is clear from the table that a given flowchart, such as flowchart 5, can
have more than one security level associated. This allows subjects to be authorized via different
policies, as only one of the policies has to be satisfied. Fig. 6.20 shows the outputs of the BDFIS when
the test subject used in this proof of concept connects to the system.

The figure is divided into three columns, once for each policy. The number in parenthesis next
to each variable and term indicates the crisp input value in the case of the input variables, the crisp
output value in the case of the output variables, and the membership degree/rule strength in the case
of the linguistic terms.

The research policy column to the left shows three input variables (avgDBP, NumPublications and
NumCitations), two abstract variables (Activity and Expertise) and two output variables (Read and Write).

6.3. Correctness Evaluation 107

FIGURE 6.20: BDFIS output for the test subject.

It determines the level of expertise of the subject given the number of publications and citations, as
well as the degree of recent activity from the average number of days between publications (avgDBP).
The activity and expertise levels are then used to determine if the subject is authorized to access the
operations protected with the researcher policy via the Read and Write permissions.

The research policy in the middle column refers to the business policy, which has three input
variables (PartnerLevel, TimePartnered and avgCPH), one abstract variable (Cost), and two output
variables (Read and Write). It determines how much a partner has cost the company in terms of their
partner level, how long they have been a partner and the average number of calls made per hour
(avgCPH). The cost level is then used to determine if the subject is authorized to access the operations

108 Chapter 6. Access Control System Architecture and Evaluation

protected with the business policy via the Read and Write permissions.
Finally, the column to the right refers to the administrative policy, which has two input variables

(Role and NumPastIncidents), one abstract variable (Trust) and two output variables (Read and Write).
The level of trust is calculated based on the number of past incidents involving the subject, and it
is only authorized via the Read and Write permissions if that subject is both an administrator of the
system and the trust level is high enough.

Note that the Role input variable linguistic terms, much like the PartnerLevel terms in the business
policy, are used as Boolean sets. A subject either is an administrator or it is not. This is defined using a
singleton function and allows to incorporate both fuzzy and crisp conditions into the decision making
process.

The ProxyAPI class shown in Fig. 6.3 was generated using this test subject and allows us to
verify that the client application was only provided with the flowcharts that it was authorized to
execute. In this scenario, the text subject was granted the Read permission in both the research
and business policies, which according to Table 6.2 gives access to four flowcharts: FindArticle,
GetLastModifiedArticles, GetNumberOfArticles, and ArticleStatistics. These flowcharts are the same
ones that were implemented in the ProxyAPI class.

6.3.2 Correctness Scenarios

In this section, several scenarios of the utilization of the S-DiSACA are tested to verify the correctness
of the presented features.

The normal usage scenario was shown previously in Fig. 6.7, and it showcased how the client
application connects to the S-DiSACA system and issues requests through the available flowcharts.

However, the developers of the client application can attempt to maliciously subvert the defined
policies by employing different methods, such as attempting to change the underlying operation to
achieve a different outcome. These scenarios are discussed, implemented and tested in the following
sections.

Invalid Parameter Insertion

One way that a malicious user can try to subvert the system is by inserting a fake result parameter into
the reply received from the Policy Server. With this approach, a malicious user is attempting to have
the system execute an operation with an invalid parameter to change the outcome of an operation in
some way, such as to potentially corrupt / vandalize the data.

Fig. 6.21 shows how this can be achieved in Java. In line 107, the ProxyAPI object is accessed to
issue the execution request for the searchArticles operation. When a reply is received, the application
extracts the object that holds the results set as parameters from the reply (line 108), adds its own
custom parameter into it (line 109). Then, it issues the execution of the following operation in the
flowchart (line 111).

However, since the Sequence Controller looks at the result set in the Business Schemas previously
executed to find valid parameter values, this approach is immediately thwarted given that the result
added as a parameter does not exist in the original result set. The Policy Server replies with the error

6.3. Correctness Evaluation 109

FIGURE 6.21: Invalid parameter insertion implementation.

FIGURE 6.22: Invalid result insertion implementation.

message "One or more APIResult set parameters do not exist as previously obtained results for the
current sequence.", indicating precisely that.

Invalid Result Insertion

Another way that a malicious user can similarly try to subvert the system is by inserting a fake result
into the result set received from the Policy Server. This is a more carefully thought out approach as
the custom parameter is now also set as a result received from the Policy Server. In this way, there is
no clear mismatch between the set of result and the set of results to be used as parameters.

Fig. 6.22 shows how this could be potentially achieved in Java. In line 95, the ProxyAPI object is
accessed to issue the execution request for the searchArticles operation. When a reply is received, the
application extracts the object with the results from the reply (line 96) and adds its own custom result
(line 97). Then every single result is set as a parameter for the following operation (line 98).

However, upon execution of the next operation (line 99), the Policy Server should still detect the
modification of the result set. Since the signature (a signed hash) described in section 4.3 for data
integrity no longer matches, the execution is prevented a reply with an error message is returned
instead. In fact, upon executing this function the Policy Server replies with the error message "Invalid
signature in one or more APIResult parameter.", as expected.

110 Chapter 6. Access Control System Architecture and Evaluation

FIGURE 6.23: Signature modification implementation.

FIGURE 6.24: Operation change implementation.

Signature Modification

Since adding a custom result and setting it as a parameter did not work, one might think to change
the signature itself. Since this signature is created using a private key that only the Policy Server has
access to, creating a new, valid signature for the modified APIResult object is extremely unlikely.

Nevertheless, Fig. 6.23 shows how the signature in the reply object could be modified and tested
to verify the correctness of the system. Once again, in line 119, the ProxyAPI object is accessed to
issue the execution request for the searchArticles operation. When a reply is received, the application
modifies the signature in the reply (line 120) to its own custom signature.

Unsurprisingly, the Policy Server replies with the error message "Invalid signature in one or more
APIResult parameter.", as the custom signature was no longer created using the Policy Server private
key. If the private key is stolen, however, valid signatures could potentially be created. Therefore, the
importance of keeping these private keys secure is paramount.

Operation Change

A different approach that a malicious user could attempt to do to subvert the Sequence Controller
would be to modify the APIResult underlying operation. While it is true that the operation being
modified has already been executed, the operation associated with an APIResult is what is used by the
Sequence Controller to determine from which result set a parameter is obtained. Thus, this approach
potentially allows results to be used as parameters that are not valid.

6.3. Correctness Evaluation 111

FIGURE 6.25: Result reuse between flowcharts implementation.

Fig. 6.24 shows how this approach could be implemented. In line 130, the ProxyAPI object is
accessed to issue the execution request for the searchArticles operation. When a reply is received, the
application sets a different underlying operation that generated the reply (line 131) and executes the
next operation in the flowchart (line 133).

Again, the Policy Server replies with the error message "Invalid signature in one or more APIResult
parameter.", as the signature also depends on the underlying operation. Since the operation was
modified, the signature is no longer valid.

Instead of modifying the operation to try to use parameters from an APIResult that is not meant
to be used in another operation, the malicious user could use reflection to bypass the ProxyAPI
abstraction and send commands directly to the Policy Server. This would allow him to send any
operations in any order, but since the Policy Server instantiates the Sequence Controller to verify
that the operations being executed follow one of the defined flowcharts, the exception "SEQUENCE
VIOLATION" would be generated and thrown back to the client application.

Result Reuse Between Flowcharts

It is clear that, so far, the signature in the APIResult replies thwart any attempt to modify them and
have been still being accepted by the Policy Server. Therefore, a malicious user might attempt to not
modify an APIResult reply while still using it to his advantage.

112 Chapter 6. Access Control System Architecture and Evaluation

Fig. 6.25 shows an exploit implementation that follows this line of thought. An initial flowchart
is initiated and the first operation executed (line 143), getting as a reply a valid APIResult with a
parameter value that is in some way interesting to the malicious user. This APIResult is saved (lines
145). Then, a different flowchart is initiated and the first operation executed (line 151). However,
instead of using a result from the reply obtained during this second execution, the initial APIResult
reply is used instead (line 153). Lines 156 to 158 show the initial reply being saved as a valid result of
the second flowchart execution. Since none of the APIResult objects were modified, the signatures
are still valid, and therefore the Policy Server should accept the initial result from the first flowchart
execution in the second.

However, a security feature was added to prevent this scenario. Each APIResult contains a unique
sequence identifier that is set by the Policy Server when it is created. This identifier remains the same
for every APIResult created during a flowchart execution, but a new one is generated when a new
flowchart is initialized. Therefore, executing this approach results in the Policy Server replying with
the message "Unexpected sequence identifier in one or more APIResult parameter.", indicating that a
sequence mismatch was found in the identifiers.

While it is not shown in the figure, the malicious user could take the sequence identifier from the
second reply and set at in the first one, ensuring that the Policy Server does not find this mismatch.
Unfortunately, this process modifies the reply object, causing the signature to no longer be valid once
again.

6.4 Performance Assessment

In this section, a performance assessment is carried out to demonstrate primarily the overhead that the
S-DiSACA introduces in the data access procedure. However, while this overhead can be measured
and analysed, the impact of the usage of this architecture during the development stages of a client
application is harder to quantify.

Instead of letting developers access and manipulate the data directly on the data store, they
must now use a well-defined interface that contains only the data manipulation operations that the
application is authorized to execute. This implies that the development effort of writing correct data
manipulation logic has shifted from the application developers to an earlier point in the application
development life-cycle. However, once the policy files are created, the developers have at their
disposal data access interfaces that guarantee that the data access restrictions are always correctly
followed. Moreover, the architecture is not dependant on one single data store, reducing vendor
lock-in.

The potential benefits of using an architecture such as the S-DiSACA out-weight the earlier time
investment into creating a simple API access interface and the flowcharts that use its operations. This
is not only true during development, but also during the application maintenance and management
as data access bugs are reduced and constrained to a specific set of classes.

6.4. Performance Assessment 113

TABLE 6.3: Test machine specifications.

OS GNU/Linux
Kernel 5.3.0-40-generic #32~18.04.1-Ubuntu

CPU Intel i5-6200 @ 2.30GHz
RAM 8GB

Motherboard PS463E-07704KEP / TECRA A40-C (TOSHIBA)
Storage ATA SAMSUNG MZNTY256
Other Java OpenJDK 11.0.6 2020-01-14

In terms of the quantifiable performance key indicators, the time required by the architecture to
generate and compile the Business Schema interfaces, connect to the Policy Server and the querying
overhead are the measured, shown and analysed.

6.4.1 Testing Environment

To ensure that the results shown are reproducible, the specifications of the machine used to run the
tests are shown in Table 6.3.

This machine hosted the entire architecture to remove network round trips from the results, as
any network-related delays would be constant and simply added as many times as a message is sent
through the network. As such, the assessment focuses on the performance of the architecture itself.

6.4.2 Connection and Interface Generation

The time required by the S-DiSACA to initialize before it can be used by the client application to issue
data access requests was measured using the nanoTime() Java function. While this function does not
allow to determine the current time, it allows to measure time intervals with nanosecond precision.

The architecture goes through five major steps during initialization:

1. Authenticate, where the client application establishes a secure communication channel to the
Policy Server with mutual authentication;

2. GetMetadata, where the client application requests the flowcharts and operations it is allowed
to execute;

3. Controller, where the sequence controller object is initialized with the metadata retrieved in the
previous step;

4. Generate, where the ProxyAPI and Business Schema interfaces are generated;

5. Compile, where the ProxyAPI and Business Schema interfaces are implemented.

During the client application compilation phase, only steps 1, 2 and 4 are executed, while all five
steps are carried out during runtime. To measure the amount of time each step takes, 10000 separate
initializations were carried out. The results are shown in Table 6.4 and illustrated in Fig. 6.26.

114 Chapter 6. Access Control System Architecture and Evaluation

TABLE 6.4: S-DiSACA initialization performance results.

Authenticate GetMetadata Controller Generate Compile

Average 32,57 ms 4,71 ms 0,08 ms 1,12 ms 56,09 ms
Std. Dev. 20,41 ms 4,61 ms 0,05 ms 1,18 ms 41,96 ms

P95 69,35 ms 15,50 ms 0,18 ms 3,05 ms 143,31 ms

FIGURE 6.26: S-DiSACA initialization performance results.

Table 6.4 shows the average, the standard deviation and the 95th percentile results for all five
steps in milliseconds. It is clear from these results that the most expensive steps are the authenticate
step, which uses asymmetric encryption, and the compile step that needs to use the Java Compiler.
Regardless, the entire initialization takes 94, 57 ms during runtime (all steps) and just 48, 4 ms during
compilation (steps 1, 2 and 4), on average. Even considering the 95th percentile, the total time for the
initialization remains below 250 ms. These results are acceptable since 1 second is considered to be
the limit for no special feedback needed for the user [117].

6.4.3 Database Querying

So far the performance of the architecture during initialization was measured and analysed, which
leaves the querying performance that the client application gets through it. Since it was noted that the
communications between the client application and the policy server have several security features
implemented, the overhead of these features was also measured. Table 6.5 and Fig. 6.27 show the
results obtained.

It is clear from these results that the security features overhead adds approximately 9 ms to the
processing time of each request, with the secure requests taking about 16, 31 ms and the unsecure
requests 7, 71 ms on average. The overhead is actually less than 9 ms since the query execution time is
factored into these values and adds to the query verification time. This is why the queries executed
for this test were kept as simple as possible, as the verification time does not depend on the query
complexity. Another conclusion that can be made from these results is that the 95th percentile for both

6.4. Performance Assessment 115

TABLE 6.5: S-DiSACA querying performance results.

Secure Unsecure

Average 16,31 ms 7,71 ms
Std. Dev. 4,01 ms 2,79 ms

P95 24,36 ms 12,73 ms
Throughput 61 queries/s 130 queries/s

FIGURE 6.27: S-DiSACA querying performance results.

measurements is well below 0, 1 seconds, the threshold after which users lose the feeling of operating
directly on the data [117].

However, none of these results accounts for network round trip delays, which can increase these
values above the 0, 1 second limit (and lowers the impact of security features overhead). Fortunately,
special feedback is only necessary if a request ever takes more than 1 second to complete. Therefore,
client applications that use the S-DiSACA to access the data are still able to be used as interactive
applications without frustrating the users with overly large delays.

6.4.4 Auditing

In this section, the results obtained by applying the policy correctness auditing algorithm from section
5.2 are shown.

To do so, a brute-force algorithm was first used that called the evaluation engine for every single
possible combination of input values, and the decision to each combination was then compared to the
decision outputted by the optimized algorithm, which only used the evaluation engine in the cases
where the decision could not be predicted as detailed in chapter 5.2.

Furthermore, a proof of concept tool that implements the optimization algorithm for type-1 BDFIS
was used and is available2 along with the policies used here. The type-1 was chosen to demonstrate

2https://github.com/Regateiro/FuzzyAC/tree/master/java/BDFISAuditor

https://github.com/Regateiro/FuzzyAC/tree/master/java/BDFISAuditor

116 Chapter 6. Access Control System Architecture and Evaluation

FIGURE 6.28: Number of calls to the evaluation engine given different policies.

empirically the correctness of the results shown in 5.1.6. Once again, this tool leverages the jFuzzyLogic
Java library to implement fuzzy inference systems from FCL policy files.

Fig. 6.28 shows the number of calls done to the evaluation engine given distinct sets of three inputs
variables (A, B, and C) with different linguistic terms that interact with one another in a carefully
defined manner. Each variable is identified with a letter, which indicates a type of contribution, and
a number that indicates the percentage of the domain that is classified by that contribution. The
letter D stands for the deny contribution, the letter U for unknown contribution, and the letter N for
contribution to none. Thus, the label "D25-D25-U100" would mean that the first and second variables
contribute to the deny FDC in 25% of their domain (the rest is by default unknown) and the third
variable always has an unknown contribution.

All three variables have a domain range of 101 values ([0, 100]), for a total of 1013 = 1030301
possible input value combinations. By applying Eq. 5.12 and given that the unknown factor (N2 and
R2) cannot be optimized, if these three variables have a single range of unknown contribution spanning
their entire domain, the number of calls is always (101 + 0 + 0) ∗ (101 + 0 + 0) ∗ (101 + 0 + 0) =

1013 = 1030301. Thus, the "U100-U100-U100" case can be used to determine the degree of optimization
obtained, since it always results in the worse-case scenario.

Another aspect that can be extracted from these results is that a variable with no contribution
for a specific percentage of its domain translates directly to a reduction in the number of calls, since
"N25-U100-U100" saw a 25% reduction in the number of calls to the evaluation engine, and "N50-
U100-U100" saw a 50% reduction. The scenario labelled "N25-N25-U100", saw a reduction of 57%
in the number of calls. It makes sense to be 57% since the algorithm only checks 75% of the domain
of the first variable and then 75% of the second (0.75 ∗ 0.75 = 0.5625). The scenarios using the deny
contribution show that it is possible to optimize the auditing algorithm in these conditions. However,
the efficiency of the optimization depends on the output of the system, as combinations can only be
skipped once the output matches the contribution of the range.

6.4. Performance Assessment 117

FIGURE 6.29: Number of calls to the evaluation engine given variable order permuta-
tions.

Fig. 6.29 shows how the order of the variables influenced the number of calls to the evaluation
engine. Something that is immediately clear is that the ranges of no contribution do not impact the
efficacy of the optimization algorithm by themselves. Only the scenarios with deny contribution
ranges saw any change to the number of calls with different variable orders.

Looking at the scenarios with deny contribution ranges, it is clear that having the variables with
these ranges at the start of the order produces the best results. It was also observed that the scenario
"D50-D25-U100" always produced an equal or slightly better result after the last two variables where
switched and the variable with the largest range of unknown contribution came last. For example,
the order (A, B, C) and (A, C, B) had 487101 and 488351 calls to the evaluation engine, respectively.
Furthermore, in the "D50-D25-U100" scenario the number of calls to the evaluation engine increased
considerably in the (B, A, C) and (B, C, A) cases. This is because the variable with the greatest deny
range size (A) was not the first in the order, causing the βx factors to be smaller. In the (C, A, B) and
(C, B, A) cases where the variable with the entire unknown contribution is the first in the order, the
number of calls increased considerably for the same reason. This matches the expected behaviour
described in section 5.2.

Finally, a previously created policy that was not constructed specifically to test the algorithm was
used to verify the effectiveness of the algorithm in more realistic conditions. The policy in question
encoded a single vague concept, the Expertise of a subject, from the number of publications (NoP)
and the number of citations (NoC) related to said subject in a specific area. Depending on the level of
expertise if the subject it could be granted or denied access to a resource, such as being able to edit a
Wikipedia article.

118 Chapter 6. Access Control System Architecture and Evaluation

TABLE 6.6: Input variables range partitioning.

Variable Domain Range Read Write

NoP [3, 5] Unknown Unknown
NoP [5, 10] No No
NoP [10, 15] Unknown Unknown
NoP [15, 18] Unknown Grant
NoC [0, 4] No No
NoC [4, 10] Grant Unknown
NoC [10, 30] No No
NoC [30, 40] Grant Unknown
NoC [40, 80] Unknown Unknown
NoC [80, 100] Grant Unknown

Table 6.6 shows each input variable already partitioned into classified domain ranges. From it,
it can be seen that the domain range of the NoP variable is [3, 18] and the domain range of the NoP
variable is [0, 100].

The table shows how common ranges of no contribution can be. About 38% of the NoP variable
domain and 26% of the NoC variable domain have no associated contribution to the output. This can
be explained by the fact that different membership functions usually do not change their output when
one plateaus, as shown in Fig. 5.4.

This relies on the assumption that the membership functions plateau at some point. Functions
that do not plateau (and are triangular in shape, instead of trapezoidal) have fewer ranges of no
contribution as a result. However, not every membership function changes its output in the same
domain ranges. Thus, it can be expected that triangular-shaped functions result in more deny or grant
contribution ranges instead.

Fig. 6.30 shows the number of calls made to the evaluation engine for both the Read and Write
permissions that were defined in the FCL. The Max line indicates the number of calls that a brute-force
algorithm would perform.

The best result obtained was for the Read permission, where only 499 calls out of 1616 were made
to the evaluation engine (31%). Similarly, the Write permission required 736 calls out of 1616 (46%).

Finally, to further show the applicability and efficacy of this algorithm on different scenarios, the
risk-based policy described in [43] (which was discussed in section 3.1.2) was written and passed
through the algorithm. The three input variables all possess the same domain [0, 1], which means
that with an update step of 0.01 a brute force algorithm would require (101 + 0 + 0) ∗ (101 + 0 + 0) ∗
(101 + 0 + 0) = 1013 = 1030301 evaluations to complete the analysis by applying Eq. 5.12. However,
while the membership functions and rules that apply to each of the three input variables are defined
by the authors, no output permissions were specified nor how to translate the output level of risk into
which permissions are granted or denied. This was defined for the algorithm as shown in Tab. 6.7.

Thus, permissions P1 to P4 were defined in order of importance for the scenario, meaning that as
risk increases, the first permission to be revoked is P4, then P3, etc. Fig. 6.31 shows the assessment of
the algorithm in this scenario. The algorithm was able to reduce the number of calls to the evaluation

6.5. Architecture Literature Positioning 119

TABLE 6.7: Output rules in the risk-based policy.

Risk\Perm. P1 P2 P3 P4

Negligible Grant Grant Grant Grant
Low Grant Grant Grant Deny

Moderate Grant Grant Deny Deny
High Grant Deny Deny Deny

Unacceptable High Deny Deny Deny Deny

engine considerably, using between 6.59% and 8.42% of the number of evaluation calls that the brute
force algorithm would require for all permissions.

While these results are promising, the efficacy of the algorithm still depends greatly on the policy
itself. The unknown contribution ranges depend on how much the membership function ranges that
contribute to a single Fuzzy Decision Component (FDC) overlap and where they overlap. Additionally,
fuzzy rules that take the same linguistic terms and apply them to different output outcomes can also
contribute to the increase of unknown contribution ranges. Therefore, additional work into further
optimizing this algorithm is necessary to combat scenarios that exhibit these characteristics.

6.5 Architecture Literature Positioning

With the S-DiSACA implementation, configuration, usability, evaluation and performance assessment
detailed, the architecture is now in a position where it can be properly compared with the related
works and technologies found in the state of the art.

In terms of the remote access to databases, the architecture can be compared to solutions such as
database drivers like Java Database Connectivity (JDBC) and Object-Relational Mapping (ORM) tools

FIGURE 6.30: Number of calls to the evaluation engine.

120 Chapter 6. Access Control System Architecture and Evaluation

like Hibernate. While JDBC provides developers with the highest levels of flexibility by allowing
them to execute any query on the database, Hibernate maps the tables to classes and each entry on
the table becomes instances of those classes. This allows developers to let Hibernate deal with the
database queries while they work on the objects.

However, neither of these solutions have out-of-the-box communication security, protect the
database credentials or are able to hide the database schema from being accessible from the client
application. S-DiSACA supports all this out-of-the-box, but it does restrict the developers flexibility
to execute what they want on the database. They are restricted not only to the operations that are
defined in the data access APIs, but they must also follow the operation sequencing to ensure that
the use cases are properly implemented. The architecture also generates data access interfaces on the
client application for the developers to use. These interfaces prevent costly development and quality
assurance time being spent finding and correcting errors, but they require some effort to be spent
configuring the architecture properly for which some configuration tools already exist.

Regarding the soft access control model, the BDFIS is a modified Mamdani-type Fuzzy Inference
System (FIS) where the output layer is configured with permission variables, each with a deny and a
grant fuzzy set that allows to output an access control decision once defuzzified. Moreover, its policies
can be audited by a security expert using the optimized auditing algorithm researched for FIS with
binary outputs.

Most of the soft access control models found in the literature focus on specific application scenarios
while the BDFIS is a general solution. This means that while the literature solutions are easier to
fine-tune to their respective application scenarios by already having the necessary input/output
variables, fuzzy sets, membership functions and fuzzy rules defined, the BDFIS requires some more
effort to achieve the same level of fine-tuning. In contrast, the BDFIS can be used in any access control
scenario as it is not designed with any specific set of variables, rules or vague concepts in mind. Table
6.8 shows the comparison between BDFIS and the related works in the literature.

FIGURE 6.31: Evaluation calls made by the optimized algorithm in the risk scenario.

6.6. Summary 121

TABLE 6.8: Soft access control models comparison.

BDFIS [44] [41] [23] [43] [77]

Concept Any Risk Roles Trust Risk Trust
Inputs Any 3 1 3 3 3

Outputs Any 1 Any 1 1 1

Most of the works in the literature seem to take the approach of defining three input variables
that are used to calculate the level of either risk or trust, measures that are used to determine which
permissions and levels of access to give to the users and other devices. The only work that stands
out is [41] which adapts the Role-Based Access Control (RBAC) to use fuzzy logic by fuzzifying
the subject-role and role-permission relations. This means that the model makes its access control
decisions solely based on the roles of the subjects, but on the other hand it allows to have any number
of permissions granted or denied as an output.

The architecture as a whole trades some of the flexibility that other state of the art solutions provide
for ease of development in the case of the remote database access, and for wider applicability in the
case of the soft access control model. Both of these trade-offs were made to broaden the application
scenarios of the S-DiSACA and to bring an access control solution to scenarios where none existed
before, such as vandalism prevention for the Wikipedia.

6.6 Summary

In this chapter, the S-DiSACA and the previously presented auditing algorithm were evaluated in
terms of their correctness and performance. A proof of concept of the architecture and a standalone
policy auditing tool was built to obtain the results shown and made available in a code repository.
Moreover, the tools and database schemas developed to configure and support the architecture
were also shown. This led to comparing the initial configuration cost of the architecture versus the
development time gained from the automation and lower quality assurance needs. Potential new
venues for configuration tools were also discussed. A comparison of the S-DiSACA against the related
works in the literature was also carried out.

During the correctness evaluation, the S-DiSACA proof of concept was used in a variety of
scenarios that attempted to bypass several of the security requirements brought forth in section 1.1.
The performance evaluation consisted of measuring and analysing the time required to generate and
compile the Business Schema interfaces, connect to the Policy Server and query the data. The results
showed that the enhanced security features did not impact the performance in a way that made the
architecture unusable in interactive applications.

Regarding the policy correctness auditing algorithm, several test policies were used to showcase
the expected behaviour in terms of performance with different ratios of no, single and unknown
contribution ranges. The test scenario with the subject Expertise was also tested, along with a policy
adapted from a scenario found in the literature.

123

Chapter 7

Discussion and Conclusions

This thesis focused on two fronts to broaden the application scenarios of access control: the develop-
ment of secure and correct database applications; and the applicability of access control systems in
scenarios where traditional solutions are not a good fit.

In section 1.1, several issues related to these contexts were identified and a list of research goals
was introduced to solve them. These goals are discussed to determine to which extent they were
achieved if any new issues were discovered, and what possible lines of research can follow.

As previously mentioned, goals 1 to 6 had already been achieved in the previous iteration of
this work, the Secure, Dynamic and Distributed Role-based Access Control Architecture (S-DRACA).
However, several issues remained that were addressed in this research work. These issues were
transposed into research questions in section 1.3, which were answered over the course of the
dissertation.

7.1 Interface Generation and Implementation

The first goal was intended to ease the application development effort by having a tool automatically
request the authorized operations and generate data access interfaces tailored to each application,
which is closely tied to RQ3. This way, developers are not required to master which operations they
are allowed to execute on the data and do not have to implement the necessary code to execute each
operation either. This reduces the time spent developing and testing the correctness of the application.
Not only that, changes to the policies that define the authorized operations for an application should
also be reflected automatically to let developers know what must be changed in the application code
and where.

This is the initial goal that led to the research and development of the first architecture and has
evolved ever since up to the previous iteration. Since it is a very mature concept, the core idea in
the Secure, Dynamic and Distributed Soft Access Control Architecture (S-DiSACA) remained the
same. However, the process had to be adjusted due to the interface changes incurred from the need to
support non-relational databases. Further changes were also necessary to support the sixth goal to
ensure that the generated interfaces allowed developers to follow the defined flowcharts with minimal
hassle.

124 Chapter 7. Discussion and Conclusions

Nonetheless, this concept can still be improved in the future. Developers still need to code the
execution of each operation within a flowchart so that the parameters can be set. An evolution of this
approach could have a single Business Schema with the various flowcharts defined within, allowing
the developers to request the execution of a flowchart instead of each operation. To handle the
parameters, the observer pattern could be used to have the generated Business Schema request the
necessary parameters and pass the intermediate results to a listener.

7.2 Operation and Parameter Protection

The second and third goals are also tied to RQ3 and focus on ensuring that the operations are
always executed as intended and with valid parameters. Standard solutions such as Java Database
Connectivity (JDBC) do not support this level of security, allowing users to potentially execute
arbitrary operations or to modify the parameters used via reflection.

The previous iteration took an initial step to address these issues. Instead of sending the Structured
Query Language (SQL) query associated with an operation, a token that identifies the operation was
sent instead. Then, the Business Schemas on the client application would call a stored procedure,
passing the token and the parameters. This stored procedure would then load the correct SQL
query and execute it. While this approach prevented users from executing arbitrary operations, it
was dependent on relational database features such as stored procedures. Furthermore, the stored
procedure was implemented for a specific relational database and it needed to be adapted to work in
others.

The approach presented in this dissertation turns the idea of sending a token to the server into
a more traditional web server architecture. The client application sends a request for a specific
operation to be executed on the data, and the Policy Server executes it using the custom application
programming interface (API) developed for the application scenario. Since the operation protection is
based solely on having the operations defined on the server so that the client cannot modify them,
the S-DiSACA does not allow the custom API to be modified at runtime. However, such a feature
might be interesting as a future goal to allow new operations to be added or to quickly fix a bug in
the implementation of the API without stopping the Policy Server and affecting the existing client
applications.

Finally, protecting the parameters used in the operations is a much harder goal to achieve. The
previous iteration made it so protected parameters needed to be passed using the Business Schemas.
The client application would read the data in a Business Schema until the row with the desired data
was selected and then it would be passed to the next Business Schema for execution. While this
approach would prevent parameters from being passed directly to the Business Schemas, it did not
validate the parameters on the server-side, allowing reflection mechanisms to be used. However, this
approach provided the framework to the solution presented in this dissertation where a signed object
from the Policy Server would be used to select the desired parameter, which can be validated by the
server.

7.3. Database Credentials and Secure Communication 125

Unfortunately, the layers of security added to the replies that the client application receives from
the Policy Server does impact the performance. Optimizing the security material and the validation
checks used on every request is a possible step moving forward to target application scenarios with
tighter performance requirements.

7.3 Database Credentials and Secure Communication

The fourth goal focused on solving a particular issue with current client database applications used
within businesses, which is that the applications tend to have the database credentials included in
them. Although these applications are not meant to be used by the public, they may still be found in
semi-public contexts such as a reception desk. If the employee responsible for that area needs to leave
for some reason or is coerced to insert a device in the host machine such as a USB drive, the client
application can be targeted and the database credentials extracted. This goal is therefore connected
with RQ2.

To prevent this from ever being possible, the previous iteration focused on pushing the database
credentials to a proxy server on the server-side. The client application would connect and authenticate
with this proxy server, which would then connect to the database and relay the communication.
However, this approach suffered from an issue where if the proxy server had a vulnerability and
was exploited, the database credentials would still be obtained. This idea was built upon so that
two servers are now involved, and to obtain the database credentials both servers would have to
be exploited. The search for further vulnerabilities should be carried out in the future to mitigate
potential exploits.

The fifth goal is intended for specialized scenarios where placing trust in certificate authorities or
paying for a digital certificate is not acceptable. Since communication encryption in languages such
as Java is implemented requiring such certificates, having a secure communication channel in these
conditions is made difficult. The previous iteration implemented secure communication channels
using unauthenticated Transport Layer Security (TLS) channels and then modifying the agreed key
with a pre-shared key, which would indicate that both endpoints know the shared secret if they could
communicate after. This process would also serve to authenticate the client and the server. However,
if the shared secret was ever guessed, man-in-the-middle attacks could be carried out. This issue was
addressed by using asymmetric keys, allowing the client application to send an ephemeral random
key to the server to function as a shared secret. The server would be authenticated via the public key
used by the client to send the ephemeral key, and the client could then authenticate itself by sending
its credentials.

Unfortunately, both approaches rely on reflection mechanisms to modify the initial TLS key to
work, meaning that the current implementation relies on the vendor-specific implementation of the
TLS objects made by Oracle for Java 8. As such, proper implementation of the TLS protocol that allows
using pre-shared keys should be adopted or created in the future.

126 Chapter 7. Discussion and Conclusions

7.4 Operation Sequencing

The sixth goal is one of the most important goals in the architecture, as it aims to allow security experts
to define use cases through a sequence of operations that can be executed by the client application.
This goal is therefore linked with the second half of RQ3.

The previous iteration allowed the definition of simple sequences of operations. These were quite
restrictive because from one operation only one other operation could follow it. There was no ability
to add branches and choices to the execution. Furthermore, the sequence controller that checked if the
sequences were being followed during the execution of operations could be bypassed using reflection
mechanisms. The current iteration, on the other hand, supports the definition of these sequences
using graphs (known as flowcharts) that are now also validated on the server-side. Furthermore, the
Business Schemas implemented on the client-side reflect these flowcharts and ensure that developers
cannot unwillingly execute operations out of order. This effectively allows the use case logic to be
implemented automatically into the application code and promotes the importance of proper use case
definition early on in the application development life-cycle.

While a command-line tool to generate these flowcharts exists, a more intuitive tool that not only
allows to generate these sequences but also shows them as they are being manipulated is essential
to be pursued in the future. Furthermore, when a flowchart is modified, a transition period where
the old flowcharts would still be accepted to allow developers to provide an update to the client
application could be beneficial.

7.5 Interface Abstraction for Generic APIs

The seventh goal aims to resolve an applicational gap that leans heavily on RQ1. This gap formed due
to the previous iterations being focused solely on relational database applications while non-relational
databases became more ubiquitous. The interface generation model used was based on SQL queries
(through JDBC) which is a common language between different relational databases. Non-relational
databases, however, have varying interfaces and specificities that make it difficult to have a single
common API. Thus, being able to define and register with the Policy Server a custom data access API
that is built to make the most out of these non-relational databases.

The previous iteration supported this goal by generating and implementing interfaces that
wrapped a JDBC connection object. Thus, it allowed executing create, read, update, and delete
(CRUD) operations over this object while providing the application with a subset of the standard
JDBC API functions. However, this came with a cost: the client applications were required to have a
direct connection to the database. A solution using a proxy server was developed that partially solved
this issue, but the client application still had to connect to the database to instantiate the JDBC object.
Furthermore, the proxy server relied on reflection mechanisms to relay the communication, so distinct
versions of Java could break the solution.

To gracefully address these issues the interfaces being generated cannot rely on JDBC due to its
limitations. In the S-DiSACA, the generated interfaces request the execution of the operations to the
Policy Server using messages instead of an underlying JDBC object, granting more freedom regarding

7.6. Dynamic Permissions and Soft Requirements 127

how the data access API is defined and implemented. However, this approach also comes with a cost.
The previous approach used a JDBC object because it is a common method to connect and manipulate
data in relational databases in Java, and as such it provided a consistent API that the developers
did not have to relearn. While the new approach can be used to generate and implement a JDBC
compatible API if desired even if the data is not stored in a relational database, it now needs to be
manually defined.

Future work focused on harmonizing both approaches where a tool can generate and implement
the Policy Server API based on well-known data access mechanisms, for both relational and non-
relational data stores, could close this gap and help security experts to spend less time on the definition
of the data access API to be used by the client applications. Another aspect worth considering for a
possible future work is related to synchronous operation executions. Some operations may update
database records and if the database does not support transactions the functionality should be
incorporated into the S-DiSACA. Furthermore, if the architecture is scaled horizontally and multiple
instances are running at the same time, they will need to coordinate the execution of these operations
as well. Then, a study of the cost of the application of this synchronization across instances of the
architecture should be carried out.

7.6 Dynamic Permissions and Soft Requirements

The eighth goal sets itself apart from the previous goals as it involves a new line of research that
had not been followed before within this work, which is why RQ4, RQ5 and RQ6 connect to it.
The idea of allowing permissions to be dynamically assigned to users as they issue data access
requests expand the applicability of the architecture to scenarios where there is no fixed set of users.
Furthermore, the approached taken to support this goal also included adding support for soft access
control requirements to scenarios where it is difficult to crisply define who has access to which data
given some information about the user.

This approach has shown to have many benefits. It has allowed policies to be easily modified
at runtime using an existing standard language (RQ4), something that the previous iteration of
the architecture lacked; a new user can now make a data access request as long as the necessary
information about him is available from a trusted source; and the access control rules can the written
using fuzzy logic, which makes it easier for new security experts to understand its purpose.

Unfortunately, this dynamism and abstract access control rules came with some great caveats:
first, the cost of configuring this must not outweigh the benefits obtained during development; and
second, auditing the correctness of the access control policies is extremely difficult. The first caveat is
addressed by presenting the tools used to ease configuration and by providing future venues for new
and better tools. Regarding the second caveat, since there is no set of users allowed to access the data,
the full domain of the parameters used to grant permissions to the users can be combined at each
request. Ensuring that the access control policy allows only expected combinations of input values to
have certain permissions is impossible to do without a specialized tool to analyse the policies.

128 Chapter 7. Discussion and Conclusions

The first step towards creating this auditing tool was researched and presented here. With it,
security experts can now analyse the clusters of input parameter values that are granted permissions
and determine if they are no strange outliers (RQ5). While the performance results for this tool and
its associated search algorithm are promising, there are several avenues for further optimization in
the future that also shine a light into how variables interact with each other within these systems,
including using formal verification of the inference chains in the policies to address any conflicting
rules that may cause ranges with unknown decision support. Furthermore, the fuzzy inference
systems used to incorporate the soft access control requirements can also be used to integrate artificial
intelligence systems. Instead of requiring a security expert to define the membership functions, an
artificial intelligence system can provide the membership degrees to each linguistic term instead. This
approach has many nuances and is also a viable line of research.

Finally, several questions about the applicability of fuzzy logic in access control have also been
answered. Fuzzy logic is by nature vague, leading to the auditing issue discussed above, and thus
using it to protect access to sensitive information is a questionable approach (RQ6). The point is that
fuzzy logic should be used in scenarios where traditional access control models are not a good fit,
such as community-managed information (e.g. Wikipedia) and systems with no set list of users (e.g.
communication between Internet of Things (IoT) sensors).

129

Appendix A

Example Policy File Using FCL

In this appendix, an example policy definition for the BDFIS using FCL is shown and discussed. To
demonstrate how the abstract layers can be handled, this example focuses on a type-1 BDFIS.

LISTING A.1: First function block in example FCL policy.
1 FUNCTION_BLOCK V a r i a b l e I n f e r e n c e
2
3 VAR_INPUT
4 NoP : REAL ; (* RANGE(0 . .) *)
5 NoC : REAL ; (* RANGE(0 . .) *)
6 END_VAR
7
8 VAR_OUTPUT
9 E x p e r t i s e : REAL ;

10 END_VAR
11
12 FUZZIFY NoP
13 TERM Low := (3 , 1) (5 , 0) ;
14 TERM Medium := (3 , 0) (5 , 1) (1 3 , 1) (1 8 , 0) ;
15 TERM High := (1 0 , 0) (1 5 , 1) ;
16 END_FUZZIFY
17
18 FUZZIFY NoC
19 TERM Low := (0 , 1) (4 , 1) (1 0 , 0) ;
20 TERM Medium := (4 , 0) (1 0 , 1) (4 0 , 1) (8 0 , 0) ;
21 TERM High := (3 0 , 0) (1 0 0 , 1) ;
22 END_FUZZIFY
23
24 DEFUZZIFY E x p e r t i s e
25 TERM Low := 1 ;
26 TERM Medium := 2 ;
27 TERM High := 3 ;
28 TERM Very_High := 4 ;
29 METHOD : COGS ;
30 END_DEFUZZIFY
31
32 RULEBLOCK E x p e r t i s e
33 RULE 0 : IF (NoP IS Low) AND (NoC IS Low) THEN E x p e r t i s e IS Low ;
34 RULE 1 : IF (NoP IS Low) AND (NoC IS Medium) THEN E x p e r t i s e IS High ;
35 RULE 2 : IF (NoP IS Low) AND (NoC IS High) THEN E x p e r t i s e IS Very_High ;
36 RULE 3 : IF (NoP IS Medium) AND (NoC IS Low) THEN E x p e r t i s e IS Low ;
37 RULE 4 : IF (NoP IS Medium) AND (NoC IS Medium) THEN E x p e r t i s e IS Medium ;
38 RULE 5 : IF (NoP IS Medium) AND (NoC IS High) THEN E x p e r t i s e IS High ;
39 RULE 6 : IF (NoP IS High) AND (NoC IS Low) THEN E x p e r t i s e IS Low ;
40 RULE 7 : IF (NoP IS High) AND (NoC IS Medium) THEN E x p e r t i s e IS Medium ;
41 RULE 8 : IF (NoP IS High) AND (NoC IS High) THEN E x p e r t i s e IS Very_High ;
42 END_RULEBLOCK
43
44 END_FUNCTION_BLOCK

Listing A.1 shows the first half of the FCL definition, where the first set of rules that maps the input
layer to the abstract layer variables and linguistic terms. It begins by defining a FUNCTION_BLOCK
called VariableInference in line 1, which is closed in line 44. A function block is an FCL feature that

130 Appendix A. Example Policy File Using FCL

contains the variable and rules definitions. The input variables NoP and NoC are defined in the
VAR_INPUT block in lines 3 to 6. Likewise, the output variable Expertise (for this function block) is
defined in the VAR_OUTPUT block in lines 8 to 10. This output variable is an abstract variable that is
used as input for the next function block.

The step that follows is the input variable fuzzification process. This process for each of these
variables is defined in the FUZZIFY blocks in lines 12 to 16 and 18 to 22. These FUZZIFY blocks have
TERM features that define the linguistic terms for each variable, including their names and a function
definition. These functions can be defined using a set of (x, y) points for piecewise linear functions or
a single x value for a singleton function.

The DEFUZZIFY block in lines 24 to 30 defines the output variable linguistic terms and the
defuzzification method to use. Since this is actually the definition of the abstract variable that is used
in the next function block, singleton functions are used to simplify the process. The RULEBLOCK in
lines 32 to 42 defines the set of rules to apply between the input and output linguistic terms, one per
RULE entry.

LISTING A.2: Second function block in example FCL policy.
1 FUNCTION_BLOCK AccessControl
2
3 VAR_INPUT
4 E x p e r t i s e : REAL ; (* RANGE(0 . .) *)
5 END_VAR
6
7 VAR_OUTPUT
8 Read : REAL ;
9 Write : REAL ;

10 END_VAR
11
12 FUZZIFY E x p e r t i s e
13 END_FUZZIFY
14
15 DEFUZZIFY Read
16 TERM Deny := 0 ;
17 TERM Grant := 1 ;
18 METHOD : COGS ;
19 END_DEFUZZIFY
20
21 DEFUZZIFY Write
22 TERM Deny := 0 ;
23 TERM Grant := 1 ;
24 METHOD : COGS ;
25 END_DEFUZZIFY
26
27 RULEBLOCK Read
28 RULE 0 : IF (E x p e r t i s e IS Low) THEN Read IS Deny ;
29 RULE 1 : IF (E x p e r t i s e IS Medium) THEN Read IS Grant ;
30 RULE 2 : IF (E x p e r t i s e IS High) THEN Read IS Grant ;
31 RULE 3 : IF (E x p e r t i s e IS Very_High) THEN Read IS Grant ;
32 END_RULEBLOCK
33
34 RULEBLOCK Write
35 RULE 0 : IF (E x p e r t i s e IS Low) THEN Write IS Deny ;
36 RULE 1 : IF (E x p e r t i s e IS Medium) THEN Write IS Deny ;
37 RULE 2 : IF (E x p e r t i s e IS High) THEN Write IS Deny ;
38 RULE 3 : IF (E x p e r t i s e IS Very_High) THEN Write IS Grant ;
39 END_RULEBLOCK
40
41 END_FUNCTION_BLOCK

The second half of the policy definition is shown in Listing A.2 and the function block defined
within follows the same structure as the first. However, the VAR_INPUT block declares the Expertise
abstract variable as input instead. The associated FUZZIFY block in lines 7 to 10 is left empty, as the

Appendix A. Example Policy File Using FCL 131

linguistic terms and their associated rule strengths are obtained from the first function block and set
programmatically.

Since this is the last function block, it maps the abstract variables defined in the previous one to the
output variables. These output variables are the permissions that must be either granted or denied,
and the VAR_OUTPUT block defines the Read and Write example permissions. Moreover, these output
variables use the predefined FDC linguistic terms, declared in the DEFUZZIFY blocks in lines 15 to 19
and 21 to 25. Note that the Deny term is set to the x value 0, and the Grant term to x value 1.

Finally, one RULEBLOCK per output variable is defined in lines 27 to 32 and 34 to 39, stating
whether the Read and Write permissions are granted or denied depending on the Expertise level. This
FCL definition can be loaded and used out of the box by tools such as jFuzzyLogic [118], [119] in Java
to implement a BDFIS, requiring only that the program sets the abstract variable linguistic terms and
their membership degrees in the FUZZIFY blocks as they are used in new function blocks.

133

Bibliographic References

[1] R. Shirey, “Internet Security Glossary, Version 2”, Tech. Rep. 9, Aug. 2007, pp. 1278–1308. DOI:
10.17487/rfc4949. [Online]. Available: https://www.rfc-editor.org/info/rfc4949.

[2] Oracle, JDBC Introduction, 1997. [Online]. Available: http://docs.oracle.com/javase/
tutorial/jdbc/overview/index.html (visited on 11/11/2019).

[3] Microsoft, LINQ (Language-Integrated Query), 2007. [Online]. Available: http : / / msdn .

microsoft.com/en-us/library/bb397926.aspx (visited on 11/11/2019).

[4] Microsoft, ADO.Net. [Online]. Available: http://msdn.microsoft.com/en-us/library/
e80y5yhx(v=vs.110).aspx (visited on 04/28/2014).

[5] C. Bauer and G. King, Hibernate in Action. 2005, p. 408, ISBN: 193239415X. [Online]. Available:
https://profs.info.uaic.ro/~ogh/files/doc/Manning%20- %20Hibernate%20In%

20Action.pdf.

[6] A. B. M. Moniruzzaman and S. A. Hossain, “NoSQL Database: New Era of Databases for
Big data Analytics - Classification, Characteristics and Comparison”, International Journal of
Database Theory and Application, vol. 6, no. 4, pp. 1–14, Jun. 2013. arXiv: 1307.0191.

[7] R. P. Padhy, M. R. Patra, and S. C. Satapathy, “RDBMS to NoSQL: Reviewing Some Next-
Generation Non-Relational Database’s”, International Journal of Advanced Engineering Sciences
and Technologies, vol. 11, no. 11, pp. 15–30, 2011, ISSN: 2230-7818.

[8] N. Leavitt, “Will NoSQL Databases Live Up to Their Promise?”, Computer, vol. 43, no. 2, pp. 12–
14, 2010. DOI: 10.1109/MC.2010.58.

[9] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters”, Commu-
nications of the ACM, vol. 51, no. 1, p. 107, 2008, ISSN: 10782. DOI: 10.1145/1327452.1327492.

[10] T. White, Hadoop: The Definitive Guide, 4th ed. O’Reilly Media, 2015, vol. 54, p. 756, ISBN:
978-1491901632.

[11] M. Dayalan, “MapReduce: Simplified Data Processing on Large Cluster”, International Journal
of Research and Engineering, 2018, ISSN: 23487852. DOI: 10.21276/ijre.2018.5.5.4.

[12] A. Halfaker, Y. Panda, A. Sarabadani, J. Du, and A. Wight, Objective Revision Evaluation Service.
[Online]. Available: https://ores.wikimedia.org/ (visited on 05/16/2019).

https://doi.org/10.17487/rfc4949
https://www.rfc-editor.org/info/rfc4949
http://docs.oracle.com/javase/tutorial/jdbc/overview/index.html
http://docs.oracle.com/javase/tutorial/jdbc/overview/index.html
http://msdn.microsoft.com/en-us/library/bb397926.aspx
http://msdn.microsoft.com/en-us/library/bb397926.aspx
http://msdn.microsoft.com/en-us/library/e80y5yhx(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/e80y5yhx(v=vs.110).aspx
https://profs.info.uaic.ro/~ogh/files/doc/Manning%20-%20Hibernate%20In%20Action.pdf
https://profs.info.uaic.ro/~ogh/files/doc/Manning%20-%20Hibernate%20In%20Action.pdf
http://arxiv.org/abs/1307.0191
https://doi.org/10.1109/MC.2010.58
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.21276/ijre.2018.5.5.4
https://ores.wikimedia.org/

134 BIBLIOGRAPHIC REFERENCES

[13] Ó. M. Pereira, R. L. Aguiar, and M. Y. Santos, “CRUD-DOM: A Model for Bridging the Gap
between the Object-Oriented and the Relational Paradigms”, in Proceedings - 5th International
Conference on Software Engineering Advances, ICSEA 2010, Nice: IEEE, Aug. 2010, pp. 114–122,
ISBN: 9780769541440. DOI: 10.1109/ICSEA.2010.25. [Online]. Available: http://ieeexplore.
ieee.org/document/5615022/.

[14] Ó. M. Pereira, R. L. Aguiar, and M. Y. Santos, “CRUD-DOM: A Model for Bridging the
Gap Between the Object-Oriented and the Relational Paradigms - an Enhanced Performance
AssessmentBased on a Case Study”, International Journal On Advances in Software, vol. 4, no. 1,
pp. 158–180, 2011. [Online]. Available: https://hdl.handle.net/10773/7959.

[15] Ó. M. Pereira, R. L. Aguiar, and M. Y. Santos, “ACADA: Access Control-driven Architecture
with Dynamic Adaptation”, SEKE’12 - 24th Intl. Conf. on Software Engineering and Knowledge
Engineering, pp. 387–393, 2012. [Online]. Available: http://repositorium.sdum.uminho.pt/
handle/1822/19866.

[16] Ó. M. Pereira, “DACA: Architecture to Implement Dynamic Access Control Mechanisms
on Business Tier Components”, PhD thesis, University of Aveiro, 2013. [Online]. Available:
https://hdl.handle.net/10773/11966.

[17] D. J. R. Figueiral, “Arquitetura Dinâmica de Controlo de Acesso”, Master’s thesis, 2012. [On-
line]. Available: https://hdl.handle.net/10773/10892.

[18] D. D. Regateiro, “A secure, distributed and dynamic RBAC for relational applications”, Mas-
ter’s thesis, University of Aveiro, 2014, p. 144. [Online]. Available: http://hdl.handle.net/
10773/14045.

[19] W. Zeng, Y. Yang, and B. Luo, “Content-Based Access Control: Use data content to assist access
control for large-scale content-centric databases”, Proceedings - 2014 IEEE International Conference
on Big Data, IEEE Big Data 2014, pp. 701–710, 2015. DOI: 10.1109/BigData.2014.7004294.

[20] M. Pelc, “Context-aware Fuzzy Control Systems”, International Journal of Software Engineering
and Knowledge Engineering, vol. 24, no. 5, pp. 825–856, Jun. 2014, ISSN: 0218-1940. DOI: 10.1142/
S0218194014500326.

[21] A. Chen et al., “A dynamic risk-based access control model for cloud computing”, in 2016
IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing
and Networking (SocialCom), Sustainable Computing and Communications (SustainCom), IEEE, Oct.
2016, pp. 579–584, ISBN: 978-1-5090-3936-4. DOI: 10.1109/BDCloud-SocialCom-SustainCom.
2016.90.

[22] R. McGraw, “Risk-Adaptable Access Control”, Privilege (Access) Management Workshop. NIST -
National Institute of Standards and Technology - Information Technology Laboratory, pp. 3-17–3-18,
2009. DOI: 10.6028/NIST.SP.800-95.

[23] P. N. Mahalle et al., “A Fuzzy Approach to Trust Based Access Control in Internet of Things”,
in Wireless VITAE 2013, IEEE, Jun. 2013, pp. 1–5, ISBN: 978-1-4799-0239-2. DOI: 10.1109/VITAE.
2013.6617083.

https://doi.org/10.1109/ICSEA.2010.25
http://ieeexplore.ieee.org/document/5615022/
http://ieeexplore.ieee.org/document/5615022/
https://hdl.handle.net/10773/7959
http://repositorium.sdum.uminho.pt/handle/1822/19866
http://repositorium.sdum.uminho.pt/handle/1822/19866
https://hdl.handle.net/10773/11966
https://hdl.handle.net/10773/10892
http://hdl.handle.net/10773/14045
http://hdl.handle.net/10773/14045
https://doi.org/10.1109/BigData.2014.7004294
https://doi.org/10.1142/S0218194014500326
https://doi.org/10.1142/S0218194014500326
https://doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.90
https://doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.90
https://doi.org/10.6028/NIST.SP.800-95
https://doi.org/10.1109/VITAE.2013.6617083
https://doi.org/10.1109/VITAE.2013.6617083

BIBLIOGRAPHIC REFERENCES 135

[24] Ó. M. Pereira, D. D. Regateiro, D. J. Simões, and R. L. Aguiar, “A Literature Review of Access
Control Mechanisms for the SQL Standard”, in Handbook of Research on Innovations in Access
Control and Management, A. K. Malik, A. Anjum, and B. Raza, Eds., 2015.

[25] Ó. M. Pereira, V. Semenski, D. D. Regateiro, and R. L. Aguiar, “The XACML Standard -
Addressing Architectural and Security Aspects”, in Proceedings of the 2nd International Conference
on Internet of Things, Big Data and Security, Porto: SCITEPRESS - Science and Technology
Publications, 2017, pp. 189–197, ISBN: 978-989-758-245-5. DOI: 10.5220/0006224901890197.

[26] Ó. M. Pereira, D. D. Regateiro, and R. L. Aguiar, “Extending RBAC Model to Control Sequences
of CRUD Expressions”, SEKE’14 - Intl. Conf. on Software Engineering and Knowledge Engineering,
vol. 2014-Janua, no. January, pp. 463–469, 2014, ISSN: 2325-9000. [Online]. Available: https:
//hdl.handle.net/10773/12568.

[27] Ó. M. Pereira, D. D. Regateiro, and R. L. Aguiar, “Role-Based Access Control Mechanisms”, in
2014 IEEE Symposium on Computers and Communications (ISCC), vol. 2, Vancouver: IEEE, Jun.
2014, pp. 1–7, ISBN: 978-1-4799-4277-0. DOI: 10.1109/ISCC.2014.6912546.

[28] Ó. M. Pereira, D. D. Regateiro, and R. L. Aguiar, “Secure, Dynamic and Distributed Access
Control Stack for Database Applications”, International Journal of Software Engineering and
Knowledge Engineering, vol. 25, pp. 364–369, Nov. 2015, ISSN: 0218-1940. DOI: 10 . 18293 /
SEKE2015-049.

[29] F. Fradique Duarte, D. D. Regateiro, Ó. M. Pereira, and R. L. Aguiar, “On the Prospect of
using Cognitive Systems to Enforce Data Access Control”, in Proceedings of the 2nd International
Conference on Internet of Things, Big Data and Security, SCITEPRESS - Science and Technology
Publications, 2017, pp. 412–418, ISBN: 978-989-758-245-5. DOI: 10.5220/0006370504120418.

[30] D. D. Regateiro, Ó. M. Pereira, and R. L. Aguiar, “On the Application of Fuzzy Set Theory
for Access Control Enforcement”, in Proceedings of the 14th International Joint Conference on
e-Business and Telecommunications, vol. 4, SCITEPRESS - Science and Technology Publications,
2017, pp. 540–547, ISBN: 978-989-758-259-2. DOI: 10.5220/0006469305400547.

[31] D. D. Regateiro, Ó. M. Pereira, and R. L. Aguiar, “SeqBAC: A Sequence-Based Access Control
Model”, in Proceedings of the 30th International Conference on Software Engineering and Knowledge
Engineering, vol. 2018, Jul. 2018, pp. 276–319. DOI: 10.18293/SEKE2018-099.

[32] D. D. Regateiro, Ó. M. Pereira, and R. L. Aguiar, “BDFIS: Binary Decision Access Control
Model Based On Fuzzy Inference Systems”, in The 31st International Conference on Software
Engineering and Knowledge Engineering, Lisbon, 2019. DOI: 10.18293/SEKE2019-039.

[33] Ó. M. Pereira, D. D. Regateiro, and R. L. Aguiar, “Distributed And Typed Role-Based Access
Control Mechanisms Driven By CRUD Expressions”, International Journal of Computer Science:
Theory and Application, vol. 2, no. 1, pp. 1–11, Oct. 2014, ISSN: 2336-0984. [Online]. Available:
http://orb-academic.org/index.php/journal-of-computer-science/article/view/35.

https://doi.org/10.5220/0006224901890197
https://hdl.handle.net/10773/12568
https://hdl.handle.net/10773/12568
https://doi.org/10.1109/ISCC.2014.6912546
https://doi.org/10.18293/SEKE2015-049
https://doi.org/10.18293/SEKE2015-049
https://doi.org/10.5220/0006370504120418
https://doi.org/10.5220/0006469305400547
https://doi.org/10.18293/SEKE2018-099
https://doi.org/10.18293/SEKE2019-039
http://orb-academic.org/index.php/journal-of-computer-science/article/view/35

136 BIBLIOGRAPHIC REFERENCES

[34] Ó. M. Pereira, D. D. Regateiro, and R. L. Aguiar, “Protecting Databases from Schema Disclosure
- A CRUD-Based Protection Model”, in Proceedings of the 13th International Joint Conference on
e-Business and Telecommunications, SCITEPRESS - Science and Technology Publications, 2016,
pp. 292–301, ISBN: 978-989-758-196-0. DOI: 10.5220/0005967402920301.

[35] D. D. Regateiro, Ó. M. Pereira, and R. L. Aguiar, “SPDC: Secure Proxied Database Connectivity”,
in Proceedings of the 6th International Conference on Data Science, Technology and Applications,
Madrid, Spain: SCITEPRESS - Science and Technology Publications, 2017, pp. 56–66, ISBN:
978-989-758-255-4. DOI: 10.5220/0006424500560066.

[36] D. D. Regateiro, Ó. M. Pereira, and R. L. Aguiar, “Server-Side Database Credentials: A Security
Enhancing Approach for Database Access”, en, in Communications in Computer and Information
Science, vol. 814, 2018, pp. 215–236, ISBN: 9783319948089. DOI: 10.1007/978-3-319-94809-
6_11.

[37] D. D. Regateiro, Ó. M. Pereira, and R. L. Aguiar, “A Search Space Optimization Method For
Fuzzy Access Control Auditing”, Knowledge and Information Systems, 2019. DOI: 10.1007/
s10115-020-01480-1.

[38] D. D. Regateiro, Ó. M. Pereira, and R. L. Aguiar, “Supporting Pre-shared Keys in Closed
Implementations of TLS”, in Proceedings of the 6th International Conference on Data Science,
Technology and Applications, Madrid, Spain: SCITEPRESS - Science and Technology Publications,
2017, pp. 192–199, ISBN: 978-989-758-255-4. DOI: 10.5220/0006424701920199.

[39] Ó. M. Pereira et al., “Mediator framework for inserting xDRs into Hadoop”, in 2016 IEEE
Symposium on Computers and Communication (ISCC), IEEE, Jun. 2016, pp. 547–554, ISBN: 978-1-
5090-0679-3. DOI: 10.1109/ISCC.2016.7543795.

[40] G. Chen and T. T. Pham, Introduction to Fuzzy Sets, Fuzzy Logic and Fuzzy Control Systems. 2001,
p. 329, ISBN: 0849316588.

[41] C. Martínez-García, G. Navarro-Arribas, and J. Borrell, “Fuzzy Role-Based Access Control”,
Information Processing Letters, vol. 111, no. 10, pp. 483–487, 2011, ISSN: 0020-0190. DOI: 10.1016/
j.ipl.2011.02.010.

[42] A. Kayes et al., “Context-aware access control with imprecise context characterization for
cloud-based data resources”, Future Generation Computer Systems, vol. 93, pp. 237–255, Apr.
2019, ISSN: 0167-739X. DOI: 10.1016/j.future.2018.10.036.

[43] J. Li, Y. Bai, and N. Zaman, “A Fuzzy Modeling Approach for Risk-Based Access Control
in eHealth Cloud”, in 2013 12th IEEE International Conference on Trust, Security and Privacy
in Computing and Communications, IEEE, Jul. 2013, pp. 17–23, ISBN: 978-0-7695-5022-0. DOI:
10.1109/TrustCom.2013.66.

[44] H. F. Atlam et al., “Fuzzy Logic with Expert Judgment to Implement an Adaptive Risk-Based
Access Control Model for IoT”, Mobile Networks and Applications, Jan. 2019, ISSN: 1383-469X.
DOI: 10.1007/s11036-019-01214-w.

https://doi.org/10.5220/0005967402920301
https://doi.org/10.5220/0006424500560066
https://doi.org/10.1007/978-3-319-94809-6_11
https://doi.org/10.1007/978-3-319-94809-6_11
https://doi.org/10.1007/s10115-020-01480-1
https://doi.org/10.1007/s10115-020-01480-1
https://doi.org/10.5220/0006424701920199
https://doi.org/10.1109/ISCC.2016.7543795
https://doi.org/10.1016/j.ipl.2011.02.010
https://doi.org/10.1016/j.ipl.2011.02.010
https://doi.org/10.1016/j.future.2018.10.036
https://doi.org/10.1109/TrustCom.2013.66
https://doi.org/10.1007/s11036-019-01214-w

BIBLIOGRAPHIC REFERENCES 137

[45] E. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic con-
troller”, International Journal of Man-Machine Studies, vol. 7, no. 1, pp. 1–13, 1975. DOI: 10.1016/
S0020-7373(75)80002-2.

[46] M. Sugeno, “Industrial applications of fuzzy control”, Elsevier Science Pub. Co., 1985.

[47] Oracle, The Java Persistence API - A Simpler Programming Model for Entity Persistence, 2006.
[Online]. Available: http://www.oracle.com/technetwork/articles/javaee/jpa-137156.
html (visited on 03/03/2014).

[48] Eclipse, EclipseLink, 2008. [Online]. Available: https://www.eclipse.org/eclipselink/
(visited on 04/28/2014).

[49] A. Chlipala, “Static Checking of Dynamically-Varying Security Policies in Database-Backed
Applications”, Proceedings of the Ninth USENIX Symposium on Operating Systems Design and
Implementation, pp. 105–118, 2010. [Online]. Available: http://www.usenix.org/events/
osdi10/tech/full_papers/Chlipala.pdf.

[50] J. Abramov et al., “A methodology for integrating access control policies within database
development”, Computers & Security, vol. 31, no. 3, pp. 299–314, May 2012, ISSN: 1674048. DOI:
10.1016/j.cose.2012.01.004.

[51] R. Agrawal et al., “Hippocratic databases”, Proceedings of the 28th . . ., vol. 4, no. 1890, 2002.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1287383.

[52] J. Padma and Y. Silva, “Hippocratic PostgreSQL”, International Conference on Data Engineering,
no. 25, 2009, ISSN: 1063-6382. DOI: 10.1109/ICDE.2009.126.

[53] K. LeFevre et al., “Limiting disclosure in hippocratic databases”, Proceedings of the . . ., pp. 108–
119, 2004. [Online]. Available: http://dl.acm.org/citation.cfm?id=1316701.

[54] P. Ashley et al., “W3C Enterprise privacy authorization language (EPAL 1.2)”, Tech. Rep., 2003,
pp. 1–58. [Online]. Available: https://www.w3.org/Submission/2003/SUBM-EPAL-20031110.

[55] L. Cranor et al., “The Platform for Privacy Preferences 1.0 (P3P1.0) Specification”, W3C, vol. 0,
pp. 1–76, 2002. [Online]. Available: http://www.w3.org/TR/P3P/.

[56] G. Zhang and M. Parashar, “Dynamic context-aware access control for grid applications”,
Proceedings First Latin American Web Congress, 2003. DOI: 10.1109/GRID.2003.1261704.

[57] B. Corcoran, N. Swamy, and M. Hicks, “Cross-tier, label-based security enforcement for web
applications”, ACM SIGMOD International Conference on Management of Data, 2009. [Online].
Available: http://dl.acm.org/citation.cfm?id=1559875.

[58] E. Cooper et al., “Links: Web Programming Without Tiers”, Formal Methods for Components and
Objects, 2007. [Online]. Available: http://link.springer.com/chapter/10.1007/978-3-
540-74792-5_12.

[59] N. Swamy, B. J. Corcoran, and M. Hicks, “Fable: A Language for Enforcing User-defined
Security Policies”, in IEEE Symposium on Security and Privacy, IEEE, May 2008, pp. 369–383,
ISBN: 978-0-7695-3168-7. DOI: 10.1109/SP.2008.29.

https://doi.org/10.1016/S0020-7373(75)80002-2
https://doi.org/10.1016/S0020-7373(75)80002-2
http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html
http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html
https://www.eclipse.org/eclipselink/
http://www.usenix.org/events/osdi10/tech/full_papers/Chlipala.pdf
http://www.usenix.org/events/osdi10/tech/full_papers/Chlipala.pdf
https://doi.org/10.1016/j.cose.2012.01.004
http://dl.acm.org/citation.cfm?id=1287383
https://doi.org/10.1109/ICDE.2009.126
http://dl.acm.org/citation.cfm?id=1316701
https://www.w3.org/Submission/2003/SUBM-EPAL-20031110
http://www.w3.org/TR/P3P/
https://doi.org/10.1109/GRID.2003.1261704
http://dl.acm.org/citation.cfm?id=1559875
http://link.springer.com/chapter/10.1007/978-3-540-74792-5_12
http://link.springer.com/chapter/10.1007/978-3-540-74792-5_12
https://doi.org/10.1109/SP.2008.29

138 BIBLIOGRAPHIC REFERENCES

[60] Y. Zhu et al., JIF: Java + information flow, 2012. [Online]. Available: http://www.cs.cornell.
edu/jif/.

[61] L. E. Olson, C. a. Gunter, and P. Madhusudan, “A formal framework for reflective database
access control policies”, Proceedings of the 15th ACM conference on Computer and communications
security - CCS ’08, p. 289, 2008. DOI: 10.1145/1455770.1455808. [Online]. Available: http:
//portal.acm.org/citation.cfm?doid=1455770.1455808.

[62] A. Bonner, “Transaction datalog: A compositional language for transaction programming”,
Database Programming Languages, pp. 1–30, 1997. [Online]. Available: http://link.springer.
com/chapter/10.1007/3-540-64823-2_21.

[63] L. E. Olson et al., “Implementing Reflective Access Control in SQL”, Data and Applications
Security XXIII, pp. 17–32, 2009. DOI: 10.1007/978-3-642-03007-9_2.

[64] B. Morin et al., “Security-driven model-based dynamic adaptation”, Proceedings of the IEEE/ACM
international conference on Automated software engineering, p. 205, 2010. DOI: 10.1145/1858996.
1859040.

[65] Oracle, Java EE. [Online]. Available: http://www.oracle.com/technetwork/java/javaee/
overview/index.html.

[66] J. Fischer et al., “Fine-Grained Access Control with Object-Sensitive Roles”, in Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 5653 LNCS, 2009, pp. 173–194, ISBN: 3642030122. DOI: 10.1007/978-3-
642-03013-0_9.

[67] J. Zarnett, M. Tripunitara, and P. Lam, “Role-based access control (RBAC) in Java via proxy
objects using annotations”, Proceeding of the 15th ACM symposium on Access control models and
technologies - SACMAT ’10, p. 79, 2010. DOI: 10.1145/1809842.1809858.

[68] Oracle, Java RMI. [Online]. Available: http://docs.oracle.com/javase/tutorial/rmi/
(visited on 01/28/2014).

[69] S. Chaudhuri, T. Dutta, and S. Sudarshan, “Fine Grained Authorization Through Predicated
Grants”, in Proceedings - International Conference on Data Engineering, Istanbul, 2007, pp. 1174–
1183, ISBN: 1424408032. DOI: 10.1109/ICDE.2007.368976.

[70] L. Caires et al., “Type-Based Access Control in Data-Centric Systems”, Programming Languages
and Systems, pp. 136–155, 2011. DOI: 10.1007/978-3-642-19718-5_8.

[71] G. Ahn and H. Hu, “Towards realizing a formal RBAC model in real systems”, Proceedings of
the 12th ACM symposium on Access control models and technologies, p. 215, 2007. DOI: 10.1145/
1266840.1266875.

[72] OASIS, XACML 3.0, 2010. [Online]. Available: https://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=xacml (visited on 05/11/2014).

[73] K. K. Jayaraman et al., “MOHAWK: Abstraction-refinement and bound-estimation for verifying
access control policies”, ACM Transactions on Information and System Security, vol. 15, no. 4,
pp. 1–28, 2013. DOI: 10.1145/2445566.2445570.

http://www.cs.cornell.edu/jif/
http://www.cs.cornell.edu/jif/
https://doi.org/10.1145/1455770.1455808
http://portal.acm.org/citation.cfm?doid=1455770.1455808
http://portal.acm.org/citation.cfm?doid=1455770.1455808
http://link.springer.com/chapter/10.1007/3-540-64823-2_21
http://link.springer.com/chapter/10.1007/3-540-64823-2_21
https://doi.org/10.1007/978-3-642-03007-9_2
https://doi.org/10.1145/1858996.1859040
https://doi.org/10.1145/1858996.1859040
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html
https://doi.org/10.1007/978-3-642-03013-0_9
https://doi.org/10.1007/978-3-642-03013-0_9
https://doi.org/10.1145/1809842.1809858
http://docs.oracle.com/javase/tutorial/rmi/
https://doi.org/10.1109/ICDE.2007.368976
https://doi.org/10.1007/978-3-642-19718-5_8
https://doi.org/10.1145/1266840.1266875
https://doi.org/10.1145/1266840.1266875
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://doi.org/10.1145/2445566.2445570

BIBLIOGRAPHIC REFERENCES 139

[74] D. S. Wallach, A. W. Appel, and E. W. Felten, “SAFKASI: a security mechanism for language-
based systems”, ACM Transactions on Software Engineering and Methodology, vol. 9, no. 212,
pp. 341–378, 2000, ISSN: 1049331X. DOI: 10.1145/363516.363520.

[75] H. Singh et al., “Real-Life Applications of Fuzzy Logic”, Advances in Fuzzy Systems, vol. 2013,
pp. 1–3, 2013, ISSN: 1687-7101. DOI: 10.1155/2013/581879.

[76] J. Hao et al., “Fine-grained data access control with attribute-hiding policy for cloud-based
IoT”, Computer Networks, vol. 153, pp. 1–10, Apr. 2019, ISSN: 13891286. DOI: 10.1016/j.comnet.
2019.02.008.

[77] H. Ouechtati, N. B. Azzouna, and L. B. Said, “A Fuzzy Logic Based Trust-ABAC Model for
the Internet of Things”, in Advances in Intelligent Systems and Computing, ser. Advances in
Intelligent Systems and Computing, L. Barolli, M. Takizawa, F. Xhafa, and T. Enokido, Eds.,
vol. 926, Cham: Springer International Publishing, 2020, pp. 1157–1168, ISBN: 978-3-030-15031-0.
DOI: 10.1007/978-3-030-15032-7_97.

[78] C. Janikow, “Fuzzy decision trees: Issues and methods”, IEEE Transactions on Systems, Man and
Cybernetics, Part B (Cybernetics), vol. 28, no. 1, pp. 1–14, 1998, ISSN: 1083-4419. DOI: 10.1109/
3477.658573.

[79] S. A. Sert and A. Yazici, “Optimizing the Performance of Rule-Based Fuzzy Routing Algorithms
in Wireless Sensor Networks”, IEEE International Conference on Fuzzy Systems, vol. 2019-June,
pp. 1–6, 2019, ISSN: 10987584. DOI: 10.1109/FUZZ-IEEE.2019.8858920.

[80] E. Erhieyovwe, P. Oghenekaro, and N. Oluwole, “An Object Relational Mapping Technique for
Java Framework”, International Journal of Engineering Science Invention, vol. 2, no. 6, pp. 1–9,
2013, ISSN: 2319-6726.

[81] C. Russell, “Bridging the Object-Relational Divide”, Queue, vol. 6, no. June, p. 18, 2008, ISSN:
15427730. DOI: 10.1145/1394127.1394139.

[82] Eclipse, Understanding EclipseLink 2.4, June. 2013. [Online]. Available: https://www.eclipse.
org/eclipselink/documentation/2.4/eclipselink_otlcg.pdf.

[83] S. Bagui, “Achievements and Weaknesses of Object-Oriented Databases”, Journal of Object
Technology, vol. 2, no. 4, pp. 29–41, 2003, ISSN: 16601769. DOI: 10.5381/jot.2003.2.4.c2.

[84] H. Garcia-Molina, J. D. Ullman, and J. Widom, “Stored Procedures”, in Database systems: the
complete book, 2nd E., 2008, ch. 9.4, pp. 391–404, ISBN: 978-0131873254.

[85] S. Sumathi and S. Esakkirajan, Fundamentals of Relational Database Management Systems. 2007,
ISBN: 978-3642080128.

[86] S. Rohilla and P. K. Mittal, “Database Security by Preventing SQL Injection Attacks in Stored
Procedures”, International Journal of Advanced Research in Computer Science and Software Engineer-
ing, vol. 3, no. 11, pp. 915–919, 2013, ISSN: 2277-128X.

[87] A. Roichman and E. Gudes, “Fine-grained access control to web databases”, Proceedings of the
12th ACM symposium on Access control models and technologies - SACMAT ’07, p. 31, 2007. DOI:
10.1145/1266840.1266846.

https://doi.org/10.1145/363516.363520
https://doi.org/10.1155/2013/581879
https://doi.org/10.1016/j.comnet.2019.02.008
https://doi.org/10.1016/j.comnet.2019.02.008
https://doi.org/10.1007/978-3-030-15032-7_97
https://doi.org/10.1109/3477.658573
https://doi.org/10.1109/3477.658573
https://doi.org/10.1109/FUZZ-IEEE.2019.8858920
https://doi.org/10.1145/1394127.1394139
https://www.eclipse.org/eclipselink/documentation/2.4/eclipselink_otlcg.pdf
https://www.eclipse.org/eclipselink/documentation/2.4/eclipselink_otlcg.pdf
https://doi.org/10.5381/jot.2003.2.4.c2
https://doi.org/10.1145/1266840.1266846

140 BIBLIOGRAPHIC REFERENCES

[88] J. Wilson, “Views as the security objects in a multilevel secure relational database management
system”, Proceedings. 1988 IEEE Symposium on Security and Privacy, 1988. DOI: 10.1109/SECPRI.
1988.8099.

[89] IETF, RFC 5246: The Transport Layer Security (TLS) Protocol - Version 1.2, 2008. [Online]. Available:
http://tools.ietf.org/html/rfc5246.

[90] IETF, RFC 8446: The Transport Layer Security (TLS) Protocol Version 1.3, 2018. [Online]. Available:
https://tools.ietf.org/html/rfc8446.

[91] IETF, RFC 6101: The Secure Sockets Layer (SSL) Protocol Version 3.0. [Online]. Available: http:
//tools.ietf.org/html/rfc6101.

[92] C. Adams and S. Lloyd, Understanding public-key infrastructure: concepts, standards, and deploy-
ment considerations. Sams Publishing, 1999.

[93] J. de Lavarene and J. de Lavarene, SSL With Oracle JDBC Thin Driver, 2010. [Online]. Available:
http://www.oracle.com/technetwork/topics/wp-oracle-jdbc-thin-ssl-130128.pdf.

[94] S. Khandelwal, Chinese Certificate Authority ’mistakenly’ gave out SSL Certs for GitHub Domains,
2016. [Online]. Available: https://thehackernews.com/2016/08/github-ssl-certificate.
html.

[95] C. Ellison and B. Schneier, “Ten risks of PKI: What you are not being told about public key
infrastructure”, in Public Key Infrastructure: Building Trusted Applications and Web Services, 2004,
ISBN: 9780203498156. DOI: 10.1201/9780203498156.

[96] A. Vishwakarma, “Virtual private networks”, in Network Security Attacks and Countermeasures,
2016, ISBN: 9781466687622. DOI: 10.4018/978-1-4666-8761-5.ch003.

[97] IETF, The Kerberos Network Authentication Service (V5), 2005. [Online]. Available: https://
tools.ietf.org/html/rfc4120.

[98] IETF, RFC 2865: Remote Authentication Dial In User Service (RADIUS), 2000. [Online]. Available:
https://tools.ietf.org/html/rfc2865.

[99] Oracle, Authentication Using Third-Party Services. [Online]. Available: https://docs.oracle.
com/cd/B19306_01/network.102/b14266/authmeth.htm#i1009853 (visited on 08/13/2016).

[100] R. Oppliger, R. Hauser, and D. Basin, “SSL/TLS session-aware user authentication - Or how to
effectively thwart the man-in-the-middle”, Computer Communications, vol. 29, no. 12, pp. 2238–
2246, 2006, ISSN: 1403664. DOI: 10.1016/j.comcom.2006.03.004.

[101] R. Oppliger, R. Hauser, and D. Basin, “SSL/TLS session-aware user authentication revisited”,
Computers and Security, vol. 27, pp. 64–70, 2008, ISSN: 1674048. DOI: 10.1016/j.cose.2008.04.
005.

[102] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis, J. Blackburn, D. R. López, K. Papagiannaki,
P. Rodriguez Rodriguez, and P. Steenkiste, “Multi-Context TLS (mcTLS)”, ACM SIGCOMM
Computer Communication Review, vol. 45, no. 5, pp. 199–212, Aug. 2015, ISSN: 1464833. DOI:
10.1145/2829988.2787482.

https://doi.org/10.1109/SECPRI.1988.8099
https://doi.org/10.1109/SECPRI.1988.8099
http://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc8446
http://tools.ietf.org/html/rfc6101
http://tools.ietf.org/html/rfc6101
http://www.oracle.com/technetwork/topics/wp-oracle-jdbc-thin-ssl-130128.pdf
https://thehackernews.com/2016/08/github-ssl-certificate.html
https://thehackernews.com/2016/08/github-ssl-certificate.html
https://doi.org/10.1201/9780203498156
https://doi.org/10.4018/978-1-4666-8761-5.ch003
https://tools.ietf.org/html/rfc4120
https://tools.ietf.org/html/rfc4120
https://tools.ietf.org/html/rfc2865
https://docs.oracle.com/cd/B19306_01/network.102/b14266/authmeth.htm#i1009853
https://docs.oracle.com/cd/B19306_01/network.102/b14266/authmeth.htm#i1009853
https://doi.org/10.1016/j.comcom.2006.03.004
https://doi.org/10.1016/j.cose.2008.04.005
https://doi.org/10.1016/j.cose.2008.04.005
https://doi.org/10.1145/2829988.2787482

BIBLIOGRAPHIC REFERENCES 141

[103] P. Ferraro, HA-JDBC: High-Availability JDBC. [Online]. Available: https://ha-jdbc.github.io
(visited on 09/13/2016).

[104] M. Zimmerman, Biometrics and User Authentication, 2003. [Online]. Available: https :

/ / www . sans . org / reading - room / whitepapers / authentication / biometrics - user -

authentication-122.

[105] G. Fawkes, Report: Data Breach in Biometric Security Platform Affecting Millions of Users, 2019.
[Online]. Available: https://www.vpnmentor.com/blog/report-biostar2-leak/ (visited on
01/10/2020).

[106] M. H. Ibrahim, “REFLECTION IN OBJECT-ORIENTED PROGRAMMING”, International
Journal on Artificial Intelligence Tools, vol. 01, no. 01, pp. 117–136, Mar. 1992, ISSN: 0218-2130.
DOI: 10.1142/S0218213092000156.

[107] Oracle, The Reflection API. [Online]. Available: http://docs.oracle.com/javase/tutorial/
reflect/ (visited on 01/06/2014).

[108] R. Shay et al., “Designing password policies for strength and usability”, ACM Transactions
on Information and System Security, vol. 18, no. 4, pp. 1–34, May 2016, ISSN: 10949224. DOI:
10.1145/2891411.

[109] Oracle, RMI - Remote Method Invocation. [Online]. Available: http : / / www . oracle . com /
technetwork/java/javase/tech/index-jsp-136424.html.

[110] G. Canfora, C. Visaggio, and V. Paradiso, “A Test Framework for Assessing Effectiveness of the
Data Privacy Policy’s Implementation into Relational Databases”, 2009 International Conference
on Availability, Reliability and Security, pp. 240–247, 2009. DOI: 10.1109/ARES.2009.153.

[111] P. Eronen and H. Tschofenig, “[PSK] Pre-Shared Key Ciphersuites for Transport Layer Security
(TLS) [RFC 4279]”, RFC 4279, pp. 1–15, 2005.

[112] W. Diffie and M. Hellman, “New directions in cryptography”, IEEE Transactions on Information
Theory, vol. 22, no. 6, pp. 29–40, 1976, ISSN: 0018-9448. DOI: 10.1109/TIT.1976.1055638.

[113] S. Marechal, Advances in password cracking, 1. 2008, vol. 4, pp. 73–81. DOI: 10.1007/s11416-
007-0064-y.

[114] IEC, Fuzzy Control Programming (IEC 1131-7 CD1), 1997. [Online]. Available: http://www.
fuzzytech.com/binaries/ieccd1.pdf.

[115] V. C. V. Hu, D. F. Ferraiolo, and D. R. Kuhn, “Assessment of access control systems”, Nistir
7316, p. 60, 2006. DOI: 10.6028/NIST.IR.7316.

[116] C. Günther, “An identity-based key-exchange protocol”, Advances in Cryptology - Eurocrypt’89,
vol. 434, pp. 29–37, 1989. DOI: 10.1007/3-540-46885-4_5.

[117] J. Nielsen, Usability Engineering. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1993, ISBN: 0125184069.

[118] P. Cingolani and J. Alcalá-Fdez, “jFuzzyLogic: a robust and flexible Fuzzy-Logic inference
system language implementation”, in 2012 IEEE International Conference on Fuzzy Systems, IEEE,
Jun. 2012, pp. 1–8, ISBN: 978-1-4673-1506-7. DOI: 10.1109/FUZZ-IEEE.2012.6251215.

https://ha-jdbc.github.io
https://www.sans.org/reading-room/whitepapers/authentication/biometrics-user-authentication-122
https://www.sans.org/reading-room/whitepapers/authentication/biometrics-user-authentication-122
https://www.sans.org/reading-room/whitepapers/authentication/biometrics-user-authentication-122
https://www.vpnmentor.com/blog/report-biostar2-leak/
https://doi.org/10.1142/S0218213092000156
http://docs.oracle.com/javase/tutorial/reflect/
http://docs.oracle.com/javase/tutorial/reflect/
https://doi.org/10.1145/2891411
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
https://doi.org/10.1109/ARES.2009.153
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/s11416-007-0064-y
https://doi.org/10.1007/s11416-007-0064-y
http://www.fuzzytech.com/binaries/ieccd1.pdf
http://www.fuzzytech.com/binaries/ieccd1.pdf
https://doi.org/10.6028/NIST.IR.7316
https://doi.org/10.1007/3-540-46885-4_5
https://doi.org/10.1109/FUZZ-IEEE.2012.6251215

142 BIBLIOGRAPHIC REFERENCES

[119] P. Cingolani and J. Alcalá-Fdez, “jFuzzyLogic: a Java Library to Design Fuzzy Logic Con-
trollers According to the Standard for Fuzzy Control Programming”, International Journal of
Computational Intelligence Systems, vol. 6, no. sup1, pp. 61–75, Jun. 2013, ISSN: 1875-6891. DOI:
10.1080/18756891.2013.818190.

https://doi.org/10.1080/18756891.2013.818190

