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Abstract
This paper is devoted to the approximation of a nonstandard Darcy problem, which 
modelizes the ow in porous media, by spectral methods: the pressure is assigned 
on a part of the boundary. We propose two variational formulations, as well as three 
spectral discretizations. The second discretization improves the approximation of the 
divergence-free condition, but the error estimate on the pressure is not optimal, while 
the third one leads to optimal error estimate with a divergence-free discrete solution, 
which is important for some applications. Next, their numerical analysis is performed 
in detail and we present some numerical experiments which conrm the interest of the 
third discretization.
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Introduction1 Introduction

We consider the following Darcy problem:

u+∇p = f in Ω, (1.1)

divu = 0 in Ω, (1.2)

u .n = U0 on Γ1, (1.3)

p = ϕ on Γ2, (1.4)

where Ω is the plane square ] − 1, 1[2 and n = (n1, n2) is the exterior unit normal to the
boundary Γ = ∂Ω. The boundary Γ is divided into two parts: the horizontal portion Γ1 =
{(x, y)| − 1 < x < 1, y = ±1} and the vertical portion Γ2 = {(x, y)|x = ±1,−1 < y < 1}.
As we can see, the boundary condition on Γ2 are nonstandard, since we prescribe the value
of the pressure on Γ2. On the contrary, we have a classical condition on the portion Γ1.
These conditions are described in the following figure.
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The equations of the Darcy problem not only modelize the flow in porous media, but
also appear in the projection techniques for the solution of Navier-Stokes equations (see
[10] and [15]). The nonstandard boundary conditions, where the pressure is assigned on
a part of the boundary, have a physical meaning: typically the portion Γ1 corresponds to
rigid walls, whereas the entry or exit of the fluids takes place through Γ2. The spectral dis-
cretization with this type of boundary conditions was only studied within the framework of
the Stokes problem (see [6], [4] and [5]), while Azäıez, Bernardi and Grundmann proposed
in [2] the spectral discretization of the standard Darcy problem, where the normal velocity
is assigned on the boundary.

This paper is devoted to the spectral discretization of the nonstandard Darcy problem.
First, we give two variational formulations. Each one leads us to well-posed problems. Se-

1

cond, we study the regularity of the solution by using a mixed problem of Dirichlet-
Neumann for the Laplace operator. Next, from the first variational formulation, we derive a
first spectral discretization, which is simple, but, in order to improve the approximation of
the divergence-free condition, we study a second spectral discretization, where the inf-sup
condition is obtained with more difficulty and where the error estimate on the pressure is
not optimal. Finally, the second variational formulation yields a third spectral discretiza-
tion, which leads us to optimal error estimate and a divergence-free discrete solution.

An outline of this paper is as follows. The two continuous variational problems, as
well as the regularity of the solution, are studied in Section 2. Section 3 is devoted to
the analysis of three spectral approximations of this problem in the case of homogeneous
boundary conditions. In Section 4, we present the algorithms that are used to solve the
first and third discretizations, together with some numerical experiments.

2 Statement of the problem and notation

In order to set this problem into adequate spaces, recall the definition of the following
standard Sobolev spaces (cf. J. Nečas [13]). For any multi-index k = (k1, k2) with ki ≥ 0,
set |k| = k1 + k2 and denote

∂kv =
∂|k|v

∂xk1
1 ∂xk2

2

.

Then for any integer m ≥ 0 and any plane domain Ω whose boundary is Lipschitz-
continuous(cf. Grisvard [12]), we define:

Hm(Ω) = {v ∈ L2(Ω); ∂kv ∈ L2(Ω) for 1 ≤ |k| ≤ m} ,

equipped with the seminorm

|v|Hm(Ω) = (
∑

|k|=m

∫

Ω
|∂kv|2 dx)

1
2 ,

and norm(for which it is an Hilbert space)

‖v‖Hm(Ω) = (
m∑

|k|=0

∑
k

‖∂kv‖2L2(Ω))
1/2.

For extensions of this definition to non-integral values of m (see [11,12]), let s a real
number such that s = m+ σ with m ∈ IN and 0 < σ < 1. We denote by Hs(Ω) the space
of all distributions u defined in Ω such that u ∈ Hm(Ω) and, ∀|α| = m,

∫

Ω

∫

Ω

(∂αu(x)− ∂αu(y))2

‖x− y‖2+2σ
dxdy < +∞.

It can be shown that Hs(Ω) is a Hilbert space for the scalar product

(u, v)s,Ω = (u, v)m,Ω +
∑

|α|=m

∫

Ω

∫

Ω

(∂αu(x)− ∂αu(y))(∂αv(x)− ∂αv(y))

‖x− y‖2+2σ
dxdy. (2.1)

2

Figure 1.1
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Let Γ′ be an open part of the boundary ∂Ω of class Cm−1,1 and T Γ′
1 the mapping

v �→ v|Γ′ defined on Hm(Ω). We denote by Hm− 1
2 (Γ′) (see [7,12]) the space T Γ′

1 (Hm(Ω))
which is equipped with the norm:

‖ϕ‖
Hm− 1

2
(Γ′) = inf{‖v‖Hm(Ω), v ∈ Hm(Ω) and v|Γ′ = ϕ}. (2.2)

In this text, we shall use the spaces H1/2(Γ′) and H3/2(Γ′) corresponding to m = 1 and 2.

Let us define the space H
1/2
00 (Γ′) = {v|Γ′ , v ∈ H1(Ω), ∀x ∈ ∂Ω \ Γ′, v|∂Ω(x) = 0}. We

shall also be interested in the dual space of H
1/2
00 (Γ′),

H−1/2(Γ′) = (H
1/2
00 (Γ′))′. (2.3)

We shall use the Hilbert space H(div ; Ω) = {v ∈ L2(Ω)2 : div v ∈ L2(Ω)}, equipped
with the norm

‖v‖H(div ;Ω) = ((‖v‖L2(Ω))
2 + (‖div v‖L2(Ω))

2)
1
2 . (2.4)

For vanishing boundary values, we define:

H1
0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}.

For Λ =]− 1, 1[, we denote the norm in L2(Λ) by ‖v‖0,Λ = (
∫ 1

−1
(v(x))2 dx)

1
2 , the semi-

norm in H1(Λ) by |v|1,Λ = (
∫ 1

−1
(v′(x))2 dx)

1
2 and the norm in H1(Ω) by

‖v‖1,Λ = (
∫ 1

−1
((v(x))2 + (v′(x))2) dx)

1
2 .

We note x = (x, y) the generic point of the square Ω and we call ΓI , ΓII , ΓIII

and ΓIV the edges of Ω, starting from west and turning counterclockwise. For each J ,
J = I, II, III, IV , the extremities of the edge ΓJ are aJ−1 and aJ, with the convention
a0 = aIV, the exterior unit normal vector to ΓJ is denoted by nJ and the counterclockwise
unit tangent vector is τ J. Figure 1.2 below presents this notation.

For any domain ∆ in IR or IR2 and for any nonnegative integer n, lPn(∆) stands for
the space of all polynomials on ∆ with degree ≤ n with respect to each variable. We also
use the notation lP0

n(∆) for the subspace lPn(∆) ∩ H1
0 (∆). For Λ =] − 1, 1[, the family

(Ln)n of Legendre polynomials is a basis of the spaces lP(Λ) of polynomials on Λ (we refer
to [7, Chap. I] for the properties of the orthogonal polynomials). These polynomials are
orthogonal to each other in L2(Λ) and are caracterized as follows: for any integer n ≥ 0,
the polynomial Ln is of degree n and satisfies Ln(1) = 1. Let us recall some properties
that we need. The family (Ln)n is given by the recursion relation:

{
L0 = 1, L1(ζ) = ζ,
(n+ 1)Ln+1(ζ) = (2n+ 1)ζLn(ζ)− nLn−1(ζ), n ≥ 1.

(2.5)

Each polynomial is a solution of the differential equation

((1− ζ2)L′
n)

′ + n(n+ 1)Ln = 0, n ≥ 0, (2.6)

and its norm is given by

‖Ln‖20,Λ =
2

2n+ 1
, n ≥ 0. (2.7)

3

cond, we study the regularity of the solution by using a mixed problem of Dirichlet-
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Let Γ′ be an open part of the boundary ∂Ω of class Cm−1,1 and T Γ′
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2 (Γ′) (see [7,12]) the space T Γ′
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2
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orthogonal to each other in L2(Λ) and are caracterized as follows: for any integer n ≥ 0,
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{
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(n+ 1)Ln+1(ζ) = (2n+ 1)ζLn(ζ)− nLn−1(ζ), n ≥ 1.

(2.5)
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and its norm is given by
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2
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Three consecutive polynomials are linked by the integral equation
∫ ζ

−1
Ln(ξ) dξ =

1

2n+ 1
(Ln+1(ζ)− Ln−1(ζ)), n ≥ 1. (2.8)

From (2.6) and integration by parts, we derive

L′
n(1) =

n(n+ 1)

2
, ‖L′

n‖20,Λ = n(n+ 1), (2.9)

∀ϕn ∈ lPn(Λ), |ϕn|1,Λ ≤
√
3n2‖ϕn‖0,Λ. (2.10)

Next, let N ≥ 2 be a fixed integer. We denote by ξj, 0 ≤ j ≤ N , the zeros of the
polynomial (1− ζ2)L′

N(ζ) in increasing order. We recall (see [7, Chap. I]) that there exist
positive weights ρj, 0 ≤ j ≤ N , such that the following equality, called the Gauss-Lobatto
formula, holds

∀Φ ∈ lP2N−1(Λ),
∫ 1

−1
Φ(ζ) dζ =

N∑
j=0

Φ(ξj)ρj. (2.11)

Moreover, it follows from the identity (see [7, Chap. III])

N∑
j=0

LN(ξj)
2ρj = (2 +

1

N
)‖LN‖20,Λ, (2.12)

that the bilinear form: (u, v) → ∑N
j=1 u(ξj)v(ξj)ρj is a scalar product on lPN(Λ), since we

have

∀v ∈ lPN(Λ), ‖v‖20,Λ ≤
N∑
j=0

v(ξj)
2ρj ≤ 3‖v‖20,Λ. (2.13)

4

Figure 1.2
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3 The continuous problem

3.1 First variational formulation

We define the subspace H1(Ω; Γ′) = {v ∈ H1(Ω)|v = 0 on Γ′} of H1(Ω) and we
introduce the space:

M = H1(Ω; Γ2). (3.1)

In the same way as in [1], we consider the following equivalent variational formulation
of the problem (1.1)-(1.4):

Find u in L2(Ω)2 and p in H1(Ω) such that p− ϕ belongs to M and that

∀v ∈ L2(Ω)2, a(u,v) + b(v, p) =
∫

Ω
f(x) .v(x) dx, (3.2)

∀q ∈ M, b(u, q) =< U0, q >Γ1 , (3.3)

where the bilinear forms a and b are defined by

∀(v,w) ∈ (L2(Ω)2)2, a(v,w) =
∫

Ω
v(x) .w(x) dx, (3.4)

∀v ∈ L2(Ω)2, ∀q ∈ H1(Ω), b(v, q) =
∫

Ω
v(x) .∇q(x) dx. (3.5)

Theorem 3.1 Let f be in L2(Ω)2, U0 in H−1/2(Γ1) and ϕ in H1/2(Γ2), where H−1/2(Γ1)
and H1/2(Γ2) are defined respectively in (2.3) and (2.2). Then problem (3.2), (3.3) has a
unique solution satisfying

‖u‖L2(Ω)2 + ‖p‖H1(Ω) ≤ C(‖f‖L2(Ω) + ‖U0‖−1/2,Γ1 + ‖ϕ‖1/2,Γ2). (3.6)

Proof. First, let us define ϕ̃ belonging to H1/2(Γ) such that ϕ̃|Γ2 = ϕ and ‖ϕ̃‖1/2,Γ ≤
c‖ϕ‖1/2,Γ2 . To this end, we must extend ϕ to a function belonging to H1/2(Γ). Let µ be a
function defined in [0, 2] by

µ(t) = 1− t, for 0 ≤ t ≤ 1 and µ(t) = 0, for 1 ≤ t ≤ 2.

We define ϕ̃|ΓII
by

ϕ̃(aI + tτ II) = µ(t)ϕ(a0 + (2− t)τ I) + µ(2− t)ϕ(aII + (2− t)τ III)

and ϕ̃|ΓIV
by

ϕ̃(aO − tτ IV ) = µ(t)ϕ(a0 + tτ I) + µ(2− t)ϕ(aII + tτ III).

Then we have ‖ϕ̃‖1/2,Γ ≤ C‖ϕ‖1/2,Γ2 . Next, let Φ in H1(Ω) such that Φ|Γ = ϕ̃. Finally, we
obtain a function Φ verifying

Φ|Γ2 = ϕ and ‖Φ‖H1(Ω) ≤ C‖ϕ‖1/2,Γ2 . (3.7)

Second, let us extend U0 to a function belonging to H−1/2(Γ). We set Ũ0|Γ1 = U0 and

Ũ0|Γ2 = −1
2
< U0, 1 >Γ1 . Then, we have ‖Ũ0‖−1/2,Γ ≤ C‖U0‖−1/2,Γ1 and < Ũ0, 1 >Γ= 0.

Next, we define Neumann’s Problem:
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4THE CONTINUOUS PROBLEM
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Second, let us extend U0 to a function belonging to H−1/2(Γ). We set Ũ0|Γ1 = U0 and

Ũ0|Γ2 = −1
2
< U0, 1 >Γ1 . Then, we have ‖Ũ0‖−1/2,Γ ≤ C‖U0‖−1/2,Γ1 and < Ũ0, 1 >Γ= 0.

Next, we define Neumann’s Problem:



−∆ψ = 0 in Ω
∂ψ

∂n
= Ũ0 on Γ

5and we set u0 = ∇ψ. Applying Proposition 1.2 of [11, page 14], we derive that ψ belongs
to H1(Ω), which implies that u0 belongs to H(div ; Ω) with

‖u0‖H(div ;Ω) = |ψ|H1(Ω) ≤ C‖Ũ0‖−1/2,Γ,

since divuo = ∆ψ = 0. Finally, u0 verifies

u0 .n|Γ1 = U0, divu0 = 0 in Ω and ‖u0‖H(div ;Ω) ≤ C‖U0‖−1/2,Γ1 . (3.8)

Now, let us split p as: p = Φ + p̃ with p̃ in M and u as: u = u0 + ũ. Then, we can
write the problem (3.2),(3.3) as

∀v ∈ L2(Ω)2, a(ũ,v) + b(v, p̃) =
∫

Ω
(f(x)−∇Φ(x)− u0(x)) .v(x) dx. (3.9)

∀q ∈ M, b(ũ, q) = 0. (3.10)

Since the right-hand side of (3.9) defines a continuous form on L2(Ω)2 and since the prop-
erties of continuity and ellipticity are obvious we have only to check the following inf-sup
condition on the form b (see [11, pages 58,59]):

inf
q∈M

sup
v∈L2(Ω)2

b(v, q)

‖v‖L2(Ω)2
≥ β ⇐⇒ ∀q ∈ M, sup

v∈L2(Ω)2

b(v, q)

‖v‖L2(Ω)2
≥ β‖q‖H1(Ω), (3.11)

with a positive constant β. This ”inf-sup condition” was introduced independently by
Babuska [3] and Brezzi [9]. We can verify this condition by taking v = ∇q . Indeed, we
have

sup
v∈L2(Ω)2

b(v, q)

‖v‖L2(Ω)2
≥ b(∇q, q)

‖∇q‖L2(Ω)2
= |q|H1(Ω)

and, since q|Γ2 = 0, using a generalization of Poincaré inequality (see [11, Chap. I, page
40]) yields ‖q‖L2(Ω) ≤ P|q|H1(Ω), which implies

‖q‖H1(Ω) ≤
√
(P)2 + 1)|q|H1(Ω).

Thus, the ”inf-sup condition” is verified with the positive constant β =
1√

(P)2 + 1)
. Hence,

applying Theorem 2.3 [7, pages 116,117], the theorem follows. ♦

3.2 Second variational formulation

We introduce the space:

X = {v ∈ L2(Ω)2; div v ∈ L2(Ω) and v .n|Γ1 = 0}. (3.12)

In an analogous way as in [1], we consider the following equivalent variational formu-
lation of the problem (1.1)-(1.4):

6
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Find u in X and p in L2(Ω) such that u − u0 belongs to X, where u0 is the function
previously constructed that verifies (3.8), and that

∀v ∈ X, a(u,v) + b∗(v, p) =
∫

Ω
f(x) .v(x) dx− < ϕ,v .n >Γ2 , (3.13)

∀q ∈ L2(Ω), b∗(u, q) = 0, (3.14)

where the bilinear form b∗ is defined by

∀v ∈ H(div ; Ω), ∀q ∈ L2(Ω), b∗(v, q) = −
∫

Ω
div v(x) . q(x) dx. (3.15)

In the same way as previously, we split u as: u = u0 + ũ. Then, we can write the
problem (3.13),(3.14) as

∀v ∈ X, a(ũ,v) + b∗(v, p) =
∫

Ω
(f(x)− u0(x)) .v(x) dx− < ϕ,v .n >Γ2 . (3.16)

∀q ∈ L2(Ω), b∗(ũ, q) = 0. (3.17)

Since the right-hand side of (3.16) defines a continuous form on X and since the proper-
ties of continuity and ellipticity are obvious, we have only to check the following inf-sup
condition on the form b∗:

∀q ∈ L2(Ω), sup
v∈X

b∗(v, q)

‖v‖H(div ;Ω)

≥ β∗‖q‖L2(Ω), (3.18)

with a positive constant β∗. Let us note that q0 = q− 1

|Ω|

∫

Ω
q(x) dx belongs to L2

0(Ω) and,

owing to a classic result (see [11, Chap. I]), there exists v0 in H1
0 (Ω)

2, such that

div v0 = −q0 and ‖v0‖H1(Ω)2 ≤ c‖q0‖L2(Ω).

Then, we set

ṽ = v0 + v1 with v1(x, y) = (−(
1

|Ω|

∫

Ω
q(x) dx)x, 0), −1 ≤ x, y ≤ 1.

We can verify that ṽ belongs to X with

div ṽ = −q and ‖ṽ‖H(div ;Ω) ≤ C‖ṽ‖H1(Ω)2 ≤ C ′‖q‖L2(Ω),

since |
∫
Ω q(x) dx| ≤

√
|Ω| ‖q‖L2(Ω. Then, we have

sup
v∈X

b∗(v, q)

‖v‖H(div ;Ω)

≥ b∗(ṽ, q)

‖ṽ‖H(div ;Ω)

≥ 1

C ′‖q‖L2(Ω).

Hence, we derive the inf-sup condition and we obtain the following result.

Theorem 3.2 Let f be in L2(Ω)2, U0 in H−1/2(Γ1) and ϕ in H1/2(Γ2), where H−1/2(Γ1)
and H1/2(Γ2) are defined respectively in (2.3) and (2.2). Then problem (3.13), (3.14) has
a unique solution satisfying

‖u‖H(div ,Ω) + ‖p‖L2(Ω) ≤ C(‖f‖L2(Ω) + ‖U0‖−1/2,Γ1 + ‖ϕ‖1/2,Γ2). (3.19)
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‖q‖H1(Ω) ≤
√
(P)2 + 1)|q|H1(Ω).

Thus, the ”inf-sup condition” is verified with the positive constant β =
1√

(P)2 + 1)
. Hence,

applying Theorem 2.3 [7, pages 116,117], the theorem follows. ♦

3.2 Second variational formulation

We introduce the space:

X = {v ∈ L2(Ω)2; div v ∈ L2(Ω) and v .n|Γ1 = 0}. (3.12)

In an analogous way as in [1], we consider the following equivalent variational formu-
lation of the problem (1.1)-(1.4):

6



23doi:  http://dx.doi.org/10.18272/aci.v10i1.824

Bernard (2018)

Regularity results3.3 Regularity results

When the data f is in H(div ; Ω), taking the divergence of the first equation of the prob-
lem (1.1)-(1.4) and owing to the other equations, we obtain a mixed problem of Dirichlet-
Neumann for the Laplace operator:





∆p = div f in Ω
p = ϕ on Γ2

∂p

∂n
= f .n− U0 on Γ1.

(3.20)

We suppose that f is in H1(Ω)2, ϕ is in H3/2(Γ2) and U0 is in H1/2(Γ1). In addition, we
assume matching conditions at the vertices of Γ (see [7, Chap I]):

∫ 2

0
| dϕ
dτ J

(aJ − tτ J)− (f .n− U0)(aJ + tτ J+1)|2
dt

t
< +∞, J = I, III

∫ 2

0
|(f .n− U0)(aJ − tτ J) +

dϕ

dτ J+1

(aJ + tτ J+1)|2
dt

t
< +∞, J = II, IV. (3.21)

Theorem 3.3 For any data f in H1(Ω)2, ϕ in H3/2(Γ2) and U0 in H1/2(Γ1), where
H3/2(Γ2) and H1/2(Γ1) are defined in (2.2) , verifying the matching conditions (3.21),
the solution (u, p) of the problem (1.1)-(1.4) belongs to H1(Ω)2 ×H2(Ω).

Proof. Owing to matching conditions (3.21), there exists p0 in H2(Ω) such that p0|Γ2 = ϕ

and (
∂p0
∂n

)|Γ1 = f .n − U0. Let us set p̃ = p − p0. The problem (3.20) is equivalent to the

following problem: find p̃ in H1(Ω; Γ2) such that

∀q ∈ H1(Ω; Γ2), a(∇p̃,∇q) =
∫

Ω
(div f +∆p0)(x)q(x) dx.

Since the boundary between Γ1 and Γ2 is the set of vertices of Γ, the regularity of the
data implies that this homogeneous mixed problem of Dirichlet-Neumann for the Laplace
operator has a solution p̃ in H2(Ω) (see [12]). Hence, we derive the regularity of p and u. ♦

Remark 3.4 If (f .n−U0) is Lipschitz-continuous on ΓJ or belongs to H1(ΓJ), J = II, IV
and if ϕ belongs to C1,1(ΓJ) or to H2(ΓJ), J = I, III, the matching conditions (3.21) are
equivalent to simpler conditions:

dϕ

dτ J

(aJ) = (f .n− U0)(aJ), J = I, III and − dϕ

dτ J+1

(aJ) = (f .n− U0)(aJ), J = II, IV.

4 Spectral discretization

4.1 First spectral discretization

We define the discrete scalar product by

(u, v)N =
N∑
i=0

N∑
j=0

u(ξi, ξj)v(ξi, ξj)ρiρj. (4.1)
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SPECTRAL DISCRETIZATION

First spectral discretization

and we denote by IN the Lagrange interpolation operator at the points (ξi, ξj), 0 ≤ i, j ≤ N
in lPN(Ω). We set

XN = lPN(Ω)
2 or XN = (lPN−1(Λ)⊗ lPN(Λ))× (lPN(Λ)⊗ lPN−1(Λ)). (4.2)

We assume that the data f belongs to C0(Ω)2 and, for the sake of simplicity, that u and p
satisfy homogeneous boundary conditions, that is to say, we set ϕ = 0, U0 = 0 in (1.1)-(1.4).
From the variational formulation (3.2)-(3.3), we derive the following discrete problem:

Find uN in XN and pN in lPN(Ω) ∩M , where M is defined by (3.1), such that

∀vN ∈ XN , (uN ,vN)N + bN(vN , pN) = (f ,vN)N , (4.3)

∀qN ∈ lPN(Ω) ∩M, bN(uN , qN) = 0, (4.4)

where the form bN is defined by

∀vN ∈ lPN(Ω)
2, ∀qN ∈ lPN(Ω), bN(vN , qN) = (vN ,∇qN)N . (4.5)

We have a classical saddle point problem. We verify the inf-sup condition

∀qN ∈ lPN(Ω) ∩M, sup
vN∈XN

bN(vN , qN)

‖vN‖L2(Ω)2
≥ γ‖qN‖H1(Ω), (4.6)

where γ is a positive constant independent from N , by taking vN = ∇qN . Hence, we derive
the following theorem.

Theorem 4.1 Let f be in C0(Ω)2. Then problem (4.3), (4.4) has a unique solution
(uN , pN) satisfying

‖uN‖L2(Ω)2 + ‖pN‖H1(Ω) ≤ C ‖IN f‖L2(Ω)2 . (4.7)

Next, we establish a theorem which implies the convergence of our discretization
method.

Theorem 4.2 Assume that the solution (u, p) of problem (4.3), (4.4) belongs to Hs(Ω)2×
Hs+1(Ω), s ≥ 0, and the data f belongs to Hσ(Ω)2, σ > 1, where Hs(Ω), for non-integral
values of s, is defined in (2.1). Then, the following estimate holds

‖u−uN‖L2(Ω)2+‖p−pN‖H1(Ω) ≤ c
(
N−s(‖u‖Hs(Ω)2 + ‖p‖Hs+1(Ω)) +N−σ‖f‖Hσ(Ω)2

)
. (4.8)

Proof. From the abstract error estimate for the approximation of saddle-point problems
(see [7, Chap. IV]), we derive the following estimate:

‖u− uN‖L2(Ω)2 + ‖p− pN‖H1(Ω) ≤ c
(

inf
wN∈VN

‖u−wN‖L2(Ω)2

+ inf
vN∈XN

(‖u− vN‖L2(Ω)2 + sup
zN∈XN

∫
Ω vN(x) . zN(x) dx− (vN , zN)N

‖zN‖L2(Ω)2
)

+ inf
qN∈lPN (Ω)∩M

(‖p− qN‖H1(Ω) + sup
zN∈XN

b(zN , qN)− bN(zN , qN)

‖zN‖L2(Ω)2
)

+ sup
zN∈XN

∫
Ω f(x) . zN(x) dx− (f , zN)N

‖zN‖L2(Ω)2

)
, (4.9)

9
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where VN is defined by

VN = {wN ∈ XN ; ∀qN ∈ lPN(Ω) ∩M, bN(wN , qN) = 0}.

Moreover, we recall (see [11, Chap. II, (1.16)]) that

inf
wN∈VN

‖u−wN‖L2(Ω)2 ≤
c

γ
inf

vN∈XN

(‖u− vN‖L2(Ω)2).

Hence, we derive that, for all vN−1 and fN−1 in lPN−1(Ω)
2 and all qN−1 ∈ lPN−1(Ω) ∩M ,

‖u− uN‖L2(Ω)2 + ‖p− pN‖H1(Ω)

≤ c(‖u− vN−1‖L2(Ω)2 + ‖p− qN−1‖H1(Ω) + ‖f − fN−1‖L2(Ω)2 + ‖f − IN f‖L2(Ω)2). (4.10)

Then, we choose vN−1 = ΠN−1u (resp. fN−1 = ΠN−1f), that is to say the orthogonal
projection of u (resp. f) on lPN−1(Ω)

2 in L2(Ω)2 and qN−1 = Π1,Γ2

N−1p, where Π1,Γ2

N−1p is the
orthogonal projection of p on lPN−1(Ω) ∩M in H1(Ω). It remains to prove the estimate,
for any m ≥ 1,

∀p ∈ Hm(Ω) ∩M, ‖p− Π1,Γ2

N−1p‖H1(Ω) ≤ C N1−m‖p‖Hm(Ω). (4.11)

On the one hand, this result is obvious for m = 1. On the other hand, for m ≥ 2, we have
(see [7, Chap. III]),

‖p− Π1,Γ2

N−1p‖H1(Ω) ≤ inf
rN−1∈lPN−1(Ω)∩M

‖p− rN−1‖H1(Ω)

≤ ‖p− IN−1p‖H1(Ω) ≤ C N1−m‖p‖Hm(Ω).

Then, an interpolation argument (see [11, TH 1.4, page 6]) gives (4.11). Finally, the re-
sult follows from (4.10), (4.11) and the classic estimate for the orthogonal projection on
lPN−1(Ω) in L2(Ω). ♦

Remark 4.3 With the choice XN = lPN(Ω)
2, problem (4.3, (4.4) can be interpreted as a

collocation scheme. Indeed, by integrating by parts in the discrete bilinear form bN with
respect to one of the two variables for each of the two terms of bN (this process being
allowed by the precision of the quadrature rule), and choosing as test functions the Lagrange
polynomials associated with the grid points of ΞN , it is easily seen that (4.3), (4.4) is
equivalent to the set of equations for uN in lPN(Ω)

2 and pN in lPN(Ω) ∩M :

uN(x) +∇pN(x) = f(x), ∀x ∈ ΞN ,

divuN(x) = 0, ∀x ∈ ΞN ∩ Ω,
2

N(N + 1)
divuN(x) = (uN .n)(x), ∀x ∈ ΞN ∩ Γ1.

4.2 Second spectral discretization

In order to improve the approximation of the condition divu = 0, we can try to
decrease the dimension of the space XN . So, we choose

XN = lPN−1(Ω)
2. (4.12)

We note that, in this case the forms b(., .) and bN(., .) are equal on XN × lPN(Ω). It does
not appear spurious modes for the pressure, as we can see in the following lemma.

10
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where VN is defined by

VN = {wN ∈ XN ; ∀qN ∈ lPN(Ω) ∩M, bN(wN , qN) = 0}.

Moreover, we recall (see [11, Chap. II, (1.16)]) that

inf
wN∈VN

‖u−wN‖L2(Ω)2 ≤
c

γ
inf

vN∈XN

(‖u− vN‖L2(Ω)2).

Hence, we derive that, for all vN−1 and fN−1 in lPN−1(Ω)
2 and all qN−1 ∈ lPN−1(Ω) ∩M ,

‖u− uN‖L2(Ω)2 + ‖p− pN‖H1(Ω)

≤ c(‖u− vN−1‖L2(Ω)2 + ‖p− qN−1‖H1(Ω) + ‖f − fN−1‖L2(Ω)2 + ‖f − IN f‖L2(Ω)2). (4.10)

Then, we choose vN−1 = ΠN−1u (resp. fN−1 = ΠN−1f), that is to say the orthogonal
projection of u (resp. f) on lPN−1(Ω)

2 in L2(Ω)2 and qN−1 = Π1,Γ2

N−1p, where Π1,Γ2

N−1p is the
orthogonal projection of p on lPN−1(Ω) ∩M in H1(Ω). It remains to prove the estimate,
for any m ≥ 1,

∀p ∈ Hm(Ω) ∩M, ‖p− Π1,Γ2

N−1p‖H1(Ω) ≤ C N1−m‖p‖Hm(Ω). (4.11)

On the one hand, this result is obvious for m = 1. On the other hand, for m ≥ 2, we have
(see [7, Chap. III]),

‖p− Π1,Γ2

N−1p‖H1(Ω) ≤ inf
rN−1∈lPN−1(Ω)∩M

‖p− rN−1‖H1(Ω)

≤ ‖p− IN−1p‖H1(Ω) ≤ C N1−m‖p‖Hm(Ω).

Then, an interpolation argument (see [11, TH 1.4, page 6]) gives (4.11). Finally, the re-
sult follows from (4.10), (4.11) and the classic estimate for the orthogonal projection on
lPN−1(Ω) in L2(Ω). ♦

Remark 4.3 With the choice XN = lPN(Ω)
2, problem (4.3, (4.4) can be interpreted as a

collocation scheme. Indeed, by integrating by parts in the discrete bilinear form bN with
respect to one of the two variables for each of the two terms of bN (this process being
allowed by the precision of the quadrature rule), and choosing as test functions the Lagrange
polynomials associated with the grid points of ΞN , it is easily seen that (4.3), (4.4) is
equivalent to the set of equations for uN in lPN(Ω)

2 and pN in lPN(Ω) ∩M :

uN(x) +∇pN(x) = f(x), ∀x ∈ ΞN ,

divuN(x) = 0, ∀x ∈ ΞN ∩ Ω,
2

N(N + 1)
divuN(x) = (uN .n)(x), ∀x ∈ ΞN ∩ Γ1.

4.2 Second spectral discretization

In order to improve the approximation of the condition divu = 0, we can try to
decrease the dimension of the space XN . So, we choose

XN = lPN−1(Ω)
2. (4.12)

We note that, in this case the forms b(., .) and bN(., .) are equal on XN × lPN(Ω). It does
not appear spurious modes for the pressure, as we can see in the following lemma.

10

Second spectral discretization

Lemma 4.4 Let ZN be the space

ZN = {qN ∈ lPN(Ω) ∩M ; ∀vN ∈ lPN−1(Ω)
2, b(vN , qN) = 0}.

Then ZN = {0}.

Proof. Let qN be in ZN . Since
∂qN
∂x

is a polynomial of degree ≤ N − 1 with respect to x,

which is orthogonal to lPN−1(Ω), we can write:

qN(x, y) = αN(y) + βN(x)LN(y),

with αN and βN in lPN(Ω). In the same way with y in place of x, we have:

qN(x, y) = γN(x) + δN(y)LN(x),

with γN and δN in lPN(Ω). Hence, we derive

qN(x, y) = λ+ µLN(x)LN(y),

where λ and µ are real numbers. But, since LN(1) = 0, the condition:

∀y ∈ [−1, 1], qN(1, y) = 0

implies λ = µ = 0. ♦

We have to study the following discrete problem:
Find uN in lPN−1(Ω)

2 and pN in lPN(Ω) ∩M such that

∀vN ∈ lPN−1(Ω)
2, (uN ,vN)N + b(vN , pN) = (f ,vN)N , (4.13)

∀qN ∈ lPN(Ω) ∩M, b(uN , qN) = 0. (4.14)

For the inf-sup condition, the choice vN = ∇qN is no longer available, since vN must
be in lPN−1(Ω)

2. In fact, in the next lemma, we find a inf-sup constant depending on N .

Lemma 4.5 There exists a constant c > 0 independent on N such that

∀qN ∈ lPN(Ω) ∩H1(Ω; Γ2), sup
vN∈lPN−1(Ω)2

b(vN , qN)

‖vN‖L2(Ω)2
≥ cN−1‖qN‖H1(Ω). (4.15)

Proof. Let us set
qN(x, y) = q∗N(x, y) + αNLN(x)LN(y), (4.16)

where q∗N(x, y) is orthogonal to LN(x)LN(y) for the scalar product in L2(Ω). We choose

vN = ΠN−1(∇q∗N),

where ΠN−1 is the orthogonal projection operator from L2(Ω)d onto lPN−1(Ω)
d, for d = 1 or

2. Then, we have, owing to the properties of orthogonality and a generalization of Poincaré
inequality (see [11, Chap. I, page 40]),

b(vN , qN)

‖vN‖L2(Ω)2‖qN‖H1(Ω)

=
b(vN , q

∗
N)

‖vN‖L2(Ω)2‖qN‖H1(Ω)

≤ c
‖ΠN−1(∇q∗N)‖L2(Ω)2

‖∇qN‖L2(Ω)

. (4.17)

11
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Lemma 4.4 Let ZN be the space

ZN = {qN ∈ lPN(Ω) ∩M ; ∀vN ∈ lPN−1(Ω)
2, b(vN , qN) = 0}.

Then ZN = {0}.

Proof. Let qN be in ZN . Since
∂qN
∂x

is a polynomial of degree ≤ N − 1 with respect to x,

which is orthogonal to lPN−1(Ω), we can write:

qN(x, y) = αN(y) + βN(x)LN(y),

with αN and βN in lPN(Ω). In the same way with y in place of x, we have:

qN(x, y) = γN(x) + δN(y)LN(x),

with γN and δN in lPN(Ω). Hence, we derive

qN(x, y) = λ+ µLN(x)LN(y),

where λ and µ are real numbers. But, since LN(1) = 0, the condition:

∀y ∈ [−1, 1], qN(1, y) = 0

implies λ = µ = 0. ♦

We have to study the following discrete problem:
Find uN in lPN−1(Ω)

2 and pN in lPN(Ω) ∩M such that

∀vN ∈ lPN−1(Ω)
2, (uN ,vN)N + b(vN , pN) = (f ,vN)N , (4.13)

∀qN ∈ lPN(Ω) ∩M, b(uN , qN) = 0. (4.14)

For the inf-sup condition, the choice vN = ∇qN is no longer available, since vN must
be in lPN−1(Ω)

2. In fact, in the next lemma, we find a inf-sup constant depending on N .

Lemma 4.5 There exists a constant c > 0 independent on N such that

∀qN ∈ lPN(Ω) ∩H1(Ω; Γ2), sup
vN∈lPN−1(Ω)2

b(vN , qN)

‖vN‖L2(Ω)2
≥ cN−1‖qN‖H1(Ω). (4.15)

Proof. Let us set
qN(x, y) = q∗N(x, y) + αNLN(x)LN(y), (4.16)

where q∗N(x, y) is orthogonal to LN(x)LN(y) for the scalar product in L2(Ω). We choose

vN = ΠN−1(∇q∗N),

where ΠN−1 is the orthogonal projection operator from L2(Ω)d onto lPN−1(Ω)
d, for d = 1 or

2. Then, we have, owing to the properties of orthogonality and a generalization of Poincaré
inequality (see [11, Chap. I, page 40]),

b(vN , qN)

‖vN‖L2(Ω)2‖qN‖H1(Ω)

=
b(vN , q

∗
N)

‖vN‖L2(Ω)2‖qN‖H1(Ω)

≤ c
‖ΠN−1(∇q∗N)‖L2(Ω)2

‖∇qN‖L2(Ω)

. (4.17)

11

On the one hand, we note that

q∗N(x, y) =
N∑

n=0

an(x)Ln(y),

where aN is a polynomial of degree ≤ N − 1. Then, we have

∂q∗N
∂x

(x, y) = ΠN−1(
∂q∗N
∂x

)(x, y) + a′N(x)LN(y),

which implies, using (2.7) and the inverse inequality (2.10),

‖∂q
∗
N

∂x
‖L2(Ω) ≤ ‖ΠN−1(

∂q∗N
∂x

)‖L2(Ω) + cN
3
2‖aN‖0,Λ. (4.18)

On the other hand, in view of (2.8), we can write

ΠN−1(
∂q∗N
∂y

)((x, y) =
N∑

n=0

ΠN−1(anL
′
n)(x, y) = (2N − 1)aN(x)LN−1(y) + rN(x, y),

where rN(x, y) is a polynomial of lPN(Ω) of degree < N − 1 with respect to y. The
orthogonality properties imply

‖ΠN−1(
∂q∗N
∂y

)‖L2(Ω) ≥ 2

√
N − 1

2
‖aN‖0,Λ. (4.19)

By combining this inequality with (4.18), we obtain

‖∂q
∗
N

∂x
‖L2(Ω) ≤ ‖ΠN−1(

∂q∗N
∂x

)‖L2(Ω) + cN‖ΠN−1(
∂q∗N
∂y

)‖L2(Ω).

In the same way, we have the analogous inequality for
∂q∗N
∂y

. Thus, we obtain

‖∇q∗N‖L2(Ω)2 ≤ cN‖ΠN−1(∇q∗N)‖L2(Ω)2 . (4.20)

Next, the equality (4.16) yields

‖∇qN‖L2(Ω) ≤ ‖∇q∗N‖L2(Ω) + |αN |‖∇(LN(x)LN(y))‖L2(Ω),

which implies, owing to (2.7) and (2.9),

‖∇qN‖L2(Ω) ≤ ‖∇q∗N‖L2(Ω) + 2

√
N(N + 1)

2N + 1
|αN |. (4.21)

It remains to estimate |αN |. First, we have, owing to (4.16),

qN(x, y) =
N∑

n=0

an(x)Ln(y) + αNLN(x)LN(y).

But, ∀y ∈ [−1, 1], qN(1, y) = 0, which implies

an(1) = 0, n = 1, . . . , N − 1 and aN(1) + αN = 0.

12
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On the one hand, we note that

q∗N(x, y) =
N∑

n=0

an(x)Ln(y),

where aN is a polynomial of degree ≤ N − 1. Then, we have

∂q∗N
∂x

(x, y) = ΠN−1(
∂q∗N
∂x

)(x, y) + a′N(x)LN(y),

which implies, using (2.7) and the inverse inequality (2.10),

‖∂q
∗
N

∂x
‖L2(Ω) ≤ ‖ΠN−1(

∂q∗N
∂x

)‖L2(Ω) + cN
3
2‖aN‖0,Λ. (4.18)

On the other hand, in view of (2.8), we can write

ΠN−1(
∂q∗N
∂y

)((x, y) =
N∑

n=0

ΠN−1(anL
′
n)(x, y) = (2N − 1)aN(x)LN−1(y) + rN(x, y),

where rN(x, y) is a polynomial of lPN(Ω) of degree < N − 1 with respect to y. The
orthogonality properties imply

‖ΠN−1(
∂q∗N
∂y

)‖L2(Ω) ≥ 2

√
N − 1

2
‖aN‖0,Λ. (4.19)

By combining this inequality with (4.18), we obtain

‖∂q
∗
N

∂x
‖L2(Ω) ≤ ‖ΠN−1(

∂q∗N
∂x

)‖L2(Ω) + cN‖ΠN−1(
∂q∗N
∂y

)‖L2(Ω).

In the same way, we have the analogous inequality for
∂q∗N
∂y

. Thus, we obtain

‖∇q∗N‖L2(Ω)2 ≤ cN‖ΠN−1(∇q∗N)‖L2(Ω)2 . (4.20)

Next, the equality (4.16) yields

‖∇qN‖L2(Ω) ≤ ‖∇q∗N‖L2(Ω) + |αN |‖∇(LN(x)LN(y))‖L2(Ω),

which implies, owing to (2.7) and (2.9),

‖∇qN‖L2(Ω) ≤ ‖∇q∗N‖L2(Ω) + 2

√
N(N + 1)

2N + 1
|αN |. (4.21)

It remains to estimate |αN |. First, we have, owing to (4.16),

qN(x, y) =
N∑

n=0

an(x)Ln(y) + αNLN(x)LN(y).

But, ∀y ∈ [−1, 1], qN(1, y) = 0, which implies

an(1) = 0, n = 1, . . . , N − 1 and aN(1) + αN = 0.

12If we set aN(x) =
N−1∑
k=1

αkLk(x), we derive

αN = −
N−1∑
k=0

αk,

and, therefore, thanks to a discrete Cauchy-Schwarz inequality

|αN | ≤ (
N−1∑
k=0

α2
k

k + 1
2

)
1
2 (

N−1∑
k=0

(k +
1

2
))

1
2 ≤

√
2

2
N‖aN‖0,Λ.

Then, in view of (4.19), we obtain

|αN | ≤
√
2N

4
√
N − 1

2

‖ΠN−1(∇q∗N)‖L2(Ω). (4.22)

Finally, (4.20), (4.21) and (4.22) yield

‖∇qN‖L2(Ω)2 ≤ cN‖ΠN−1(∇q∗N)‖L2(Ω)

which, in view of (4.17), ends the proof. ♦

The bilinear form (., .)N and b(., .) satisfy Brezzi’s conditions with respect to lPN−1(Ω)
2

and lPN(Ω) ∩ M (the bilinear form (., .)N is continuous on lPN−1(Ω)
2 and elliptic on

lPN−1(Ω), the bilinear form b(., .) is continuous on lPN−1(Ω) × (lPN(Ω) ∩ M) and verifies
the “ inf-sup condition”), see [7, Theorem 2.3, pages 116,117], whence the theorem.

Theorem 4.6 Let f be in C0(Ω)2. Then problem (4.13), (4.14) has a unique solution
(uN , pN) satisfying

‖uN‖L2(Ω)2 +N−1 ‖pN‖H1(Ω) ≤ C ‖IN f‖L2(Ω)2 . (4.23)

We establish the convergence of this second discretization in the following theorem.

Theorem 4.7 Assume that the solution (u, p) of problem (4.13), (4.14) belongs to Hs(Ω)2

×Hs+1(Ω), s ≥ 0, and the data f belongs to Hσ(Ω)2, σ > 1. Then, the following estimate
holds

‖u− uN‖L2(Ω)2 +N−1‖p− pN‖H1(Ω) ≤ c
(
N−s(‖u‖Hs(Ω)2 + ‖p‖Hs+1(Ω)) +N−σ‖f‖Hσ(Ω)2

)
.

(4.24)

Proof. The abstract error estimate, analogous to (4.39) but with much simplification
because of the exactness of the quadrature formulas, yields

‖u− uN‖L2(Ω)2 +N−1‖p− pN‖H1(Ω) ≤ c
(

inf
wN∈VN

‖u−wN‖L2(Ω)2

+ inf
vN∈lPN−1(Ω)2

‖u− vN‖L2(Ω)2 + inf
qN∈lPN (Ω)∩M

‖p− qN‖H1(Ω) + ‖f − IN f‖L2(Ω)2

)
,

where VN is now the space

VN = {wN ∈ lPN−1(Ω)
2; ∀qN ∈ lPN(Ω) ∩M, b(wN , qN) = 0}.
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If we set aN(x) =
N−1∑
k=1

αkLk(x), we derive

αN = −
N−1∑
k=0

αk,

and, therefore, thanks to a discrete Cauchy-Schwarz inequality

|αN | ≤ (
N−1∑
k=0

α2
k

k + 1
2

)
1
2 (

N−1∑
k=0

(k +
1

2
))

1
2 ≤

√
2

2
N‖aN‖0,Λ.

Then, in view of (4.19), we obtain

|αN | ≤
√
2N

4
√
N − 1

2

‖ΠN−1(∇q∗N)‖L2(Ω). (4.22)

Finally, (4.20), (4.21) and (4.22) yield

‖∇qN‖L2(Ω)2 ≤ cN‖ΠN−1(∇q∗N)‖L2(Ω)

which, in view of (4.17), ends the proof. ♦

The bilinear form (., .)N and b(., .) satisfy Brezzi’s conditions with respect to lPN−1(Ω)
2

and lPN(Ω) ∩ M (the bilinear form (., .)N is continuous on lPN−1(Ω)
2 and elliptic on

lPN−1(Ω), the bilinear form b(., .) is continuous on lPN−1(Ω) × (lPN(Ω) ∩ M) and verifies
the “ inf-sup condition”), see [7, Theorem 2.3, pages 116,117], whence the theorem.

Theorem 4.6 Let f be in C0(Ω)2. Then problem (4.13), (4.14) has a unique solution
(uN , pN) satisfying

‖uN‖L2(Ω)2 +N−1 ‖pN‖H1(Ω) ≤ C ‖IN f‖L2(Ω)2 . (4.23)

We establish the convergence of this second discretization in the following theorem.

Theorem 4.7 Assume that the solution (u, p) of problem (4.13), (4.14) belongs to Hs(Ω)2

×Hs+1(Ω), s ≥ 0, and the data f belongs to Hσ(Ω)2, σ > 1. Then, the following estimate
holds

‖u− uN‖L2(Ω)2 +N−1‖p− pN‖H1(Ω) ≤ c
(
N−s(‖u‖Hs(Ω)2 + ‖p‖Hs+1(Ω)) +N−σ‖f‖Hσ(Ω)2

)
.

(4.24)

Proof. The abstract error estimate, analogous to (4.39) but with much simplification
because of the exactness of the quadrature formulas, yields

‖u− uN‖L2(Ω)2 +N−1‖p− pN‖H1(Ω) ≤ c
(

inf
wN∈VN

‖u−wN‖L2(Ω)2

+ inf
vN∈lPN−1(Ω)2

‖u− vN‖L2(Ω)2 + inf
qN∈lPN (Ω)∩M

‖p− qN‖H1(Ω) + ‖f − IN f‖L2(Ω)2

)
,

where VN is now the space

VN = {wN ∈ lPN−1(Ω)
2; ∀qN ∈ lPN(Ω) ∩M, b(wN , qN) = 0}.

13It remains to estimate the term inf
wN∈VN

‖u−wN‖L2(Ω)2 . Since u is such that divu = 0 and

u .n|Γ1 = 0, there exist a unique ψ in H1(Ω) (see [11, Chap. I and 4]) such that

u = curlψ and ψ = 0 on Γ1.

Moreover, if u belongs to Hs(Ω)2, we have ‖ψ‖Hs+1(Ω) ≤ c‖u‖Hs(Ω)2 . Let us define the
operator π̃1

N (see [7, Chap. II]) on H1(Λ) by

∀ϕ ∈ H1(Λ), (π̃1
Nϕ)(ζ) = (π1,0

N ϕ̃)(ζ) + ϕ(−1)
1− ζ

2
+ ϕ(1)

1 + ζ

2
, (4.25)

where the function ϕ̃ stands for

ϕ̃(ζ) = ϕ(ζ)− ϕ(−1)
1− ζ

2
− ϕ(1)

1 + ζ

2
.

Note that the definition of π̃1
N is available, because ϕ̃ belongs to H1

0 (Λ), and that π1,0
N ϕ̃ and

ϕ coincide in −1 and 1. In [8, Section 7], the following estimate is proven, for all r ≥ 1
and all function ϕ in Hr(Λ):

|ϕ− π̃1
Nϕ|1,Λ +N‖ϕ− π̃1

Nϕ‖0,Λ ≤ cN1−r‖ϕ‖r,Λ. (4.26)

Assuming s ≥ 1, we set
RN−1(u) = curl (π̃

1(x)
N−1 ◦ π̃

1(y)
N−1ψ).

Since (π̃
1(x)
N−1 ◦ π̃

1(y)
N−1ψ)|Γ1 = ψ|Γ1 = 0, we can verify that RN−1(u) belongs to VN and, in

view of (4.26), that

|ϕ− π̃
1(x)
N−1 ◦ π̃

1(y)
N−1ψ|H1(Ω) ≤ cN−s‖ψ‖Hs+1(Ω).

Finally, we derive, for s ≥ 1,

inf
wN∈VN

‖u−wN‖L2(Ω)2 ≤ ‖u−RN−1(u)‖L2(Ω)2 ≤ cN−s‖u‖Hs(Ω)2 .

Since we have inf
wN∈VN

‖u − wN‖L2(Ω)2 ≤ c ‖u‖L2(Ω), an interpolation argument gives the

result of approximation in VN for any s ≥ 0 and the estimate of the theorem follows. ♦

4.3 Third spectral discretization

The third discretization comes from the variational formulation (3.13), (3.14). We
define the space XN by

XN = lPN(Ω)
2 ∩X = {vN ∈ lPN(Ω)

2; vN .n|Γ1 = 0}.

Let MN be a subspace of lPN(Ω) that we shall set later. Then, we consider the following
discrete problem:

Find uN in XN and pN in MN such that

∀vN ∈ XN , (uN ,vN)N + b∗N(vN , pN) = (f ,vN)N , (4.27)

∀qN ∈ MN , b∗N(uN , qN) = 0, (4.28)

14

Third spectral discretization



29doi:  http://dx.doi.org/10.18272/aci.v10i1.824

Bernard (2018)

where the form b∗N is define by

∀vN ∈ lPN(Ω)
2, ∀qN ∈ lPN(Ω), b∗N(vN , qN) = −(div vN , qN)N . (4.29)

In order to choose MN , we begin to identify the spurious modes for the pressure. These
spurious modes for the pressure are derived by elimination from those of classic Stokes
problem (see [7, Chap. IV]). In particular, we can verify: ∀vN ∈ XN , b∗N(vN , qN) = 0, for
qN(x, y) = LN(x) or LN(x)LN(y). We obtain the following lemma.

Lemma 4.8 Let Z∗
N be the space

Z∗
N = {qN ∈ lPN(Ω); ∀vN ∈ XN , b∗N(vN , qN) = 0}.

Then Z∗
N is spanned by (LN(x), LN(x)LN(y)).

Finally, let MN stand for the orthogonal complement of Z∗
N for the scalar product in

L2(Ω) or for the scalar product (., .)N , owing to (2.11). The inf-sup condition is given in
the next lemma.

Lemma 4.9 There exists a constant c > 0 independent from N such that

∀qN ∈ MN , sup
vN∈XN

b∗N(vN , qN)

‖vN‖H(div ;Ω)

≥ c ‖qN‖L2(Ω). (4.30)

Proof. Any function qN in MN has the expansion

qN(x, y) =
N−1∑
m=0

N−1∑
n=0

qm,nLm(x)Ln(y)

+
N−1∑
m=0

qm,NLm(x)(LN(y)− LN−2(y)) +
N−1∑
n=1

qN,n(LN(x)− LN−2(x))Ln(y).

With the convention L−1 = 0, we choose wN = (wN , zN) with

wN(x, y) = −
N−1∑
m=0

m∑
n=0

qm,n
Lm+1(x)− Lm−1(x)

2m+ 1
Ln(y)

−
N−1∑
m=0

qm,N
Lm+1(x)− Lm−1(x)

2m+ 1
(LN(y)− LN−2(y)) (4.31)

and

zN(x, y) = −
N−1∑
m=0

N−1∑
n=m+1

qm,nLm(x)
Ln+1(y)− Ln−1(y)

2n+ 1

−
N−1∑
n=1

qN,n(LN(x)− LN−2(x))
Ln+1(y)− Ln−1(y)

2n+ 1
. (4.32)

Then, in view of (2.8), we have

divwN = −qN and wN ∈ XN , (4.33)

15
since wN .n|Γ1 = zN |Γ1 = 0. As in [6, Chap. IV], we prove

‖qN‖2L2(Ω) ≥ c

(
N−1∑
m=0

N−1∑
n=0

q2m,n

1

(m+ 1
2
)(n+ 1

2
)

+
1

N + 1
2

(
N−1∑
m=0

q2m,N

1

m+ 1
2

+
N−1∑
n=1

q2N,n

1

n+ 1
2

)

)
. (4.34)

Hence, we derive, in the same way as in [8, Section 24]

‖∂wN

∂x
‖L2(Ω) + ‖∂zN

∂y
‖L2(Ω) ≤ c ‖qN‖L2(Ω). (4.35)

Next, setting w∗
N(x, y) = wN(x, y)− q0,0L1(x)− q0,NL1(x)(LN(y)−LN−2(y)), we note that

w∗
N(±1, y) = 0 for −1 ≤ y ≤ 1. Then, the Poincaré-Friedrichs inequality, applied with

respect to x or y, yields

‖w∗
N‖L2(Ω) ≤ c‖∂w

∗
N

∂x
‖L2(Ω) and ‖zN‖L2(Ω) ≤ c‖∂zN

∂y
‖L2(Ω).

Hence, owing to (4.35) and the estimate
√√√√q20,0 +

q20,N
N + 1

2

≤ c‖qN‖L2(Ω),

which is derived from (4.34), we obtain

‖wN‖L2(Ω) + ‖zN‖L2(Ω) ≤ c ‖qN‖L2(Ω). (4.36)

Finally (4.35) and (4.36) imply

‖wN‖H(div ;Ω) ≤ c ‖qN‖L2(Ω)

and, in view of (4.33), the choice vN = wN in b∗N(vN , qN) is available and gives the inf-sup
condition (4.30). ♦

From the previous lemma, we derive the following theorem.

Theorem 4.10 Let f be in C0(Ω)2. Then problem (4.27), (4.28) has a unique solution
(uN , pN) satisfying

‖uN‖H(div ;Ω) + ‖pN‖L2(Ω) ≤ C ‖IN f‖L2(Ω)2 . (4.37)

Sketch of the proof. From(4.27), we derive (uN ,uN)N = (IN f ,uN)N . Then, Owing to
divuN = 0 and (2.13), we derive ‖uN‖H(div ;Ω) ≤ 3‖IN f‖L2(Ω). Next, the inf-sup condition
(4.30) and (4.27) imply

‖pN‖L2(Ω) ≤
1

c
sup

vN∈XN

b∗N(vN , pN)

‖vN‖H(div ;Ω)

≤ 1

c
sup

vN∈XN

(IN f ,vN)N − (uN ,vN)N
‖vN‖H(div ;Ω)

.

Hence, in view of (2.13), we obtain

‖pN‖L2(Ω) ≤
18

c
‖IN f‖L2(Ω),

which ends the proof. ♦
Next, in the same way as in Theorem 4.2, we prove an optimal error estimate.

16
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Theorem 4.11 Assume that the solution (u, p) of problem (4.27), (4.28) belongs to Hs(Ω)2

×Hs(Ω), s ≥ 0, and the data f belongs to Hσ(Ω)2, σ > 1. Then, the following estimate
holds

‖u−uN‖L2(Ω)2 +‖p−pN‖L2(Ω) ≤ c
(
N−s(‖u‖Hs(Ω)2 + ‖p‖Hs(Ω)) +N−σ‖f‖Hσ(Ω)2

)
. (4.38)

Sketch of the proof. Again, from the abstract error estimate for the approximation of
saddle-point problems (see [7, Chap. IV]), we derive the following estimate:

‖u− uN‖L2(Ω)2 + ‖p− pN‖L2Ω) ≤ c
(

inf
wN∈VN

‖u−wN‖L2(Ω)2

+ inf
vN∈XN

(‖u− vN‖L2(Ω)2 + sup
zN∈XN

∫
Ω vN(x) . zN(x) dx− (vN , zN)N

‖zN‖L2(Ω)2
)

+ inf
qN∈MN

(‖p− qN‖L2(Ω) + sup
zN∈XN

b∗(zN , qN)− b∗N(zN , qN)

‖zN‖L2(Ω)2
)

+ sup
zN∈XN

∫
Ω f(x) . zN(x) dx− (f , zN)N

‖zN‖L2(Ω)2

)
, (4.39)

where VN is defined by

VN = {wN ∈ XN ; ∀qN ∈ MN , b∗N(wN , qN) = 0}.

Moreover, we still have (see [11, CH. II, (1.16)])

inf
wN∈VN

‖u−wN‖L2(Ω)2 ≤
c

γ
inf

vN∈XN

(‖u− vN‖L2(Ω)2).

We end the proof in the same way as in Theorem 4.2. ♦

Remark 4.12 As for the first discretization, problem (4.27, (4.28) can be interpreted as
a collocation scheme. In the same way, we prove that (4.27), (4.28) is equivalent to the
set of equations for uN in XN and pN in MN :

uN(x) +∇pN(x) = f(x), ∀x ∈ ΞN ∩ Ω,

2

N(N + 1)
((uN .n)(x) +

∂pN
∂n

(x)) = (f .n)(x), ∀x ∈ ΞN ∩ Γ2,

divuN(x) = 0, ∀x ∈ ΞN .

Therefore, the discrete solution uN is exactly divergence-free, which is important for
some applications.

5 Numerical results

The convergence of the methods corresponding to the first and third discretizations
were tested in a problem of the type (1.1)-(1.4), with homogeneous boundary conditions.
Precisely, we tested the convergence of these methods to the exact solution u(x, y) =
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Next, setting w∗
N(x, y) = wN(x, y)− q0,0L1(x)− q0,NL1(x)(LN(y)−LN−2(y)), we note that
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respect to x or y, yields
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∗
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Hence, owing to (4.35) and the estimate
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2
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which is derived from (4.34), we obtain
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Finally (4.35) and (4.36) imply

‖wN‖H(div ;Ω) ≤ c ‖qN‖L2(Ω)

and, in view of (4.33), the choice vN = wN in b∗N(vN , qN) is available and gives the inf-sup
condition (4.30). ♦

From the previous lemma, we derive the following theorem.

Theorem 4.10 Let f be in C0(Ω)2. Then problem (4.27), (4.28) has a unique solution
(uN , pN) satisfying

‖uN‖H(div ;Ω) + ‖pN‖L2(Ω) ≤ C ‖IN f‖L2(Ω)2 . (4.37)

Sketch of the proof. From(4.27), we derive (uN ,uN)N = (IN f ,uN)N . Then, Owing to
divuN = 0 and (2.13), we derive ‖uN‖H(div ;Ω) ≤ 3‖IN f‖L2(Ω). Next, the inf-sup condition
(4.30) and (4.27) imply

‖pN‖L2(Ω) ≤
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sup

vN∈XN
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‖vN‖H(div ;Ω)
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sup
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(IN f ,vN)N − (uN ,vN)N
‖vN‖H(div ;Ω)

.

Hence, in view of (2.13), we obtain

‖pN‖L2(Ω) ≤
18

c
‖IN f‖L2(Ω),

which ends the proof. ♦
Next, in the same way as in Theorem 4.2, we prove an optimal error estimate.
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Theorem 4.11 Assume that the solution (u, p) of problem (4.27), (4.28) belongs to Hs(Ω)2

×Hs(Ω), s ≥ 0, and the data f belongs to Hσ(Ω)2, σ > 1. Then, the following estimate
holds

‖u−uN‖L2(Ω)2 +‖p−pN‖L2(Ω) ≤ c
(
N−s(‖u‖Hs(Ω)2 + ‖p‖Hs(Ω)) +N−σ‖f‖Hσ(Ω)2

)
. (4.38)

Sketch of the proof. Again, from the abstract error estimate for the approximation of
saddle-point problems (see [7, Chap. IV]), we derive the following estimate:

‖u− uN‖L2(Ω)2 + ‖p− pN‖L2Ω) ≤ c
(

inf
wN∈VN

‖u−wN‖L2(Ω)2

+ inf
vN∈XN

(‖u− vN‖L2(Ω)2 + sup
zN∈XN

∫
Ω vN(x) . zN(x) dx− (vN , zN)N

‖zN‖L2(Ω)2
)

+ inf
qN∈MN

(‖p− qN‖L2(Ω) + sup
zN∈XN

b∗(zN , qN)− b∗N(zN , qN)

‖zN‖L2(Ω)2
)

+ sup
zN∈XN

∫
Ω f(x) . zN(x) dx− (f , zN)N

‖zN‖L2(Ω)2

)
, (4.39)

where VN is defined by

VN = {wN ∈ XN ; ∀qN ∈ MN , b∗N(wN , qN) = 0}.

Moreover, we still have (see [11, CH. II, (1.16)])

inf
wN∈VN

‖u−wN‖L2(Ω)2 ≤
c

γ
inf

vN∈XN

(‖u− vN‖L2(Ω)2).

We end the proof in the same way as in Theorem 4.2. ♦

Remark 4.12 As for the first discretization, problem (4.27, (4.28) can be interpreted as
a collocation scheme. In the same way, we prove that (4.27), (4.28) is equivalent to the
set of equations for uN in XN and pN in MN :

uN(x) +∇pN(x) = f(x), ∀x ∈ ΞN ∩ Ω,

2

N(N + 1)
((uN .n)(x) +

∂pN
∂n

(x)) = (f .n)(x), ∀x ∈ ΞN ∩ Γ2,

divuN(x) = 0, ∀x ∈ ΞN .

Therefore, the discrete solution uN is exactly divergence-free, which is important for
some applications.

5 Numerical results

The convergence of the methods corresponding to the first and third discretizations
were tested in a problem of the type (1.1)-(1.4), with homogeneous boundary conditions.
Precisely, we tested the convergence of these methods to the exact solution u(x, y) =

17
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(πx2 cos(πy),−2x sin(πy) and p(x, y) = y sin(πx), which means that we stu-
died the convergence of these methods for Problem (1.1)-(1.4), with

f(x, y) = (πx2 cos(πy) + πy cos(πx),−2x sin(πy) + sin(πx))

and homogeneous boundary conditions. In addition, we tested the convergence to 0 of the
divergence for both methods.

We shall use the Lagrange polynomials. We denote lr the Lagrange polynomial asso-
ciated to the Gauss-Lobatto point ξr, 0 ≤ r ≤ N , the expression of which is

lr(x) =

N∏
j=0,j �=r

(x− ξj)

N∏
j=0,j �=r

(ξr − ξj)
. (5.1)

The derivative l′r verifies the following equalities

∀r = 0, . . . , N, ∀m = 0, . . . , N, r �= m, l′r(ξm) =

N∏
j=0,j �=m

(ξm − ξj)

N∏
j=0,j �=r

(ξr − ξj)
(

1

ξm − ξr
), (5.2)

∀r = 0, . . . , N, l′r(ξr) =
N∑

j=0,j �=r

1

ξr − ξj
. (5.3)

5.1 Uzawa’s algorithm

Problem (4.3), (4.4), Problem (4.13), (4.14) and Problem (4.27), (4.28) are equivalent
to a linear system of the type :

{
MU +DP = MF,
DTU = 0

. (5.4)

The unkowns are the vectors U and P which represent respectively the velocity and the
pressure values on a given grid points. The data f is representated by the vector F on
the same grid points. The diagonal matrix M is the weight matrix, while the matrix D is
associated to the form bN for the first and second spectral discretizations and to the form
b∗N for the third spectral discretization and DT is the transposed matrix of D.

Uzawa’s algorithm consists in rewriting the first equation of system (5.4) as:
U = F −M−1DP and substituting in the second equation. We obtain a new equation for
the pressure P :

(DTM−1D)P = DTF. (5.5)

Next, we solve this symetric system either directly if the matrix DTM−1D is invertible or
by diagonalizing the matrix DTM−1D if not, because the spurious modes correspond to
eigenvalues of the matrix equal to zero. Next, we compute the velocity via the formula

U = F −M−1DP

and its divergence by multiplying U on the left by the matrix DT . Finally, we test the
convergence to 0 of its divergence.

18
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5.2 Implementation of the first discretization

We take (lj(x)lk(y), 0), (0, lj(x)lk(y)), 0 ≤ i, j ≤ N as a basis of XN and
lr(x)ls(y), 1 ≤ r ≤ N − 1, 0 ≤ s ≤ N as a basis of PN(Ω) ∩ M . The unknowns are
the velocity uN = (u1

N , u
2
N) and the pressure pN . For j = 1, 2, for 0 ≤ r, s ≤ N , we

denote U j,N
r,s = uj

N(ξr, ξs), F
j,N
r,s = fj(ξr, ξs), where f = (f1, f2) represents the data, and, for

1 ≤ r ≤ N − 1, for 0 ≤ s ≤ N , we denote PN
r,s = pN(ξr, ξs). So, we have

uj
N(x, y) =

N∑
r,s=0

U j,N
r,s lr(x)ls(y), j = 1, 2 and pN(x, y) =

N−1∑
r=1

N∑
s=0

PN
r,slr(x)ls(y). (5.6)

Let us define the (N + 1)2 × (N + 1)2 diagonal matrix M̃ = (m(j,k),(r,s))0≤j,k,r,s≤N with

m(j,k),(r,s) =

{
0 if (r, s) �= (j, k)
ρjρk if (r, s) = (j, k),

(5.7)

and the 2(N + 1)2 × 2(N + 1)2 diagonal matrix

M =

(
M̃ 0
0 M̃

)
.

By setting vN(x, y) = (lj(x)lk(y), 0), for 0 ≤ j, k ≤ N and, next, vN(x, y) = (0, lj(x)lk(y)
in (4.3), (4.4), we obtain the matrix system (5.4) where the column matrices U , P and F
are defined by

U =

(
U1,N
j,k

U2,N
j,k

)
, P = (PN

r,s) and F =

(
F 1,N
j,k

F 2,N
j,k

)
, 0 ≤ j, k, s ≤ N, 1 ≤ r ≤ N − 1,

and, with (., .)N defined by (4.1), the 2(N + 1)2 × (N2 − 1) matrix D by

D =

(
D1,N

D2,N

)
with D1,N = ((lj(x)lk(y), l

′
r(x)ls(y))N), D2,N = ((lj(x)lk(y), lr(x)l

′
s(y))N),

where (j, k) represents the row index, (r, s) the column index, 0 ≤ i, j, s ≤ N ,
1 ≤ r ≤ N − 1, for the matrices D1,N and D2,N . Note that U and F are 2(N + 1)2 × 1
matrices and P is a (N2 − 1)× 1 matrix.

Proposition 5.1 The (N2 − 1)× (N2 − 1) square matrix DTM−1D is invertible.

Proof. We just have to prove that the rank of the matrix D is N 2 − 1. Let us assume
that the rank of the matrix D is strictly smaller than N2− 1. Then, there exist a sequence
of real number (qr,s), 1 ≤ r ≤ N − 1, 0 ≤ s ≤ N , where all the real numbers qr,s are not
equal to zero, such that

N−1∑
r=1

N∑
s=0

qr,sDr,s = 0,

where Dr,s are the column vectors of the matrix D. Setting q =
N−1∑
r=1

N∑
s=0

qr,slr(x)ls(y), the

previous equality is equivalent to

∀vN ∈ XN , b(vN , q) = 0,
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and homogeneous boundary conditions. In addition, we tested the convergence to 0 of the
divergence for both methods.

We shall use the Lagrange polynomials. We denote lr the Lagrange polynomial asso-
ciated to the Gauss-Lobatto point ξr, 0 ≤ r ≤ N , the expression of which is

lr(x) =

N∏
j=0,j �=r

(x− ξj)

N∏
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. (5.1)
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N∏
j=0,j �=m

(ξm − ξj)

N∏
j=0,j �=r

(ξr − ξj)
(

1

ξm − ξr
), (5.2)

∀r = 0, . . . , N, l′r(ξr) =
N∑

j=0,j �=r

1

ξr − ξj
. (5.3)

5.1 Uzawa’s algorithm
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to a linear system of the type :

{
MU +DP = MF,
DTU = 0

. (5.4)

The unkowns are the vectors U and P which represent respectively the velocity and the
pressure values on a given grid points. The data f is representated by the vector F on
the same grid points. The diagonal matrix M is the weight matrix, while the matrix D is
associated to the form bN for the first and second spectral discretizations and to the form
b∗N for the third spectral discretization and DT is the transposed matrix of D.

Uzawa’s algorithm consists in rewriting the first equation of system (5.4) as:
U = F −M−1DP and substituting in the second equation. We obtain a new equation for
the pressure P :

(DTM−1D)P = DTF. (5.5)

Next, we solve this symetric system either directly if the matrix DTM−1D is invertible or
by diagonalizing the matrix DTM−1D if not, because the spurious modes correspond to
eigenvalues of the matrix equal to zero. Next, we compute the velocity via the formula

U = F −M−1DP

and its divergence by multiplying U on the left by the matrix DT . Finally, we test the
convergence to 0 of its divergence.
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5.2 Implementation of the first discretization

We take (lj(x)lk(y), 0), (0, lj(x)lk(y)), 0 ≤ i, j ≤ N as a basis of XN and
lr(x)ls(y), 1 ≤ r ≤ N − 1, 0 ≤ s ≤ N as a basis of PN(Ω) ∩ M . The unknowns are
the velocity uN = (u1

N , u
2
N) and the pressure pN . For j = 1, 2, for 0 ≤ r, s ≤ N , we

denote U j,N
r,s = uj

N(ξr, ξs), F
j,N
r,s = fj(ξr, ξs), where f = (f1, f2) represents the data, and, for

1 ≤ r ≤ N − 1, for 0 ≤ s ≤ N , we denote PN
r,s = pN(ξr, ξs). So, we have

uj
N(x, y) =

N∑
r,s=0

U j,N
r,s lr(x)ls(y), j = 1, 2 and pN(x, y) =

N−1∑
r=1

N∑
s=0

PN
r,slr(x)ls(y). (5.6)

Let us define the (N + 1)2 × (N + 1)2 diagonal matrix M̃ = (m(j,k),(r,s))0≤j,k,r,s≤N with

m(j,k),(r,s) =

{
0 if (r, s) �= (j, k)
ρjρk if (r, s) = (j, k),

(5.7)

and the 2(N + 1)2 × 2(N + 1)2 diagonal matrix

M =

(
M̃ 0
0 M̃

)
.

By setting vN(x, y) = (lj(x)lk(y), 0), for 0 ≤ j, k ≤ N and, next, vN(x, y) = (0, lj(x)lk(y)
in (4.3), (4.4), we obtain the matrix system (5.4) where the column matrices U , P and F
are defined by

U =

(
U1,N
j,k

U2,N
j,k

)
, P = (PN

r,s) and F =

(
F 1,N
j,k

F 2,N
j,k

)
, 0 ≤ j, k, s ≤ N, 1 ≤ r ≤ N − 1,

and, with (., .)N defined by (4.1), the 2(N + 1)2 × (N2 − 1) matrix D by

D =

(
D1,N

D2,N

)
with D1,N = ((lj(x)lk(y), l

′
r(x)ls(y))N), D2,N = ((lj(x)lk(y), lr(x)l

′
s(y))N),

where (j, k) represents the row index, (r, s) the column index, 0 ≤ i, j, s ≤ N ,
1 ≤ r ≤ N − 1, for the matrices D1,N and D2,N . Note that U and F are 2(N + 1)2 × 1
matrices and P is a (N2 − 1)× 1 matrix.

Proposition 5.1 The (N2 − 1)× (N2 − 1) square matrix DTM−1D is invertible.

Proof. We just have to prove that the rank of the matrix D is N 2 − 1. Let us assume
that the rank of the matrix D is strictly smaller than N2− 1. Then, there exist a sequence
of real number (qr,s), 1 ≤ r ≤ N − 1, 0 ≤ s ≤ N , where all the real numbers qr,s are not
equal to zero, such that

N−1∑
r=1

N∑
s=0

qr,sDr,s = 0,

where Dr,s are the column vectors of the matrix D. Setting q =
N−1∑
r=1

N∑
s=0

qr,slr(x)ls(y), the

previous equality is equivalent to

∀vN ∈ XN , b(vN , q) = 0,

19
which is in contradiction with the property that there is no spurious mode. ♦

We have to compute the matrix DTM−1D = (b(t,u),(r,s)), 1 ≤ r, t ≤ N−1, 0 ≤ s, u ≤ N .
Owing to the previous expression of the matrices D and M , we obtain

b(t,u),(r,s) =
N∑

m,k=0

1

ρmρk
(lm(x)lk(y), l

′
t(x)lu(y))N(lm(x)lk(y), l

′
r(x)ls(y))N

+
N∑

m,k=0

1

ρmρk
(lm(x)lk(y), lt(x)l

′
u(y))N(lm(x)lk(y), lr(x)l

′
s(y))N .

Next, we change the numbering for the matrix DTM−1D. Let us define the mapping
ϕ by

∀(r, s), 1 ≤ r ≤ N − 1, 0 ≤ s ≤ N, ϕ(r, s) = 1 + (r − 1)(N + 1) + s. (5.8)

Note that ϕ is a one to one mapping from {1, . . . , N − 1} × {0, . . . , N} to {1, . . . , N2 − 1}
and we note

∀1 ≤ i ≤ N2 − 1, ϕ−1(i) = (ψ1(i), ψ2(i)). (5.9)

Note that ψ1(i) − 1 and ψ2(i) are respectively the quotient and the remainder of the
euclidian division of i− 1 by N + 1. Then, we can denote

DTM−1D = (ai,j)1≤i,j≤N2−1 with ai,j = b(t,u),(r,s), (5.10)

where (t, u) = (ψ1(i), ψ2(i)) and (r, s) = (ψ1(j), ψ2(j)).
Computing the elements ai,j of the matrix DTM−1D yields

1) if ψ1(i) �= ψ1(j) and ψ2(i) �= ψ2(j)
ai,j = 0
2) if ψ1(i) �= ψ1(j) and ψ2(i) = ψ2(j)

ai,j = ρψ2(i)

N∑
m=0

ρml
′
ψ1(i)

(ξm)l
′
ψ1(j)

(ξm)

3) if ψ1(i) = ψ1(j) and ψ2(i) �= ψ2(j)

ai,j = ρψ1(i)

N∑
m=0

ρml
′
ψ2(i)

(ξm)l
′
ψ2(j)

(ξm)

4) if ψ1(i) = ψ1(j) and ψ2(i) = ψ2(j), that is to say i=j

ai,i = ρψ2(i)

N∑
m=0

ρm(l
′
ψ1(i)

)2 + ρψ1(i)

N∑
m=0

ρm(l
′
ψ2(i)

)2.

Thus, most of elements of the matrix DTM−1D are equal to zero.
Next, we determine the column matrix DTF = (ci,1) by

∀1 ≤ i ≤ N2 − 1, ci,1 = ρψ2(i)

N∑
m=0

ρml
′
ψ1(i)

(ξm)F
1,N
m,ψ2(i)

+ ρψ1(i)

N∑
m=0

ρml
′
ψ2(i)

(ξm)F
2,N
ψ1(i),m

.

Hence, owing to (5.2) and (5.3), we compute the list [l′k(ξm), 0 ≤ k,m ≤ N ], which
allows us to determine the elements of the matrices DTM−1D and DTF . Since the matrix
DTM−1D is invertible, the equation (DTM−1D)X = DTF has a unique solution X. Then
we derive easily the column matrix P = (PN

r,s) such that PN
r,s = Xϕ(r,s), 1 ≤ r ≤ N − 1,

0 ≤ s ≤ N and, next, the column matrix U, thanks to the relation U = F − M−1DP .
Setting PN

0,t = PN
N,t = 0 for 0 ≤ t ≤ N in accordance with the boundary conditions, we

obtain

U1,N
m,k = F 1,N

m,k −
N−1∑
u=1

l′u(ξm)P
N
u,k, U2,N

m,k = F 2,N
m,k −

N∑
t=0

l′t(ξk)P
N
m,t.
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Finally, we derive

(divuN , divuN)N =
N∑

i,j=0

ρiρj(
N∑

m=0

(U1,N
m,j l

′
m(ξi) + U2,N

i,m l′m(ξj)))
2,

(u− uN ,u− uN)N =
N∑

i,j=0

ρiρj(u1(ξi, ξj)− U1,N
i,j )2 + (u2(ξi, ξj)− U2,N

i,j )2),

(p− pN , p− pN)N =
N−1∑
i=1

N∑
j=0

ρiρj(p(ξi, ξj)− PN
i,j)

2.

We give the values of (divuN , divuN)
1
2
N , (p− pN , p− pN)

1
2
N and (u− uN ,u− uN)

1
2
N for

N between 4 and 21.

4 5 6 7 8 9
1
2
N 6,85 0,27 1,12 0,0155 0,080 5, 16.10−4

1
2
N 0,06 0,02 2, 7.10−3 7, 75.10−4 7, 59.10−5 1, 74.10−5

N

(div uN , div uN )

(p − pN , p − pN )

(u−uN , u−uN )
1
2
N 1,07 0,045 0,010 1, 56.10−3 4, 65.10−3 3, 52.10−5

10 11 12 13 14 15
1
2
N 3, 14.10−3 1, 11.10−5 7, 86.10−5 1, 70.10−7 1, 36.10−6 1, 92.10−9

1
2
N 1, 44.10−6 2, 78.10−7 1, 96.10−8 3, 27.10−9 2, 03.10−10 2, 97.10−11

N

(div uN , div uN )

(p − pN , p − pN )

(u−uN , u−uN )
1
2
N 1, 33.10−4 5, 6.10−7 2, 56.10−6 6, 62.10−9 3, 54.10−8 6, 03.10−11

16 17 18 19 20 21
1
2
N 1, 73.10−8 1, 68.10−11 1, 69.10−10 1, 02.10−12 3, 79.10−12 1, 91.10−11

1
2
N 1, 64.10−12 2, 15.10−13 1, 06.10−14 5, 50.10−15 1, 09.10−14 1, 06.10−14

N

(div uN , div uN )

(p − pN , p − pN )

(u−uN , u−uN )
1
2
N 3, 70.10−10 4, 37.10−13 3, 03.10−12 3, 03.10−14 9, 03.10−14 2, 69.10−13

Table 4.1

We shall comment these results on comparing them with these ones of the third dis-
cretization.

5.3 Implementation of the third discretization
We only sketch the method because the first and third discretizations are rather similar, 

but we shall point out the differences between both discretizations.
First, the space XN is not the same, because boundary conditions are taken in account. 

Thus, we take (lj (x)lk(y), 0), (0, ls(x)lr(y)), 0 ≤ i, j, s ≤ N , 1 ≤ r ≤ N − 1 as a basis of 
XN .

Second, we shall compute the pressure pN as the orthogonal projection on MN of an 
element of lPN (Ω) and we take lr(x)ls(y), 0 ≤ r, s ≤ N as a basis of lPN (Ω). For 0 ≤ r, s ≤ 
N , we denote Ur

1
,s
,N = u1

N (ξr, ξs), Pr
N
,s = pN (ξr, ξs) and for 0 ≤ r ≤ N , 1 ≤ s ≤ N − 1, we
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which is in contradiction with the property that there is no spurious mode. ♦
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ϕ by
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and we note
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ai,i = ρψ2(i)

N∑
m=0

ρm(l
′
ψ1(i)

)2 + ρψ1(i)

N∑
m=0

ρm(l
′
ψ2(i)

)2.

Thus, most of elements of the matrix DTM−1D are equal to zero.
Next, we determine the column matrix DTF = (ci,1) by

∀1 ≤ i ≤ N2 − 1, ci,1 = ρψ2(i)

N∑
m=0

ρml
′
ψ1(i)

(ξm)F
1,N
m,ψ2(i)

+ ρψ1(i)

N∑
m=0

ρml
′
ψ2(i)

(ξm)F
2,N
ψ1(i),m

.

Hence, owing to (5.2) and (5.3), we compute the list [l′k(ξm), 0 ≤ k,m ≤ N ], which
allows us to determine the elements of the matrices DTM−1D and DTF . Since the matrix
DTM−1D is invertible, the equation (DTM−1D)X = DTF has a unique solution X. Then
we derive easily the column matrix P = (PN

r,s) such that PN
r,s = Xϕ(r,s), 1 ≤ r ≤ N − 1,

0 ≤ s ≤ N and, next, the column matrix U, thanks to the relation U = F − M−1DP .
Setting PN

0,t = PN
N,t = 0 for 0 ≤ t ≤ N in accordance with the boundary conditions, we

obtain

U1,N
m,k = F 1,N

m,k −
N−1∑
u=1

l′u(ξm)P
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u,k, U2,N
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i,j )2 + (u2(ξi, ξj)− U2,N

i,j )2),

(p− pN , p− pN)N =
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ρiρj(p(ξi, ξj)− PN
i,j)

2.
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We shall comment these results on comparing them with these ones of the third dis-
cretization.

5.3 Implementation of the third discretization
We only sketch the method because the first and third discretizations are rather similar, 

but we shall point out the differences between both discretizations.
First, the space XN is not the same, because boundary conditions are taken in account. 

Thus, we take (lj (x)lk(y), 0), (0, ls(x)lr(y)), 0 ≤ i, j, s ≤ N , 1 ≤ r ≤ N − 1 as a basis of 
XN .

Second, we shall compute the pressure pN as the orthogonal projection on MN of an 
element of lPN (Ω) and we take lr(x)ls(y), 0 ≤ r, s ≤ N as a basis of lPN (Ω). For 0 ≤ r, s ≤ 
N , we denote Ur

1
,s
,N = u1

N (ξr, ξs), Pr
N
,s = pN (ξr, ξs) and for 0 ≤ r ≤ N , 1 ≤ s ≤ N − 1, we
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Implementation of the first discretization

denote U2,N
r,s = u2

N(ξr, ξs). Let us define the matrix M̃1 = M̃ , where M̃ is given by (5.7),

the (N2 − 1)× (N2 − 1) matrix M̃2 = (m(j,k),(r,s)) with

m(j,k),(r,s) =

{
0 if (r, s) �= (j, k)
ρjρk if (r, s) = (j, k),

0 ≤ j, r ≤ N, 1 ≤ k, s ≤ N − 1

and the 2N(N + 1)× 2N(N + 1) diagonal matrix

M∗ =

(
M̃1 0
0 M̃2

)
.

In the same way as the first discretization, we derive the following matrix system
{

M∗U +D∗P = M∗F,
DT

∗ U = 0
, (5.11)

where the column matrices U , P and F are defined by

U =

(
U1,N
j,k

U2,N
t,u

)
, P = (PN

r,s) and F =

(
F 1,N
j,k

F 2,N
t,u

)
, 0 ≤ j, k, r, s, t ≤ N, 1 ≤ u ≤ N − 1

and the 2N(N + 1)× (N + 1)2 matrix D∗ by

D∗ =

(
D1,N

∗
D2,N

∗

)
withD1,N

∗ = (−(l′j(x)lk(y), lr(x)ls(y))N), D
2,N
∗ = (−(lt(x)l

′
u(y), lr(x)ls(y))N).

We have to compute the matrix DT
∗ M

−1
∗ D∗=(b∗(t,u),(r,s)), 0 ≤ r, s, t, u ≤ N . In the same

way as the first discretization, we obtain

b∗(t,u),(r,s) =
N∑

m,k=0

1

ρmρk
(l′m(x)lk(y), lt(x)lu(y))N(l

′
m(x)lk(y), lr(x)ls(y))N

+
N∑

m=0

N−1∑
k=1

1

ρmρk
(lm(x)l

′
k(y), lt(x)lu(y))N(lm(x)l

′
k(y), lr(x)ls(y))N .

Next, as in the first discretization, we change the numbering for the matrix DT
∗ M

−1
∗ D∗.

Let us define the mapping ϕ∗ by

∀(r, s), 0 ≤ r, s ≤ N, ϕ∗(r, s) = r(N + 1) + s+ 1. (5.12)

Note that ϕ∗ is a one to one mapping from {0, . . . , N}2 to {1, . . . , (N + 1)2} and we note

∀1 ≤ i ≤ N2 − 1, ϕ−1
∗ (i) = (ψ∗

1(i), ψ
∗
2(i)). (5.13)

Note that ψ∗
1(i) and ψ∗

2(i) are respectively the quotient and the remainder of the euclidian
division of i− 1 by N + 1. Then, we can denote

DT
∗ M

−1
∗ D∗ = (a∗i,j)1≤i,j≤(N+1)2 with a∗i,j = b∗(t,u),(r,s), (5.14)

where (t, u) = (ψ∗
1(i), ψ

∗
2(i)) and (r, s) = (ψ∗

1(j), ψ
∗
2(j)).

Computing the elements a∗i,j of the matrix DT
∗ M

−1
∗ D∗ yields

22
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1) if ψ∗
1(i) �= ψ∗

1(j) and ψ∗
2(i) �= ψ∗

2(j)
a∗i,j = 0
2) if ψ∗

1(i) �= ψ∗
1(j) and ψ∗

2(i) = ψ∗
2(j)

a∗i,j = ρψ∗
1(i)

ρψ∗
1(j)

ρψ∗
2(i)

N∑
m=0

1
ρm

l′m(ξψ∗
1(i)

)l′m(ξψ∗
1(j)

)

3) if ψ∗
1(i) = ψ∗

1(j) and ψ∗
2(i) �= ψ∗

2(j)

a∗i,j = ρψ∗
2(i)

ρψ∗
2(j)

ρψ∗
1(i)

N−1∑
m=1

1
ρm

l′m(ξψ∗
2(i)

)l′m(ξψ∗
2(j)

)

4) if ψ∗
1(i) = ψ∗

1(j) and ψ∗
2(i) = ψ∗

2(j), that is to say i=j

a∗i,i = (ρψ∗
1(i)

)2ρψ∗
2(i)

)
N∑

m=0

1
ρm

(l′m(ξψ∗
1(i)

))2 + (ρψ∗
2(i)

)2ρψ∗
1(i)

)
N−1∑
m=1

1
ρm

(l′m(ξψ∗
2(i)

))2.

zero.
Next, we determine the column matrix DT

∗ F = (c∗i,1) by

∀1 ≤ i ≤ (N + 1)2, ci,1 = −ρψ1(i)ρψ2(i)(
N∑

m=0

l′m(ξψ∗
1(i)

)F 1,N
m,ψ2(i)

+
N−1∑
m=1

l′k(ξψ∗
2(i)

)F 2,N
ψ1(i),m

).

Now, we deal with the main difference between both discretizations. In the third
discretization, the matrix DT

∗ M
−1
∗ D∗ is not invertible and the computation of the pressure

is more complicated. First, let qN =
N∑

t,u=0
qt,ult(x)lu(y) be a spurious mode, that is to say

an element of the space Z∗
N defined in Lemma 4.8. In the same way as in the proof of

Proposition 5.1, considering that the matrices DT
∗ M

−1
∗ D∗ and D∗ have the same rank, we

obtain the following equivalences

qN ∈ Z∗
N ⇐⇒ D∗Q = 0 ⇐⇒ (DT

∗ M
−1
∗ D∗)Q = 0,

where Q is the column vector (qt,u)0≤t,u≤N . We can consider the matrix DT
∗ M

−1
∗ D∗ as the

matrix of a linear mapping f from the vector space lPN(Ω) into itself equipped with the
basis B = (li(x)lj(y))0≤i,j≤N . Therefore, Z∗

N is the eigenspace associated to the eigenvalue
equal to 0 of the linear mapping f or, equivalently, of its matrix DT

∗ M
−1
∗ D∗. Note that

this basis is orthonormal for the scalar product (., .)N . We can diagonalize the positive
symmetric matrix DT

∗ M
−1
∗ D∗ and, thus, there exist a diagonal matrix Λ and an orthogonal

matrix R such that DT
∗ M

−1
∗ D∗ = RΛR−1 and such that the diagonal elements of Λ, that is

to say (λi,i)1≤i≤(N+1)2 are in increasing order. Note that the matrix Λ is the matrix of f in
a basis B′ = (hi)1≤i≤(N+1)2 of lPN(Ω), which is orthonormal for the scalar product (., .)N ,
the elements of which are the eigenvectors of the matrix DT

∗ M
−1
∗ D∗. Let P

′ be the column
matrix the elements of which are the components of the pressure pN in the new basis B′

of lPN(Ω). We have P ′ = RTP = R−1P and the following equivalence

(DT
∗ M

−1
∗ D)P = DT

∗ F ⇐⇒ ΛP ′ = RTDT
∗ F. (5.15)

Since Z∗
N is a two dimensions space, B′

0 = (h1, h2) is the basis of Z∗
N and (hi)3≤i≤(N+1)2 is

a basis of MN = (Z∗
N)

⊥. Therefore, we determine the column vectors P ′ and P by

P ′
1 = P ′

2 = 0, P ′
i =

1

λi,i

(RTDT
∗ F )i, 3 ≤ i ≤ (N + 1)2 and P = RP ′, (5.16)

and we have PN
r,s = Pϕ∗(r,s)

, 0 ≤ r, s ≤ N . In the same way as for the first discretization,
we derive the column matrix U by the relation U = F − M−1

∗ D∗P , which gives, for
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denote U2,N
r,s = u2

N(ξr, ξs). Let us define the matrix M̃1 = M̃ , where M̃ is given by (5.7),

the (N2 − 1)× (N2 − 1) matrix M̃2 = (m(j,k),(r,s)) with

m(j,k),(r,s) =

{
0 if (r, s) �= (j, k)
ρjρk if (r, s) = (j, k),

0 ≤ j, r ≤ N, 1 ≤ k, s ≤ N − 1

and the 2N(N + 1)× 2N(N + 1) diagonal matrix

M∗ =

(
M̃1 0
0 M̃2

)
.

In the same way as the first discretization, we derive the following matrix system
{

M∗U +D∗P = M∗F,
DT

∗ U = 0
, (5.11)

where the column matrices U , P and F are defined by

U =

(
U1,N
j,k

U2,N
t,u

)
, P = (PN

r,s) and F =

(
F 1,N
j,k

F 2,N
t,u

)
, 0 ≤ j, k, r, s, t ≤ N, 1 ≤ u ≤ N − 1

and the 2N(N + 1)× (N + 1)2 matrix D∗ by

D∗ =

(
D1,N

∗
D2,N

∗

)
withD1,N

∗ = (−(l′j(x)lk(y), lr(x)ls(y))N), D
2,N
∗ = (−(lt(x)l

′
u(y), lr(x)ls(y))N).

We have to compute the matrix DT
∗ M

−1
∗ D∗=(b∗(t,u),(r,s)), 0 ≤ r, s, t, u ≤ N . In the same

way as the first discretization, we obtain

b∗(t,u),(r,s) =
N∑

m,k=0

1

ρmρk
(l′m(x)lk(y), lt(x)lu(y))N(l

′
m(x)lk(y), lr(x)ls(y))N

+
N∑

m=0

N−1∑
k=1

1

ρmρk
(lm(x)l

′
k(y), lt(x)lu(y))N(lm(x)l

′
k(y), lr(x)ls(y))N .

Next, as in the first discretization, we change the numbering for the matrix DT
∗ M

−1
∗ D∗.

Let us define the mapping ϕ∗ by

∀(r, s), 0 ≤ r, s ≤ N, ϕ∗(r, s) = r(N + 1) + s+ 1. (5.12)

Note that ϕ∗ is a one to one mapping from {0, . . . , N}2 to {1, . . . , (N + 1)2} and we note

∀1 ≤ i ≤ N2 − 1, ϕ−1
∗ (i) = (ψ∗

1(i), ψ
∗
2(i)). (5.13)

Note that ψ∗
1(i) and ψ∗

2(i) are respectively the quotient and the remainder of the euclidian
division of i− 1 by N + 1. Then, we can denote

DT
∗ M

−1
∗ D∗ = (a∗i,j)1≤i,j≤(N+1)2 with a∗i,j = b∗(t,u),(r,s), (5.14)

where (t, u) = (ψ∗
1(i), ψ

∗
2(i)) and (r, s) = (ψ∗

1(j), ψ
∗
2(j)).

Computing the elements a∗i,j of the matrix DT
∗ M

−1
∗ D∗ yields
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0 ≤ j, k, t ≤ N , 1 ≤ u ≤ N − 1,

U1,N
j,k = F 1,N

j,k +
1

ρj

N∑
r=0

ρrl
′
j(ξr)P

N
r,k, U2,N

t,u = F 2,N
t,u +

1

ρu

N∑
r=0

ρrl
′
u(ξr)P

N
t,r.

Finally, considering the boundary conditions, we set U2,N
t,0 = U2,N

t,N = 0, 0 ≤ t ≤ N , and we
obtain the same formulas as in the first discretization for (divuN , divuN)N ,

(u − uN ,u − uN)N and (p − pN , p − pN)N . We also give the values of (divuN , divuN)
1
2
N ,

(p− pN , p− pN)
1
2
N and (u− uN ,u− uN)

1
2
N for N between 4 and 21.

N 4 5 6 7 8 9

(divuN , divuN)
1
2
N 1, 84.10−16 5, 45.10−15 3, 60.10−16 3, 05.10−15 8, 76.10−16 1, 94.10−14

(p− pN , p− pN)
1
2
N 0,246 0,016 0, 019 0, 0039 8, 43.10−4 1, 55.10−3

(u−uN ,u−uN)
1
2
N 0,62 0,043 0,054 1, 54.10−3 2, 48.10−3 3, 54.10−5

N 10 11 12 13 14 15

(divuN , divuN)
1
2
N 1, 24.10−14 9, 28.10−15 2, 7.10−13 9, 68.10−13 4, 25.10−13 3, 43.10−13

(p− pN , p− pN)
1
2
N 2, 3.10−5 8, 25.10−4 4, 33.10−7 4, 8.10−4 5, 9.10−9 3, 1.10−4

(u−uN ,u−uN)
1
2
N 7, 0.10−5 5, 7.10−7 1, 34.10−6 6, 79.10−9 1, 85.10−8 6, 23.10−11

N 16 17 18 19 20 21

(divuN , divuN)
1
2
N 4, 38.10−13 2, 24.10−12 3, 59.10−13 1, 9.10−12 8, 71.10−13 2, 68.10−12

(p− pN , p− pN)
1
2
N 6, 11.10−11 2, 05.10−4 4, 96.10−13 1, 44.10−4 3, 24.10−14 1, 04.10−4

(u−uN ,u−uN)
1
2
N 1, 93.10−10 4, 53.10−13 1, 57.10−12 3, 66.10−14 1, 12.10−13 2, 38.10−13

Table 4.2

Logarithm to the basis 10 of (divuN , divuN)
1
2
N

in function of N for the first and third discretizations

First discretization:

Third discretization:

24
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6 Conclusion

6.1 Continuous problem and discretizations

We studied the Darcy problem by defining two equivalent variational formulations
corresponding to two different bilinear forms b and b∗. The first one requests a more regular
pressure, which is bounded in H1(Ω). The second one is less classic and was introduced
by A. Quarteroni and A. Valli (see [14]). This second variational formulation is important
because it allowed us to constuct a spectral method which gives a divergence-free discrete
solution.

Moreover, by studying a mixed problem of Dirichlet-Neumann for the Laplace operator,
we proved regularity results with the solution(u, p) in H1(Ω)2 ×H2(Ω) as long as the data
is regular enough.

The first variational formulation led us to two spectral discretizations. In the first one,
the discrete solution is not divergence-free, which is a disadvantage for some applications.
However, we obtain a fully optimal error estimate for the velocity and the pressure. In
the second discretization, it does not appear spurious modes for the pressure. Moreover,
because of the exactness of the quadrature formulas, the error estimate is easier to obtain.
However, the error estimate for the pressure is not optimal, because the inf-sup constant
depends on N .

The second variational formulation led to a third spectral discretization. There are
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However, the error estimate for the pressure is not optimal, because the inf-sup constant
depends on N .

The second variational formulation led to a third spectral discretization. There are

25

CONCLUSION

Continuous problem and discretizations

spurious modes, which complicate the study, but the discrete velocity is divergence-free,
which is important when the system is a stage of solving of a time-dependent problem, and
the error estimate for the velocity and the pressure is fully optimal. In conclusion, this
third discretization is the best discretization and we will only use it hereafter.

6.2 Comparison of both spectral discretizations

Tables 4.1 and 4.2 test the convergence of respectively the first and third discretiza-
tions to the exact solutions. For the first discretization, we see the convergence to zero of

(divuN , divuN)
1
2
N , about 10−1 for N = 8 and about 10−12 for N = 19. Concerning the

third discretization, we see that the quantity (divuN , divuN)
1
2
N is very small for all values

of N , about 10−16 for N = 4 and about 10−12 for N = 20. Thus, we verify that, in the
third discretization, the discrete solution uN is exactly divergence-free, which is important,
as we saw previously. This property appears clearly in Figure 4.3, which represents the

logarithm to the basis 10 of the quantity (divuN , divuN)
1
2
N as a function of N , for even N

from 4 to 20, for both discretizations.
Regarding the velocity, the discrete solution uN converges fast to the exact solution u

for both discretizations. For the pressure, we also obtain fast convergence, except for odd
N in the third discretization.
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