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We study axially symmetric multisoliton solutions of a complex scalar field theory with a sextic
potential, minimally coupled to Einstein’s gravity. These solutions carry no angular momentum and can be
classified by the number of nodes of the scalar field, kz, along the symmetry axis; they are interpreted
as chains with kz þ 1 boson stars, bound by gravity, but kept apart by repulsive scalar interactions. Chains
with an odd number of constituents show a spiraling behavior for their Arnowitt-Deser-Misner (ADM)
mass (and Noether charge) in terms of their angular frequency, similarly to a single fundamental boson star,
as long as the gravitational coupling is small; for larger coupling, however, the inner part of the spiral is
replaced by a merging with the fundamental branch of radially excited spherical boson stars. Chains with an
even number of constituents exhibit a truncated spiral pattern, with only two or three branches, ending at a
limiting solution with finite values of ADM mass and Noether charge.
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I. INTRODUCTION

Many nonlinear physical systems support nontopolog-
ical solitons, which represent spatially localized field
configurations. One of the simplest examples in flat space
is given byQ-balls, which are particlelike configurations in
a model with a complex scalar field possessing a harmonic
time dependence and a suitable self-interaction potential
[1–3]. When Q-balls are coupled to gravity, the so-called
boson stars (BSs) emerge, which represent solitonic
solutions with a topologically trivial and globally regular
geometry. The simplest such configurations are static and
spherically symmetric, the scalar field possessing a mass
term only, without self-interaction [4,5]. These solutions are
usually dubbed mini-boson stars (mBS), being regarded as
macroscopic quantum states, which are prevented from
gravitationally collapsing by Heisenberg’s uncertainty prin-
ciple; also, they do not have a regular flat spacetime limit.
Both Q-balls and BSs carry a Noether charge associated

with an unbroken continuous global Uð1Þ symmetry. The
charge Q is proportional to the angular frequency of the
complex boson field and represents the boson particle
number of the configurations [2,3].
In flat spacetime, Q-balls exist only within a certain

frequency range for the scalar field: between a maximal
value ωmax, which corresponds to the mass of the scalar
excitations, and some lower nonzero critical value ωmin,
that depends on the form of the potential. On the one hand,
as the frequency ω approaches its extremal values, both the
mass M and the Noether charge Q of the configurations

diverge. On the other hand, M and Q attain a minimum at
some critical value ωcr ∈ ½ωmin;ωmax�. Away from ωcr,
the mass and the charge of the configurations increase
toward the divergent value at the boundary of the domain.
Within ½ωmin;ωcr�, the configurations become unstable
against decay.
The situation is different for BSs: gravity modifies the

critical behavior pattern of the configurations. The funda-
mental branch of the BS solutions starts off from the
perturbative excitations at ω ∼ ωmax, at which M, Q
trivialize (rather than diverge). Then, the BSs exhibit a
spiraling (or oscillating) pattern of the frequency depend-
ence of both charge and mass, where both tend to some
finite limiting values at the centers of the spirals.
Qualitatively, the appearance of the frequency-mass spiral
may be related to oscillations in the force balance between
the repulsive scalar interaction and the gravitational attrac-
tion in equilibria. Indeed, radially excited rotating BSs do
not exhibit a spiraling behavior; instead, the second branch
extends all the way back to the upper critical value of the
frequency ωmax, forming a loop [6].
The main purpose of this paper is to report on the

existence of a new type of solutions, which correspond to
chains of BSs.1 These are static, axially symmetric

1Similar chains, but for a scalar field without self-interactions,
were recently studied in [7], in the context of multipolar BSs.
Here, we emphasize the interpretation of multiple BSs, rather
than a single multipolar BS.
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equilibrium configurations interpreted as a number of BSs
located symmetrically with respect to the origin, along the
symmetry axis. We construct these solutions and inves-
tigate their physical properties for a choice of the scalar
field potential with quartic and sextic self-interaction terms,
which was employed in most of the Q-balls literature. We
note that similar configurations of chains of constituents are
known to exist both for gravitating and flat space non-
Abelian monopoles and dyons [8–20], Skyrmions [21–23],
electroweak sphalerons [24–28], SUð2Þ non-self-dual con-
figurations [29,30], and Yang-Mills solitons in anti-de
Sitter (ADS4) spacetime [31,32].
In these multicomponent BS configurations, the constitu-

ents forma chain along the symmetry axis and, consequently,
the scalar field is required to possess “nodes” (zeros of the
scalar field amplitude). Configurations with kz nodes on the
symmetry axis possess kz þ 1 constituents. Configurations
with even and odd numbers of constituents can show a
different pattern, when their domain of existence is mapped
out. In particular, we find that the pattern exhibited by amass-
frequency diagram of the chains of BSs can differ both from
the typical spiraling picture and from the closed loop
scenario. For chains with an even number of constituents,
the pattern always terminates at critical solutions. For chains
with an odd number of constituents, the pattern depends on
the strength of the gravitational interaction. The configura-
tions then either merge with the corresponding radial
excitation of the fundamental solution, or the central con-
stituent of the configurations exhibits oscillations while
retaining smaller satellite constituents.
This paper is organized as follows. In Sec. II, the

theoretical setting is specified. This includes the action,
the equations of motion, the ansatz, and the boundary
conditions for the BS chains. The numerical results for
these new equilibrium configurations are shown in Sec. III.
We give our conclusions in Sec. IV.

II. THE MODEL

A. Action, field equations, and global charges

We consider a self-interacting complex scalar field Φ,
which is minimally coupled to Einstein’s gravity in a
(3þ 1)-dimensional space-time. The corresponding action
of the system is

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

2
gμνðΦ�

;μΦ;νþΦ�
;νΦ;μÞ−UðjΦj2Þ

�
;

ð2:1Þ

where R is the Ricci scalar curvature, G is Newton’s
constant, the asterisk denotes complex conjugation, and U
denotes the scalar field potential.
Variation of the action (2.1) with respect to the metric

leads to the Einstein equations

Eμν ≡ Rμν −
1

2
gμνR − 8πGTμν ¼ 0; ð2:2Þ

where

Tμν ≡Φ�
;μΦ;ν þΦ�

;νΦ;μ

− gμν

�
1

2
gστðΦ�

;σΦ;τ þΦ�
;τΦ;σÞ þUðjΦj2Þ

�
ð2:3Þ

is the stress-energy tensor of the scalar field.
The corresponding equation of motion of the scalar field

is the nonlinear Klein-Gordon equation

�
□ −

dU
djΦj2

�
Φ ¼ 0; ð2:4Þ

where □ represents the covariant d’Alembert operator.
The solutions considered in this work have a static line

element (with a timelike Killing vector field ξ), being
topologically trivial and globally regular, i.e., without an
event horizon or conical singularities, while the scalar
field is finite and smooth everywhere. Also, they approach
asymptotically the Minkowski spacetime background.
Their mass M can be obtained from the respective
Komar expressions [33],

M ¼ 1

4πG

Z
Σ
RμνnμξνdV: ð2:5Þ

Here Σ denotes a spacelike hypersurface (with the volume
element dV), while nμ is normal to Σ, with nμnμ ¼ −1 [33].
After replacing in (2.5) the Ricci tensor by the stress-energy
tensor, via the Einstein equations (2.2), one finds the
equivalent expression

M ¼ 2

Z
Σ

�
Tμν −

1

2
gμνT

γ
γ

�
nμξνdV: ð2:6Þ

The action (2.1) is invariant with respect to the global
U(1) transformations of the complex scalar field,
Φ → Φeiα, where α is a constant. The following Noether
4-current is associated with this symmetry:

jμ ¼ −iðΦ∂μΦ� −Φ�∂μΦÞ: ð2:7Þ

It follows that integrating the timelike component of this
4-current in a spacelike slice Σ yields a second conserved
quantity—the Noether charge,

Q ¼
Z
Σ
jμnμdV: ð2:8Þ
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B. The ansatz and equations

Apart from being static, the configurations in this work
are also axially symmetric.2 Thus, in a system of adapted
coordinates, the space-time possesses two commuting
Killing vector fields

ξ ¼ ∂=∂t and η ¼ ∂=∂φ; ð2:9Þ

with t and φ the time and azimuthal coordinates, respec-
tively. Line elements with these symmetries are usually
studied by employing a metric ansatz [34]

ds2 ¼ −e−2Uðρ;zÞdt2 þ e2Uðρ;zÞ

× ½e2kðρ;zÞðdρ2 þ dz2Þ þ Pðρ; zÞ2dφ2�; ð2:10Þ

where ðρ; zÞ correspond, asymptotically, to the usual
cylindrical coordinates.3 However, in the numerical treat-
ment of the Einstein-Klein-Gordon equations, it is useful
to employ “quasi-isotropic” spherical coordinates ðr; θÞ,
defined by the coordinate transformation in (2.10)

ρ ¼ r sin θ; z ¼ r cos θ; ð2:11Þ

with the usual range 0 ≤ r < ∞, 0 ≤ θ ≤ π. Then the metric
can be written in a Lewis-Papapetrou form, with

ds2 ¼ −fdt2 þm
f
ðdr2 þ r2dθ2Þ þ l

f
r2 sin2 θdφ2: ð2:12Þ

The three metric functions f, l, and m are functions of the
variables r and θ only, chosen such that the trivial angular
and radial dependence of the (asymptotically flat) line
element are already factorized. The relations between the
metric functions in the above line element and those in
(2.10) are f ¼ e−2U, lr2 sin2 θ ¼ P2, m ¼ e2k. The sym-
metry axis of the spacetime is located at the set of points
with vanishing norm of η, jjηjj ¼ 0; it corresponds to the
z-axis in (2.10) or the set with θ ¼ 0; π in (2.12). The
Minkowski spacetime background is approached for
r → ∞, with f ¼ l ¼ m ¼ 1.
For the scalar field, we adopt an ansatz with a

harmonic time dependence, while the amplitude depends
on ðr; θÞ,

Φ ¼ ϕðr; θÞe−iωt; ð2:13Þ

where ω ≥ 0 is the angular frequency. The corresponding
stress-energy tensor is static, with the nonvanishing
components

Tr
r ¼

f
m

�
ϕ2
;r −

ϕ2
;θ

r2

�
þ ω2ϕ2

f
− Uðϕ2Þ; Tθ

θ ¼
f
m

�
−ϕ2

;r þ
ϕ2
;θ

r2

�
þ ω2ϕ2

f
− Uðϕ2Þ; Tθ

r ¼
2f
r2m

ϕ;rϕ;θ

Tφ
φ ¼ −

f
m

�
ϕ2
;r þ

ϕ2
;θ

r2

�
þ ω2ϕ2

f
−Uðϕ2Þ; Tt

t ¼ −
f
m

�
ϕ2
;r þ

ϕ2
;θ

r2

�
−
ω2ϕ2

f
− Uðϕ2Þ: ð2:14Þ

After inserting the ansatz (2.12) and (2.13) into the field equations (2.2) and (2.4), we find a system of six coupled partial
differential equations that needs to be solved. There are three equations for the metric functions f, l,m, found by taking the
following suitable combinations of the Einstein equations, Er

r þ Eθ
θ ¼ 0, Eφ

φ ¼ 0, and Et
t ¼ 0, yielding

f;rr þ
f;θθ
r2

þ 2f;r
r

þ cot θf;θ
r2

−
1

f

�
f2;r þ

f2;θ
r2

�
þ 1

2l

�
f;rl;r þ

f;θl;θ
r2

�
þ 16πG

�
Uðϕ2Þ − 2ω2ϕ2

f

�
m ¼ 0;

l;rr þ
l;θθ
r2

þ 3l;r
r

þ 2 cot θl;θ
r2

−
1

2l

�
l2;r þ

l2;θ
r2

�
þ 32πG

�
Uðϕ2Þ − ω2ϕ2

f

�
lm
f

¼ 0;

m;rr þ
m;θθ

r2
þm;r

r
þ m
2f2

�
f2;r þ

f2;θ
r2

�
−

1

m

�
m2

;r þ
m2

;θ

r2

�
þ 16πG

�
f
m

�
ϕ2
;r þ

ϕ2
;θ

r2

�
þ Uðϕ2Þ − ω2ϕ2

f

�
m2

f
¼ 0 ð2:15Þ

and one equation for the scalar field amplitude

2The scalar field possesses a time dependence (with ∂tΦ ¼ −iωΦ), which disappears at the level of the energy-momentum tensor.
However, the scalar field is axially symmetric, ∂φΦ ¼ 0.

3In the Einstein-Maxwell theory, it is always possible to set P≡ ρ, such that only two independent metric functions appear in the
equations, with ðρ; zÞ the canonical Weyl coordinates [34]. For a (complex) scalar field matter content, however, the generic metric
ansatz (2.10) with three independent functions is needed.

CHAINS OF BOSON STARS PHYS. REV. D 103, 065009 (2021)

065009-3



ϕ;rr þ
ϕ;θθ

r2
þ
�
2

r
þ l;r

2l

�
ϕ;r þ

�
cot θ þ l;θ

2l

�
ϕ;θ

r2

þ
�
ω2

f
−

∂U
∂ϕ2

�
m
f
ϕ ¼ 0: ð2:16Þ

Apart from these, there are two more Einstein equations,
Er
θ ¼ 0; Er

r − Eθ
θ ¼ 0, which are not solved in practice,

being treated as constraints and used to check the numerical
accuracy of the solutions.
ThemassM is computed from theKomar expression (2.5),

where we insert the metric ansatz (2.12), with unit vector
n ¼ −

ffiffiffi
f

p
dt, the volume element dV ¼ 1=

ffiffiffi
f

p ffiffiffiffiffiffi−gp
drdθdφ,

and
ffiffiffiffiffiffi−gp ¼ r2 sin θ

ffiffi
l

p
m
f . In evaluating (2.5), we use the fact

that Rt
t is a total derivative,

ffiffiffiffiffiffi
−g

p
Rt
t ¼ −

∂
∂r

�
r2 sin θ

ffiffi
l

p
f;r

2f

�
−

∂
∂θ

�
sin θ

ffiffi
l

p
f;θ

2f

�
:

Then it follows that M can be read off from the asymptotic
expansion of the metric function f,

f ¼ 1 −
2MG
r

þO
�
1

r2

�
: ð2:17Þ

Alternatively, the mass M can be obtained by direct
integration of (2.6),

M ¼
Z

ðTt
t − Tr

r − Tθ
θ − Tφ

φÞ ffiffiffiffiffiffi
−g

p
drdθdφ

¼ 4π

Z
∞

0

dr
Z

π

0

dθr2 sin θ

ffiffi
l

p
m
f

�
Uðϕ2Þ − 2ω2ϕ2

f

�
:

ð2:18Þ

In terms of the above ansatz, the Noether charge Q is
given by

Q ¼ 4πω

Z
∞

0

dr
Z

π

0

dθ

ffiffi
l

p
m

f2
r2 sin θϕ2: ð2:19Þ

Also, let us note that the solutions in this work have
no horizon. Therefore, they are zero gravitational entropy
objects, without an intrinsic temperature. Still, in analogy
to black holes, one may write a “first law of thermody-
namics” [35], albeit without the entropy term, which reads

dM ¼ ωdQ: ð2:20Þ

This gives a relation between the mass and Noether charge
of neighboring BS solutions which can be used to check the
numerical accuracy of the solutions.

C. The potential and scaling properties

The solutions in this work were found for a potential
originally proposed in [36,37],

UðjΦj2Þ ¼ νjΦj6 − λjΦj4 þ μ2jΦj2; ð2:21Þ

which is chosen such that nontopological soliton
solutions—Q-balls—exist in the absence of the Einstein
term in the action (2.1), i.e., on a Minkowski spacetime
background [38–41]. Also, at least in the spherically
symmetric case, this choice of the potential allows for
the existence of very massive and highly compact objects
approaching the black hole limit [38].
The parameter μ in (2.21) corresponds to the mass

of the scalar excitations around the jΦj ¼ 0 vacuum.
Apart from that, the potential possesses two more param-
eters ðν; λÞ > 0, determining the self-interactions, which
are chosen in such a manner that it possesses a local
minimum at some finite nonzero value of the field jΦj,
besides the global minimum at jΦj ¼ 0.
Two of the constants in (2.21) can actually be absorbed

into a redefinition of the radial coordinate together with a
rescaling of the scalar field,

r →
u0
μ
r; ϕ →

ffiffiffi
μ

p
ν1=4

ffiffiffiffiffi
u0

p ϕ; ð2:22Þ

with u0 > 0 an arbitrary constant. Note that the scalar field
frequency changes accordingly, ω → u0

μ ω.
Then, the potential (2.21) becomes (up to an overall

factor)

U ¼ ϕ6 − λ̄ϕ4 þ u20ϕ
2; with λ̄ ¼ λu0

μ
ffiffiffi
ν

p : ð2:23Þ

The choice employed in most of the Q-ball literature is

u20 ¼ 1.1; and λ̄ ¼ 2; ð2:24Þ

which are the values used also in this work.
For completeness, let us mention that for the specific

ansatz (2.12) and (2.13) with the above scalings, the
equations for gravitating Q-balls (which are effectively
solved) can also be derived by extremizing the following
reduced action4:

Sred ¼
Z

drdθðLg − 4α2LsÞ; ð2:25Þ

with [for ease of notation, we denote ð∇SÞ · ð∇TÞ≡
S;rT;r þ 1

r2 S;θT;θ]

4In (2.26), we use the dimensionless radial variable r and the
dimensionless frequency ω given in units set by μ.
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Lg ¼ r2 sinθ
ffiffi
l

p �
1

2lm
ð∇lÞ · ð∇mÞ− 1

2f2
ð∇fÞ2

−
1

rl

�
l;r þ

cotθ
r

l;θ

�
þ 1

rm

�
m;r þ

cotθ
r

m;θ

��
;

Ls ¼ r2 sinθ
m

ffiffi
l

p

f

�
f
m
ð∇ϕÞ2 −ω2ϕ2

f
þϕ6 − 2ϕ4 þ 1.1ϕ2

�
:

ð2:26Þ

The (dimensionless) coupling constant reads

α2 ¼ 4πGμffiffiffi
ν

p
u0

; ð2:27Þ

which determines the strength of the gravitational coupling
of the solutions.
As with the known spherically symmetric configura-

tions, solutions exist for 0 ≤ α < ∞. The limit α → 0
corresponds to the nonbackreacting case, i.e., Q-balls on
a fixed Minkowski background. To understand the large α
limit, we define ϕ̂ ¼ ϕ=α. Then for large values of the
effective gravitational coupling α, the nonlinearity of the
potential (2.21) becomes suppressed and the system
approaches the usual Einstein-Klein-Gordon model [4,5],
with its corresponding mBS solutions. That is, the resulting
equations are identical to those found for a model with a
non-self-interacting, massive complex scalar field ϕ̂.
However, in this work, we shall restrict our study to the
case of a finite, nonzero α. The basic properties of the mBS
chains were studied (in a more general context) in the
recent work [7], while the issue of flat spacetime Q-ball
chains will be discussed elsewhere.

D. Boundary conditions

The solutions studied in this work are globally regular
and asymptotically flat, possessing finite mass and Noether
charge. Appropriate boundary conditions guarantee that
these conditions are satisfied.
Starting with the boundary conditions for the metric

functions, regularity of the solutions at the origin requires

∂rfjr¼0 ¼ ∂rmjr¼0 ¼ ∂rljr¼0 ¼ 0: ð2:28Þ

Demanding asymptotic flatness at spatial infinity yields

fjr→∞ ¼ mjr→∞ ¼ ljr→∞ ¼ 1: ð2:29Þ

Axial symmetry and regularity impose on the symmetry
axis at θ ¼ 0; π the conditions

∂θϕjθ¼0;π¼∂θfjθ¼0;π ¼∂θmjθ¼0;π¼∂θljθ¼0;π¼0: ð2:30Þ

Further, the condition of the absence of a conical singu-
larity requires that the solutions should satisfy the

constraint mjθ¼0;π ¼ ljθ¼0;π. In our numerical scheme,
we explicitly verified (within the numerical accuracy) this
condition on the symmetry axis.
Turning now to the boundary conditions for the scalar

field amplitude, we mention first that ϕ approaches
asymptotically the global minimum,

ϕjr→∞ ¼ 0; ð2:31Þ

while on the symmetry axis we impose

∂θϕjθ¼0;π ¼ 0: ð2:32Þ

The behavior of the scalar field at the origin is more
complicated, depending on the considered parity P. As
mentioned in the Introduction, the solutions split into two
classes, distinguished by their behavior with respect to a
reflection along the equatorial plane θ ¼ π=2. The geom-
etry is left invariant under this transformation,

fðr; π − θÞ ¼ fðr; θÞ; lðr; π − θÞ ¼ lðr; θÞ;
mðr; π − θÞ ¼ mðr; θÞ ð2:33Þ

for the scalar field; however, there are two possibilities,

P ¼ 1 ðeven parityÞ∶ϕðr; π − θÞ ¼ ϕðr; θÞ; ð2:34Þ

P ¼ −1 ðodd parityÞ∶ϕðr; π − θÞ ¼ −ϕðr; θÞ: ð2:35Þ

We use this symmetry to reduce the domain of integration
to ½0;∞Þ × ½0; π=2�, with

∂θfjθ¼π=2 ¼ ∂θmjθ¼π=2 ¼ ∂θljθ¼π=2 ¼ 0 ð2:36Þ

and

P ¼ 1∶∂θϕjθ¼π=2 ¼ 0; P ¼ −1∶ϕjθ¼π=2 ¼ 0; ð2:37Þ

together with

P ¼ 1∶∂rϕjr¼0 ¼ 0; P ¼ −1∶ϕjr¼0 ¼ 0: ð2:38Þ

Finally, let us mention that, for both P ¼ �1, one can
formally construct an approximate expression of the
solutions compatible with the above boundary conditions,
e.g., by assuming the existence of a power series form close
to r ¼ 0. The resulting expressions are of little help in
understanding the properties of the solutions, and a
numerical approach is necessary.5 However, one important
result of this study is the bound-state condition

5We recall that, more than fifty years after their discovery [4,5],
the static mBS are still not known in closed form.

CHAINS OF BOSON STARS PHYS. REV. D 103, 065009 (2021)

065009-5



ω ≤ μ; ð2:39Þ

which emerges from the finite mass requirement. No
similar result is found for the minimal value of frequency.

E. Numerical method

The set of four coupled nonlinear elliptic partial differ-
ential equations for the functions ðf; l; m;ϕÞ has been
solved numerically subject to the boundary conditions
defined above. In a first stage, a new compactified radial
variable x is introduced, replacing r, with

x≡ r
cþ r

; ð2:40Þ

with c an arbitrary parameter, typically of order one. With
this choice, the semi-infinite region ½0;∞Þ is mapped to the
finite interval [0, 1]. This avoids the use of a cutoff radius.
The numerical calculations have been performed by

using a sixth-order finite difference scheme. The system
of equations is discretized on a grid with a typical number
of points 129 × 89. The underlying linear system is solved
with the Intel MKL PARDISO sparse direct solver [42]
using the Newton-Raphson method. Calculations are per-
formed with the packages FIDISOL/CADSOL [43] and
CESDSOL

6 library. In all cases, the typical errors are of
order of 10−4.
For the choice (2.24) of the potential’s parameters, the

only input parameters are the gravitational coupling con-
stant α together with the scalar field’s frequency ω. The
parity of the solutions is imposed via the boundary
conditions (2.34) and (2.38). The number of individual
constituents results from the numerical output. Also, in all
plots below, quantities are given in natural units set by μ,G.

III. THE SOLUTIONS

A. Nodal structure and energy distribution

The choice of the parity P is related to the number of
distinct constituents of the solutions (as resulting e.g., from
the spatial distribution of the energy density). Moreover,
denoting the number of nodes on the symmetry axis by kz,
the solutions can be classified by the number of nodes kz.
The number of constituents of the chains is given by kz þ 1.
The even-parity configurations (P ¼ 1) have an even kz,
while the solutions with an odd kz are found for P ¼ −1.
For example, the spherically symmetric solutions have
kz ¼ 0 and one single constituent localized at the origin,
r ¼ 0. The simplest nonspherical configuration has kz ¼ 1
and represents a pair of static BSs7 with opposite phases,

the inversion of the sign of the scalar field function ϕ under
reflections θ → π − θ corresponds to the shift of the
phase ωt → ωtþ π.
It was pointed out that the character of the interaction

between Q-balls in Minkowski spacetime depends on their
relative phase [44,45]. If the Q-balls are in phase, the
interaction is attractive, if they are out of phase, there is a
repulsive force between them. Thus, an axially symmetric
kz ¼ 1 solution can be balanced by the gravitational
attraction.
Solutions with kz > 1 exist as well; the maximal value

we have reached so far is kz ¼ 5; however, they are likely to
exist for an arbitrarily large kz.
To illustrate these aspects, we display in Fig. 1 several

functions of interest for the five types of representative
configurations. Both odd and even parity configurations are
shown there, with the node numbers kz ¼ 0–4; also, the
solutions have the same values of the input parameters,
α ¼ 0.25 and ω=μ ¼ 0.8, being located on the first branch
in the ðω;MÞ-diagram (as described below). These chains
possess one to five constituents (from top to bottom), as
seen by the number of peaks of the charge density, shown in
the left panels. The middle panels represent the scalar field
amplitude ϕ, and the right panels show the metric function
f ¼ −gtt. For the sake of clarity, we have chosen to exhibit
these figures in polar coordinates ðρ; zÞ, as given by
Eq. (2.11).
The first row shows a single spherically symmetric BS

for comparison. The second row exhibits the pair of BSs.
The charge density has two symmetric peaks, the metric
function has two symmetric troughs, while the scalar field
function is antisymmetric, featuring a peak and a trough.
The triplet, quartet, and quintet in the next few rows feature
kz þ 1 very similar (in size and shape) peaks for the charge
density and troughs for the metric function, while the scalar
field shows alternating peaks and troughs, all located
symmetrically along the z-axis. Thus, on the fundamental
branch, we basically encounter a chain consisting of kz þ 1

BSs, all possessing similar size, shape, and distance from
their next neighbors.
This picture partially changes as we move along the

domain of solutions, for a given coupling α. This is seen in
Fig. 2, where these chains (kz ¼ 0–4) are now shown for
illustrative solutions sitting on the second branch of the M
vs ω domain of existence (see the discussion in the next
subsection), with α ¼ 0.25 for kz ¼ 0–3, α ¼ 0.5 for
kz¼ 4, and ω=μ¼f0.43;0.47;0.57;0.7;0.7g for kz ¼ 0–4,
respectively. As we look at the charge density of the
configurations, we see a dominant peak at the center for
odd chains and a dominant inner pair for even chains, while
the other peaks of the triplet, quartet, and quintet have
turned into slight elevations, hardly visible in the figures. In
the metric functions, the troughs at the center of the odd
chains dominate and likewise the (almost merged) inner
pair of troughs of the even chains. All other troughs are

6Complex equations—simple domain partial differential equa-
tions SOLver is a C++package being developed by one of us (I. P.).

7In principle, the kz ¼ 1 solutions can be thought of as the
static limit of negative parity spinning configurations considered
in [41].
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weakened substantially. The scalar field itself, however,
retains the outer peaks and troughs to a somewhat greater
extent, still reflecting clearly the number of constituents of
the chains.

B. The ω-dependence and the branch structure

Recall the frequency dependence for the single BSs and
for fixed coupling α [38]. The set of BSs emerges from the
vacuum at the maximal frequency, given by the boson mass
ωmax ¼ μ. Thus, unlike the case of Q-balls in flat space,
where mass and charge diverge, these quantities vanish in
this limit. Decreasing the frequency ω spans the first or

fundamental branch, which terminates at the first back-
bending of the curve, at which point it moves toward larger
frequencies. The curve then follows a spiraling/oscillating
pattern, with successive backbendings.
The mass and charge form a spiral, as ω is varied, while

the minimum of the metric function f and the maximum of
the scalar function ϕ show damped oscillations. The set of
solutions tends to a limiting solution at the center of the
spiral which has finite values of the mass and charge.
However, the values of the scalar field function ϕ and the
metric function f at the center of the star, which represent
the maximal and minimal values of these functions, ϕmax

FIG. 1. Chains of BSs with one to five constituents (from top to bottom) on the first (aka fundamental) branch for α ¼ 0.25 at
ω=μ ¼ 0.80: 3d plots of the Uð1Þ scalar charge distributions (left plots), the scalar field functions ϕ (middle plots), and the metric
functions f (right plots) versus the coordinates ρ ¼ r sin θ and z ¼ r cos θ.
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and fmin, respectively, do not seem to be finite, with ϕmax
diverging and fmin vanishing in the limit.
Let us now consider the frequency dependence of the BS

chains, when the coupling α is kept fixed. Like the single
BSs, all chains emerge similarly from the vacuum at the
maximal frequency, given by the boson mass ωmax ¼ μ,
where their mass and charge vanish in the limit.
When ω is decreased, mass and charge rise and the

chains follow along their fundamental branch. As for the
single BS, for all chains this fundamental branch ends at a
minimal value of the frequency, from where a second
branch arises. But then even and odd chains will in general

exhibit different patterns, which will also depend on the
coupling strength α.

1. Even chains

Let us consider the BS pair and the higher even chains in
more detail. We illustrate the ω-dependence for even chains
in Fig. 3, selecting the BS pair (kz ¼ 1) and the BS quartet
(kz ¼ 3), and comparing with the single BS. In the upper
panels, we show the kz ¼ 1 pair (solid curves), the kz ¼ 3
quartet (dash-dotted curves), as well as the kz ¼ 0 single
BS (dashed curves). For the latter, we only show the first

FIG. 2. Chains of BSs with one to five constituents (from top to bottom) on the second branch for differing values of α and ω: 3d plots
of the Uð1Þ scalar charge distributions (left plots), the scalar field functions ϕ (middle plots), and the metric functions f (right plots)
versus the coordinates ρ ¼ r sin θ and z ¼ r cos θ.
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few branches. In the two upper panels, we exhibit the scaled
ADM mass M (left) and the scaled charge Q (right). The
different colors refer to different values of the coupling α.
The middle left panel shows in an analogous manner the
minimal value fmin of the metric function f. Restricting to

the kz ¼ 1 pair, we then exhibit the maximal value ϕmax of
the scalar field function ϕ on right middle panel and the
separation zd between the components of the kz ¼ 1 pair in
the lower panel. All quantities are shown versus the
frequency ω.

FIG. 3. Comparison of the kz ¼ 0 single BSs (dashed curves), the kz ¼ 1 pair of BSs (solid curves), and the kz ¼ 3 quartet of BSs
(dash-dotted curves): scaled ADM massM (upper left panel), scaled charge Q (upper right panel), minimal value of the metric function
fmin (middle left panel), maximal value of the scalar field ϕmax of the kz ¼ 1 pair only (middle right panel), and separation zd between
the two components of the kz ¼ 1 pair only (lower panel) vs. frequency ω for several values of the coupling α. Note the quadratic scale
for fmin and zd.
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Whereas the single BSs constitute an infinite set of
branches, that form a spiral or a damped oscillation,
depending on the quantity of interest [38], the even chains
seem to end in a limiting configuration quite abruptly
somewhere in the middle of a branch. The number of
branches before this limiting configuration is encountered
depends on the strength of the gravitational coupling α. For
small α, there are more branches, for larger α, the limiting
configuration is already encountered on the second branch,
as illustrated in Fig. 3 for the BS pair.
The mass and the charge exhibit only the onset of a

spiraling behavior with two branches for the larger α values
(α ¼ 0.5, 1) and three branches for the smaller ones
(α ¼ 0.15, 0.2, 0.25). The minimum fmin the metric
function (middle left) and the maximum ϕmax of the scalar
function (middle right) exhibit only two or three oscilla-
tions. The coordinate distance zd between the two compo-
nents of the pair, as given by twice the value of the
z-coordinate of the maximum ϕmax, exhibits both types of
behavior (lower). For small α (α ¼ 0.15), zd shows three
oscillations, while it decreases continuously. For larger α

(α ¼ 0.25), it exhibits the onset of a spiral, with again larger
values on the third branch.
Let us now address the limiting behavior of the pairs in

more detail and its dependence on the coupling α. To that
end, we illustrate in Fig. 4 the profiles of the metric function
f (left panels) and the scalar field function ϕ (right panels)
on the z-axis, choosing a large (upper panels) and a small
(lower panels) value of the coupling α. Since for the large α,
the coordinate distance zd does not decrease monotonically,
but increases again toward the limiting solution, we retain
two well-separated components in the limit. The minimum
of the metric function fmin tends to zero in the limit, while
the maximum (minimum) of the scalar field function ϕmax
(ϕmin) becomes extremely sharp.
In fact, the scalar field amplitude ϕ acquires the shape of

two antisymmetric peak(on)s associated with the locations
of the minima of the metric function f, where the name
peakons refers to field configurations with extremely large
absolute values of the second derivative at the maxima
[46,47]. Further numerical investigation of such singular
solutions is, unfortunately, plagued by severe numerical

FIG. 4. Profiles on the symmetry axis of the metric function f (left) and the scalar field function ϕ of the kz ¼ 1 (almost) critical
solution on the second branch at ω ¼ 0.85 and α ¼ 1 (upper plots), and on the third branch at ω ¼ 0.52 and α ¼ 0.5 (lower plots). Also,
z ¼ r cos θ, with θ ¼ 0; π.
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problems. We remark that in the case of odd chains the
choice of spherical coordinates and the presence of the
major peak(on) at the origin alleviate the numerical
problems considerably.

For smaller α, the coordinate distance zd between the two
components of the pair decreases monotonically towards
the limiting solution. Figure 4 shows that the closeness of
the extrema of the scalar field function coincides with a

FIG. 5. kz ¼ 2 triplet of BSs: scaled ADMmassM (upper left panel), scaled chargeQ (upper right panel), minimal value of the metric
function fmin (middle left panel), maximal value of the scalar field function ϕmax (middle right panel), and separation zd between
neighboring components of the kz ¼ 2 triplet (lower panel) vs frequency ω for several values of the coupling α. Note the quadratic scale
for Q, fmin, and zd.
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very steep rise of the scalar field function at the origin. The
metric function, however, retains only a small peak at the
origin. Here the numerical grid allows for better resolution
of this extremal behavior and thus a closer approach to the
limiting solution. Still, the approach toward the limiting
solution is restricted by numerical accuracy.
The kz ¼ 3 quartet represents a bound state of four BSs,

located symmetrically along the symmetry axis. It may also
be viewed as a bound state of two bound pairs of BSs, since
this configuration is not fully symmetric. The two inner
BSs are slightly larger than the two outer BSs, though there
is not too much distinction between the stars as long as the
configuration resides on the fundamental branch. As seen
in Fig. 3, these quartet configurations share most of
the properties with kz ¼ 1 pairs. For the chosen values
of the coupling α, we find two branches of solutions,
the fundamental branch connected to the perturbative

excitations at ω → ωmax and the second branch leading
to a limiting solution. While approaching this limiting
solution, the outer extrema of the metric and of the scalar
field function become less pronounced, leaving basically
the two inner extrema, which evolve completely analo-
gously to the extrema of the pair toward a limiting solution.
We expect this scenario to represent a generic pattern seen
for all chains with odd kz (although so far we have checked
it for kz ¼ 1, 3, 5 only).

2. Odd chains

As noticed above, the odd chains always possess a BS
centered at the origin, with the remaining BSs are located
symmetrically with respect to the origin, on the symmetry
axis. The presence of the central BS constituent suggests
that the ðω;MÞ-pattern of the odd chains could resemble
that found for a single BS. To scrutinize this conjecture, let

FIG. 6. Comparison of the radially excited nr ¼ 1 single BSs (dashed curves), and kz ¼ 2 triplet of BSs (solid curves): scaled ADM
mass M (upper left panel), scaled charge Q (upper right panel), minimal value of the metric function fmin (lower left panel), maximal
value of the scalar field function ϕmax (lower right panel) vs frequency ω for two values of the coupling α. Note the quadratic scale
for fmin.
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us consider the branch structure for the kz ¼ 2 triplet of
BSs, exhibited in Fig. 5 for four values of the coupling α
(with different colors). Analogously to the even chains, we
show in the two upper panels the scaled ADMmassM (left)
and the scaled charge Q (right). The middle panels show
the minimal value fmin of the metric function (left) and the
maximal value ϕmax of the scalar field function (right),
while the lower panel shows the separation zd between the
neighboring components of the kz ¼ 2 triplet. Again, all
quantities are shown as a function of the frequency ω.
Let us first consider small values of the coupling α. Then

our expectation is borne out, and we observe the triplet
forming spirals for the mass and charge, while damped
oscillations for the extremal values fmin and ϕmax. The
extremal values always reside at the center of the configu-
rations, i.e., at the origin. Also, the separation zd between
the neighboring components of the kz ¼ 2 triplet forms a
spiral. Here, along this spiral, the contribution of the central
BS to the full configurations becomes dominant, while the
outer BSs contributions diminish.
When increasing the coupling constant beyond α≳ 0.45,

however, the scenario changes completely. While the
configurations still follow a similar pattern along the
fundamental branch, the further part of the ðω;MÞ-diagram
does not involve a spiraling/oscillating behavior. Instead,
there is a single second branch, that leads all the way back
to the vacuum configuration. Thus, all physical quantities
exhibit loops, beginning and ending at ωmax. This may be
interpreted as follows. Along the second branch the
configurations again feature a dominant central BS, but
the “satellite” BSs dissolve into a (sort of) boson shell.
Moreover, the system tends more and more toward spheri-
cal symmetry. Now we recall that a central BS surrounded
by a boson shell is precisely what constitutes a radially
excited spherically symmetric BS with a single radial node,
nr ¼ 1. This suggests that the kz ¼ 2 triplet might merge
with a nr ¼ 1 single BS.
Let us therefore compare the M − ω diagram of the

kz ¼ 2 triplets at large coupling α with that of the radially
excited nr ¼ 1 single BSs. Such a comparison is shown in
Fig. 6, where the kz ¼ 2 BS triplets are marked by solid
curves and the radially excited nr ¼ 1 single BSs by dashed
curves for two values of α. The upper panels show the
scaled ADM massM (left) and the scaled charge Q (right),
while the lower panels show the minimal value fmin of the
metric function f (left) and the maximal value ϕmax of the
scalar field function ϕ (right).
These figures are indeed very telling. The radially

excited nr ¼ 1 single BSs exhibit the typical curve pattern
of spherically symmetric BSs. They emerge from the
vacuum, form the fundamental branch and end in a
spiraling/oscillating pattern. The kz ¼ 2 triplet likewise
emerges from the vacuum, forms a fundamental branch,
and a second branch, but this second branch of the triplet
nicely overlaps with the fundamental branch of the nr ¼ 1

single BSs at some critical value of the frequency ωcr. The
overlap happens when mass and charge of the nr ¼ 1 single
BSs have already passed their maximal values and the
radially excited stars are descending into the spiral.
It is now clear how the domain of existence of odd chains

with more constituents should be for sufficiently large
values of the coupling α. Let us consider a chain with kz
nodes and thus kz þ 1 constituents. Then this chain will
feature on its fundamental branch kz þ 1more or less equal
BSs, located on the symmetry axis. Subsequently, the
central BS will start to dominate while the satellite BSs
will dissolve into boson shells. As the system tends toward
spherical symmetry, it will overlap with a nr ¼ kz=2 single
BS at some critical value of the frequency. We have
checked this behavior for the kz ¼ 4 BS quintet, which
indeed overlaps with the radially excited nr ¼ 2 single BS.

IV. CONCLUSIONS

The main purpose of this paper was to report the
existence of a new type of solitonic configurations for a
model with a gravitating self-interacting complex scalar
field. These configurations represent chains of BSs, with
kz þ 1 constituents located symmetrically along the sym-
metry axis. The number kz ≥ 0 represents the number of
nodes on the symmetry axis of the scalar field amplitude ϕ.
The chains emerge from the vacuum ϕ ¼ 0 at a maximal

value of the boson field frequency ω, which is given by the
field’s mass. For any kz, a fundamental branch of solutions
is found emerging from this vacuum, in a (ω, M)-diagram
(with M the ADM mass), ending at a minimal value of the
frequency ωmin, whose value is determined by the self-
interaction potential and the gravitational coupling strength
α. The subsequent solution curve depends on the number
of constituents and the coupling α. A single spherical BS
has been argued to form an infinite number of branches,
leading to spirals or damped oscillations (depending on the
quantities considered) as its limiting configuration is
approached. For even chains, we do not see such an
endless spiraling/oscillating pattern. Instead, we observe
only two to three branches, depending on the coupling α.
As the limiting configuration is approached, the even

chains retain basically two of their kz þ 1 constituents,
whose metric function g00 exhibits two sharp peaks,
reaching a very small value, while the scalar field features
two sharp opposite extrema located right at the location of
these peaks. The resulting configurations then feature huge
second derivatives of the functions, which impede further
numerical analysis toward the limiting solution.
The odd chains show a similar pattern as the single BS,

when the coupling α is small. This may be interpreted as the
central BS dominating the configurations on the higher
branches. For larger α, however, the pattern changes totally,
and the chains overlap on their second branch with a
radially excited spherical single BS with nr ¼ kz=2 (radial)
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nodes. In this case, the central dominant BS will be
surrounded by nr “boson shells.”8

These solutions can be generalized in various directions.
The most obvious generalization is to include rotation. For
the scalar field, this means to include an explicit harmonic
dependence on the azimuthal angle φ. The rotating single
BSs were obtained long ago [40,50–52]. The rotating BSs
with odd parity and kz ¼ 1, representing the rotating
generalizations of the pair of BSs, were also discussed
in the literature [41]. We predict the existence of rotating
generalizations for the triplet and the higher chains dis-
cussed in this work.
Single nonrotating BSs cannot be endowed with a

black hole at the center; the no-hair theorems forbid
their existence [53]. This result is, however, circum-
vented in the presence of spin, hairy generalizations of
the Kerr black hole (BH) with a complex scalar field
being reported in literature [54–61]. These hairy BHs
obey a synchronization condition relating the angular
velocity of the event horizon and the boson field
frequency. Most studies so far considered only an even
parity scalar field; see e.g., [62–74]. Synchronized hairy
BHs with an odd parity scalar field were obtained in
[62,63,74]. While these solutions represent only the
simplest type of generalizations, containing a single
black hole at the center of configurations with one
(parity even) constituent or two (parity odd) constituents
one can easily image to put a black hole either at the
center of rotating configurations with more than two
components [75], or to put a black hole at the center of
each of the components along the symmetry axis. Such
configurations should correspond to hairy double Kerr
solutions or hairy multi-Kerr solutions. It would be
interesting to see, whether the presence of the scalar hair
can regularize such solutions, so that no conical singu-
larity would be needed to hold them in equilibrium.
Along similar lines, but replacing rotation by an electric

charge, one could investigate chains of electromagnetically

charged BSs, generalizing the results for a single charged
BSs in Einstein-Klein-Gordon-Maxwell model [48,76,77].
Some results in this direction were reported in the recent
work [78], where (flat space) Q-chains were constructed in
a model with a Uð1Þ gauged scalar field, for a particular
choice of the constants in the potential (2.21). Gravitating
generalizations of these solutions should also exist, sharing
some of the properties of the (ungauged) BS chains in this
work. In this context, we mention the recent results in
[77,79], showing that the no-hair theorem in [80] does not
apply to a single charged static BS in a model with aQ-ball
type potential (2.21), with the existence of BH generaliza-
tions. For chains of charged BSs, it would be again of
particular interest to see whether they would support
regular static multi-BH solutions.
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