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Abstract

It takes three form factors to describe the graviton-electron interaction. In the limit of zero momentum transfer these
form factors essentially reduce to the mass of the electron. In this article we show that under certain conditions the form
factors of the graviton-electron vertex function vanish at high energies. We first develop the exact massless spin-2+

propagators in terms of two spectral functions. Working in a covariant gauge, which requires the use of an indefinite
metric, we show that the spectral functions are positive definite. We then extend a theorem of Lehmann, Symansik, and
Zimmermann, namely the vanishing of theπ-N vertex function at high energies, to the graviton-electron interaction.

Keywords. graviton-electron interaction, quantum electrodynamics, Lehmann, Symansik, Zimmermann.

Resumen

Se necesitan tres factores de forma para describir la interacción gravitón-electrón. En el límite de transferencia de
momento cero, estos factores de forma reducen esencialmente a la masa del electrón. En este artículo se muestra que
bajo ciertas condiciones, los factores de forma de la función vértice gravitón-electrón se desvanecen a altas energías.
Primero desarrollamos los propagadores spin-2+ sin masa exacta en términos de dos funciones espectrales. Trabajando
en un medidor de covariante, que requiere el uso de una métrica indefinida, se muestra que las funciones espectrales
son definidas positivas. A continuación, extendemos un teorema de Lehmann, Symansik y Zimmermann, para conocer
la desaparición de la función vérticeπ-N a altas energías a la interacción gravitón-electrón.

Palabras Clave.interacción gravitón-electrón, electrodinámica cuántica, Lehmann, Symansik, Zimmermann.

Introduction

The success of Quantum Electrodynamics (QED) as a
massless spin-l field theory has provided a framework
for studying theories of other spins. Recently, there has
been considerable interest in investigating a massless
spin-2+ theory, particularly because of its connection
with Einstein’s gravitation theory. If such a theory is to
describe gravitation it must predict a force that is long
range, obeys the inverse square law, is attractive, and
couples with all matter with equal strength.

R. P. Feynman [1] has shown that an interaction de-
scribed by an exchange of massless spin-2+ meson (gravi-
ton) yields a force in agreement with the above require-
ments. The theory, however, is considerable more com-
plicated than QED because of the universality of the
gravitational coupling. Stated differently, this says that
whereas the photon is electromagnetically neutral, the
graviton is not gravitationally neutral. The field equa-
tions describing gravity become highly non-linear hav-
ing as a source the conserved energy-momentum tensor

of matter and gravitation. B. Holstein has further stud-
ied the interaction of gravitons with matter [2] as well
as G. Degrassi, et.al on fermion-graviton vertices [3].

In this study we study the interaction between gravitons
and electrons, in particular, the asymptotic behavior of
the form-factors describing the interaction. This inter-
action can be studied by looking at the matrix element
< p′|θµν |p > wherep′ andp are momenta of the in-
coming and outgoing electron respectively andθµν is
the conserved energy momentum tensor. This is as in
Quantum Electrodynamics where the matrix element of
interest is< p′|jµ|p > andjµ is a conserved current.
Tha matrix element< p′|θµν |p > can be written as

〈p′|θµν |p〉 = ū (p′)
[

A1

(

q2
)

δµν +A2

(

q2
)

pµpν
+A3

(

q2
)

p,µp
,
ν +A4

(

q2
)

p(µp,
ν) +A5

(

q2
)

p(µγν)

+A6

(

q2
)

p
,
(µγν)

+A7

(

q2
)

(γµγν + γνγµ)
]

u (p) ,

theAi

(

q2
)

are invariant form factors andq = p′−p. We
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may drop the last term because of the anticommuting
property of theγ matrices, i.e.{γµ, γν} = 2δµν . Hence
this term is of the same type as theA1

(

q2
)

term. Now
we impose the conservation condition∂µθµν(x) = 0,
this gives

(p′ − p)µ 〈p′|θµν |p〉 = 0,

Using the Dirac equation we arrive at the following con-
dition

A2

(

q2
)

= A3

(

q2
)

A5

(

q2
)

= A6

(

q2
)

A1

(

q2
)

=
(

A3

(

q2
)

−A4

(

q2
)) (

p′ · p+m2
)

Substituting this in the first equation and redefining the
form factors as follows

A4(q2)A3(q2)
2 =

G3(q2)
m

A4(q2)A3(q2)
2 =

G2(q2)
m

A5

(

q2
)

= G1

(

q2
)

we obtain for the first equation

〈p′|θµν |p〉 = ū (p′)
[

G1

(

q2
)

(ℓµγν + ℓνγµ)

+
G2(q2)

m ℓµℓν +
G3(q2)

m

(

q2δµν − qµqν
)

]

u (p) ,

(1)

where theGi

(

q2
)

area scalar form factors,m is the
electron mass,q = p′−p andl = p′+p. If we consider
only the traceθµµ we have

< p′|θµν |p >= ū (p′)G
(

q2
)

u (p) , (2)

where theG
(

q2
)

is a linear combination of theGi

(

q2
)

.

In the rest frame of the system and atq2 = 0 the only
surviving term inθαα is θ00 which is just the mass den-
sity of the electron. So we have

m = G(0), (3)

where we have used the normalization condition given
by E

m ū (p)u (p
′) = δpp′ . Thus, if it is possible to calcu-

lateG
(

q2
)

then one can calculate the mass of the elec-
tron. Admittedly this is quite an ambitious task and in
no way is it the aim of this thesis. However, the possi-
bility of such a calculation with the use of unsubstracted

dispersion relations certainly justifies the studying of
the analytic properties of these form factors and in par-
ticular their asymptotic their asymptotic behavior.

H. Pagels [4] investigated the problem using the pertur-
bation theory results for the asymptotic behavior of the
vertex function, which showed a number of limitations
[5]. It is, therefore, of interest to study the asymptotic
behavior of these using only exact methods.

We shall approach the problem by extending a theo-
rem of Lehmann, Symanzik, and Zimmerman [6] (LSZ)
namely the vanishing of theπ-nucleon vertex function
at high energies, to the graviton-electron interaction. The
case of the vertex function in Quantum Electrodynamics
has been investigated by Evans [7].

It is necessary for the development of such theorem to
have available the Lehmann-Källén [8] spectral repre-
sentation of the propagators. These are well known in
both spin-1 and in spin-0 theories. For this purpose we
present a general formulation of a massless spin-2+ the-
ory in a covariant gauge and develop the exact propaga-
tors in terms of spectral functions. We work in a co-
variant gauge and an indefinite metric is necessary in
order to insure that quantities such as the energy depend
only on the two physically admissible graviton states.
Quantizing [9] we are then able to prove that the spectral
functions are positive definite. In order to avoid mathe-
matical inconsistencies which appear from the start, we
regularize using the method of regularization of Pauli
and Villars [10]. With these preliminaries we prove that
the graviton-electron vertex vanishes in the high energy
limit.

In particular we consider the f0 meson and calculate
both the width of the f0 decaying into two photonsΓ (f → γγ)
as well as the photoproduction cross section for the f0

meson. This is done by considering the processN +
γ → f +N which consists of four types of interactions
(Figure 1). By looking in certain kinematical regions
and at small momentum transfers [11], we may neglect
all but Figure 1c. Provided that the coupling constant
remains approximately the same when the photon ex-
changed is on the mass shell, we can express the photo-
production cross section in terms of the widthΓ (f → γγ).

The spin-2+ field

Field Equations

The Lagrangian for a free massless spin-2+ field is

L = −1

2

∂gµν (x)

∂xα

∂gµν (x)

∂xα
, (4)

wheregµν(x) is a symmetric field variable. By varying
the above Lagrangian we obtain for the free field equa-
tion

�
2gµν(x) = 0 (5)
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a) b)

c) d)

N N

fγ

p p’

q l

Figure 1: Diagrams for the processγ +N → f +N .

We require that the field equations (5) be invariant under
a gauge transformation of the type

gµν (x) → g,µν (x) = gµν (x) + ∂µΛν + ∂νΛµ (6)

whereΛµ is an arbitrary vector. Since the fieldsgµν(x)
are not uniquely determined we may impose a subsidiary
condition equivalent to the Lorentz gauge in Electrody-
namics, namely

∂

∂xµ
gµν (x) = 0 (7)

This restricts the gauge functions to those that satisfy,

�
2Λν(x) = 0, (8)

∂

∂xµ
Λµ = 0 (9)

Indeed, with these conditions the field equations (5) are
invariant under the gauge transformations in equation
(6).

The tensorgµν(x) has sixteen independent components.
By requiring that it can be symmetric we reduce the
number of independent components to ten. The sub-
sidiary condition (7) further reducesgµν(x) to six inde-
pendent components. Finally, the gauge transformation
(6) allows us only two independent degrees of freedom
due to the four components of the arbitrary gauge func-
tionΛµ.

Quantization Rules

The Fourier decomposition of the fieldgµν(x) is given
by

gµν (x) =
1√
2ωV

∑

~k

[

aµν

(

~k
)

eikx + a+µν

(

~k
)

e−ikx
]

(10)

wherea+ anda are creation and destruction operations
respectively,ω is the energy, andV is the volume of
periodicity. Following Gupta [9] we have for the quan-
tization condition at arbitrary times,

[gµν (x) , gαβ (y)] = −i (δµαδνβ + δµβδνα−
δµνδαβ)D (x− y)

(11)

where

D (x− y) =
−i

(2π)
3

∫

dpeip(x−y)ǫ (p) δ
(

p2
)

and

ǫ (p) =
|p0|
p0

, dp = dp1dp2dp3dp0

Furthermore, at equal times we have

[gµν (x) , gαβ (y)]x0=y0
= 0 (12)

and

[gµν (x) , ġαβ (y)]x0=y0
= −i (δµαδβν + δµβδαν−

δµνδαβ) δ (~x− ~y)
(13)

In this covariant quantization we have included ten spin-
2+ states; however, there are only two physically mean-
ingful states. We circumvent this difficulty by introduc-
ing an indefinite metric as in Quantum Electrodynamics
in the Gupta-Bleuler gauge [12]. To this end the ten
independent states are:

a±
(

~k
)

=
1√
8

[

a11

(

~k
)

− a22

(

~k
)

∓ i√
2
a12

(

~k
)]

a′30

(

~k
)

=
1
2

[

a33

(

~k
)

+ a00

(

~k
)]

a
(

~k
)

=
1√
8

[

a11

(

~k
)

+ a22

(

~k
)

+ a33

(

~k
)

− a00

(

~k
)]

a′
(

~k
)

=
1√
8

[

a11

(

~k
)

+ a22

(

~k
)

+ a33

(

~k
)

+ a00

(

~k
)]

a31

(

~k
)

, a32

(

~k
)

, a02

(

~k
)

anda10

(

~k
)

(14)

The indefinite metric operator is such that

[η, aij ] = [η, a′] = [η, a±] = 0
{η, ai0} = {η, a} = 0

(15)
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with i, j running from one to three. With this we have

[

a+

(

~k
)

, a++

(

~k
)]

= 1
[

a−

(

~k
)

, a+−

(

~k
)]

= 1
[

a13

(

~k
)

, a+13

(

~k
)]

= 1
[

a10

(

~k
)

, a+10

(

~k
)]

= −1
[

a32

(

~k
)

, a+32

(

~k
)]

= 1
[

a20

(

~k
)

, a+20

(

~k
)]

= −1
[

a
,
30

(

~k
)

, a
,+
30

(

~k
)]

= 1
[

a30

(

~k
)

, a+30

(

~k
)]

= −1
[

a′
(

~k
)

, a′+
(

~k
)]

= 1
[

a
(

~k
)

, a+
(

~k
)]

= −1

(16)

The states of negative norm in this formalism can now
be eliminated by choosing the subsidiary conditions

∂

∂xµ
g+µν (x) |ψ〉 = 0 (17)

where the + denotes positive frequency part and|ψ〉
is any state vector. By substituting equation (10) into
equation (17) we have

[

a13

(

~k
)

− a10

(

~k
)]

|ψ〉 =
[

a23

(

~k
)

− a20

(

~k
)]

|ψ〉 = 0
[

a
,
30

(

~k
)

− a30

(

~k
)]

|ψ〉 =
[

a′
(

~k
)

− a
(

~k
)]

|ψ〉 = 0

(18)

Consider for example the Hamiltonian, given by

H =
∑

~k

ω ·
10
∑

λ=1

N (λ) (k) (19)

whereN is the number operatorN = a+a andλ speci-
fies the polarization state, this yields

H =
∑

~k

ω
[

a++

(

~k
)

a+

(

~k
)

+ a+−

(

~k
)

a−

(

~k
)

+a+13

(

~k
)

a13

(

~k
)

− a+10

(

~k
)

a10

(

~k
)

+a+23

(

~k
)

a23

(

~k
)

− a+20

(

~k
)

a20

(

~k
)

+a,+30

(

~k
)

a
,
30

(

~k
)

− a+30

(

~k
)

a30

(

~k
)

+a,+
(

~k
)

a,
(

~k
)

− a+
(

~k
)

a
(

~k
)]

(20)

When applied to a state vector, by virtue of equation

(18) we see that only thea/pm
(

~k
)

states contribute to

the energy. Similarly, it can be shown that other observ-
able quantities depend on only the physical gravitons.
However, it must be noted, that when summing over in-
termediate states one must include all ten gravitons.

We introduce the interaction in the field equations through
a conserved sourceθµν satisfying∂µθµν = 0. This
tensor shall later be interpreted as the complete energy

momentum tensor of matter and gravitation. The field
equations for the interacting fields are then [13]

�
2gµν = −θµν(x) (21)

In what follows we shall refer to the free fields by a
superscript (0) i.e.�2g

(0)
µν (x) = 0 so as to distinguish

them from the interacting fields introduced above. We
have only specified that the tensorθµν be symmetric and
conserved. Equation (21), however, may be non linear
andθµν may depend ongµν itself.

Before proceeding we present a non-rigorous connec-
tion with general relativity.

Connection with Gravitation Theory

Until now we have only presented a mathematical frame-
work for a spin-2+ theory. We shall now attempt to
establish a connection, in the classical limit, with Ein-
stein’s gravitation theory. For the purpose of this section
only, we shall use the notation of Weinberg [12]. Ein-
stein’s equations are given by

Rµν − 1

2
gµνR

λ
λ = −8πGTµν (22)

whereRµν is the Ricci tensor,gµν is the metric tensor
andTµν is the stress tensor of matter without gravita-
tion. G is the gravitational constant. In order to write
these equations in flat space it is convenient to choose a
coordinate system as Weinberg [14] such that the metric
gµν approachesηµν(−1, 1, 1, 1) the Minkowsky metric
at large distances, that is

gµν = ηµν + hµν (23)

wherehµν vanishes at infinity. However,hµν is not as-
sumed to be small. Einstein’s equations may now be
written as

R(1)
µν − 1

2
gµνR

(1)λ
λ = −8πG [Tµν + tµν ] (24)

where

R
(1)
µν = 1

2

(

�
2hµν − ∂2

∂xλ∂xµh
λ
ν − ∂2

∂xλ∂xν h
λ
µ+

∂2

∂xµ∂xν h
λ
λ

)

(25)

and

tµν =
1

8πG

[

Rµν −
1

2
gµνR

λ
λ −

(

R
(1)
µν −

1

2
ηµνR

(1)λ
λ

)]

(26)
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It should be emphasized that these are Einstein’s equa-
tions and no approximations have been made.

We now may interpretTµν + tµν as the total energy
momentum tensor of matter and gravitation. Indeed, by
virtue of the Bianchi identities

∂

∂xν

[

R(1)µν − 1

2
ηµνR

(1)λ
λ

]

= 0, (27)

therefore,

∂

∂xν
(T µν + tµν) = 0 (28)

If we defineθµν = 8πG (T µν + tµν) we have

∂µθ
µν = 0 (29)

Furthermore, by defining

gµν = hµν − 1

2
ηµνh

λ
λ, (30)

and choosing the harmonic coordinate system

∂

∂xµ
g
µ
ν = 0, (31)

we have

�
2gµν = −θµν (32)

This is the same as equation (21). It should be noted,
that in view of this interpretation,θµν is highly non lin-
ear. We thus identify the aboveθµν with the one in equa-
tion (21) and interpret it as the energy momentum tensor
of matter and gravitation. In the above we have only es-
tablished a point of contact between the two theories.
Feynman [1], however, has shown that by starting with
a spin-2+ theory and invoking gauge invariance as well
as energy momentum conservation, one arrives at Ein-
stein’s equations. Consider equation (32) withTµν , the
energy momentum tensor of matter only, as the source.
The interaction between two matter fields with stress
tensorsTµν andT ′

αβ is given by

T ,
µν

Pµναβ

k2
T

,
αβ, (33)

where

Pµναβ = δµαδνβ + δµβδνα − δµνδαβ

This alone is sufficient to predict all the Newtonian ef-
fects of gravity in the non-relativistic limit. In addition
it predicts a bending of light by the sun which is twice

the Newtonian prediction and in agreement with Ein-
stein. If one calculates, for example, the amplitude for
Compton scattering of a graviton from a spinless parti-
cle, one finds by direct substitution of the gauge trans-
formation given in equation (6) that the amplitude is not
gauge invariant. The difficulty arises because the stress
tensorTµν does not include the energy of the gravita-
tional field, thus one has to add non-linear corrections
to make the amplitude gauge invariant. At this point,
however,Tµν alone is no longer conserved. To correct

this, one might define another tensorT
(1)
µν = Tµν +φ

(0)
µν

so that∂µT
(1)
µν = 0. Repeating the processn times, each

time invoking gauge invariance, one obtainsT (n)
µν =

Tµν + φn−1
µν where∂µT

(n)
µν = 0. One would expect

to arrive at the correct theory whenn approaches in-
finity. From the Lagrangian point of view, this would
imply an infinite number of terms. In fact, Feynman [1]
shows that this series can be summed, when written in
the mathematical language of general relativity, to yield
Einstein’s theory. Gauge invariance then becomes an
invariance under general coordinate transformations.

Furthermore, we may interpret the tensorθµν in equa-

tion (32) asT (∞)
µν . With the above discussion in mind

we base the rest of this work on the field equation (32).
These equations are then highly non-linear, are gauge
invariant and the source is conserved. We shall now call
a massless spin-2+ particle a graviton.

The matrix elements ofθµν are not gauge invariant un-
lessθµν depends ongαβ andġαβ i.e., the theory must be
non-linear. If,θµν is independent ofgαβ andġαβ, as in
the weak field approximation, we must then conclude,
as is known, that the theory is not gauge invariant in this
case [1].

The Massive Spin-2+ Field

We conclude this study by presenting a brief formula-
tion of massive spin-2+ fields [15, 16]. The free La-
grangian density is given by

L = −1

2

∂fµν (x)

∂xα

∂fµν (x)

∂xα
+

1

2
M2fµν (x) fµν (x) ,

(34)

wherefµν(x) is the field variable andM is the mass of
this field. The field equations are then

(

�
2 −M2

)

fµν(x) = 0 (35)

Because there are five degrees of freedom we also have

fµν(x)− fνµ(x), (36)

fνν(x) = 0, (37)
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∂µfµν(x) = 0 (38)

The commutation relations are

[fµν (x) , fαβ (y)] = (ξµαξνβ + ξµβξνα−
2
3ξµνξαβ

)

∆(x− y) ,
(39)

where

ξµν = δµν − kµkν

k2
(40)

and

∆(x) = − i

(2π)
3

∫

eikxǫ (k) δ
(

k2 +M2
)

dk

It should be noted that the term that multiplies∆(x−y)
in equation (39), which is essentially the sum over the
polarizations, does not go over to the one appearing in
equation (11) for the massless case asM → 0. The
fact that the massive spin-2+ theory does not go over
into a massless theory has been subject to considerable
investigation [17–19]. We only note this difference and
shall not consider the point further.

Finally, we introduce the interaction by a direct cou-
pling of the field variablefµν(x) with the energy mo-
mentum tensor of the field in questionTµν [20].

Lint =
g

M
Tµνfµν (41)

whereg is a dimensionless coupling constant andM is
the mass of the spin-2+ field. The constantM has been
introduced above only for dimensional reasons.

The resulting equation represents an adequate mathe-
matical description of the graviton-electron interaction,
which is requirement for the calculation of some pro-
cesses involving spin-2+ particles. In particular, the re-
sult shown in euation (41) has been employed in the
very exact description of the the differential and total
cross sections for the photoproduction of the f meson in
terms of the width of the f0 decaying into two photons
[21].

Conclusions

In the present article, a mathematical formulation for
describing the graviton-electron interaction without re-
curring to significant mathematical approximations is
presented. In particular, we first develop the exact mass-
less spin-2+ propagators in terms of two spectral func-
tions. Then, working in a covariant gauge which re-
quires the use of an indefinite metric, we show that the

spectral functions are positive definite. Finally, we ex-
tend a theorem of Lehmann, Symansik, and Zimmer-
mann, namely the vanishing of theπ-N vertex func-
tion at high energies, to the graviton-electron interac-
tion. The theoretical development introduced here is
proposed as a general approach for describing processes
involving spin-2+ particles.
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