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PV cohomology of pinwheel
tilings, their integer group of
coinvariants and gap-labelling

Häıja MOUSTAFA

Abstract

In this paper, we first remind how we can see the ”hull” of the pinwheel
tiling as an inverse limit of simplicial complexes ([AP]) and we then adapt
the PV cohomology introduced in [BS] to define it for pinwheel tilings.
We then prove that this cohomology is isomorphic to the integer Čech
cohomology of the quotient of the hull by S1 which let us prove that
the top integer Čech cohomology of the hull is in fact the integer group
of coinvariants on some transversal of the hull. The gap-labelling for
pinwheel tilings is then proved and we end this article by an explicit

computation of this gap-labelling, showing that µt
`

C(Ξ, Z)
´

=
1
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Z

»

1

5

–
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1 Introduction

In this paper, we study some dynamical properties of the pinwheel tiling of the
plane (the (1, 2)-pinwheel tiling). Some remarks on possible extensions of this
result will be made in conclusion.

The study of tilings have gained in intensity since the discovery by physicists,
in 1984, of a new material whose atomic distribution had forbidden symmetries
for crystals (see [SBGC]).
The atomic distribution wasn’t the one of a crystal but it was very close to it : it
was not periodic but nevertheless, it showed some order, it was ”quasiperiodic”.
This material was called quasicrystals.
Quickly, mathematicians modeled such solids by aperiodic tilings and the phys-
ical properties of the material are closely related to the geometry of the tiling.
This link was established by Jean Bellissard in [Bel] and it is the content of the
so called gap-labelling conjecture.
To state this conjecture, we need some definitions which will be given in more
details in section 1. of this paper.
First, to every tiling of the euclidean space, we can associate a topological space
Ω, called the continuous hull or the tiling space, which encode many properties
of our tiling. This space is provided with an action of a subgroup G of the isome-
tries of the euclidean space (in the statement of the gap-labelling conjecture, G
will be the translations Rn) and thus we can consider the C∗-algebra associated
to such dynamical system (Ω, G) which is the crossed product C(Ω) ⋊G.
Next, we assume that Ω is provided with an ergodic G-invariant probability
measure µ which gives rise to a trace τµ on C(Ω) ⋊ G and hence, to a linear
map τµ∗ : K0(C(Ω) ⋊ G) → R from the K-theory group of this C∗-algebra
to the real numbers. The gap-labelling conjecture then predicts the image of
K0(C(Ω) ⋊G) under this linear map.
Moreover, the hull contains a Cantor set Ξ, called the ”canonical transversal”
of Ω, which is a sort of discretisation of the hull. The measure µ then induces
a measure µt on Ξ and the gap-labelling conjecture then expresses the link be-
tween the image of K0(C(Ω) ⋊ Rn) under the trace and the image under µt of
the integer valued functions on Ξ:

Conjecture : ([Bel], [BHZ])

τµ∗

(

K0

(

C(Ω) ⋊ R
n
)

)

= µt
(

C(Ξ,Z)
)

where C(Ξ,Z) is the space of continuous functions on Ξ with values in Z.

Since then, many works have been done to prove this conjecture.
First, the Pimsner-Voiculescu exact sequence gave the answer in dimension 1 in
[Bel] and later, the conjecture was proved by van Elst in [vE] by iterating this
exact sequence.
Using a spectral sequence, Bellissard, Kellendonk and Legrand proved the con-
jecture in dimension 3 in [BKL].
In 2002, a general proof finally appears independently in several papers : by Bel-
lissard, Benedetti and Gambaudo in [BBG], by Benameur and Oyono-Oyono
in [BOO] and by Kaminker and Putnam in [KPa].
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The proof in [BOO] uses an index theorem for foliated spaces due to Alain

Connes (see [Con]) to link the analytical part τµ∗
(

K0

(

C(Ω) ⋊ Rn
)

)

to a topo-

logical part Chτ
(

Kn

(

C(Ω)
))

which lies in H∗τ (Ω) the longitudinal cohomology
group of Ω (Chτ is the longitudinal Chern character (see [MS])), this part being
more computable.

By analogy, the gap labelling of the pinwheel tiling can be formulated as the

computation of τµ∗
(

K0

(

C(Ω) ⋊ R2 ⋊ S1
)

)

in terms of the Z-module of ”patch

frequencies” µt(C(Ξ,Z)).
We have adapted the method of Benameur and Oyono-Oyono in [Mou] for pin-
wheel tilings to obtain a similar result :

Theorem : If Ω is the continuous hull of a pinwheel tiling, µ an ergodic
invariant probability measure on Ω and µt the induced measure on the canonical
transversal of Ω, we have :

τµ∗

(

K0

(

C(Ω) ⋊ R
2

⋊ S1
)

)

⊂ 〈Chτ
(

K1(C(Ω))
)

, [Cµt ]〉

where [Cµt ] ∈ Hτ
3 (Ω) is the Ruelle-Sullivan current associated to the transverse

measure µt (see [MS]) and 〈 , 〉 is the pairing of the longitudinal cohomology
with the longitudinal homology.

Since the longitudinal Chern character factorizes through the usual Chern char-
acter in Čech cohomology (see section 3.) and since the Ruelle-Sullivan current
only sees the H3

τ (Ω) part, we will study, in this paper, the top integer Čech
cohomology group of Ω.
The aim of this paper is to study carefully the image under the Ruelle-Sullivan
current of the top dimensional longitudinal Chern character and to relate it to
the module of patch frequencies in order to solve completely the gap-labelling
conjecture for the pinwheel tiling.

The structure of this paper is then the following: in section 2. we remind some
classical definitions in tiling theory. In particular, we remind the construction
of the pinwheel tiling given by Radin in [Radb] and then we introduce the no-
tion of continuous hull of pinwheel tiling, enumerating its properties. We next
turn to the definition of the canonical transversal of the hull which allows us to
see the continuous hull of pinwheel tiling as a foliated space in a well known way.

In section 3., a trick shows that Ȟ3(Ω; Z) is isomorphic to Ȟ2(Ω/S1; Z).
We then study the top integer Čech cohomology of Ω/S1.
To do this, we are using results and ideas developed in several papers ([AP],
[BS]).
First, we use the idea, initiated by Anderson and Putnam in their paper [AP],
to see Ω/S1 as an inverse limit of homeomorphic simplicial complexes.
Specifically, as the pinwheel tiling isn’t ”forcing its border”, we will use the
collared version of their construction.
This allows to use simplicial methods to compute Ȟ2(Ω/S1; Z).
This was extended by Bellissard and Savinien in [BS] to compute the cohomol-
ogy of tilings in term of the PV cohomology of its prototile space.
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In this section, we adapt their method to prove

Ȟ∗
(

Ω/S1; Z
)

≃ H∗PV
(

Bc0;C(Ξ2
∆,Z)

)

.

where H∗PV is the PV cohomology and Ξ2
∆ is a new transversal .

The interesting point in this new cohomology is that the cochains are in fact
classes of continuous functions with integer values on the transversal Ξ2

∆ of
the hull which is a first step toward the module of ”patch frequencies” of the
pinwheel tiling, related to the continuous functions with integer values on the
canonical transversal.

The key point established in this section is that the top PV cohomology of the
pinwheel tiling is isomorphic to the integer group of coinvariants of the transver-
sal Ξ2

∆ (this notion of integer group of coinvariants is given in this section, it’s
the quotient of the continuous function on Ξ2

∆ by the ”local” coinvariants, in a
similar way to the definition given in [Kel]) :

Theorem 3.16 :

H2
PV (Bc0;C(Ξ∆,Z)) ∼= C(Ξ2

∆,Z)/HΞ2
∆

where HΞ2
∆

is a subgroup of C(Ξ2
∆,Z) such that for all h ∈ HΞ2

∆
, µt2(h) = 0, for

the measure µt2 induced by µ on Ξ2
∆.

which leads to the important corollary that the top integer Čech cohomology
group of the hull is isomorphic to the integer group of coinvariants :

Corrolary 3.17 : The top integer Čech cohomology of the hull is isomorphic
to the integer group of coinvariants of Ξ2

∆ :

Ȟ3
(

Ω; Z
)

≃ C(Ξ2
∆,Z)/HΞ2

∆
.

In section 4., this theorem associated to the study of the image under the Ruelle-
Sullivan map of the top cohomology of Ω gives the desired gap-labelling of the
pinwheel tiling :

Theorem 4.1 : If T is a pinwheel tiling, Ω = Ω(T ) its hull provided with an
invariant ergodic probability measure µ and Ξ its canonical transversal provided
with the induced measure µt, we have :

τµ∗

(

K0

(

C(Ω) ⋊ R
2

⋊ S1
)

)

= µt
(

C(Ξ,Z)
)

.

We finally end section 4. by an explicit computation of this image.
Viewing C(Ξ,Z) as a direct limit and exhausting the collared prototiles of the
pinwheel tiling, we then prove that, thanks to a result in [Eff], we have :

τµ∗

(

K0

(

C(Ω) ⋊ R
2

⋊ S1
)

)

=
1

264
Z

[

1

5

]

.
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This result shows that the gap-labelling of the pinwheel tiling is given by the
Z-module of its ”patch frequencies”.

A natural question is whether this is a general fact.

Aknowledgements. It is a pleasure for me to thank my advisor Hervé
Oyono-Oyono who always supported and advised me during this work.
I also want to thank Jean Bellissard for useful discussions on the gap-labelling
conjecture, Ian Putnam and Michael Whittaker for useful discussions on pin-
wheel tilings and their gap-labelling.
I am also grateful to Dirk Frettlöh for useful conversations on diffraction and
patch frequencies.
I am also indebted to the SSM department of Victoria BC University for its
hospitality during my stay in march 2009 where this paper was written.
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2 Reminders

2.1 Pinwheel tiling and continuous hull

A tiling of the plane is a countable family P = {t1, t2 . . .} of non empty
compact subsets ti of R2, called tiles (each tile being homeomorphic to the unit
ball), such that:

•
⋃

i∈N

ti = E2 where E2 is the euclidean plane with a fixed origin O;

• Tiles meet each other only on their border ;

• Tiles’s interiors are pairwise disjoint.

We are interested in the special case where there exists a finite family of tiles
{p1, . . . , pn}, called prototiles, such that each tile ti is the image of one of these
prototiles under a rigid motion (i.e. a direct isometry of the plane).
In fact this paper will focus on the particular tiling called pinwheel tiling or
(1,2)-pinwheel tiling which is obtained by a substitution explained below.

Our construction of a pinwheel tiling is based on the construction made by
Charles Radin in [Radb]. It’s a tiling of the plane obtained by the substitution
described in Figure 1.

Figure 1: Substitution of the pinwheel tiling.

This tiling is constructed from two prototiles, the right triangle in Figure 1.(a)
with legs 1, 2 and

√
5 and its mirror image.

To obtain this tiling, we begin from the right triangle with the following vertices
in the plane : (0, 0) , (2, 0) and (2, 1).
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This tile and its reflection are called supertiles of level 0 or 0-supertiles.
We will next define 1-supertiles as follows : take the right triangle with vertices
(−2, 1), (2,−1) and (3, 1) and take the decomposition of Figure 1.(b). This
1-supertile is thus decomposed in five 0-supertiles, which are isometric copies of
the first tile, with the beginning tile in its center (see Figure 2.(b)).

Figure 2: Construction of a pinwheel tiling.

We next repeat this process by mapping this 1-supertile in a 2-supertile with
vertices (−5, 5), (1,−3) and (5, 0) (see Figure 2.(c)).
Including this 2-supertile in a 3-supertile with correct orientation and so on,
this process leads to the desired pinwheel tiling T .

We will now attach to this tiling a topological space reflecting the combinatorial
properties of the tiling into topological and dynamical properties of this space.

For this, we observe that the direct isometries of the plane are acting on the
euclidean plane E2 where we have fixed the origin O.
Direct isometries E2 = R2 ⋊ SO(2) thus act naturally on our tiling T on the
right .
If Rθ denotes the rotation about the origin with angle θ and s ∈ R2, T .(s,Rθ) :=
R−θ(T − s). We will also denote (s,Rθ) by (s, θ).

Definition 2.1
A patch is a finite union of tiles of a tiling.
A tiling T ′ is of finite E

2-type or of Finite Local Complexity (FLC) if for
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any R > 0, there is only a finite number of patches in T ′ of diameter less than
R up to direct isometries.
A tiling T ′ of finite E

2-type is E
2-repetitive if, for any patch A in T ′, there is

R(A) > 0 such that any ball of radius R(A) intersects T ′ in a patch containing
a E2-copy of A.

The tiling T is of finite E
2-type, E

2-repetitive and non periodic for translations
(see [Pet]).

To attach a topological space to T , we define a metric on T .E2 :
If T1 and T2 are two tilings in T .E2, we define

A =

{

ε ∈
[

0,
1√
2

]

/ ∃s, s′ ∈ B2
ε (0) , θ, θ′ ∈ B1

ε(0) s.t.

T1.(s, θ) ∩B 1
ε
(O) = T2.(s

′, θ′) ∩B 1
ε
(O)
}

where B 1
ǫ
(O) is the euclidean ball centered in O with radius 1

ǫ and Biǫ(0) are

the euclidean balls in Ri centered in 0 and with radius ǫ (i.e. we consider direct
isometries near Id).
Then, define :

d(T1, T2) =

{

InfA if A 6= ∅
1√
2

else .

d is a bounded metric on T .E2. For this topology, a base of neighborhoods is
defined by: two tilings T1 and T2 are close if, up to a small direct isometry, they
coincide on a large ball around the origin.

Definition 2.2
The continuous hull of T is then the completion of (T .E2, d) and will be
denoted Ω(T ).

Let’s enumerate some well known properties of this continuous hull:

Property 2.3 ([KPb], [BBG], [BG] et [Radb])

• Ω(T ) is formed by finite E2-type, E2-repetitive and non periodic (for trans-
lations) tilings and each tiling of Ω(T ) has the same patches as T .

• Ω(T ) is a compact space since T is of finite E2-type.

• Each tiling in Ω(T ) are uniquely tiled by n-supertiles, for all n ∈ N.

• The dynamical system (Ω(T ),E2) is minimal since T is repetitive, i.e each
orbit under direct isometries is dense in Ω(T ).

The last property of Ω(T ) allows us to write Ω without mentioning the tiling T
(in fact, if T ′ ∈ Ω(T ), Ω(T ′) = Ω(T )).

Definition 2.4 Any tiling in Ω is called a pinwheel tiling.

Remark : we can easily see that our continuous hull is the compact space Xφ

defined by Radin and Sadun in [RS].
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2.2 The canonical transversal

In this section, we will construct a Cantor transversal for the action of E2 and
we show that this transversal gives the local structure of a foliated space.
For this, we fix a point in the interior of the two prototiles of the pinwheel
tiling. This, in fact, gives for any tiling T1 in Ω (i.e constructed by these two
prototiles), a punctuation of the plane denoted T punct

1 .
Define then Ω0 to be the set of every tilings T1 of Ω such that O ∈ T punct

1 .
The canonical transversal is the space Ω0/SO(2).

We can identify this space with a subspace of Ω by constructing a continuous
section s : Ω0/SO(2) −→ Ω.
To obtain such a section, we fix an orientation of the two prototiles of our tilings
once for all. Hence when we consider a patch of a tiling in the transversal Ω0,
there is only one orientation of this patch where the tile containing the origin
have the orientation chosen for the prototiles.
Let then [ω] ∈ Ω0/SO(2), there is only one θ ∈ [0; 2π[ such that the tile in
Rθ(ω) containing the origin has the good orientation.
We define s([ω]) := Rθ(ω).
s is well defined because θ depends on the representative ω chosen but not
Rθ(ω).
s : Ω0/SO(2) −→ s(Ω0/SO(2)) is then a bijection. We easily see that s is con-
tinuous and thus it is a homeomorphism from the canonical transversal onto a
compact subspace Ξ of Ω.
We also call this space the canonical transversal.
We can see Ξ as the set of all the tilings T1 in Ω with the origin on the punctu-
ation of T1 and with the tile containing the origin in the orientation chosen for
the prototiles.

We then have :

Proposition 2.5 ([BG])
The canonical transversal is a Cantor space.

A base of neighborhoods is obtained as follows : consider T ′ ∈ Ξ and A a patch
around the origin in T ′ then

U(T ′,A) = {T1 ∈ Ξ | T1 = T ′ on A}

is a closed and open set in Ξ, called a clopen set.

Before defining the foliated stucture on Ω, we must study the rotations which
can fix tilings in Ω.
In pinwheel tilings, we can sometimes find regions tiled by supertiles of any level
and so we introduce the following definition:

Definition 2.6 A region of a tiling which is tiled by n-supertiles for all n ∈ N

is called an infinite supertile or supertile of infinite level.

If a ball in a tiling T1 fails to lie in any supertile of any level n, then T1 is tiled
by two or more supertiles of infinite level, with the offending ball straddling a

9



boundary.
We can, in fact, construct a pinwheel tiling with two half-planes as infinite su-
pertiles as follows: Consider the rectangle consisting of two (n − 1)-supertiles
in the middle of a n-supertile. For each n > 1, orient this rectangle with its
center at the origin and its diagonal on the x-axis, and fill out the rest of a
(non-pinwheel) tiling Tn by periodic extension. By compactness this sequence
has a convergent subsequence, which will be a pinwheel tiling and which will
consist of two infinite supertiles (this example comes from [RS]).

Note that the boundary of an infinite supertile must be either a line, or have a
single vertex, since it is tiled by supertiles of all levels.
We call such a line a fault line.

Lemma 2.7 If (s, θ) fixes a pinwheel tiling T ′ then θ ∈ {0, π}mod(2π).
Moreover, if θ = 0 then s = 0. In other terms, translations can’t fix a pinwheel
tiling.

Proof : Let’s consider the different cases:

1. First, if the tiling T ′ which is fixed by (s, θ) have no fault line (i.e have
no infinite supertile), then s = 0 and θ = 0(mod2π).

Indeed, let x ∈ E2 be such that
−→
Ox = s then O and x is in the interior of

a m-supertile since there isn’t infinite supertiles (see p.29 in [RS]).
As no direct isometry fixes our prototiles, s and θ must be zero.

2. Let’s see the case in which T ′ have some infinite supertiles.
By [RS] p.30, the number of infinite supertiles in T ′ is bounded by a
constant K (in fact for pinwheel tilings, we can take K = 2π

α where α is
the smallest angle in the prototiles).
Thus, T ′ doesn’t contain more than K infinite supertiles and in fact, it
has only a finite number of fault lines. This will give us the result.
Indeed, since (s, θ) fixes T ′, if F is a fault line, (s, θ) sends it on another
fault line F1 in T ′ and thus, Rθ sends F on a line parallel to F1.
As there is only a finite number of fault lines in T ′, there is M ∈ N∗,
m ∈ Z∗ such that Mθ = 2πm.
If we now use results obtained in [RS] p.32, θ must be in the group of
relative orientations GRO(Pin) of pinwheel tilings which is the subgroup
of SO(2) generated by π

2 and 2α.
Hence, if θ = 2kα + l π2 with k ∈ Z∗ and l ∈ Z, it would mean that α is
rationnal with respect to π, which is impossible (see [Radb] p.664) hence

k = 0 and θ ∈
{

0,
π

2
, π,

3π

2

}

mod(2π).

Now, if we study the first vertex coronas (i.e the minimal patches around
a vertex or around the middle point of the hypothenuses), there is only
patches with a 2-fold symmetry ([Sad] or see Figure 3 and Figure 4
p.40 and p.41).
Thus, θ ∈ {0, π} mod(2π) and if θ = 0, s = 0 since pinwheel tilings are
not fixed by translations.

�
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We note that, in fact, there exists only 6 pinwheel tilings with a 2-fold symmetry
up to rotations ([Sad]).
Hence, there is only 6 orbits with fixed points for the R

2
⋊ SO(2) action on Ω.

Moreover, there is exactly 6 circles F1, . . . , F6 containing fixed points for the
SO(2) action on Ω (of course, therefore, the 6 orbits of these circles contain all
the fixed points of the R2 ⋊ SO(2)-action).

We thus obtain the following important result on the dynamic of our tiling
space:

Theorem 2.8 ([BG]) The continuous hull is a minimal foliated space.

Proof :

The proof follows the one in [BG] except that, locally, Ω looks like an
open subset of SO(2) × an open subset of R2 × a Cantor set instead of
SO(2) × an open subset of R2 × a Cantor set, like in [BG].

Ω is covered by a finite number of open sets Ui = φi(Vi × Ti) where :

• Ti is a clopen set in Ξ;

• Vi is an open subset of R2 ⋊ SO(2) which read Vi = Γi ×Wi where
Wi is an open subset of R2 and Γi an open subset of SO(2) of the
form ]lπ/2 − π/3; lπ/2 + π/3[, l ∈ {0, 1, 2, 3};

• φi : Vi × Ti −→ Ω is defined by φi(v, ω0) = ω0.v.

As we can find finite partitions of Ξ in clopen sets with arbitrarily small
diameter, it is possible to choose this diameter small enough so that:

• the maps φi are homeomorphisms on their images;

• whenever T1 ∈ Ui ∩ Uj , T1 = φi(v, ω0) = φj(v
′, ω′0), the element

v′.v−1 is independent of the choice of T1 in Ui ∩ Uj , we denote it by
gij .

The transition maps read : (v′, ω′0) = (gij .v, ω0.g
−1
ij ).

It follows that the boxes Ui and charts hi = φ−1
i : Ui −→ Vi × Ti define a

foliated structure on Ω.
By construction, the leaves of Ω are the orbits of Ω under the E2-action.

�

We must do several remarks now on the actions.
E2 isn’t acting freely on Ω, even if the translations are, but we could adapt
results of Benedetti and Gambaudo obtained in their paper [BG] studying the
possible symmetries in our pinwheel tilings.
The E2-action is not free on Ω0 too but the SO(2)-action is.

Using the group of relative orientationsGRO(Pin), we can see that each R2-orbit
of Ω is in fact a dense subset of Ω (see [HRS]).
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3 PV cohomology of pinwheel tilings and the

integer group of coinvariants

In [Mou], we have obtained

τ∗µ
(

K0

(

C(Ω) ⋊ R
2

⋊ SO(2)
))

⊂ [Cµt ]
(

Chτ (K1(C(Ω))
)

.

There is a natural map ([MS]) r∗ : Ȟ3(Ω; R) −→ H3
τ (Ω) obtained by inclusion of

the sheaf R of germs of locally constant real-valued functions into the sheaf Rτ of
germs of continuous real-valued tangentially locally constant functions and since
Z ⊂ R, we also have a natural map, also denoted r∗, r∗ : Ȟ3(Ω; Z) −→ H3

τ (Ω).
We then have a factorization : Chτ = r∗ ◦Ch where Ch is the Chern character
Ch : K1(Ω) −→ Ȟodd(Ω,Z) (the Chern character can be defined with value in
the integer odd Čech cohomology because we are in dimension 3).
The Ruelle-Sullivan current [Cµt ] only takes into account the H3

τ (Ω) part of
Chτ and thus we must focus on the top Čech cohomology Ȟ3(Ω; Z).
In fact, we will study Ȟ2(Ω/S1; Z) since

Ȟ3(Ω; Z) ≃ Ȟ3
c (Ω \ F ; Z) ≃ Ȟ2

c

(

(Ω \ F )/S1; Z) ≃ Ȟ2(Ω/S1; Z).

The left hand side and the right hand side isomorphisms are obtained by the
long exact sequence in cohomology relative to the pairs (Ω, F ) and (Ω/S1, F/S1)
and use the fact that F is of dimension 1 and F/S1 of dimension 0.
The isomorphism in the middle is obtained by a Gysin sequence since the pro-
jection Ω \ F −→ (Ω \ F )/S1 is a S1-principal bundle as the S1-action is free
on Ω \ F (see [Bre]).

To study this cohomology, we use techniques developed in the paper of Bel-
lissard and Savinien ([BS]) to show that the top integer Čech cohomology of
Ω/S1 is isomorphic to the integer group of coinvariants associated with a certain
transversal.

This will be achieved by using an idea first introduced by Anderson and Putnam
in [AP] and then used by Bellissard and Savinien in [BS].
Then we present the PV cohomologyH∗(Bc0;C(Ξ∆,Z)) of pinwheel tilings which
link the top Čech cohomology of Ω/S1 and the integer group of coinvariants of
Ξ2

∆.

3.1 The pinwheel prototile space

Let T denote a pinwheel tiling (the one constructed in the beginning of this
paper for example).
Let’s remind some terminology :

Definition 3.1 1. A punctured tile is an ordered pair consisting of a tile
and a point in its interior.

2. A prototile of a tiling is an equivalence class of tiles (including the punc-
tuation) up to direct isometries.
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3. The first corona of a tile in a tiling T is the union of the tiles of T
intersecting it.

4. A collared prototile of T is the subclass of a prototile whose represen-
tatives have the same first corona up to direct isometries.

There is in fact 108 collared prototiles for the pinwheel tiling (see Figure 3 and
Figure 4 on p.40 and p.41, where we have represented 54 collared prototiles,
the 54 other collared prototiles are obtained by reflection).
We punctuate each prototile OF T by the intersection point of the perpendicular
bisector of the shortest side with the median from the vertex intersection of the
hypotenuse and the shortest side:

If t̂ is a prototile then t will denote its representative that has its punctuation
at the origin O.
We then take the simplicial structure defined in the next figure :

We can now build a finite CW-complex Bc0(T ), called prototile space, out of the
collared prototiles by gluing them along their boundaries according to all the
local configurations of their representatives in T :

Definition 3.2 Let t̂cj, j = 1, . . . , N , be the collared prototiles of T and let tcj
denote the representative of t̂cj that has its punctuation at the origin and the
prototile orientation fixed during the construction of the canonical transversal.
The collared prototile space (or just the prototile space) of T , Bc0(T ), is
the quotient CW -complex

Bc0(T ) =

N
∐

j=1

tcj/ ∼,

where two n-cells eni ∈ tci and enj ∈ tcj are identified if there exist direct isometries

(xi, θi),(xj , θj) ∈ R2 ⋊ SO(2) for which tci .(xi, θi) and tcj .(xj , θj) are tiles of
T such that eni .(xi, θi) and enj .(xj , θj) coincide on the intersection of their n-
skeletons.
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The images of the tiles tcj in Bc0(T ) will be denoted τj and still be called tiles.

We then have a projection map from Ω/S1 onto Bc0(T ):

Proposition 3.3 [BS] There is a continuous map pc0,T : Ω/S1 −→ Bc0(T ) from

the continuous hull quotiented by S1 onto the collared prototile space.

Proof :

Let λc0 :

N
∐

j=1

tcj → Bc0(T ) be the quotient map and let ρc0 : Ω/S1 →
N
∐

j=1

tcj

be defined as follows : take [ω] ∈ Ω/S1 and ω1 a representative of this
class. If the origin O belongs to the intersection of k tiles tα1 , . . . , tαk , in
ω1, with tαl = tcjl .

(

xαl
(ω1), θαl

(ω1)
)

, l = 1, . . . , k, then we set

ρc0
(

[ω]
)

= xαs
(ω1)

which is in tcjs with s = Min{jl : l = 1, . . . , k}.
This function depends on a choice of indice but this choice will vanish
when we will look at the image in the quotient.
We remind that the E2-action is given by : ω.(x, θ) := R−θ(ω − x) where
R−θ is the rotation in R2 of angle −θ around the origin.
Thus, the definition of ρc0 doesn’t depend on the particular representative
ω1 of [ω] chosen.
The map ρc0 sends the origin of R2, that lies in some tiles of a representative
of [ω], to one of the corresponding tiles tcj’s at the corresponding position.
The projection pc0,T is then defined by :

p
c
0,T :

Ω/S1 −→ Bc0(T )
[ω] 7−→ λc0 ◦ ρc0([ω])

.

We then have that, like in [BS], pc0,T is well defined and continuous, noting

that [ω′] is in a neighborhood of [ω] in Ω/S1 if the representatives of [ω′]
and [ω] coincide on a big ball up to a small translation and up to rotations.

�

For simplicity, the prototile space Bc0(T ) is written Bc0 and the projection pc0,T
is written p0.
We denote Ξ(τj) the lift of the punctuation of τj . This is a subset of the canon-
ical transversal called the acceptance zone of the prototile t̂cj . This subset

contains all the tilings with the punctuation of a representative of t̂cj at the
origin.
The Ξ(τj)’s for j = 1, . . . , N0, form a clopen partition of the canonical transver-
sal and are Cantor sets like Ξ.

3.2 Ω/S1 as an inverse limit of supertile spaces

We follow the guideline of [BS] to see our space Ω/S1 as the inverse limit of
supertile spaces (see also [ORS] or [AP] to see the hull as an inverse limit).
Let T be the pinwheel tiling constructed in the first section and set our simplicial
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decomposition on the prototiles.
We are going to define new finite CW -complexes Bck, called supertile space of
level k, associated to the k-supertiles of T .
The spaces Bck are built from the collared prototiles of an appropriate subtiling
of T , written Tk below, in the same way as Bc0 was built from the prototiles of
T in definition 3.2. The construction goes as follows.
As we said in the first section, T can be decomposed uniquely in supertiles of
level k, obtaining a repetitive non-periodic tiling Tk of E2-finite type and whose
tiles are k-supertiles.
Each k-supertile is punctured by the punctuation of the tile in its middle as
shown in the next figure:

It’s again the intersection point of the perpendicular bisector and the median
of the appropriate side.
These k-supertiles are then compatible CW -complexes since they are made up
of tiles of T which are.

Definition 3.4 The supertile space of level k, Bck, is the collared prototile
space of Tk :

Bck = Bc0(Tk).

In fact, since all the tilings Tk are the same, up to a dilatation, all the spaces
Bck are homeomorphic but they will give us important informations on the co-
homology of our space Ω/S1.
The images in Bck of the k-supertiles pj (tiles of Tk) are denoted πj and still
called supertiles.
The projection p0,Tk

: Ω/S1 −→ Bck, built in proposition 3.3, is denoted pk.
The map Fk : Bck −→ Bc0 defined by Fk := p0 ◦ p

−1
k is well defined, onto and

continuous (see [BS]). It projects Bck onto Bc0 in an obvious way : a point x
in Bck belongs to some supertile πj , hence to some tile, and Fk sends x on the
corresponding point in the corresponding tile τj′ .

Let p and q be two integers such that q 6 p. The map fq,p : Bcp → Bcq defined
by fq,p := F−1

q ◦ Fp = pq ◦ p−1
p is well defined, onto and continuous.

As explained in [BS], the family (Bcp, fq,p) is a projective system.
To prove that Ω/S1 is the inverse limit lim

←−
(Bcp, fq,p), we will use an important

property of the pinwheel tiling : the (l+ 1)-supertiles have the same coronas as
l-supertiles, up to a dilatation by a factor

√
5.

Hence, if dl denotes the distance between a l-supertile pl and the complemen-
tary of its first corona, the distance dl+1 of the (l + 1)-supertile which has the
same first corona as the one of pl but dilated by

√
5, satisfies dl+1 =

√
5dl and

thus, these distances goes to infinity. This point will allow us to prove the next
theorem taking an appropriate sequence of supertile spaces.
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We take the sequence of supertile spaces {Bcl , fl}l∈N where, for l > 1, Bcl is the
space of l-supertiles and fl = f(l−1),l, with the convention that f0 := F1 and Bc0
is the prototile space.

We then prove, as in [BS], the following theorem:

Theorem 3.5 The inverse limit of the sequence {Bcl , fl}l∈N is homeomorphic
to the continuous hull of T up to rotations :

Ω/S1 ∼= lim
←−

(Bcl , fl).

Proof :

The homeomorphism is given by the map p : Ω/S1 −→ lim
←−

(Bcl , fl), defined

by p([ω]) = (p0([ω]), p1([ω]), . . . ) with inverse

p
−1(x0, x1, . . . ) = ∩{p−1

l (xl), l ∈ N}.

The map p is surjective since each pl is.
In fact, we have :

p−1
0 (x0) ⊃ p−1

1 (x1) ⊃ p−1
2 (x2) ⊃ . . .

where each p−1
i (xi) is a non empty compact subset of Ω/S1 and thus every

tiling in the intersection above defines a lift of (x0, x1, . . . ).

For the injectivity, let ω, ω′ ∈ Ω be such that p([ω]) = p([ω′]).
For each l ∈ N, pl([ω]) = pl([ω

′]) in some l-supertile πl,j of Bcl . This
means that the two tilings agree, up to a rotation, on some translate of
the supertile pl,j containing the origin.
Set then rl = inf

p∈Pc
l

inf
x∈p

dR2(x, ∂C1(p)) where Pcl is the set of the collared

l-supertiles of T and ∂C1(p) is the boundary of the first corona of p.
Since our tiling is of finite type, rl > 0 for all l.
Moreover, the two tilings agree, up to rotations, on the ball B(0R2 , rl)
since Bcl was built out of collared supertiles.

As mentioned earlier, rl+1 =
√

5rl thus rl+1 =
√

5
l+1

r0 and if we choose l
big enough, the two tilings agree on arbitrary large balls and so we have
proved the injectivity of p.

p is then a bijection trivially continuous and since lim
←−

(Bcl , fl) is Haus-

dorff, p is in fact a homeomorphism.

�

3.3 The PV cohomology

We now turn to our first goal which was to compute the top Čech cohomology
of Ω/S1 with integers coefficients and to prove that this was in fact the integer
group of coinvariants C(Ξ2

∆,Z)/ ∼ of a transversal under the partial action of
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the groupoid Ω ⋊ R2 ⋊ S1 restricted to this transversal.
To prove this result, we will show that this cohomology is isomorphic to the
PV cohomology introduced in [BS], modified in order to take into account ro-
tations.
We thus follow the approach of Bellissard and Savinien, introducing first the
notion of oriented simplicial complexes, then defining the PV cohomology of
the pinwheel tiling and finally proving that this is exactly the integer Čech co-
homology of Ω/S1, thanks to the inverse limit found in the previous section.
The interesting point for us in this cohomology is that its cochains are in fact di-
rectly taken to be the continuous functions (with integer values) on the transver-
sal Ξ2

∆. We will then prove that the quotient of these cochains under the image
of the differential of the PV cohomology is precisely the integer group of coin-
variants on Ξ2

∆.

3.3.1 Oriented simplicial complexes and PV cohomology

Here again, we will follow the presentation of Bellissard and Savinien in [BS]
modifying the notions and the proofs to our oriented simplicial complexes (see
[HY]).

Given n+1 points v0, . . . , vn in Rm m > n, which are not colinear, let [v0, . . . , vn]
denote the n-simplex with vertices v0, . . . , vn.
Let ∆n be the standard n-simplex :

∆n =

{

(x0, . . . , xn) ∈ R
n+1 :

n
∑

i=0

xi = 1 and xi > 0 for all i

}

,

with vertices the unit vectors along the coordinate axis.
If one of the n+1 vertices of an n-simplex [v0, . . . , vn] is deleted, the n remaining
vertices span a (n− 1)-simplex, called a face of [v0, . . . , vn].

The boundary of ∆n is then the union of all the faces of ∆n and is denoted ∂∆n.

The interior of ∆n is then the open simplex
◦
∆n = ∆n \ ∂∆n.

A spaceX is a simplicial complex if there is a collection of maps σα : ∆k → X ,
where k depends on the index α, such that :

(i) The restriction σα|∆n is injective.

(ii) Each restriction of σα to a face of ∆n is one of the maps σβ : ∆n−1 → X .

(iii) For each α and β, Fα,β := σα(∆n) ∩ σβ(∆p) is a face of the two simplices
σα(∆n) and σβ(∆p) and there is an affine map l : σ−1

α (Fα,β) → σ−1
β (Fα,β)

such that σα|σ−1
α (Fα,β) = σβ |σ−1

β
(Fα,β) ◦ l.

(iv) A set A ⊂ X is open iff σ−1
α (A) is open in ∆n for each σα.

σα(
◦
∆n) is called a n-cell of the complex.

We then obtain an oriented simplex from a n-simplex σ = [v0, . . . , vn] as
follows : let fix an arbitrary ordering of the vertices v0, . . . , vn. The equivalence
class of even permutations of this fixed ordering is the positively oriented
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simplex, which we denote +σ. The equivalence class of odd permutations of
the chosen ordering is the negatively oriented simplex, −σ.
An oriented simplicial complex is obtained from a simplicial complex by
choosing an arbitrary fixed orientation for each simplex in the complex (this
may be done without considering how the individual simplices are joined or
whether one simplex is a face of another).

To define an oriented simplicial structure on Bc0, we decompose each tile of
the pinwheel tiling as follows :

we take the orientation of R2 for the 2-cells and any orientation for the edges
in the interior of our tiles.
We can thus see T as an oriented simplicial decomposition of R2.
We puncture each cell of each tile by the image under σα of the barycenter of
∆n :

Bc0 is then a finite oriented simplicial complex and the maps σα : ∆n → Bc0 are
the characteristic maps of the n-simplices on Bc0.
We next define as in [BS] a new transversal (not immediatly related to the
canonical transversal, see 3.18) which is crucial to define the PV cohomology:

Definition 3.6 The ∆-transversal, written Ξ∆, is the subset of Ω/S1 formed
by classes of tilings containing the origin on the punctuation of one of their
cells.

The ∆-transversal is the lift of the punctuation of the cells on Bc0.
It is partitioned by the lift of the punctuation of the n-cells, written Ξn∆, i.e
the subset of Ω/S1 consisting of classes of tilings containing the origin on the
punctuation of one of their n-cells.
The ∆-transversal is then a Cantor set (as the canonical transversal), and the
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Ξn∆’s is a partition of it in clopen subsets.

Let σ be the characteristic map of a n-simplex e on Bc0, denote Ξ∆(σ) the lift of
the punctuation of e, and χσ its characteristic function in Ξ∆ (i.e χσ([ω]) = 1
if and only if p0([ω]) = punct(e)).
The subset Ξ∆(σ) is the acceptance zone of σ.
Since Ξ∆(σ) is a clopen set, χσ ∈ C(Ξn∆,Z) ⊂ C(Ξ∆,Z).

Consider σ : ∆n → Bc0 the characteristic map of a n-simplex e on Bc0, and let τ
be a face of σ with image cell f in Bc0 (a face of e).
The simplices e and f on Bc0 are contained in some tile τj . If we look at these
simplices e and f as subsets of the tile tj in R2, we can define a vector xστ
joining the punctuation of f to the one of e.
The main issue with this construction is that, in the case of the pinwheel tiling,
xστ depends on the tile τj chosen if e is a 1-simplex (this vector is unique up
to rotations). In the case of 2-simplices, this vector is in fact unique since the
quotient defining Bc0 only concerns the edges of the cells.
We must then find a way to choose such vectors in the case of 1-simplices. There
are many ways to do such a choice.
Here is one of them : if e is a 1-simplex, the vector is obtained by orienting the
edge horizontally and from left to right in any tiling of Ξ∆(σ) :

Built in this manner, the vector xστ are uniquely attached to σ and τ as if we
had a tiling where we only consider translations (as in [BS]).
We next define the ”action” of xστ on a function in C(Ξ∆,Z) as follows :

• if σ is the characteristic map of a 2-simplex e, τ a face of σ and f a
function in C(Ξ∆(τ),Z) then, for each [ω] ∈ Ξ∆(σ), we set

T xστ f([ω]) = f([ω0 + xστ ]),

where ω0 ∈ [ω] is ”well oriented”, i.e the origin of the euclidean plane E2

belongs to the punctuation of a cell e (a triangle) of ω included in a unique
tile (which is a direct isometry of the tile tj used to construct xστ ); ω0 is
then the tiling obtained by rotating ω to put this tile in this orientation
(i.e such that this tile is a translation of tj):

• If σ is the characteristic map of a 1-simplex, τ a face of σ and f a function
in C(Ξ∆(τ),Z) then, for each [ω] ∈ Ξ∆(σ), we put

T xστ f([ω]) = f([ω0 + xστ ]),
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where ω0 ∈ [ω] is ”well oriented”, i.e the origin of E2 belongs to the punc-
tuation of an edge of ω; ω0 is then obtained by rotating ω to put this
edge horizontally and the orientation in the positive direction (from left
to right).

We then define important operators, useful to define the differential of the PV
cohomology :

Definition 3.7 Let σ and τ be the characteristic map of a n-simplex, resp. a
k-simplex, on Bc0.
We define the operator θστ on C(Ξ∆,Z) by :

θστ =

{

χσT
xστχτ if τ ⊂ ∂σ and n = 1, 2
0 else

where τ ⊂ ∂σ means that τ is a face of σ of codimension 1.

This operator is easy to describe : if f ∈ C(Ξ∆(τ),Z) and [ω] ∈ Ξ∆ then
θστ (f)([ω]) is 0 if ω is not in Ξ∆(σ) or if τ is not a face of σ of codimension
1 or if n 6= 1, 2, and else, θστ (f)([ω]) is equal to the value of f on the class of
the tiling obtained from ω by a direct isometry sending the origin to the punc-
tuation of the face τ of σ and rotating τ such that it has the ”good” orientation.

We can then define the PV cohomology of pinwheel tilings.
Let Sn0 denote the set of the characteristic maps σ : ∆n → Bc0 of n-simplices on
Bc0 and S0 the union of the Sn0 ’s. The group of simplicial n-chains on Bc0, C0,n,
is the free abelian group with basis Sn0 .

Before defining the PV cohomology, we need one more definition, the incidence
number:

Definition 3.8 Let σ and τ be two simplices of dimension n and n− 1 respec-
tively, the incidence number [σ, τ ] is defined by :

[σ, τ ] = ±1 if τ ⊂ ∂σ
[σ, τ ] = 0 else

If τ ⊂ ∂σ, then [σ, τ ] is 1 if τ is a positively oriented face of σ i.e the orientation
of τ coincides with that induced by σ on its face τ and this number is −1 if τ is
a negatively oriented face of σ.

Definition 3.9 The PV cohomology of Ω/S1 is the cohomology of the differen-
tial complex {CnPV , dnPV }, with :

1. the PV cochain groups are the groups of continuous integer valued func-
tions on Ξn∆ : CnPV = C(Ξn∆,Z) for n = 0, 1, 2,

2. the PV differential, dPV , is defined by the sum over n = 1, 2, of the
operators :

dnPV :











Cn−1
PV −→ CnPV

dnPV =
∑

σ∈Sn
0

n
∑

i=0

[σ, ∂iσ]θσ∂iσ
.
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The ”simplicial form” of dnPV easily implies d2
PV ◦ d1

PV = 0.
This comes from the fact that, for each simplex σ (see [HY]) :

∑

i,j

[σ, ∂iσ][∂iσ, ∂j∂iσ] = 0.

We shall also call this cohomology the PV cohomology of T .
We denote it H∗PV

(

Bc0;C(Ξ∆,Z)
)

.

The next subsection will then prove the following theorem :

Theorem 3.10 The integer Čech cohomology of Ω/S1 is isomorphic to the PV
cohomology of T :

Ȟ∗(Ω/S1; Z) ∼= H∗PV
(

Bc0;C(Ξ∆,Z)
)

.

3.3.2 Proof of theorem 3.10

Once again, we follow the guideline of the paper [BS].
We define first a PV cohomology for the Bcp’s, written H∗PV (Bc0;C(Σp,Z)). We
show that this cohomology is in fact the simplicial cohomology of Bcp in the
proposition 3.13 and then we prove that the PV cohomology of T is isomorphic
to the direct limit of the PV cohomologies of the supertile spaces sequence used
in theorem 3.5.

Denote Snp the set of all the characteristic maps σp : ∆n → Bcp of the n-simplices
on Bcp, and Sp the union of the Snp ’s.
The group of simplicial n-chains on Bcp, Cp,n, is the free abelian group with basis
Snp .

As above, if σp is a simplex on Bcp, write Ξp,∆(σp) for the lift of the punctuation
of its image in Bcp and χσp

its characteristic map. Ξp,∆(σp) is the acceptance
zone of σp. It’s a clopen subset of the ∆-transversal.

Lemma 3.11 Given a simplex σ on Bc0, its acceptance zone is partitioned by
the acceptance zone of its preimages in Bcp :

Ξ∆(σ) =
⊔

σp∈F−1
p# (σ)

Ξp,∆(σp),

with Fp# : Snp → Sn0 the map induced by Fp.

The proof is exactly the same that the one in [BS].

We note that the union over σ ∈ Sn0 of the F−1
p# (σ)’s is Snp .

We then denote Cnp the simplicial n-cochain group Hom(Cp,n,Z), which is the
dual of the simplicial n-chain group Cp,n.
We can represent it faithfully on the group of continuous function with integer
values on the ∆-transversal C(Ξ∆,Z) by :

ρp,n :







Cnp −→ C(Ξn∆,Z)

ψ 7−→
∑

σp∈Sn
p

ψ(σp)χσp
.
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We denote C(Σnp ,Z) the image of this representation.
ρp,n is an isomorphism on its image C(Σnp ,Z), its inverse is defined as follows:

given φ =
∑

σp∈Sn
p

φσp
χσp

, where φσp
is an integer, ρ−1

p,n(φ) is the group homomor-

phism from Cp,n to Z whose value on the basis simplex σp is φσp
.

Consider the characteristic map σp of a n-simplex ep on Bcp. This simplex is
contained in some supertile πj . Viewing ep as a subset of the supertile pj in R2,
we can again define, similarly to the method used for the PV cohomology, the
vector xσp∂iσp

, for i = 1, . . . , n, joining the punctuation of the i-th face ∂iep to
the punctuation of ep.
Since Fp preserves the orientation of the simplices, these vectors xσp∂iσp

are
identical, for each σp in the preimage of the characteristic map σ of a simplex
e on Bc0, and they are, in fact, equal to the vector xσ∂iσ used in the definition
3.7 of the operator θσ∂iσ. In the same way, we define the operators θσp∂iσp

as
the operators χσp

T xσp∂iσpχ∂iσp
.

Using the relation T xσ∂iσχ∂iσ = χσT
xσ∂iσ and lemma 3.11, we obtain :

θσ∂iσ =
∑

σp∈F−1
p# (σ)

θσp∂iσp
.

Hence, the PV differential can be written :

dnPV =
∑

σp∈Sn
p

n
∑

i=0

[σp, ∂iσp]θσp∂iσp
,

and this defines a differential from C(Σn−1
p ,Z) to C(Σnp ,Z) (since Fp preserves

the orientation of the simplices, for each σp ∈ F−1
p# (σ), [σp, ∂iσp] = [σ, ∂iσ],

which justifies the definition of this differential).

Definition 3.12 Set CnPV (p) = C(Σnp ,Z), for n = 0, 1, 2. The PV cohomology

of the supertile space Bcp, written H∗PV
(

Bc0;C(Σp,Z)
)

, is the cohomology of the
differential complex {CnPV (p), dnPV }.

As in [BS], we obtain one of the two crucial propositions for the proof of 3.10:

Proposition 3.13 The PV cohomology of the supertile space Bcp is isomorphic
to its integer simplicial cohomology :

H∗PV
(

Bc0;C(Σp,Z)
) ∼= H∗

(

Bcp; Z
)

.

Proof :

ρp,n is an isomorphism from the simplicial cochain group Cnp onto the PV
cochain group CnPV (p).
Let φ be an element in Cn−1

PV (p) and σp a n-simplex in Snp , the differential
of φ is then given by :

dnPV φ(σp) =

n
∑

i=0

[σp, ∂iσp]φ(∂iσp).
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On the other hand, the simplicial differential of some ψ ∈ Cn−1
p is :

δnψ(σp) =

n
∑

i=1

[σp, ∂i]ψ(∂iσp).

thus, we have dnPV ◦ ρp,n−1 = ρp,n ◦ δn for n = 1, 2.
So the ρp,n’s give a chain map and thus induce isomorphisms ρ∗p,n’s be-
tween the n-th cohomology groups.

�

The following lemma is trivial using theorem 3.5 and is useful to prove the
second crucial proposition for the proof of theorem 3.10 :

Lemma 3.14 Let {Bcl , fl} be the sequence used in theorem 3.5. We have :

Ξ∆
∼= lim
←−

(Sl, fl)

and
C(Ξ∆,Z) ∼= lim

−→

(

C(Σl,Z), f l
)

,

where the f l’s are the duals of the fl’s.

Proposition 3.15 Let {Bcl , fl} be as in the previous lemma. There is an iso-
morphism :

H∗PV
(

Bc0;C(Ξ∆,Z)
) ∼= lim

−→

(

H∗PV
(

Bc0;C(Σp,Z)
)

, f∗l

)

.

Proof :

By the previous lemma 3.14, the cochain group CnPV are the direct limits
of the cochain groups CnPV (l) of the supertile spaces Bcl .
Consider f#

l : CnPV (l) −→ CnPV (l + 1) the map induced by fl on the PV
cochain groups.
Since the differential dPV is the same for the complexes of each supertile
space Bcl , it’s enough to check that the following diagram is commutative

· · · // Cn−1
PV (l)

dn
PV //

f#
l

��

CnPV (l) //

f#
l

��

· · ·

· · · // Cn−1
PV (l + 1)

dn
PV // CnPV (l + 1) // · · ·

and this is easy using the relations

(f#
l φ)(∂iσl) = φ(fl#(∂iσl)) and fl#(∂iσl) = ∂i(fl#(σl)).

�

To end the proof of theorem 3.10, we then use the fact that Čech cohomology
sends inverse limits on direct limits, that Čech cohomology is isomorphic to
simplicial cohomology for CW -complexes (the Bcl ’s) and that the simplicial co-
homology of Bcl is isomorphic to the PV cohomology of Bcl by proposition 3.13.
We then conclude that the direct limit of these groups is the PV cohomology of
T by proposition 3.15
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3.4 The integer group of coinvariants of the pinwheel tiling

In this section, we show that the top PV cohomology H2
PV (Bc0;C(Ξ∆,Z)) is

isomorphic to the integer group of coinvariants C(Ξ2
∆,Z)/ ∼ of the transversal

Ξ2
∆ (definition follows) and thus, the top integer Čech cohomology of the hull

of a pinwheel tiling is also isomorphic to this group which is a first step in the
proof of the gap-labelling.

In the same way we identified the canonical transversal Ω/S1 to a subset of Ω,
we can identify Ξ2

∆ and Ξ1
∆ with a subset of Ω.

Indeed, it suffices to choose in each class [ω] ∈ Ξn∆ (n = 1, 2) a representative
with the ”good orientation” (the one used to define the vector xστ ).
We also obtain a representation of the clopens Ξp,∆ in Ω in this way.

We will denote in the same way these subsets of Ω/S1 and the correspond-
ing subsets of Ω. When we take a class in Ξn∆ or Ξp,∆, we implicitly mean that
we are in Ω/S1 and if we take a tiling in Ξn∆ or Ξp,∆, we consider the subset of Ω.

Let’s begin by the definition of the integer group of coinvariants of the canonical
transversal Ξ and of the n-th ∆-transversal Ξn∆ (n = 1, 2).
We let Ξ0 denote either Ξ or Ξn∆ (n = 1, 2) (subsets of Ω).
Let ω0 ∈ Ξ0 and Aω0 a patch of ω0 around the origin, we define

U(ω0,Aω0) := {ω′ ∈ Ξ0 | ω0 and ω′ coincide on Aω0},

which is a clopen subset of Ξ0.
Viewing this subset in Ω/S1, this clopen becomes

V ([ω0],Aω0) := {[ω1] ∈ Ξ0 | ω0 and ω1 coincide on Aω0 up to rotations }.

By hypothesis, our tiling T is of finite R2 ⋊ SO(2)-type hence the family

{U(ω0,Aω0), ω0 ∈ Ξ0,Aω0 patch of size k of ω0 around O , k ∈ N}

is countable.
We define for each ω0 ∈ Ξ0:

G
(

U(ω0,Aω0)
)

= {(x, θ) ∈ R
2

⋊ SO(2) | ω0.(x, θ) ∈ Ξ0 and x ∈ Aω0},

where x ∈ Aω0 means that x is a vector in R2 contained in the subset of R2

defined by Aω0 .

G
(

U(ω0,Aω0)
)

is defined like this because in fact, if we take a tiling ω′ in the

clopen set U(ω0,Aω0), we know this tiling only on the patch Aω0 and thus we
have :

∀(x, θ) ∈ G
(

U(ω0,Aω0)
)

, ∀ω′ ∈ U(ω0,Aω0), ω
′.(x, θ) ∈ Ξ0.

The integer group of coinvariants of Ξ0 is then the quotient of C(Ξ0,Z) by the
subgroup HΞ0 spanned by the family

{χU(ω0,Aω0) − χU(ω0,Aω0).(x,θ) | (x, θ) ∈ G(U(ω0,Aω0)), ω0 ∈ Ξ0}.
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Theorem 3.16

H2
PV (Bc0;C(Ξ∆,Z)) ∼= C(Ξ2

∆,Z)/HΞ2
∆

Proof :

By definition, this cohomology is C(Ξ2
∆,Z)/Im(d2

PV ).
We prove that Im(d2

PV ) = HΞ2
∆
.

1. Consider f ∈ Im(d2
PV ), there is some g ∈ C(Ξ1

∆,Z) such that f = d2
PV (g).

Since C(Ξ1
∆,Z) is generated by characteristic functions of the form χU(ω,Aω

τ )

with τ ∈ S1
p for p ∈ N, ω ∈ Ξp,∆(τ) and Aω

τ a patch of ω around the origin
(in fact around the edge which projects on τ in Bcp) large enough to cover
the first corona(s) of the (two) supertile(s) surrounding τ in ω, it is enough
to prove the result for f = d2

PV (χU(ω,Aω
τ )) with τ in S1 :=

⋃S1
p .

Let thus τ be some element in S1
p , ω a tiling in Ξp,∆(τ) and Aω

τ a patch
surrounding the origin in ω (and thus surrounding the ”edge” τ) large
enough, then χU(ω,Aω

τ ) is the characteristic function of the set of all the
tilings in Ω with the origin on the punctuation of τ , τ having the ”good”
orientation and which coincide on the patch Aω

τ with ω.
We remark that if τ ′ is the characteristic map of another 1-simplex in S1

p ,
then

χτ ′χU(ω,Aω
τ ) = δττ ′χU(ω,Aω

τ ).

As Aω
τ was chosen large enough, this patch characterize the (two) collared

supertile(s) surrounding the simplex corresponding to τ in the tilings of
U(ω,Aω

τ ). Thus, denoting σ0 and σ1 the two characteristic maps of the
2-simplices having τ as an edge in ω and the above collared supertile(s)
(respectively) as supertiles in Bcp, we have :
for each σ ∈ S2

p

χσχU(ω0,A0
τ ) = δσσ0χU(ω0,A0

τ )

and
χσχU(ω1,A1

τ ) = δσσ1χU(ω1,A1
τ )

where ωi = Rθi
(ω) − xσiτ (i = 0, 1), Ai

τ = Rθi
(Aω

τ ) − xσiτ and ωi is
in Ξp,∆(σi) (ωi are the tilings in Ξp,∆(σi) obtained from ω by a direct
isometry taking the origin on the punctuation of σi and rotating ωi to
obtain the good orientation).
With these three remarks, we easily see that :

d2
PV (χU(ω,Aω

τ )) = ±(χU(ω0,A0
τ ) − χU(ω1,A1

τ )),

with ω1 = ω0.(Rθ0−θ1(xσ1τ ) − xσ0τ , θ0 − θ1) and A1
τ of the same form.

Hence

d2
PV (χU(ω,Aω

τ )) = ±(χU(ω0,A0
τ ) − χU(ω0,A0

τ ).(yσ0σ1 ,θσ0σ1)
),

where yσ0σ1 = Rθ0−θ1(xσ1τ )−xσ0τ , θσ0σ1 = θ0−θ1 and thus (yσ0σ1 , θσ0σ1)

is in G
(

U(ω0,Aω0)
)

.

We thus have proved that d2
PV (χU(ω,Aτ )) ∈ HΞ2

∆
and thus the inclusion

Im(d2
PV ) ⊂ HΞ2

∆
.
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2. The inclusion in the other direction is easy to obtain by reasoning on gen-
erators.
Let χU(ω,Aω) − χU(ω,Aω).(x,θ) be a generator of HΞ2

∆
.

Covering Aω by supertiles large enough, we can suppose that Aω is in fact
a collared supertile or a union of two collared supertiles of same level or
a star of collared supertiles of same level (a star of supertiles is all the
supertiles surrounding a fixed vertex).

Consider ω ∈ Ξ2
∆ and Aω a patch in ω consisting of p-supertiles around

the origin of the above form, called collared patch.
Thanks to the form of collared patches, we can find a sequence of tilings
ω0, . . . , ωn such that ω0 = ω, ωn = ω.(x, θ), ωi = ω.(xi, θi) (i = 1, . . . , n)

with (xi, θi) ∈ G
(

U(ω,Aω)
)

and such that the 2-simplex in ωi containing

the origin have a common edge with the 2-simplex in ωi−1 which contained
the origin (see the figure below).
If we take, for example, the patch below, with the points representing ω
and ω.(x, θ) (in fact, on this figure, we have represented ω and ω−x, thus
you must think that we are representing tilings by points and then you
must rotate the tiling to put the tile containing the origin in the ”good
orientation” to obtain ω and ω.(x, θ)) :

We may thus represent the sequence of tilings ”joining” ω and ω.(x, θ) by
the following sequence of points (there isn’t a unique path) :

0

10

1 2 3 4

5
6

7

8
9
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We thus can decompose χU(ω,Aω) − χU(ω,Aω).(x,θ) into the sum of the
following differences

χ
U
(

ωi,Aω.(xi,θi)
) − χ

U
(

ωi+1,Aω.(xi+1,θi+1)
)

where ωi, ωi+1 are two tilings in Ξ2
∆ obtained from ω by a direct isometry

(xi, θi), resp. (xi+1, θi+1) and containing the origin on the punctuation of
two simplices having a common edge.
We will thus focus on the difference

χ
U
(

ω1,Aω .(x1,θ1)
) − χ

U
(

ω2,Aω .(x2,θ2)
)

with ω1 = ω.(x1, θ1), ω2 = ω.(x2, θ2) and (xk, θk) ∈ G
(

U(ω,Aω)
)

.

We can then write ω2 = ω1.(x12, θ12) with (x12, θ12) = (x1, θ1)
−1(x2, θ2).

Thus : χ
U
(

ω1,Aω.(x1,θ1)
) − χ

U
(

ω2,Aω.(x2,θ2)
) is equal to

χ
U
(

ω1,Aω .(x1,θ1)
) − χ

U
(

ω1,Aω .(x1,θ1)
)

.(x12,θ12)

and is therefore the differential of the characteristic function of U(ω3,A′ω)
where ω3 is the tiling in Ξ1

∆ with the origin on the punctuation of the
common edge of the two above simplices and A′ω is the patch obtained
from Aω by a direct isometry bringing the origin on this punctuation and
taking the adequate orientation.
Thereby, the generators of HΞ2

∆
are images under d2

PV of elements of

C(Ξ1
∆,Z) and the reciprocal inclusion is proved.

�

By theorem 3.10 and the fact that Ȟ3(Ω; Z) ≃ Ȟ2(Ω/S1; Z) , we thus obtain :

Corollary 3.17 The top integer Čech cohomology of the hull is isomorphic to
the integer group of coinvariants of Ξ2

∆ :

Ȟ3
(

Ω; Z
)

≃ C(Ξ2
∆,Z)/HΞ2

∆
.

We link now the coinvariants on the ∆-transversal to the coinvariants of the
canonical transversal which will be useful to prove the gap labelling in the next
section.
The invariant ergodic probability measure µ on Ω induces a measure µt0 on each
transversal Ξ0 of the lamination which is given, locally, by : if

(

Vi×Si×Ci, h−1
i

)

i
is a maximal atlas of the lamination and B a borelian set in some Ci, we have

µt0
(

B
)

=
µ
(

h−1
i (Vi × Si ×B)

)

λ(Vi × Si)

where λ is a left and right Haar measure on R2 × S1 (with λ
(

[0; 1]2 × S1
)

= 1),

h−1
i : Vi × Si × Ci −→ Ui, Vi is an open subset of R2, Si an open subset of S1

and Ci a clopen in Ξ0.

We then have a link between the ∆-transversal and the canonical transversal :
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Lemma 3.18 Let µt3 be the induced measure on the transversal Ξ ∪ Ξ2
∆.

Denoting µt (resp. µt2) the restriction of µt3 to Ξ (resp. Ξ2
∆), we have :

µt2

(

C(Ξ2
∆,Z)

)

= µt
(

C(Ξ,Z)
)

.

Proof :

In each prototile, there is 8 punctuations of 2-simplices which we number
from 1 to 16 once for all (we are considering the 2 prototiles (uncollared)
of the pinwheel tiling and then we number the punctuations in the first
prototile from 1 to 8 and those of the second prototile from 9 to 16). Thus,
we can define the vectors x0,i joining the punctuation of the prototile taken
for the definition of Ξ (see 3.1) to the punctuation of the i-th simplex of
this prototile.
Define the map Ψ : C(Ξ2

∆,Z) −→ C(Ξ,Z) by :

Ψ(f)(ω0) =























8
∑

i=1

f(ω0 − x0i)

16
∑

i=9

f(ω0 − x0i)

depending on the tile type of the tile containing the origin in ω0.
This map send a function f defined on Ξ2

∆ on the function on Ξ defined on
a tiling ω0 containing the origin on the punctuation of a tile, by the sum
of the values of f on the tilings containing the origin on the punctuation
of the cells constituting this tile.
This defines a group homomorphism which is trivially surjective.
Indeed, fix a simplex of each prototiles (for example, the number 1 for the
first prototile and 9 for the second prototile), then we can define a section
of Ψ, s : C(Ξ,Z) −→ C(Ξ2

∆,Z), as follows

s(f)(ω∆) =























f(ω∆ + x0,1) if ω∆ has the origin in a tile congruent to
the first prototile and in a ”1” simplex

f(ω∆ + x0,9) if ω∆ has the origin in a tile congruent to
the second prototile and in a ”9” simplex

0 else

We then prove that this homomorphism preserves the measures.
Consider ω ∈ Ξ2

∆ (we suppose that the origin is on the punctuation of the
k-th simplex) and f = χU(ω,Aω) a generator of C(Ξ2

∆,Z).
We then have Ψ(f) = χU(ω,Aω)+x0,k

and thus

µt(Ψ(f)) = µt(U(ω,Aω) + x0,k) = µt3(U(ω,Aω) + x0,k)

since µt is the restriction of µt3 to Ξ.
Thereby µt(U(ω,Aω) + x0,k) = µt3(U(ω,Aω)) by invariance of µt3.
Finally, we obtain µt(U(ω,Aω) + x0,k) = µt2(U(ω,Aω)).

Thus, Ψ preserves the measures and µt2

(

C(Ξ2
∆,Z)

)

⊂ µt
(

C(Ξ,Z)
)

.
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The reciprocal inclusion is obtained using the section s :

if µt(f) ∈ µt
(

C(Ξ,Z)
)

then

µt(f) = µt(Ψ ◦ s(f)) = µt2(s(f)) ∈ µt2

(

C(Ξ2
∆,Z)

)

,

hence the reciprocal inclusion is proved together with the lemma.

�

4 Proof of the gap-labelling for pinwheel tilings

and explicit computations

4.1 Proof of the gap-labelling for pinwheel tilings

To prove the gap-labelling for pinwheel tilings, i.e

[Cµt
2
]
(

Chτ
(

K1(Ω)
)

)

⊂ µt2(C(Ξ2
∆,Z)) = µt(C(Ξ,Z)),

we must now show that the inclucion of C(Ξ,Z) in C(Ξ,R) is, at the level of
cohomologies, the map

r∗ : Ȟ3(Ω; Z) −→ H3
τ (Ω)

induced by the inclusion of sheaves described in [MS] (see the diagram p.30).

We first look at the lifting in Ȟ2(Ω/S1; Z) of the generators of C(Ξ2
∆,Z)/HΞ2

∆
.

For this section, we consider the sequence {Bcl , fl}l∈N defined in theorem 3.5.
(Ξl,∆(σl))σl∈S2

l
,l∈N

is then a base of neighborhoods of Ξ2
∆ and the characteristic

functions χσl
thus span C(Ξ2

∆,Z).
Fix one of these characteristic maps χσl

. This function is in fact, by defini-
tion, a function in C(Σ2

l ,Z) and so defines a class in the cohomology group
H2
PV (Bc0;C(Σl,Z)) which is isomorphic to the simplicial cohomology group of

Bcl , H2(Bcl ; Z). It’s the class of the cochain which sends each characteristic map
σ on Bcl on the integer 1 if σ = σl and 0 else.
We would like to know the image of this class under the isomorphism linking
the simplicial cohomology to the Čech cohomology.
For this, in view of [HY] 5-5 and 8-2, we see that this isomorphism is obtained
by considering the coverings of Bcl by open stars associated to the iterated
barycenter decompositions of Bcl .
Denote Un the covering of Bcl by the open stars of the n-th barycenter de-
composition of Bcl , noting that the open stars are the interior of the union of
the 2-simplices surrounding the vertices of the simplical structure of the n-th
barycenter decomposition.
The second integer Čech cohomology of Bcl is then the direct limit over the Un’s
of Ȟ2(Un; Z).
We need to shrink these open sets to end the proof. We don’t take the open
coverings by whole open stars, but we will consider large enough open subsets
of these open stars (large enough in order to still cover the space). It suffices to
take, for example, the open sets obtained from the open stars by rescaling them
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from the star vertex by a factor 5
6 . We call these open subsets, pseudo-open

stars.
In this way, we make sure that the centre of a 2-simplex is still in the intersec-
tion of the 3 pseudo-open stars surrounding its vertices and thus the family U ′n
of pseudo-open stars, is still an open cover of Bcl .
Moreover, the family U ′n is still a cofinal family of coverings of Bcl and thus

Ȟ2(Bcl ; Z) = lim
−→

Ȟ(U ′n; Z).

The class of χσl
in the integer group of coinvariants is thus sent on the class, in

Ȟ2(Bcl ; Z), of the cochain gσl
of Ȟ(U ′0; Z) defined by taking the null section on

the 2-simplices (U ′1, U
′
2, U

′
3) whose intersection is not contained in the simplex

σl and the constant section equal to 1 on the 2-simplex formed by the 3 pseudo-
open stars surrounding σl (taking the same orientation as σl).
Let denote U1, U2 et U3 the 3 open stars surrounding σl, we then see that

the previous cohomology class in Ȟ2(Bcl ; Z) lifts in Ȟ2
c (U ; Z) := Ȟ2

(

U, ∂U ; Z
)

(where U = U1 ∩ U2 ∩ U3) on the cochain hσl
equal to 1 on the intersection of

the 3 pseudo-open stars surrounding σl and vanishing elsewhere.
Now, if we look at the cohomology of Ω/S1, we see that the isomorphism in
theorem 3.10 sends the class of σl on the class of p∗l ([gσl

]) in Ȟ2(Ω/S1; Z)
which lifts on p∗l ([hσl

]) in Ȟ2
c (U × Ξl,∆(σl); Z).

Indeed, we have the following commutative diagram:

Ȟ2
c (U ; Z) //

p
∗

l

��

Ȟ2(Bcl ; Z)

p
∗

l

��
Ȟ2
c (U × Ξl,∆(σl); Z) // Ȟ2(Ω/S1; Z)

where the horizontal maps are induced by inclusion of the open sets U and
U × Ξl,∆(σl) = p

−1
l (U) in Bcl and Ω/S1 respectively.

We thus fix an open set U ×K where U is an open subset of R2 and K a clopen
in Ξ2

∆.
We then have the following commutative diagram:

C(K,Z)
�

�

// C(K,R)

µt
2

""F
FFFFFFFFFFFFFFFFFFFF

Ȟ2
c (R2 ×K; Z)

}}||
||

||
||

||
||

||
||

||
|

��

r∗ //

SSSSSSSSSSSSSS
H2

τc(R
2 ×K)

Ȟ3
c (R2 × S1 ×K; Z)

r∗ //

��   A
AA

AA
AA

AA
AA

AA
AA

AA
AA

H3
τc(R2 × S1 ×K)

��

[C
µt
2
]

// R

Ȟ2(Ω/S1; Z) Ȟ2
c

`

(Ω \ F )/S1; Z
´

RRRRRRRRRRRRRR

Ȟ3
c

`

Ω \ F ; Z
´

Ȟ3(Ω; Z)
r∗ // H3

τ (Ω)

[C
µt
2
]

<<yyyyyyyyyyyyyyyyyyyyy
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The horizontal arrows, involving cohomologies, are the restriction map r∗ de-
fined in [MS].
C(K,Z) →֒ C(K,R) is the inclusion.
Ȟ2
c (R

2 ×K) ≃ C(K,Z) and Ȟ2
τc(R

2 ×K) ≃ C(K,R) are Thom isomorphisms
and so are natural with respect to sheaf maps.
The vertical arrows are induced by inclusion of an open subset in a space and
are thus natural for sheaf maps.

Next, we note that the following diagram is formed by commutative diagrams:

Ȟ2
c (R

2 ×K; Z)
⊗R // Ȟ2

c (R
2 ×K; R)

r∗ // H2
τc(R

2 ×K)

Ȟ3
c (R

2 × S1 ×K; Z)
⊗R // Ȟ3

c (R
2 × S1 ×K; R)

r∗ // H3
τc(R

2 × S1 ×K)

The left vertical map is the Gysin isomorphism which become, by tensorising,
the integration along the fibers S1 in real cohomologies, this one being sent on
the integration along the ”longitudinal” fibers S1 in longitudinal cohomologies.

The two diagrams:

Ȟ2
c (R2 ×K; Z)

vvmmmmmmmmmmmm

��
Ȟ2(Ω/S1; Z) Ȟ2

`

(Ω \ F )/S1; Z
´

and Ȟ3
c (R2 × S1 ×K; Z)

�� ''PPPPPPPPPPPP

Ȟ3
`

Ω \ F ; Z
´

Ȟ3
`

Ω; Z
´

are commutative because the open subsets R
2×K ≃ U×K ( resp. U×S1×K)

is an open subset of Ω/S1 (resp. Ω) included in (Ω \F )/S1 ( resp. Ω \F ), since
tilings in F necessarily have the origin on an edge (see the patches surrounding
the origin in tilings of F below).

O O O O

O

O
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Thus, the image in H3
τ (Ω) of a coinvariant generator [χσl

] is sent under the
Ruelle-Sullivan current in µt2

(

C(K,Z)
)

⊂ µt2
(

C(Ξ2
∆,Z)

)

= µt
(

C(Ξ,Z)
)

.

Thanks to results obtained in [Mou]), we thus have

τµ∗

(

K0

(

C(Ω) ⋊ R
2

⋊ S1
)

)

⊂ µt
(

C(Ξ,Z)
)

The reciprocal inclusion is obtained by using the diagram in p.30.
Indeed, if you take a generator χσl

in C(Ξ2
∆,Z) it lifts to some C(K,Z) (K is

in fact Ξl,∆(σl)) which can be lifted using Gysin and Thom isomorphisms on a
class in Ȟ3(Ω; Z) and since the Chern character is surjective, we have a lift [u]
of this class in K1

(

C(Ω)
)

.
We then have

τµ∗
(

β ◦ δ ◦ βS1 ◦ δS1([u])
)

= [Cµt
2
]
(

r∗Ch([u])
)

= µt2
(

χσl

)

where β ◦ δ ◦ βS1 ◦ δS1 : K1

(

Ω
)

−→ K0

(

C(Ω) ⋊ R2 ⋊ S1
)

is a map defined in
[Mou] and is, in fact, the Kasparov product by the unbounded triple defined
by the Dirac operator along the leaves of the foliated structure on Ω.

Thus µt
(

C(Ξ,Z)
)

= µt2
(

C(Ξ2
∆,Z)

)

⊂ τµ∗
(

K0

(

C(Ω) ⋊ R2 ⋊ S1
)

)

.

The gap-labelling is thus proved for pinwheel tilings:

Theorem 4.1 If T is a pinwheel tiling, Ω = Ω(T ) its hull provided with an
invariant ergodic probability measure µ and Ξ the canonical transversal provided
with the induced measure µt, we have :

τµ∗

(

K0

(

C(Ω) ⋊ R
2

⋊ S1
)

)

= µt
(

C(Ξ,Z)
)

.

4.2 Explicit computations

Now, we have τ∗µ

(

K0

(

C(Ω)⋊R2 ⋊S1
)

)

= µt
(

C(Ξ,Z)
)

and we want to compute

µt
(

C(Ξ,Z)
)

explicitly.

For this, we will write C(Ξ,Z) as the direct limit of some system (C(Λl,Z), f l)
as we have done for C(Ξ2

∆,Z) in 3.14.
To define the group C(Λl,Z), we put a point in each tile of each l-prototile of
Bcl .
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Now, in the same way as we did for the ∆-transversal, thanks to characteristic
maps, if we take a tile p in some supertile πj of Bcl , we denote Ξ(p) the lifting
of the punctuation of p under pl, and χp its characteristic function in Ξ (i.e
χp([ω]) = 1 if and only if pl([ω]) = punct(p)).
Thus, Ξ(p) is formed by the tilings in Ω/S1 having the origin on the punctua-
tion of a representative of p which is itself contained in a representative of the
supertile πj .
We then define C(Λl,Z) as the subgroup of C(Ξ,Z) spanned by the character-
istic functions χp where p is a tile of some l-supertile of Bcl .
We also define f l : C(Λl−1,Z) −→ C(Λl,Z) on the generators : let p be a tile
in some (l − 1)-supertile πi. We can uniquely decompose Ξ(p) as the disjoint
union Ξ(pj) where pj is a tile in some l-supertile with fl(punct(pl)) = punct(p).
f l(χp) is then the sum of the χpj

’s.

We then see that C(Ξ,Z) = lim
−→

(

C(Λl,Z), f l
)

.

Indeed, Λl is the set of all the punctuations in Bcl and by theorem 3.5, we have
Ξ = lim

←−
(Λl, fl).

For each l ∈ N, we can consider the subgroup Rl of C(Λl,Z) spanned by differ-
ences χp − χp′ where p, p′ are two tiles in the same supertile of Bcl .
We then have, for each l, C(Λl,Z)/Rl ≃ Z108, since there are exactly 108 col-
lared supertiles in a pinwheel tiling (see Figure 3 and Figure 4 on p.40 and
p.41).

Let ql : C(Λl,Z) −→ C(Λl,Z)/Rl be the quotient map.
f l factorizes through the quotient since, if p and p′ are two tiles in the same
(l − 1)-supertile, f l(χp − χp′) =

∑

χpi
− χp′i where pi and p′i are two tiles

contained in the same l-supertile of Bcl and thus f l(χp − χp′) ∈ Rl.
We then obtain a commutative diagram :

C(Λl−1,Z)
f l

//

ql−1

��

C(Λl,Z)

ql

��
C(Λl−1,Z)/Rl−1

f̃ l

// C(Λl,Z)/Rl

Z108 A′

//
Z108

where A′ is the transpose of the substitution matrix of the collared prototiles
(i.e the matrix which have in position (i, j) the number of representatives of the
collared prototile of type i in the substitution of the collared prototile of type j).

The system
(

C(Λl,Z)/Rl, f̃ l
)

is a direct system and we can thus consider the

direct limit CR := lim
−→

(

C(Λl,Z)/Rl, f̃ l
)

.

Define also C := C(Ξ,Z)/R where R is the subgroup of C(Ξ,Z) spanned by the
Rl’s and denote q : C(Ξ,Z) −→ C the quotient map.

Lemma 4.2 The group CR is isomorphic to C.

33



Proof :

Let l ∈ N, we thus have a homomorphism ψl : C(Λl,Z)/Rl −→ C defined
by ψl(ql(f)) := q(f) (Rl ⊂ R).
We have also the following commutative diagram :

C(Λl−1,Z)/Rl−1
f̃ l

//

ψl−1

&&MMMMMMMMMMMM
C(Λl,Z)/Rl

ψl

yytttttttttt

C
since the next diagram is formed by commutative diagrams:

C(Λl−1,Z)/Rl−1

˜
fl

//

))

C(Λl,Z)/Rl

vv

C(Λl−1,Z)

ql−1

ggPPPPPPPPPPPP
fl

//

id

��=
==

==
==

==
==

==
==

C(Λl,Z)

ql

88qqqqqqqqqq

id

����
��

��
��

��
��

��
�

C(Ξ,Z)

q

��
C

Denoting jl : C(Λl,Z)/Rl −→ CR the canonical homomorphisms send-
ing an element of C(Λl,Z)/Rl on its class in the limit CR, there exists a
unique homomorphism j : CR −→ C such that j ◦ jl = ψl (by definition
of direct limit).
We then prove that j is an isomorphism.

Surjectivity : consider q(f) ∈ C, then, since C(Ξ,Z) is the direct limit of
the C(Λl,Z)’s, q(f) = q(fi) with fi ∈ C(Λli).
We then have q(f) = q(fi) = ψli

(

qli(fi)
)

= j ◦ jli ◦ qli(fi) and thus j is
surjective.

Now, we show that j is also injective.
Suppose that j(f) = 0 (f ∈ CR), then, f can be written jn(qn(g)) with
g ∈ C(Λn,Z) (by definition of direct limit) and thus j ◦ jn ◦ qn(g) = 0 i.e
ψn ◦ qn(g) = 0.
Hence, g ∈ R and we can find k1 6 . . . 6 kr, c1, . . . , cr ∈ Z and f1, . . . , fr
with fi ∈ Rki

such that g = c1f1 + . . .+ crfr.
By definition, if h ∈ C(Λj ,Z), then f j+1(h) = h in C(Ξ,Z) ( h is written
as a linear combination of characteristic functions of patches formed by
supertiles of level j and f j+1(h) is just another way to write this sum
obtained by decomposing these patches in patches of (j + 1)-supertiles
that contain them).
Hence, fi = fkrki

(fi) for i = 1, . . . , r− 1, with fkm := fk ◦ . . . ◦ fm+1 and

fkrn(g) = g = c1fkrk1(f1) + . . .+ cr−1fkrkr−1(fr−1) + crfr
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in C(Ξ,Z) and fkrn(g) = g is then in Rkr
.

Thus ˜fkrn(qn(g)) = qkr
(fkrn(g)) = 0 with ˜fkrn := ˜fkr ◦ . . . ◦ ˜fn+1.

We then conclude that jkr
◦ ˜fkrn ◦ qn(g) = 0 and by definition of direct

limit, 0 = jkr
◦ ˜fkrn ◦ qn(g) = jn ◦ qn(g) = f and j is thus injective.

�

The previous lemma is not surprising since we can remark that R = ∪Rl and
C(Ξ,Z) = ∪C(Λl,Z).

Moreover, µt(χp − χp′) = 0 if p, p′ are two tiles in the same supertile since, if
χp = χU(ω,STω) where [ω] ∈ Ξ(p), STω being the supertile surrounding p and
such that the representative of p containing the origin in ω has the ”good” ori-
entation, then χp′ = χU(ω,STω).(x,θ) with (x, θ) the direct isometry sending ω on
the tiling of Ξ(p′) having a representative of p′ surrounding the origin and in
the ”good” orientation.
Hence, the measure factorizes through the quotient and µt(C) = µt(C(Ξ,Z)).
We must then compute µt(C) to end the computation of the gap-labelling of the
pinwheel tiling.

Since the following diagram

· · · // C(Λl−1,Z)/Rl−1
f̃ l

// C(Λl,Z)/Rl // · · ·

· · · //
Z108

A′

//
Z108 // · · ·

is commutative, we have C ≃ lim
−→

(Z108, A′).

We then use results obtained by Effros in [Eff] since we have a stationary system:

Definition 4.3 (see [Eff]) A direct system

Zr
φ // Zr

φ // · · ·

with constant spaces Zr and with constant map φ (constant mean that it’s al-
ways the same map) is called stationary.
A stationary system is simple if, for some n, φn is strictly positive (i.e all its
coefficients are stricly positive).

An ordered group G is an abelian group G together with a subset P , called the
positive cone and denoted G+, such that:

1. P + P ⊂ P ,

2. P − P = G,

3. P ∩ (−P ) = {0},

4. if a ∈ G and na ∈ P for some n ∈ N, then a ∈ P .
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We shall write a 6 b (resp. a < b) if b − a ∈ G+ (resp. G+ \ {0}).
We shall say that u ∈ G+ is an order unit on G if

{a ∈ G : 0 6 a 6 n.u for some n ∈ N} = G+.

A state (depending on u) on G is a homomorphism p : G → R such that
p(G+) > 0 and p(u) = 1.
We denote Su(G) the set of such states.

For example, if G is the limit of the system Zr
φ // Zr

φ // · · · (with φ hav-
ing all its coefficients non-negative), we can define an ordering on G taking G+

to be the union of all the images in G of the (Z+)r’s.

With these definitions, we have the following theorem :

Theorem 4.4 ([Eff])
Let u1 be (1, . . . , 1) in the first copy of Zr in the simple stationary system of the
definition then u = φ∞(u1), its image in the limit G, is an order unit for G and
Su(G) contains only one point.

Our inverse system (Z108, A′) is in fact stationary and simple (since A is the
substitution matrix of our tiling which is a primitive substitution (A6 has all
its coefficients strictly positive)) and thus there exists only one state p on the
inverse limit G = lim

−→
(Z108, A′).

Moreover, we have an explicit formula for this state : if λ is the Perron-Frobenius
eigenvalue of A′ and α the unique eigenvector of A associated to λ such that
∑

αi = 1, then

p([a, n]) =
1

λn−1

∑

αiai.

In the case of pinwheel tilings, we have λ = 5, u1 = (1, . . . , 1) ∈ Z108 and there
is only one state on G defined by :

p
(

[

(k1, . . . , k108);n
]

)

=
1

33000

1

5n−1

108
∑

i=1

kiα
′
i,

with α =
1

33000
α′ and

α′ = (765, 1185, 360, 255, 735, 1185, 360, 255, 765, 90, 90, 255, 250, 80,
735, 255, 80, 400, 360, 660, 600, 660, 300, 360, 360, 255, 400, 360,
90, 255, 90, 350, 90, 255, 250, 255, 80, 80, 163, 18, 237, 72, 90, 360,
237, 72, 204, 204, 163, 300, 51, 18, 50, 51, 765, 1185, 360, 255, 735,
1185, 360, 255, 765, 90, 90, 255, 250, 80, 735, 255, 80, 400, 360, 660,
600, 660, 300, 360, 360, 255, 400, 360, 90, 255, 90, 350, 90, 255, 250,
255, 80, 80, 163, 18, 237, 72, 90, 360, 237, 72, 204, 204, 163, 300, 51,
18, 50, 51)

Moreover, since each C(Λl,Z)/Rl is naturally ordered by the ordering of Z
108,

C have an ordering compatible with its isomorphism with G and the unit order
for this ordering is the class of the constant function equal to 1.
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Hence, there is a unique state on C such that, if pi are tiles contained in 108
different n-supertiles of Bcn, then :

p
(

∑

kiqn(χpi
)
)

=
1

33000

1

5n

108
∑

i=1

kiα
′
i. (1)

But
µt

µt(Ξ)
is in fact a state on C thus µt = µt(Ξ)p and

µt(C(Ξ,Z)) =
µt(Ξ)

264
Z

[1

5

]

.

We end this article by two points.

The first one is that, in fact, µt is a probability measure on Ξ :

Lemma 4.5 µt(Ξ) = 1.

Proof :

This result is obtained using the formula in [MS] p.90 : if f : Ω → Ξ is a
Borel function with f(x) in the same leaf as x, then for each point ω ∈ Ξ
we can define ρω on f−1(ω) as the restriction of the Haar measure on the
leaf l(ω) of ω to f−1(ω) ⊂ l(ω). We then have :

µ(E) =

∫

Ξ

(

∫

f−1(ω)

χE(x)dρω(x)

)

dµt(ω),

for any Borel set E in Ω.

We then just need to produce such a Borel function.
For this, consider p̂ci (i = 1, . . . , 108) the 108 collared prototiles of the
pinwheel tiling and let V ki be the open subset of Ω homeomorphic to

Ξ(pci ) ×
◦
pci × Sk where

◦
pci is the interior of the representative of p̂ci with

the origin on its punctuation (and with the ”good” orientation) and
Sk =

]

2kπ
3 − π

3 ,
2kπ
3 + π

3

[

for k = 0, 1, 2.

Set Ui =

2
⋃

k=0

V ki for i = 1, . . . , 108.

The union of the closure of these open sets is a covering of Ω :

Ω =

108
⋃

i=1

Ui =

108
⋃

i=1

2
⋃

k=0

V ki .

Setting

F 0
1 = V 0

1 , F
1
1 = V 1

1 \ V 0
1 , F

2
1 = V 2

1 \
(

V 0
1 ∪ V 1

1

)

, F 0
2 = V 0

2 \ U1,

F 1
2 = V 1

2 \
(

V 0
2 ∪ U1

)

, . . . , F 2
108 = V 2

108 \
(

107
⋃

l=1

Ul
⋃

V 0
108

⋃

V 1
108

)

,
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we have a covering of Ω by disjoint Borel sets Fi.
We then define f : Ω → Ξ by f(ω) = ωi if ω ∈ F ki , ω = ωi.(xi, θi) with
ωi ∈ Ξ(pci ) and (xi, θi) ∈ pci × Sk.
This is a Borel function from Ω to the transversal Ξ and f(ω) is on the
same leaf as ω.

We then have proved that µ can be reconstructed from f and µt :

µ(E) =

∫

Ξ

(

2
∑

k=0

∫

◦

pc
ω×Sk

χE(ω.(x, θ))dλ(x, θ)

)

dµt(ω), (2)

where pcω is the prototile type of the tile in ω surrounding the origin.

As V ki and V lj are disjoint if i 6= j or k 6= l and because the border of

V ki is a set of measure zero, we have :

1 = µ(Ω) =

108
∑

i=1

2
∑

k=0

µ(F ki ) =

108
∑

i=1

µ(Ui) =

108
∑

i=1

µt
(

Ξ(pci )
)

=

108
∑

i=1

µt
(

χpc
i

)

= µt(Ξ)

�

Hence, we have obtained the following result :

Proposition 4.6 For pinwheel tilings, the gap-labelling (or patch frequencies)
is given by :

τµ∗

(

K0

(

C(Ω) ⋊ R
2

⋊ S1
)

)

=
1

264
Z

[

1

5

]

.

The second point is that we can recover from the explicit formula (1) for µt

that, in fact, the continuous hull of the pinwheel tiling equipped with the action
of the direct isometries is uniquely ergodic :

Lemma 4.7
(

Ω,R2 ⋊ S1
)

is uniquely ergodic.

Proof :

This is readily obtained because Ξ is a Cantor set and hence every Borel
measure on Ξ is completely determined by its value on each clopen parti-
tion of Ξ.
If µ and ν are two invariant Borel probability measures on Ω then they
induce two invariant probability measures µt and νt on the transversal Ξ.
By the equality (1), these measures must agree on the clopen sets defined
by the successive collared supertiles which form a base of clopen neigh-
borhoods for Ξ so µt = νt.
Finally, by formula (2), we can see that µ = ν.

�
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5 Conclusion

Using methods developed in [BS], we thus proved the gap-labelling for the pin-
wheel tiling (the (1, 2)-pinwheel tiling).
We think that the methods developed in the present paper are in fact more
general.

We think that, using the construction of Bellissard and Savinien [BS], we may
prove that the top Čech cohomology group of more general tilings is in fact the
integer group of coinvariants of the top ∆-transversal.
This result coupled with the diagram of section 4.1 can then prove the known
fact (see [BBG]) that the image under the Ruelle-Sullivan map of the copy of
the top integer Čech cohomology of the hull in the longitudinal cohomology of
Ω is in fact µt(C(Ξ,Z)).

We point out another possible generalization of our work.
We guess that, for all m and n in N∗, the number of (m,n)-pinwheel tilings
fixed by a finite rotation always remains finite allowing us to apply the results
of [Mou].
The result of the final section can still be applied to such tilings, obtaining that
the gap-labelling of (m,n)-pinwheel tilings is given by the Z-module of ”patch

frequencies” c.Z
[

1
m2+n2

]

, where c is a scalar normalizing the Perron eigenvector.

Moreover, we think that for any substitution (self-similar, repetitive, of finite
type and non periodic) tiling of Rd with expansion scalar λ, the explicit com-
putation can be done in the same way, showing that the gap-labelling for such
a tiling is given by c.Z

[

1
λd

]

if λ is an integer and by

c.

{

1

λd.n

∑

αiki;n ∈ N, ki ∈ Z

}

if λ is not an integer, where α is the unique normalized (Perron-Frobenius)
eigenvector of the substitution matrix of the tiling for collared prototiles.
This result would generalize a result proved by Kellendonk in [Kel].

This result would also allow us to retrieve the fact that the tiling space of
any substitution tiling is uniquely ergodic, which was already known (see [Fre],
[LMS], [Rada] and [Sol]).
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Figure 3: 28 collared prototiles.
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Figure 4: 26 other collared prototiles.
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