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ON PERTURBED SUBSTOCHASTIC SEMIGROUPS IN ABSTRACT
STATE SPACES

L. ARLOTTI, B. LODS & M. MOKHTAR-KHARROUBI

ABSTRACT. The object of this paper is twofold: In the first part, we yréind extend

the recent developments on honesty theory of perturbedathastic semigroups (on
L'(p)-spaces or noncommutative' spaces) to general state spaces; this allows us to
capture for instance a honesty theory in preduals of alisttat Neumann algebras or
subspaces of duals of abstrétt-algebras. In the second part of the paper, we provide
another honesty theory (a semigroup-perturbation appjaadependent of the previous
resolvent-perturbation approach and show the equivalehtiee two approaches. This
second viewpoint on honesty is new evenlih(x) spaces. Several fine properties of
Dyson-Phillips expansions are given and a classical géoartheorem by T. Kato is
revisited.

KEYWORDS. Substochastic semigroups; additive norm; total massethhy a trajec-
tory; Dyson-Phillips expansion.

1. INTRODUCTION

In his famous paper on Kolmogorov’s differential equati¢fts Markov processes
with denumerable states) T. Kafd] introduced the main tools for dealing with positive
unbounded perturbatiorts of generators4 of substochastic semigroups #h(N) pro-
vided that a suitable dissipation on the positive cone isfsad. Among other things,
he showed that there exists a unique extengiom B + .4 which generates a sub-
stochastic semigroup and characterized the closure pgyoger= B + A by the fact
that [B(A —.A)~']" — 0 strongly asn — +occ (in general,G may be a proper ex-
tension of 5 + A). We note that for “formally conservative” equations, suchKad-
mogorov’s differential equations, the property = B + A is essential (i.e. necessary
and sufficient) to assert that the corresponding semigoass-preservingn the pos-
itive cone. Finally, T. Kato[[d] pointed out that his formalism is adapted to general
AL-spaces, i.e. Banach lattic&swhose norm is additive on the positive cole i.e.
|z +yll = |lz|| + lyll, =,y € X;. Actually, even the lattice assumption is not essential
since Kato’s ideas were applied by E. B. Davigg][to quantum dynamical semigroups
in the real Banach space of self-adjoint trace class opsrato this case, the closure
property G = B+ A is essential to assert that the corresponding semigrotrpds-
preservingon the positive cone.
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By the end of the 1980’s, Kato’s papf] was revisited by means of Miyadera pertur-
bations inA L—spaces34, B3, f] and new functional analytic developments followed also
in the 2000’s[§, @, L3] which are known nowadays as the honesty theory of pertusbbd
stochastic semigroups it (1) spacesf], Chapter 6]. Of course, this theory is motivated
by various applications to kinetic theory, fragmentatiguations, birth-and-death equa-
tions and so on; seff]and references therein. We note also that the analysigoépiise
deterministic Markov processes is nicely related to hgntstory in L' spacesff3] (see
also [L9] for related topics). On the other hand, in a noncommutatorgext, there exists
also an important literature (relying on Kato’s paf&#][or some dual version) on quan-
tum dynamical semigroups, e.gL7 £4, B B. [4 [4 7, BJl; such semigroups acting
on spaces of operators arise in the theory of open quantutansgsas models of irre-
versible (albeit conservative) quantum dynamics. We manthat quantum dynamical
semigroups enjoy the complete positivity property (a sjeyrproperty than the fact to
leave invariant the positive cone) which gives their getoesaa special structure (see e.g.
[4)).

More recently, in 23], the honesty theory of perturbed substochastic semigraup
L*(p) spaces has been improved and extended in different dinsotibile a noncommu-
tative version of 3] was given in B3]. The first goal of the present paper is to provide
a general theory in abstrastate space$i.e. real ordered Banach spaces such that the
norm is additive on the positive cone) which covers b@®# pnd BJ]. The interest of
this abstract approach is not simply motivated by a unified@ntation offJ] and B3]
it provides us with an intrinsic treatment of honesty theiorynuch more general spaces
covering in particular preduals of abstract von Neumanelaigs or more generally sub-
spaces of duals of abstract-algebras (see for examp[é], £4] on measure-valued gen-
eralization of Kolmogorov equations on abstract measaraphces). We refer to E. B.
Davies [[0Q, p. 30-31] for the relevance of the concept of abstract Spéees in proba-
bility theory, quantum statistical mechanics, etc. Fomtsst part, the general theory we
give follows closely[P3, 3] but we provide also new informations on the structure of the
set of honest trajectories in the Banach space of boundesuresaon a measurable space
and in the Banach space of trace class operators on a Hifiserés The second goal of
this paper is to provide another approach of honesty thebhys alternative approach
of honesty relies on Dyson-Phillips expansions (in conti@she previous resolvent ap-
proach) and is new even ih!'(x) spaces. To this end, we give several fine properties
of Dyson-Phillips expansions. We also revisit a classieslagation theorem by T. Kato
[[Lg]. Finally, this alternative viewpoint on honesty presehis great advantage of being
adaptable tmonautonomouproblems [f]

We recall briefly some properties of the class of Banach spaeeshall deal with in
this paper (more information on general real ordered Baspabe can be recovered from
[E3, [1)- In all this paper, we shall assume tt#ais a real ordered Banach space with a



generating positive con®, (i.e. X = X, — X,) on which the norm is additive, i.e.
[+ ol = Jlull + o] u,v € Xy
The additivity of the norm implies that the norm is monotaore,
0<u<v=lul <l

In particular, the conéx, is normal [], Proposition 1.2.1]. It follows easily that any
bounded monotone sequenceXof is convergent. A property playing an important role
in this paper is the existence of a linear positive functiohan X which coincides with
the norm on the positive cone (see e[ [p. 30]), i.e.

VeXx), (T =, ueX, (1.1)
Note that||¥| = 1. Indeed, giveru € X, one hasu = u; — up € X with u; € X
(1 = 1,2) and | (¥, u) | = |||w] — [Juzl|| < |lu||. This proves thaf|¥| < 1 and

the equality sign follows fromfI(]). We note also that by a Baire category argument
there exists a constanf > 0 such that eaclh € X has a decomposition = u; — u»
wherew; € X, and||w;|| < M|u| (: = 1,2); i.e. the positive coné& . is non-flat,
see 5, Proposition 19.1]. We recall that@,-semigroup(7 (¢));>o of bounded linear
operators orX is called substochastic (resp. stochasti@)(f) is positive (i.e. leave¥ ;.
invariant for anyt > 0) and||7 (t)u|| < |lu|| (resp.||7 (t)u|| = ||u|]) for all v € X, and
t > 0. Itis not difficult to see that a positive,-semigroup/(t)).>o with generatotA is
substochastic (resp. stochastic) if and only®, Au) < 0 (resp. (¥, .Au) = 0) for all
ue 2(A); = 2(A) N X,. Because of a lack (a priori) of a lattice structuf,(t)):>o
need not be a contraction semigroup. However, one easiyteag|7 (¢)|| < 2M for all
t > 0; in particular, its type is nonpositive.

The general structure of the paper is the following: our galngetting is an abstract
state spac#, a substochastiC,-semigroup/(t)).>o on X with generatord and a linear
operator5 : Z(A) — X which is assumed to be positive (iB.: Z2(A)NX,. — X,)
and such that

(U, Au+ Bu) <0 ue (A NX,.
In Section 2, we show that there exists a unique minimal segbsisticC,-semigroup
(V(t)):=0 generated by an extensighof .A + B. This result was first given by T. Kato
[L3] under a lattice assumption o6 Our purpose here is simply to show (by following
essentially Kato’s ideas) that the lattice assumptiontgadly unnecessary. We note that
this result has been proved differently by means of Miyagerdurbations§g] or by
using Desch’s theorenf]]]. We also show that the corresponding semigroup is given by
a (strongly convergent) Dyson-Phillips expansion

V(thu =Y Vit
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without using the theory of Miyadera perturbations. It sigut that the resolvent ¢f is
given by the strongly convergent series
A=9)lu=> A=A [BA-A)"u,  A>0.
n=0
This series (which doesot converge a priori in operator norm) is the corner-stone of a
general honesty theory of th&,-semigroup(V(¢)):>o given in Section 3 in the spirit of
the recent result®, B3]. Besides the functional

ap 1 u€ 2(G) - —(¥,Gu)
and its restrictiorn to (.A) we build up and study another functional
a:ue 2@ —R

which has the properties that,4) = a anda < ay on 2(G). = 2(G) N X,. The
trajectory(V(t)u),, emanating from: € X is said to behonestf

IV(t)u|| = ||ul| —a (/Ot]/(r)udr) , Vit >0

or equivalently if

a (/Ot V(r)udr) ~ a, (/Ot V(r)udr) Wt > 0.

Various characterization of honesty are given; in particue show thatV(t)u),, is
honest if and only ifim,, ... || (B(A — A)™Y)" u|| = 0 which is equivalenttér—G)~'u €
2(A + B). Under the "conservativity” assumption

(¥, Au + Bu) =0, Yu e 2(A),

the mass-preservation in time (i.8V(t)u|| = ||u|| for anyt > 0) holds if and only if
the trajectory(V(t)u),, is honest. The semigroupy’(¢));>o is said to be honest if all
trajectories are honest. We show that the honesty(f) ).~ is equivalent to the identity
a = ap or to the closure property = A + B. Actually, we extend most of the results
of [E2, B3); in particular we show that the s@t of initial data giving rise to a honest
trajectory is a closed hereditary subconeXf and provide a description of the order
idealH — H (induced by it) in the case whe#eis either the Banach space of self-adjoint
trace class operators on a Hilbert space or the Banach sphoermded signed measures
on a measurable space.

In Section 4, the Dyson-Phillips expansion is the cornenstofanotherhonesty the-
ory of trajectories. To this end, we build up and study a nencfional

a:ue 2(G)—R
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and show in particular that 4y = a anda < ao on Z(G)... To distinguish a priori
the second notion of honesty from the previous one, we sayatlrajectory(V(¢)u):>o
emanating from; € X, is mild honest if

V(#)ull = IIUII—E(/O V(rjudr), t = 0.

Various characterizations of mild honesty are given; inipalar we show thatV(¢)u):>o
is mild honest if and only iffot V(rjudr € 2(A+ B) or if and only if the integral

Bfot V,(r)udr converges strongly td asn — oo. This mild honesty is based on several
new fine properties of the operatovs. Finally we prove that the functionatsanda
coincide showing thus that the notions of honesty and miltelsty are actually equiva-
lent. Moreover, the equivalence of the two viewpoints ondsty theory provides us with
nontrivial additional results. As we already said it, a hatgegheory in terms of Dyson-
Phillips expansions suggests a convenient tool for theystidonautonomous problems

[E.

2. KATO'S GENERATION THEOREM AND FIRST CONSEQUENCES

2.1. Classical Kato’s Theorem revisited. Let (¢(t)):>o be a substochastic,-semigroup
on X with generatotd. Kato’s generation theorerfiff] provides a useful sufficient con-
dition ensuring that some extension @l + B, Z(A)) generates a substochastig-
semigroup ork:

THEOREM 2.1. Let (U(t)):>o be a substochastiC,,-semigroup or with generatorA.
LetB : 2(A) — X be a positive linear operator satisfying:
(U, (A+ B)u) <0, Vu e D(A); = 2(A)NX,. (2.1)

Then, there exists an extensigrof (A + B, Z(.A)) that generates a substochasfig-
semigroupV(t)):>o on X. Moreover, for any\ > 0, the resolvent of is given by

n

A=G)tu=lim(A—A) Y [BOA-A)u  wex (2.2)

n—00
k=0

Finally, (V()):>o is the smallest substochastiG-semigroup whose generator is an ex-
tension of( A + B, Z(A)).

The general strategy to prove such a result consists in ®pssshow that
G- =A+rB,  2(G)=2(A)

is a generator of a substochastig-semigroup for any < r < 1 andthenuse a mono-
tonic convergence theorem by letting” 1. The first step can be dealt with by means
of three different arguments: a direct approach via Hiltsida estimates; the use of
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Miyadera perturbation theorBfj] or simply the use of Desch theoref@]]. We revisit
here the direct approach via Hille-Yosida estimates by ToH&d).

Proof. Our proof is inspired by the original one of T. Katfd§] that we adapt here to
the more general situation we are dealing with (recall irtipalar that substochastic
semigroups are contractimgly on X, ). The proof consists in several steps.

e Construction of V(t)),>0: For any\ > 0, set7 (\) = B(A — A)~L. Clearly,7(\) is a
bounded linear positive operator ghand E.]) implies that

lT7Null = (&, T (Nu) < = (¥, AN = A) ")
< lull = AN = A) || < Jjul|, foranyu € X, and any\ > 0.
Iterating such an inequality leads to
(T (X)) || < |l foranyu € Xy andanyA >0, n e N

which implies that
(T (N)"]| < 2M, VneN, A>0
where we recall (see the introduction) thet > 0 is a positive constant such that any
u € X admits a decomposition = u; — up With u; € X and||u,|| < M||u|| (i = 1,2).
In particular, the spectral radius(.7()\)) of the bounded operatgrf () is such that
ro(J(A) <1,  VA>0. (2.3)

Moreover, the resolvent formula shows that J (1) < J(A) forany0 < A < u. Now,
forany0 < r < 1, let us defingg, as

G, = A+rB, 2(G,) =2(A).
Eqg. €3 implies that(\ — G,) is invertible for anyA > 0 with

[ee)

A=G) ' =Q=A"D IV, 0<r<1 (2.4)

n=0

where the series convergesd#X). For any fixedf € X, setv = (A — A)~1f, A > 0.
One has € 7(A), and

A =Gl = [[(A = A=rB)u|| = [[(A = Al = || Bu]|
= A (W, v) — (¥, Av) —r (¥, Bv) = \||v]|.

Now givenu € X, and applying the above reasoning wjth= >~ /" [T (\)]" u, we
deduce fromff.9) that

IO = G) M|l < A Hul, for anyu € X,. (2.5)
Iterating this relation, we see that
=Gl < A7l for anyu € X, and anyn € N.



Then, sincex , is non flat, such an estimate extends to the whole sfideading to
n 2M
A =67 < 5 ¥A>0. neN,

and one deduces from Hille-Yosida Theorem that, for@ry r < 1, (G., Z(A)) gener-
ates aCp-semigroup(S,(¢));>o in X. Since(\ — G,)~! is positive and because .§),
(S-(t)):i=0 is a substochasti€,-semigroup inX. Moreover, the mapping+— (A—G,)!
is nondecreasing for any fixed> 0 and anyu € X, and one sees from the exponential
formula qn
n n -
Sy(t)u = lim n [(; - gr) } u, ue X,

n—oo

that the mapping € [0,1) — S,(t)u is also nondecreasing for any fixed> 0 and
anyu € X,. Sincesup,,., ||S,(t)|| < 2M for anyt > 0 and any bounded monotone
sequence of, is convergent, one gets th8t(¢) converges strongly to some operator
V(t) for any fixedt > 0 asr — 1. Obviously,V(t) is a positive contraction off . with
S.(t) < V(t) forany0 < r < 1 and anyt > 0.

e (V(t))i>0 is aCy-semigroup or¥. SinceS, (t+s) = S,(t)S,(s) for anyt, s > 0 and any

0 < r < 1, 0ne has, at the limit/(t + s) = V(t)V(s), Vt,s > 0. Moreover V( ) = Id.

To prove thatV(t)):>¢ is aCy-semigroup or¥, it is enough to prove that> 0 — V(t)u

is continuous at = 0 for anyu € X. Let us fixe > 0 andu € X.. Since(U(t)):>o IS a
strongly continuous, there exists> 0 such that|i/ (t)u — u|| < e forany0 < ¢ < . For
such &, we see that, for any € [0, 1), sinceS,.(t) > U(t), one has

1S (H)u —U@)ul| = (¥, S (Hu —U@)u) = (¥, 5 (Hu) — (T, U[{t)w)
< ull = @) ul] < Jlu—U(t)ul] <e.
One deduces from this estimate that
IS (D)u — u|| < ||Sp(t)u —U)ul|| + ||U(E) — ul| < 2, V0 <t <.

The important fact is that such an estimate is uniform wipeet tor € [0, 1) so that,
letting» " 1, one deduces thd(t)u — u|| < 2¢ for any0 < ¢ < 4. This shows that
lim; o V(t)u = w for anyu € X, and, by linearity, the result is true for any € X
which proves thav'(¢) is strongly continuous &t= 0. We denote by the generator of
(V(t))i=0. Clearly,]0, co[C o(G) and

(A—G) tispositive [[(A—G)tul| < Jlull/X,  ueE X,
Note that, since, () < V(t) for anyt > 0 and anyr € [0, 1), one also hag\ — G,) ™! <
(A—g) ! foranyr € [0,1) and any\ > 0.
e (A\—G,)~! converges strongly to\—G)~! asr — 1. Since for any; € X, the mapping
r — S,.(t)u is nondecreasing, by Dini’s Theorem one has for&ny 0 and anyu € X:

hm sup IS, ()u — V(t)ul| = 0. (2.6)

r—=1ogig
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Now, writing

A=G) fu—(A=G) tu= /0 exp(—=At) (V(t)u — S, (t)u) dt+

/ T exp(c M) (V(tu — Su(Bu) dt, VT >0,

T

one sees from the uniform convergence that the first integralerges t® asr 1 for
anyT > 0 while the uniform boundup, . [|S,(t)u — V(t)ul| < 2[|u| allows us to let
T — oo in the second integral leading to

lirri A =G)'u—(N—G) 1l =0, VA >0,u € X.

e Proof of Eq.(Z2). Let us fixA > 0. From Eq. [£4) and the fact that < (A — G,)~! <
(A—G)~'forany0 < r < 1, one hasR{™ < (A—G,)"! < (A= G)~!, foranyn > 1
whereR™(\) = (A — A1 20 vk [F(N)])F. Lettingr " 1, one gets

RN =A=-A" D [NV <(A=-G)", =1

k=0

Since the sequend& ™ (})) is nondecreasing, the strong limit

R(A) :=s— lim R™())
exists andR(\) < (A—G)~'. We also havR ™ (\) < R™(\) < R(A) forall 0 < r < 1
andn > 1. Hence,(A — G,)! = s — lim,_o RV™W(A) < R(A) and (A — G)~!
s — lim, 1 (A — G,)~! < R(\). This proves finally thak () = (A — G)~! and Eq. I3
is proved.
e G is a closed extension of + B. With the notation of the previous item, singg\) =
B(A — A)~!, one has

RO = (= A)~ 4+ (A= A)! (niwn'f) B\ — A)!

= A=A+ RODNBA - AL

Thus, for anyu € 2(A), R™WA)(X — A)u = u + R™ Y (X\)Bu for anyn > 1. Letting

n — oo, Eq. @3 yields(A — §)"'(A — A)u = u + (A — G)~'Bu or equivalently,
A=G) ' (A= A—B)u = u. In particularu € 2(G) and(A—G)u = (A\—.A—B)u. This

proves thatj is an extension afd andg is closed as the generator of.g-semigroup on
X.
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e (V(t))i>0 is minimal.Let (S(t)).>o be a substochastic semigrouprwhose generator
G’ is a closed extension of + B. Let us prove thaf(¢) > V(t) for anyt > 0. Actually,
forany\ > 0, one has

A=G) "' =(A=G)"'=(=G)"GF-G)r-G)"
and, since the range 6k — G,)"'is 2(A) C 2(G') N 2(G,), one has
A=) "'=A=G) ' =A=-G)V (A+B-A—rB)(A\-G,)"
=(1-r(A-6)"BA-G)"
and one sees that, at the (strong) liniit,— G’)~' > (A — G)~!. From the exponential

formula, one obtain§(t) > V(t) for anyt > 0. O

2.2. On Dyson-Phillips expansion serieslt is possible to strengthen the above Theorem
E-1by proving that the semigroup’()):>o is given by a Dyson-Phillips expansion series.

Our approach generalizes the result[i][to the non lattice case and relies on different

arguments inspired by}, Chapter 8]. We first need some preliminary result. Let us
define the spac#,,(R*, #(X)) of strongly continuous and bounded mappings

S:t>20—8(t) € B(X)
endowed with the norm

1S loe = sup [|S(t) || z)
>0

which makes it a Banach space. For @y 4., (RT, (X)), it is possible to define the
time-dependent operatd?’ (S)(¢) defined oveZ(A) by

t
Z(S)(t) : ue 2(A) — / S(t—s)BU(s)uds € X, t > 0.
0
We shall write thatS € %, (R, 7 (X)) if S € €4 (RT, Z(X)) andS(¢) is a positive
operator inX for anyt > 0. One has the following

LEMMA 2.2. ForanyS € %, (RT, 7 (X)) and anyt > 0, .Z(S)(t) extends uniquely to
a bounded positive operator i, still denotedZ(S)(t). Moreover, for anyu € X, the
mappingt > 0 — Z(S)(t)u € X is continuous.

Proof. It is clear thatZ(S)(¢) is a nonnegative operator and, for amy= Z(.A).. and
A > 0 one has

‘/0 S(t — s)BU(s)uds :/0 ||S(t—s)15’1/{(s)u||ds<||S||OO/O |1BU (s)u||ds.
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/ |Bud(s)uds = / (. By ds < | (W, AU(s)u) s

< /AL{ uds> v, Ot%U(S)uds> (2.7)
=({T,u- < Jlul-

Therefore,

t
/ St — s)BU(s)uds|| < ||S||ool|ll Vi >0, Vue Z(A);. (2.8)
0

Now, letu € 2(A) be arbitrary and lett = u; — us WhereuZ € X, are such that -
wil| < M|u||, 7 = 1,2. Then, for anyn > 1, v := ”fo s)u;ds € Z(A); with
u! — u; in X asn — oo, while

1/n
ui—ui:n/ U(s)uds — u in 2(A), i=1,2.
0

Therefore,

= lim

n—~0o0

/0 S(t — s)BU(s)uds /0 S(t — s)BU(s)(ul: —u?)ds

< lim

n—oo

/tS(t — 5)BU(s)ulds|| +

/t S(t — s)BU(s)u>ds

lim ‘

n—oo

and Eq. £.9) yields

(t — 5)BU()uds|| < 8] lim (]l + [2]) = IS (lua]l + ual])

Consequently,

t
/ S(t — s)BU(s)uds|| < 2M||S||wlul, Y € 2(A).
0
SinceZ(A) is dense ik, £ (S)(t) extends uniquely to a bounded operatotoriVe still
denoteZ(S)(t) this extension. Notice that, since(.A). is dense inx,, the extension
Z(8S)(t) is still positive. One notes that, for amyc Z(.A), the mapping — Z(S)(t)u
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is continuous. Now, if: € X, considering a sequen¢e,),, C Z(.A) which converges to
u, one has, for any’ > 0

sup [|Z(S)()un — Z(S) )| < 2M||S|joc [lun = umll, n,m €N,

te[0,7
which implies that the mappinge [0, co[— Z(S)(t)u is continuous. O
Arguing as in 20, Lemma 8.4], we prove the following
THEOREM 2.3. For anyt > 0, the following Duhamel formula holds:

V(t)u =U(t)u + /t V(t — s)BU(s)uds, t>0, uwe 2(A). (2.9)

Moreover, the semigrou@)(t)):>o defined in Theoreta.Jis given by théyson-Phillips
expansion series

= ig"(u)(t), t>0 (2.10)

where the series converges stronglyXin

Proof. Let us first establish Duhamel formula. We use the ideaffllemma 1.4]. Let
u e Z(A)and\ > 0. We see from[{3) that

A=) u— A=A u=A-G) B\ - A u. (2.11)

Moreover, sinces is A-bounded, the mappinge [0, c0) — BU(t)u € X is continuous
forallu € 2(A) and

B(A—A)'u=B / exp(— MU udt = / exp(—M)BU(t)udt.
0
Since(\ — G)! is the Laplace transform @i’(¢));>0, one gets from17)
/ exp(— ) (V(t)u — U(t)u) dt = / dt / exp(—A(t + 5))V(£)BU(s)uds
0

:/O exp(— ) </ Vit — 5)BU(s )uds) dr.

Finally, the uniqueness theorem for the Laplace transfaiomiges the conclusion. Let
us prove now thatV(t)):>o is given by the Dyson—Phillips expansiqa (). Duhamel
formula €.9) reads

V(t)u=Ut)u+ L (T)(t)u, Vt>0, ueX
and, by iteration,

U—ka (Hu+ 2" (T)(tu, t>0, n>1, wuekX.
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In particular, for any, € X, one has

535WWQW<V®M n=1, u€X, (2.12)
k=0

and the serie3 "~ , " (U)u is convergent towards a limit that we dendté)u. Notice
that, for a given, € X, the mapping < [0, co[— 7 (t)u is measurable. One has

T(Hu <V, YueX,, t=>0. (2.13)
Now, it is not difficult to check by induction that
/ exp(=A).Z™"(U) (t)udt = (A — A)~* [B(/\ - A)‘l}” u (2.14)
0

so that,

o0

Z()\ — AT [BA-A) T u= /000 exp(—At)7T (t)udt

n=0

and Eq. P.IP together with Eq.[.3) yield

/ exp(—At)7T (t)udt = / exp(—At)V(t)udt, Vue Xy, A>0.
0 0

The uniqueness theorem for the Laplace transform implies T(t)u = V(t)u for any
t > 0 and anyu € X, so that

Y LU u=V(tu,  VueXy, t=0.
n=0

Note that, according to Dini’'s convergence theorem, theesearonverges uniformly in
bounded time. One extends then the convergence to arbitrar§ by linearity. O

REMARK 2.4. Notice that the family of operatods, (t) = Z"(U)(t) (n € N, t > 0), is
nothing but the classical Dyson-Phillips iterated usualéfined by inductiofQ, Chapter
7]

Vi1 (t)u = /Ot Vo (t — s)BU(s)uds, VneN, ue 2(A). (2.15)

Notice that, according t{Z.13), one sees easily that

Zm(t)un <|lu| forany t>0, ueX,. (2.16)
k=0
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Moreover, for anyr € N, the mapping € [0, co) — V,(t)u is continuous for any, € X.
Finally, arguing as in[g, p. 129] it is not difficult to prove that, for any. € N, the
following relation holds:

n

Vot + s)u = Z Ve(t)Vy_r(s)u foranyu e X, t,s > 0. (2.17)
k=0

3. ON HONESTY THEORY. RESOLVENT APPROACH

From now, in all the paper, we assume that the assumptionsexdrén2.] are met.

3.1. About some useful functionals. Since the”;-semigroug V() ).> is substochastic,
one has, forany € X,
(O, Vu —u) = [V(E)ul - [ul <0, V=0, ueX,.
In particular, if one chooses € Z(G) .. here above, since,
— T L _

(., Gu) = lim =" (@, V(t)u — )
one gets

(¥, Gu) <0, ue PG)+. (3.1)

Because of this elementary but fundamental inequalityuaial role in the present ap-
proach will be based on the properties of the following fioel:

a : u€ 2(G) — ag(u) = — (¥, Gu) € R.

Because offf.1), this functionala, is nondecreasing, i.e1y(u) > ag(v) for anyu,v €
2(G) with v > v. Moreover, since|¥|| < 1, one hasiy(u) < ||Gul| for anyu € 2(G).
We denote by its restriction toZ(A), i.e.

a: uePA —alu)=— (¥, Au+ Bu) € R.
Let A > 0 befixed The following obvious identity
—a((A = A) ) = AN = A) Tl + 1B = A) "l = ull, (3.2)

is valid for anyu € X... Moreover, the sequend®_;_ (A — A)'[B(A — A)"']*u) is
nondecreasing and convergen{o— G)~'u. Sincea(-) is nondecreasing, one gets

a (Z(A —A)7B( - «4)‘1]'%> < ao((A = G) M),

k=0
for all w € X, and anyn € N. The bounded and nondecreasing real sequence

(a (Z()\ — A)7YB - A)‘ﬂ’%))

k=0
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is therefore convergent. This convergence holds foragyX = X, — X, and therefore
defines a functionat, (that dependa priori on A > 0) on the domain o by

oo

o (A=0)u) =) a((A=A)" [BA-—A)"u), ueX

n=0
Following [23], we derive another expression foy from the identity

o

A=G)u=) A=A [BA-A)"u,  uweX.

n=0

established in the proof of Theordiil We recall that, denoting’ 4, and 7 the domain
of A andg equipped with their respective graph norm, the series igsergent inZ 4 and,
since(A — A)~! < (A — G)7!, the embedding/ 4 — % is continuous. Therefore,

a(A—G,)~ ir"u BA—=A)T ), u€e X,

n=0

Letting nowr — 1, one gets

) =3 a (3 A [BO- A ).

n=0

a (A =G) 'u) =lima((A—G,)"

r/

One has the following basic result which can be proved exas|P3, Prop. 1.1] (see
also an alternative proof at the end of the paper, The@r&n

PROPOSITION3.1. Let0 < A < p. Then,

(1) axjza) = o
(2) ay =a,.
This defines a functional := a, for any \.

REMARK 3.2. Let us point out thaid is continuous with respect to the graph norngof
The above definitions of functionaisanda, lead to the following:
DEFINITION 3.3. Forany A > 0, we define the function&, € X* by
Evu)=ag(A=G)"u) —a (A= G)u), u € X.
One has the following Lemma:
LEMMA 3.4. Forany\ > 0 andu € X
(E,\,u>:nli_)ngo<\ll,[ A=A)" u>—hm1—r (¥, B(A—G,) 'u)
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Proof. One has to comput€E,, u) = ap (A — G)tu) —a (A — G)tu). First,

A((A=0) ") =D a (A=A (BA-A)T) ")

n=0

_ Z (T, —(A+B)A— A (B —A)™)"u).
Now, the latter is equal to

f: < <\11 (BO = A) ™))" u— (B = A" u— AA— A (B — A)—l)"u> )

n=0

Thus
a((A=09)"u) = (¥, u) — lim (¥, (BA—A)") " u) -

n—oo

A <\1: Z(A — A (B - A)—l)”u>
= (¥, u) - lim (@, (B( )\ A" > AM®, (A =G) )
=y (A= 9) "u) = lim (@, (B(A—A)")"u)
which proves the first assertion. On the other hand,
a(A=9)"u) = lima (A= G,) ")
= lim (@, (A= A= 7B =)= (1-n)B)(A - G)"u)

:lim<<\Ilu AT, (A= G) ) — (1—7) (T, BN —G,)~ >)

r,/'1
= (T, u) = A(¥,(A=G)~ u>—hm1—7’ (U, B(A—G,) 'u)
provides the second assertion. O

We end this section with the following fundamental result:

THEOREM 3.5. Let A > 0 andu € X, be fixed. The following assertions are equivalent:
(i) the set{[B(A — A)~'|"u}, is relatively weakly compact;

(i) limy, oo [|[BOA = A) 7 ul| = 0;

(i) (B, u) =0;

(iv) A=G)'ue 2(A+B).
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Proof. It is clear from the definition oE, that(ii) = (i) and that(ii) — (i) —
().

() = (i) and(iv). Letv, = >} (A — A7t [B(A—A)‘l]ku. Clearly, v, €
9(A+ B) andv, converges to = (A — G)~'u in X asn goes to infinity. Moreover, it is
not difficult to see that

A=A —B), =u—[BOA—A)"]""u

If some subsequendgB(\ — .A)~!|"u), converges weakly i¥ to somez € X, then
(A — A — B)v,, converges weakly toa — B(A — A)~ 'z ask — oo. It follows from the
weak closedness of the graph+- B thatv € (A + B) and

A—A+Buv=u—BI—A) 'z
Sinceg is a closed extension of + B andv = (A — G)'u, the latter reads
u=u—B\—A) 'z

so thatB(A — A)~'z = 0. Hence,[B(\A — A)~ |1y converges weakly t6 ask — oc.
In particular,

lim <\Il {B(/\ - A)—l} nk+1u> =0 and lim <\Il {B()\ - A)_lru> =0

k—o00 n—00

since the whole sequence is always convergent. This pi@yedNotice also that =
(A —G)'u € 2(A + B) and(iv) is proved.

(iv) = (iii). One can assume without loss of generality tBat# 0. Assume that
(A —G)'u € 2(A+ B). According to the following identity (sed§[ Lemma 4.5, p.
1177)

PA+B) =(A-G)'(I - BA—A)HX (3.3)
one sees that there exists a sequéngg, C (I — B(A — .A)~')X such thatim,, u,, = u.
It is easy to see thdE,, u,,) = 0 for anyn € N so that(=,, u) = 0. O

One deduces from the above result thdtd + 53) is a core foiG if and only if £, = 0:

COROLLARY 3.6. One hasj = A+ Bif and only if2, = 0 for some (or equivalently
forall) A > 0.

REMARK 3.7. For v € 2(G), one can show as ifR3, Proposition 1.6}thatv €
2(A+ B) ifand only ifag(v) = a(v) which strengthens Propositi¢hl.
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3.2. On honest trajectories. We note that, for any. € X, and anyt > 0, one has

/t V(s)uds € 2(G) with  V(t)u —u = g/ s)uds.

Since the semigroup is positive, one has

V(@) u| — |Jul| = —ag (/OtV(s)uds) . (3.4)

DEFINITION 3.8. Letu € X, be given. Then, the trajectoy(t)u);>o is said to be
honest if and only if

t
1V (t)ul| = ||u|l —ﬁ(/ V(s)uds), foranyt > 0
0

The wholeC,-semigroup(V(t)):>o Will be said to be honest if all trajectories are honest.

REMARK 3.9. Note that, in the spirit ofZJ], it is possible to define a more general
concept of local honest trajectory on an interZalc [0, oo) by

t t
ﬁ(/ V(T)udr) = a0</ V(T)udr), foranyt,seZ, t > s

We do not try to elaborate on this point here.

REMARK 3.10. One can deduce from Theor§@and CorollaryB-§the following: given
u € X4, one sees frorB.9) that (V(t)u):> is honest if and only if

t t
ﬁ(/ V(r)udr) = ao(/ V(r)udr) foranyt > s > 0.

Moreover, it is easy to see that this is equivalerﬁ(tgiot V(r)udr) fo r)udr) for
anyt > 0.

The link between honest trajectory and the functidBglgiven by DefinitionB.3 is
provided by the following:

THEOREM 3.11. Letu € X_.. The trajectory(V(t)u):>o is honestif and only if=,, u) =
0 for all/lsome\ > 0.

Proof. We recall that, for any > 0,

A=G) tu= /OOO exp(—=A)V(t)udt = /OOO exp(—At) < /Ot V(s)uds) dt. (3.5)
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Moreover, the functiort — fot V(s)uds is continuous and linearly bounded a%/g-
function. This means that the above outer integrafBif)(is convergent inZg; and com-
mute witha,. Moreover, according to Prof.], it also commutes witla so that

a0<()\ - g)—lu) = A/OOO eXp(—)\t)a(](/OtV(s)uds) dt
a((A — Q)_lu) = A /OOO exp(—)ﬂf)ﬁ(/ot V(s)uds) dt.

t t
One sees therefore th@d(/ V(s)uds) = a(/ V(s)uds) for anyt > 0 is equiva-
0 0

and

lent toay (()\ — g)—lu) = a(()\ — g)—lu) for any A > 0 and proves the Theorem[]

REMARK 3.12. Notice that the whole semigroup/’(t)).>o is honest if and onlyy =
A + B and this is also equivalent t8, = 0 for some / all\ > 0.

3.3. On an order ideal invariant under (V(t));>o. We already know that, for any
X, the property(E,,u) = 0 is independent of the choice af > 0. This allows us to
define the set

H = {ue%+; (2, u) :0forany>\>0}. (3.6)

Notice that, by virtue of Theorefd. 1], H is precisely the set of initial positive data
giving rise to honest trajectories:

H = {u eXi; V(t)u)ois hones}.

One has the following

PROPOSITION 3.13. The setH is invariant under(V(¢));»o and (A — G)~! (A > 0).
Moreover, for anyu € H, if Z, = {z € X, ; dp € R, such thatpu — z € X} then
span(Z,) N X, C H.

Proof. Letw € H. This means that
t
V() u|| — ||u|| = —ﬁ(/ V(s)uds), YVt > 0.
0

to
Lett, > 0 be fixed and set = V(tp)u. One has|v|| — ||u|| = —a(/ V(s)uds) and,
0
for anyt > t,

IV = to)ol| = luf] = —ﬁ(/OtV(s)uds) _ —ﬁ(/oto V(s)uds) —H(/t:V(s)uds)
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so that

Ve~ oyl = o] -5 /t:ws)uds) “el-a( [ Vi) v

In other wordsp € ‘H and’H is invariant under the action ¢i’(¢)):>. Let A > 0 and

u € H be fixed. One hago((A — G)"'u) = a((A — §)'u) andag((n — G)'u) =

a((n — G)~'u) for any . > 0. One sees as a direct application of the resolvent formula
that

% ((u —G) - g>-1u) _ a((u R g>—1u), V> 0

which amounts tg\ — G)~'u € H. Finally, letu € H andz € Z, be fixed, there is some
nonnegative real numbersuch thapu — z € X,. Then, for anyh € N,

BN — A" 2 < p[BA — A) 7",
Since(E,, u) = 0, Lemma&B.4 clearly implies that

lim (@, [BO—4)7]"2) =0

n—oo

and(V(t)z):>o is honest according to Theorgp. This proves thaf,, C H and, since

E, is a continuous and positive linear form @none deduces easily thatan(Z,)NX, C
H. O

Thanks to the above structure Hf, it is possible to provide sufficient conditions en-
suring that the whole semigroup is honest.

THEOREM 3.14.

(1) If H contains a quasi-interior element then the whole semigroup/’(t)):>o is
honest.

(2) AssumgV(t));>o to be irreducible. Let there exists € X, \ {0} such that
(V(t)u)¢>o is honest. Then, the whole semigrqifit) ) is honest.

Proof. (1)If X contains a quasi-interior elememntthen P9, P4| span(Z,) = X.. One
sees then that, if € H, PropositiorB.I3impliesH = X .

(2) According to PropositioR.13 H is invariant by(A — G)~! for any A > 0. There-
fore,v = (A — G)~'u is a quasi-interior element dft and we conclude by the first
point. O

Before giving some more precise propertiegofet us introduce the notions of ideal
and hereditary subcone:

DEFINITION 3.15. A subcone& of X, is said to behereditary if 0 < v < vandwv € C
implyu € C. Anorder ideal of X is a linear subspaces of X such thatu; < v < us and
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u; € &,1=1,2implyv € o/. An order ideales of X is said to bepositively generated
ifod =(dNXy)—(FNXY).

REMARK 3.16. Notice that, ife is a positively generated order ideal &fthen
ued = |uled.

Indeed, sincey is positively generated one has= u; —u, Withu; € &/NX. Moreover,
according to[Pg, Lemma 2] </ N X is an hereditary subcone &, . In particular, since
0 < |ul <up +ug0negetsu| € &/ NX,.

The subset
H =H—-H
enjoys the following properties:

THEOREM 3.17. Let H be defined by3.§). Then,H is a closed hereditary subcone of
X, and.»Z is an order ideal with induced positive cor€, equal toH. Moreover,/Z is
invariant under(V(t)):>o-

Proof. We first note that, Sincg,, is a positive and continuous linear form over
H= {ue X; (BEy,u) =0forany\ > 0} Nnx,

is clearly a closed convex subcone®f. Moreover, if0 < u < v with v € H then,
forany A > 0, (E,,v) = 0 and consequently=,,u) = 0 sinceE, is positive, i.e. H
is a closed hereditary subcone?®f. It is easy to see that”” := H — 'H is the linear
space generated . Then, by P§, Lemma 2],2# is an order ideal with positive cone
H. The fact that’Z is invariant under the semigrodp’(¢)).>o follows from the previous
Proposition. O

A priori, in the general setting above, iti®t clearthat.”Z is closed inX. However,
we have more precise resultsAi.-spaces (i.e. Banach lattices with additive norm) and
in preduals of von Neumann algebras.

PROPOSITION3.18. (i) If X is a AL-space thew? is a closed lattice ideal (and therefore
a projection band) of. In particular, there exists a band projectidhonto.”# such that
K = PX and X = 2 © s, where the disjoint complemen¥#, of 7Z is given by
K= (I — P)X.

(ii) Let X be the predual of a von Neumann algebra. Th#fijs a closed order ideal.

Proof. (i) Let (u,), C 4 be such that,, — « in X. By assumptiony,, = v,, — w,, with
Un, W, € H. In particular,|u,| < v, + w, and(E,, |u,|) < (Bx,v,) + (Ex,w,) = 0
whence|u,,| € H. It follows that the negative and positive patts andw,” both belong
to H. SinceX is a vector lattice, the mappings€ X — v+ € X, are continuous
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[E9, Proposition 5.2], one hag" — «* andu™',u~ belong toH. This proves that: =
ut —u- € A.

(i) If A is a von Neumann algebra adl = 2, is its predual, then the mapping
u € X — |u| € X, is continuous (see e.gB], Proposition 4.10, p. 415]) and then,
arguing as in (i), one gets the conclusion. O

REMARK 3.19. In the above case (i), the positive cone of the disjoint cempht’Z;
does not contain non-trivial elements with a honest traject In particular, dishonest
trajectories are all emanating from elements of the positone oft = .77 & .77 having
a non-trivial component ovef7;.

We now deal with two practical examples for concrete spaces:

Example 1: The space of bounded signed measures(>:, F) be a measure space and
X = M(X,F) denote the Banach space of all bounded signed measure$>ave)
endowed with the total variation norm:

[l =1pl(X),  YuweM.

We recall here thak = M(X, F) is a AL-space [I9, Example 3, p. 114] and every
u € X splits asy = . — pwherepy € X, and|p| = py + p—. Given two measures
w andv of X, we shall denoter < 1 if v is absolutely continuous with respect |ig.
Using the terminology offfl, we shall say that a closed subspageof X = M (X, F) is

a M-ideal if, for anyu € o7 and anyv € X, v < pimpliesrv € /. Then, one has the
following

PROPOSITION3.20. A subspace? of M (X, F) is a M-ideal of M if and only if< is a
closed and positively generated order ideallef(>:, F).

Proof. Let us first assume that is a closed and positively generated order idea ahd
let © € o andr € X such thatr < p. From Radon-Nikodym Theorem, there is some
h € L'(X, F),d|u|) such thaty = h|u|. Thus,|v| = |h| || and

Jim [[lv] — ]| = 0

whereg,, := (|h| An) |u|. Indeeds,, < |v| foranyn € N and

[ = Ball = V] (33) = Ba(%) = /Z [[Al = (Al An)]d g

goes to zero a8 — oo according to the dominated convergence theorem. Nwg
n|ul with |u| € o (see RemarB.1§ and, from the ideal propertys, € A. From the
closedness of7, one gets thay| € A. Since— |v| < v < |v|, one finally obtaing € A
and.«/ is a M-ideal. Conversely, let? be aM-ideal. By definition, ifu € o/ then
lu| € o7 andpy € . In particular,o/ = (& N X,) — (&7 N X,). Moreover, since



22 L. ARLOTTI, B. LODS & M. MOKHTAR-KHARROUBI

0<pu<v = u=<v,oneseesthay N X, is an hereditary subcone éf, and.< is
an order ideal of¢ according tof§, Lemma 2]. O

One deduces from this the following which allows to give a ptete description of
the state: leading to a dishonest trajectory (see Renfafd):

PrROPOSITION3.21. Under the assumptions of Theor@l] with X = M (X, F), one
has.Z is a M-ideal of X andX = 7 & 7, where

Hy={peX=M(X,F) suchthatr < pandv € # — v =0 }. (3.7)
Proof. We saw in TheorerB.I7that.7# is a closed lattice ideal ot. In particular, one
can define a band projectidhonto.7# such that7zZ = PX and the disjoint complement
; of A given by.#;, = (I — P)X are such that = 7 @ % [29]. Since, according
to Prop.B:20) 7 is a M-ideal of X, one deduces fronf] that %, = #* wheres#* is
given by B.7). O
Example 2: The space of trace class operatdie assume here that = .7,(h) is the
Banach space of all linear self-adjoint trace class opesaio some separable Hilbert
spaceh endowed with the trace norfp|| = Trace||o|] for any o € X (see 7] for
details). The scalar product ¢fshall be denoted by:, -). Under the assumptions of

the present section, one deduces fr@g®, [Theorem 5] that, for anyx > 0, there exists
By € ZF(h) such that

(Ex, u) = Trace[5)0] Voe Xy

where 27 (h) is the space of all positive bounded self-adjoint operator§. One has
the following

THEOREM 3.22. The null space of, is independent of and
H={0eX;;0=Po=0P}={0€X;;Qo=0Q=0}
whereP is the projection ofy ontoNull(5,) whileQ = Id, — P.

Proof. Let A > 0 be fixed. According to Theorem 3.1F, is a closed hereditary subcone
of X,. On the other hand, closed hereditary coneX afre characterized in [10, Lemma
3.2, P. 54-55] which tells us that the set

ho ={h € b; |h)(h] € H}
is a closed linear subspdlasf h and
H={oc€X;;0=Po=oP}

whereP is the orthogonal projection gfontoh, while |h) (k| denotes the one-dimensional
trace class operatorz — (x, h)h. The proof consists in showing thatull(5,) = b, for

INotice that, in [10, Lemma 3.2, P. 54-55], Davies calls ideat we call closed hereditary subcone
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any X\ > 0. First, leth € ho, h # 0 and leto = |h)(h|. For any orthonormal basis,,),,
of h we have

Trace[ﬁ,\g] = Z(ﬁw(en), en) = Z(Qemﬁ>\<6n>>

n

=Y (hoea) (hBalen) = D (hoen) (Ba(h), en).

n

Choosing in particular a bas{s,,),, with e, = h/||h||, one gets that
Trace[Bro] = 0 <= (Or(h),h) = 0 <= h € Null(5,)

sincef, > 0. This proves thab, = Null(/,) which, in particular, turns out to be inde-
pendent of\ > 0. Finally, sincePQ = 0 andP + Q = 1Id, we see that = Pp = oP
amounts tdQo = 0 Q = 0. This is equivalent t@)o Q = 0. 0J

This allows to provide a full characterization .64’
COROLLARY 3.23.0nehas’Z =H-H={o€X;0=Po=0P}.

Proof. The fact that’z C {0 € X; 0 = Po = oP } is clear. Conversely, let € X be
such thap = Pp = ¢ P. Sincep € Z,(h), one has

0= Zan|en><en|

where(e, ), is an orthonormal basis ¢fmade of eigenvectors efassociated to the real
eigenvaluesa, ), i.e. o(h) = > a,(h,e,)e, foranyh € . Sincep = o P, one has

Zanhenen ZanPhen en ZanhPen en Vh € b

while, sincePp = p, one hag(h) = > «a,(h,Pe,)Pe, foranyh € b. In particular,
0= Z a,|Pey) (Pey|.

As we saw in the proof of the above theorele,, ) (Pe,| € H for anyn € N so that,
writing o, = o — a; with o= > 0, we see thap = o™ — o~ with o* € H. O

3.4. Sufficient conditions of honesty.We provide here sufficient conditions of honesty
based on the above Theor§ni]land on a new derivation of the functiori}

THEOREM 3.24. For any A > 0, let (%(A)) C X* be defined inductively by
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where we recall that is the positive functional defined {fL.1). Then, (¢, (\)),, is
nonincreasing and converges in the weatopology ofX to ¢)(\) such that

(B = A w(A) = ¢(N). (3.8)
Moreover)(\) = E, for all A > 0 andE, is the maximal element i) € X*, ¢ < ¥}
satisfying(B-9.
Proof. It is clear thafB(\ — .4)~!]" is a positive contraction i*. Then, for allky € X*
with [[9]] < 1,

1B =A™ v <
or, in an equivalent way,
([BO =A™ bu) < Jlull = (T,u),  Vue Xy,

i.e. ¥ —[B(\ — A)~!]"¢ is an element of the positive coneXf. Actually, it is straight-
forward to see that, for any given € X, the sequencé(y,,(\), u)), is bounded and
nonincreasing ik,. This means that, (\)),, converges in the weak-topology to
somey(\) < W. Letu € X, be given Then,

(n1(A), 1) = ([BO = A7 4a(A), 1) = (n(A), BO = A)"u)
so, lettingn — oo,
(W), u) = (W), B = A)~Mu)
which shows[B.§). Now, since

N
<
{

= le ( n+1)*\11,u>
n+1 ¢()\)7 U>

one sees thap(\) = E,. Let us now prove thazb(/\) = =, is the maximal element of
{v € X*, 0 <y < ¥} satisfying B9 (A > 0). To do so, let) be in the positive cone of
X*, ¢ < W be such thalB(\ — A)~']" ¢ = 1. Then,

¢=<WO—N*TY¢<<WO—N”TYW

—

which proves, letting: go to infinity, thaty < =, O

= lim
n—oo

As a consequence, one has

COROLLARY 3.25. Assume there exists> 0 such that3(\ —.A) ! is irreducible. Then,
the whole semigroupV(t)).>¢ is honest if and only if there is somec X, u # 0, for
which the trajectoryV(¢)u);>o is honest.
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Proof. We give two proofs of this result. The first one uses Thedgebd and the second
one the spectral interpretation of the functioBsl
Proof 1 Letu € X, \ {0} andw € X% \ {0}. Then,(A — A*)~'w € X7 \ {0} and

(w,(A=G) u) = Z <w, A=A B - A)_l}k u>

-3 <()\ — A, [B(A — A)—l}ku> >0
k=0
where we used the fact that there exisfs> 0 such that
(0= A7), [BO = A7 u) > 0.

One obtains then thgt, (A — G)'u) > 0 for anyw € X% \ {0}, i.e. (A —G) tuis
quasi-interior for anyu € X, \ {0}. Thus,(V(t)):>o is irreducible and Theorefd.14
leads to the conclusion.

Proof 2 Let B(A—.A)~! be irreducible and assume there exists some honest tnajecto
(V(t)u)eso With w € X, \ {0}. Then, from TheorenB.1], (E,,u) = 0. Assume that
E, # 0. Then, for any: € X \ {0}, there exists an integer > 0 such that

(B, [BA=A)'"2) >0.
According to Theorerf$.Z4 it is clear that
@2 = (([BO = A7) Ex2) = (B, [BO- A7) 2)

i.e. (B, z) > 0foranyz € X, \ {0}. This is a contradiction and, necessariy, = 0.
Thus, the whole semigroup’(t)):>o is honest. O

We end this section with two practical sufficient conditi@msuring the existence of
honest trajectories:

THEOREM 3.26. Let A > 0 andu € X, be such that
B\ — A) 'u < u, (3.9)
then the trajectoryV(t)u);>o is honest.

Proof. Since B(A — A)~! is positive, our assumptiorg(9) implies that the sequence
([B(A = A)~Y"u),, is nonincreasing itk and

[B(A—A)_l}nuéu, Vn > 1.

Therefore the whole sequen@8(\ — .A)~'"u),, is convergent irX which ends the proof
because of Theorefj. O

This provides another honesty criterion in terms of suleglues ofd + B.
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COROLLARY 3.27. Assume that there exists> 0 andu € Z(A), suchthatl A+ B)u <
Au, Then,(V(t)u):>o is honest.

Proof. Definez = (A — A)u. One has: > Bu > 0 andz satisfies[8.9). The trajectory
(V(t)z):>0 is therefore honest from TheorgiZ§ Definingv = (A — G) !z, one has
also that(V(t)v),>o is honest (see PropositifT]. Since0 < u = (A — A)"'z < v,
(V(t)u):>o is honest sincé{ is a closed hereditary subcone®f (see Theorer.I]).
U

3.5. Instantaneous dishonesty.According to DefinitionB.3, if a trajectory(V(¢)u):>o
is not honest, then there exigts> 0 such that

Vo)l < [lul —ﬁ(/OtOV(s)uds) (3.10)

This suggests to introduce the following mass loss funelion

t
A1) = |V()ull — ||u|l +a</ V(s)uds), t>0.
0
One has the following property:

LEMMA 3.28. For anyu € X, the mapping > 0 — A, (¢) is nonincreasing.

Proof. Lett, > ¢; > 0 be fixed. Then,

Aultz) = Au(t) = [V(t2ull — V()| +a( / “V(s)uds)

t1

— WVt — V(b)) + / “V(s)uds).

t1

to
SinceV(to)u — V(t)u = g/ V(s)uds, one sees that
t1

to

Ay (te) — Ay(ty) = ﬁ(/ 2 V(s)uds) — ao(/ V(s)uds) = 0,

t1 t1

sincea always dominate,. O

LEMMA 3.29. Letu € X.. If the trajectory(V(t)u):> is dishonest, then there exists
to > 0 suchthath,(¢) < 0foranyt > t, andA,(t) < 0foranyt > 0 wherev = V(ty)u.

Proof. By definition of dishonest trajectory and singg(¢) < 0 for anyt > 0, one has
to := inf{t > 0 such thatA,(¢) < 0}
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is well-defined. Sincé\,(-) is nonincreasing, one hds,(¢) < 0 for anyt > ¢,. More-
over, since the mapping— A, (t) € (—oo,0] is clearly continuous, one has,(t) = 0
for anyt € [0,to]. Setv = V(tp)u. For anyt > 0, sinceA,(t + ty) < 0 one has

V@)l = [V +to)ull < [lu] —ﬁ(/O V(s)uds)

while the identityA,, (t,) = 0 readsl|u|| = |jv|| +a(J," V(s)uds). Consequently,

Vel < [V(to)ull + ( / ’ v<s>uds) g < [ V(S)uds)
~ ol -5 / V(spuds ) = ol =5 ([ Viryuar)

i.e. A,(t) < Oforallt > 0. O

To summarize, when the semigro(p(¢)):>o is dishonest, that is, if some trajectory
(V(t)u)i=o is not honest, then it is possible to find some= X, \ {0} such that the
trajectory emanating from is instantaneouslgishonest, i.eA,(t) < 0 for anyt > 0.

In particular, whenever

(O, (A+Bu)=0 Vue 2.,

the semigroupV(t)):>o is dishonest if and only if there exists somes X, \ {0} such
that

vzl <=l vt>0.
THEOREM 3.30. Assume that®, (A + B)u) = 0 for anyu € 2. If G # A+ B then
V@ull <llul,  t>0

for any quasi-interiorn € X, .

Proof. If (V(t)):>o is dishonest, then, according to LempaY, there exists € X, \ {0}
such that|V(t)z|| < ||z|| for all ¢ > 0. In particular,
(T V(t)z —z) <0, Vit > 0.
DefineZ, := ¥ — V*(¢t)¥ € X*, for anyt > 0 where(V*(¢)):>o is the dual contractions
semigroup of(V(t)):>o. Since(¥,V(t)u —u) < 0 for anyu € X, Z; belongs to the
positive conex’. of X* for anyt > 0 while
(Z,2) >0, vt > 0.

Therefore 2, belongs tax” \ {0} for anyt > 0. Therefore, for any quasi-interiare X
one has

(Z,u)y >0, vt > 0.
This proves the result. 0J
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REMARK 3.31. WhenevetX isan AL-space, it is possible to prove a more general re-
sult of immediate dishonesty by resuming in a straightfedweay the arguments 3,
Corollary 2.12] Precisely, recall that, ifX is an AL-space,7# is a projection band
of X (see Prop.B. 19 and letP be the band projection ontg#”. Then, one can prove
the following: let us assume thav'(¢)):>, is not honest and let € X, be such that
v = (I — P)u is a quasi-interior element of the disjoint complement&t Then, the
trajectory (V(t)u);>o is immediately dishonest, i.e. || V(¢)u|| < |Ju| — a(fot V(s)uds) for
anyt > 0. However, from the technical point of view, the formal argatseneed the use
of the concept of local honesty as[ff].

4. ON HONESTY THEORY. DYSON-PHILLIPS APPROACH

We establish here an alternative of concept of honesty df#jectory in terms of the
Dyson-Phillips iterated defined bfZ.(l}). To do so, we have first to investigate several
fine properties of these iteration terms.

4.1. Fine properties of the Dyson-Phillips iterations. The various terms of the Dyson-
Phillips seriesf.T9) enjoy the following properties:

PROPOSITION4.1. For anyn € N, n > 1, the Dyson-Phillips iterated defined @19
satisfy:

(1) Foranyu € 2(.A), the mapping € (0, 00) — V,(t)u is continuously differen-
tiable with

CV.(t)u = Valt) Au + Y, (0)Bu.

(2) Foranyu € 2(A), V,.(t)u € 2(A), the mapping € (0,00) — AV, (t)u is
continuous and

AV, () u =V, (t)Au+ V1 (t)Bu — BV, 1 (t)u

t
(3) Foranyu € X and anyt > O,/ Vo(s)uds € 2(A), the mapping € (0, 00) —
0

A [3V,(s)uds is continuous with
t t
.A/ Vo(s)uds =V, (t)u — B/ Vo-1(s)uds. (4.1)
0 0
(4) Foranyu € X, and anyt > 0,

<\1:,B/Ot Vn(s)uds> < — (W, V() + <x1:,3/0t Vn_l(s)uds>. (4.2)
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(5) For anyu € X, and\ > 0, the limit

t

lim exp(—)\s)Vn(s)uds::/ exp(—As)V,(s)uds
0

t—o00 0

exists in the graph norm od and
(N — A)/ exp(—As)V,(s)uds = B/ exp(—As)V,_1(s)uds. (4.3)
0 0

REMARK 4.2. Notice that, in EqE3), B [, exp(—Xs)V,—1(s)uds is well-defined since
B is A-bounded and the integral converges in the graph nortd oMoreover, it is easily
deduced fronf.3) that

B/OOO exp(—As)Vu(s)uds = [B(X — A)‘l]"H u, Vue X, n>1. (4.4)
Proof. We first recall that the formuld(19) reads ornZ(.A) as:
Vi1 (t)u = /t Vot — s)BU(s)uds, Vu € Z(A), t>0, neN.
Then 0
W (h)u = h /0 ' Va(h — 8)BU(s)u — V,(0)BU0)u  as h— 0"

because the mapping, ) — V,(h — s)BU(s)u is strongly continuous oK(s, h) €
Ry xRy ;0 < s < h}. SinceVy(0) = Uy(0) = Id while V,,(0) = 0 for anyn > 1, we
see that

Bu whenn =0
lim ™'V, (h)u = 4.5
sy Vara(h)u {O whenn > 1, Yu € Z(A). (45)
(1) Letn > 1 be fixed. Letu € Z(.A) andt, h > 0 be fixed. One deduces frofd.[(})
that, givent > 0 andh > 0,
n—1
Vot + b = Vo (t)u =Y Vi(t)Vaor(h)u + V() (Vo(h)u — u)

k=0
n

= Vak®Vi(B)u + Vo(t) Vo(h)u — u).

- Vo(h)u — u
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which yields, since: € Z(A),
lim Vot + h)u — V,(t)u
h—0+ h
Similarly, it is easy to prove that, for arty> 0 and any0 < h < t,

= Vo1 () Bu + V(1) Au.

Vo(t)u —V,(t — h)u = 2": Vi (t = h)Vi(h)u + V, (t — h)(Vo(h)u — u) (4.6)
k=1
and therefore

- Vau =Vt —h)u
hli%i A = V,_1(t)Bu + V, (t)Au.
Since, for anyu € Z(A), the mapping — V,,_1(t)Bu + V,(t).Au is continuous (see
Remark2.4), property(1) holds true.

(2) Letu € Z2(A). Itis clear that the two properties
Vie(t)u € 2(A) and ¢ >0~ AV(t)uis continuous

hold true fork = 0. Letn > 1 be fixed and assume the above properties hold true for any
k < n and prove they still hold fok = n + 1. For anyt, h > 0, Eq. €.17) yields

n+1

Vi (t +h)u= Vo (h+thu =Y Vi(h)Vi1s(t)u

k=0
so that
n+1

Vo(h)Vai1(t)u—Vai1(H)u = Vara (t+h)u— Vg (t)u) — Z Vi(h) Vi (t)u. (4.7)

Assume now: € Z(.A), by virtue of point(1) and @.5), we have
lim Vo(M)Vas1(H)u — Vaia (H)u

h—0+ h
This shows thaV,, ;1 (t)u € Z(A) for anyu € Z(A) with

AV, 1 (H)u = Vo1 (D) Au + V, (1) Bu — BV, (t)u
and proveg2) since the continuity of the mappirtg> 0 — AV, .1(t)u is easy to prove.

=V, (t)Bu + Vi1 (t) Au — BV, (t)u.

(3) The first part of point(3) clearly holds forn = 0. Letu € X andn € N be
t

fixed. Assume that, for any > 0 and anyk < n, / Vie(s)uds € 2(A), the mapping
0
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t € (0,00) — A [; Vi(s)uds is continuous. Let us prove the result for= n + 1. Let
t,h > 0. From @7 we have

(Vo(h) — Id)/O Vis1(s)uds = /0 Vo(h) Va1 (s)u — Vuri(s)u)ds

= /0 (Vnr1(s+h)u — Vg (s)u)ds — Z Vi(h) /0 Vis1-k(s)uds

t+h h ntl t
= / Vi1 (r)udr — / Vi1 (r)udr — Z Vk(h)/ Vis1-k(s)uds.
t 0 o1 0

Since we assumed thﬁ Vi(s)uds € 2(A) C 2(B) for any0 < j < n, we deduce
immediately

lim A~ '(Vo(h) —1d) /t Vit1(s)uds = V11 (t)u — B/t Vu(s)uds

h—0t

t+h
V

where we used(9) and the fact thab™' [, wriuds — Vg (t)u ash — 07. There-

fore, property(3) holds true fom + 1.

t

(4) Letu € X andt > 0 be fixed. Applyingg.]) tov = / V,.(s)uds (which belongs
0
to 7(A) from point(3)), one deduces easilff{) from @).

(5) It is clear that the definition of,(¢) given in is equivalent to

t
exp(—At) Vi1 (t)u = / exp (—A(t — ) Vn(t — s)Bexp (—As) U(s)] uds
0
foranyu € 2(A), n € N and anyA > 0. Moreover, for any\ > 0, the operators
Ay = A — X (with domainZ(.A)) andB satisfy the assumptions of Theorefh§ since
(U, (Ax+ B)u) < =\ (¥, u) <0, Vue D(A);, A > 0.

One sees then that there is an extensioAof B that generates@,-semigroug V(1))
in X. Clearly, the family(exp(—At)V,(t)), oy is the family of Dyson-Phillips iterated
associated tod,, B and V,(t). In particular, applying FormulgZ() to A,, B and
(exp(=At)Vyu(1)),,cn» ONE gEtS

A/O exp(—As)V,(s)uds = exp(—At)V,, (t)u + )\/0 exp(—As)V,(s)uds

t
— B/ exp(—=As)V,_1(s)uds, VYA >0, YueX, n>1 (4.8)
0
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Notice that, since for any € N, V,(t) = Z"(U)(t), we already saw in the proof of
Theorenf.3that, for anyu € X and any\ > 0, the limit

t

lim [ exp(—As)V,(s)uds

t—o00 0

exists inX and
/ exp(—As)V,(s)uds = (A — A) 7' [BOA—A) '] "« Vn € N. (4.9)
0
Now, forn = 0, since
t t
A/ exp(—As)U(s)uds = exp(—=M)U(t)u — u + )\/ exp(—As)U(s)uds
0 0

one easily sees that the lintitn,; ., .4 f(f exp(—As)U(s)uds exists inX with

t 00
lim A [ exp(—As)U(s)uds = —u + )\/ exp(—As)U(s)uds,
0

t—o00 0

o0

ie. exp(—As)U(s)uds converges in the graph norm gf. SinceB is .A-bounded,
0
the limit

t—o0

lim B/O exp(—As)U(s)uds = B/OOO exp(—As)U(s)uds = B(A — A)"tu

exists inX. Now, applying ton =1, the integral/ exp(—As)V; (s)uds converges
in the graph norm of4 with "

A/OOO exp(—As)Vi(s)uds = A /000 exp(—As)Vi(s)uds — B/OOO exp(—As)U(s)uds

and, as above, sindgis .A-bounded,
t

lim B [ exp(—As)Vi(s)uds = B/ exp(—As)Vi(s)uds
0

t—o00 0

converges irX. A simple induction leads to the result for anye N. O
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REMARK 4.3. Note thatA is closed but a priorid + B is not; however for € D(.A)

(A+B) /t Vi(r)udr = (A + B) /t Ve(r)udr = /t(.A + B)Vy(r)udr

t

= / (A + B)Vi(r)udr = /t(A + B)Vy(r)udr
= /t(A + B)Vi(r)udr = /t AV (r)udr + /t BV (r)udr;
" " " (4.10)

in particular
t t
B/ Vk(r)udr:/ BV, (r)udr.
0 0

From the above Propositiotim; .. B [, exp(—As)V,(s)uds converges to zero for
anyn € N and anyu € X,. Actually, this convergence is uniform with respectito

PROPOSITION4.4. For any A > 0 and anyu € X, one has

lim sup B/ exp(—As)V,(s)uds|| = 0.
=00 peN t
Proof. The combination offf.§) and §.3) gives
A/ exp(—=As)Vu(s)uds = —e MV, (Hu + )\/ exp(—As)V,(s)uds
t t

B /t " exp(—As) Va1 (s)uds
so that
<x1:,,4/t°° exp(—As)V (s)u ds> _ <\1:,A/too exp(—)\s)Vn(s)uds>
— (W, eV, (t)u) — <\II,B/:O exp(—)\s)Vn_l(s)uds> :
Since [ exp(—As)Va (s)uds € Z(A), for u € X. then by E)

<x1:,,4/t°o exp(—)\s)Vn(s)uds> <- <\II,B/;O exp(—)\s)Vn(s)uds>
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whence
<xp,3 /t N exp(—)\s)Vn(s)uds> + <\1:,A /t N exp(—)\s)Vn(s)uds>

< (U, eV, (Hu) + <\I/,B/too exp(—)\s)Vn_l(s)uds>.

In particular for alln

<\Il,8/too exp(—)\s)Vn(s)uds> < <\Il,e‘MVn(t)u>+<\Il,B/too exp(—)\s)Vn_l(s)uds>

and it follows by induction that

n

<\1:,B/too exp(—)\s)Vn(s)uds> <> (e MV(tu) +

i=1

<x1/,3 /t h exp(—)\s)VO(s)uds>

< (7, e_AtV(t)u> + <lIl, B/too exp(—)\s)Vo(s)uds>

and then

B/too exp(—As)V,(s)uds

< e Mul| + HB/ exp(—As)Vo(s)uds
t

which ends the proof sincé = X, — X . O

4.2. A new functional. While, in Section 3, we introduced a functionalrelated to
a through the resolvent\ — A)~!, we introduce here a new functionalconstructed
through the Dyson-Phillips iteration terms:

PROPOSITION4.5. Under the assumption of Theorg, for anyv € 2(G), there exists

[e.e]

tli%l % ; a (/0 Vn(s)vds) =:1a(v) (4.11)

with [a(v)| < 4M (||v]| + ||Gv||). Furthermore, forv € 2(G),, a(v) < ag(v) < [|Gv]|.

Proof. First, one notices that, for anye X, n € N and anyt > 0, one has

; . (/Ot Vk(s)uds) < (/OtV(s)uds) . <x1:,g/0tv<s)uds> |
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In particular, the serie} - a ( f(f Vk(s)uds> converges with

. (/Ot Vk(s)uds) < <\II,Q/OtV(s)uds> < ul. (4.12)

Now, for any integer® < n; < no < ngs, since, forany,r > 0

2n9 2n9—k 2no

ZVk(s) (Z Vp(r)u> Z Z V(s r)u= ZV’“ (s+1)u
k=0 p=0

k=0 p=0

we get, for anyt, 7 > 0

S vionar] ) < S ([ as [t

=0

2n2 r 2n;
</ V(s [/ udr]d) Yu € X.

Letting firstns thenn, and flnallyn1 go to infinity, we get

ga(/otvm) [ Vo] as) < ga(/otds/oTVk(err)udr)

. ( /0 Vi) { /0 ' v<r>udr} ds)
ia(/otvk(s){/;v udr} ):ia(/ds/ Vks+rudr) Yu € X

k=0
In particular, for anyt, 7 > 0

ia(/otvk(s)[/;li(r)udr}ds):ia</0TVk(s)[/otV( )udr} ) (4.13)

k=0 k=0

From Eq.
o0 t
da (/ Vk(s)uds) <2M|lul|  VueX.
k=0 0
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Sincelim, o+ 77! [ V(s)uds = u, one gets that
1 o0 t T o0 t
lim — _ _
lim — 2 a (/0 Vi(s) [/0 V(r)udr} ds) kZ:O a (/0 Vk(s)uds) Vi >0

(4.14)
Now, foru € 2(G)., Eq. @12 reads

. ( /0 t Vk(s)uds) <- <\1: /O tV(s)Quds> _ /0 V(s)Guds

since||¥|| < 1. One extends this estimate @(G) in the following way: letu € 2(G)
be given and let = u — Gu € X. Then, there exist;, v, In X, with v = v; — v, and
|vi|| < M|v]],i=1,2. Setu; = (1 — G) v, i =1,2. Thenu; € 2(G) 1, ||uil| < [Jvil],
1=1,2and

< t|Gu| (4.15)

1Gurll + [[Guzll < 2 ([Joal] + [[o2]l) < 4M o]l < 4M (Jlu] + [[Gull) -

Now, from @.19),
o ([ o)

2o (f o) -3
2 a (/Ot Vk(s)uds)

Foranyv € X and anyt, t, > 0fixed, applying the above estimateite= % Otl V(r)vdr—
L [ V(r)vdr € 2(G) we get

:a(/vk L/ Vir Udr__/ Vir Udr} )

l/ vdr——/ r)vdr
t1 Jo

1 t2
—g/ V(r)vdr — —g/ V(r)vdr
t1 0 to 0

t([|Gull + [|Guall)

<AMt(Jul +|Gull)  Yue 2(G), t>0.  (4.16)

~

AM1

AMt
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which, by virtue of .13, reads

e ([ i) = ([ v
— a Vi(s)zds | — — a Vi(s)zds || <
tlkgo(o og2ds) S a ([ o

1 1 [
— V(r)vdr — —/ V(r)vdr
t1 Jo t2 Jo

t1 to
AM +4M V(r)vdr — tig/ V(r)vdr
2 Jo

1
Eg

0

wherez = ¢t~! [ V(r)udr. Letting nowt — 0* one deduces fronfi(19) that

P

k=0 0

<

! Vk(s)vds> - ti i . ( Otz Vk(s)vds>

2 k=0

1 L[
— V(r)vdr — — V(r)vdr
t1 Jo ta Jo

1, (" 1, ("
—g/ V(r)vdr — —G V(r)vdr
t 0 to

1 0

AM +4M

If v e 2(G) thenlG [ V(r)vdr = L [ V(r)Gudr, i = 1,2 and itis easy to see that,
for anye > 0, there exist$ > 0 such that

% i:: . ( /0 ! Vk(s)vds) -2 S a < /0 ’ Vk(s)vds>

This achieves to prove that, for anye 2(G), the limitlim, o+ 1 > 77 ja (fot Vk(s)vds>

exists. We denote this limit by(v) and the first part of the Theorem is proved. The first
estimatda(v)| < 4M (||v|| + ||Gv]|) is a direct consequence @E.L#. Finally, since

g% a </Ot Vk(S)UdS) < ag (/OtV(s)vds)

< 4Me, VO <t <ty <.

one gets that
0 t t
~ T -1 : —1 —
a(v) = tl_l,%lt kgzo a </0 Vk(s)vds) < tl_l,%lt ag </0 V(s)vds) = ay(v)

sincelim; o+ %fot V(s)uvds = v in the graph norm off anday(-) is continuous with
respect to the graph norm 6f(G). The fact that,(v) < ||Gv|| is a direct consequence
of the estimatg| ¥ || < 1. O

Before investigating further properties of the functionabe need to establish several
properties of the various term4,(t) appearing inf.19).
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4.3. Further properties of a. We are now in position to establish very useful properties
of the functionali complementing Propositidhj.

PROPOSITION 4.6. The functionala(-) : 2(G) — R defined by(a.1]) is such that
a(v) = ag(v) foranyv € 2(A). Consequently,

a(u) = ag(u), Yu e 2(A+B).
Proof. From @.]) one sees that, for any> 1 and anyu € X

n

Z(.A + B) /t Vi(s)uds = zn:Vk(s)u —u+ B/t Vo (s)uds, Vn e N. (4.17)
0 0

k=0 k=0
In particular,

— <\IJ,Z(A+B)/O Vk(s)uds> = (W, u)—

Lettingn go to infinity, we see thdim,, .., HB fot Vn(s)uds‘

i a </Ot Vk(S)UdS) = (¥, u—=V(t)u) — lim <\II,B/Ot Vn(s)uds> . Vt>0.

(4.18)
Now, for anyu € 2(.A), and anyk > 1, one deduces from Propositignl, (2) that

(U, BVi(s)u) < — (U, AVi(s)u) = (¥, BVy_1(s)u) — (¥, Vi(s)Au) — (¥, Vi_1(s)Bu)
and

n

(D, Vk(s)u>—<\11, B/Ot Vn(s)uds> .

k=0

exists and

(W, BVy(s)uy — (¥, BVy_1(s)u) < — (¥, Vi(s)Au) Vs > 0. (4.19)

Since, for anyu € Z(A) the seriesy "~ , Vi (t).Au converges td/(t).Au uniformly on
every bounded time interval, for affy > 0 and any: > 0, there existsV > 1 such that,
foranys € (0,7) and anyn > N, |> .y (¥, Vi(s)Au)| < e. From @19, one gets

> (W, BVi(s)u) — (¥,BV(s)u)) <&, Vs € (0,T)

k=N
ie. (U, BV, (s)u) < (¥,BVn_1(s)u) + ¢ foranys € (0,7). FixedN > 1 andu €
Z(A), the mapping € (0,7) — BVx_1(s)u being continuous and converging to zero
ass — 07, there existg > 0 such that{¥, BVy_;(s)u) < ¢ forany0 < s < t and
consequently¥, BV, (s)u) < 2¢ foranyn > N and any0 < s < t. Now, from Eq.

(EI0) one has
t t
<III,B/ Vn(s)uds> = <III,/ BVn(s)uds> < 2et Vn > N.
0 0
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Then, one deduces frorf.{(§) that

ki;ot_la (/Ot Vk(s)uds) _ <\1; %>

u—V(t)u
t
|a(u) — ag(u)| < 2e. This proves thati coincides witha, on Z(A) sincee is arbitrary.
Finally, if «w € 2(A+ B), there exists a sequen¢e,), C Z(A) with u, — u and
(A + B)u, — Guasn — oo. Sincea(u,) = ag(u,) for anyn € N, one deduces easily
thata(u) = ag(u). O

4.4. Mild honesty. We introduce now another concept of honest trajectoriedigiin-
guish it a priori from the previous one, we will speak rather of mild honesty.

< 2 vt > 0.

Lettingt — 0T, sincelim; o+ ¢t~ ( P, = — (¥, Gu) = ag(u), we get that

DEFINITION 4.7. Letu € X, be given. Then, the trajecto(y(t)u),>o is said to bemild
honest if and only if

t
1V E)u| = |Jull —a(/ V(s)uds), foranyt > 0.
0

We are now in position to state the main result of this sectieminiscent to Theorem
B.5:
THEOREM4.8. Givenu € X, the following statements are equivalent

(1) the trajectory(V(t)u);>o is mild honest;

(2) lim,, . ||IB fot V. (s)uds|| = 0 for anyt > 0;

(3) Jy V(s)uds € 2(A+ B) for anyt > 0;

(4) the set(B fot Vn(s)ud$> is relatively weakly compact ifi for any¢ > 0.

Proof. Letu € X andt > 0 be fixed. One hag, V(s)uds € 2(G) and

q ( /0 t V(s)uds) = lim " é . ( /0 "V (s)ds { /0 t V(r)uer |

From @13 and f.19), it is easy to deduce that

[e.e]

a (/Ot V(s)uds) = Za (/Ot Vn(s)uds) , Yu e X, t>0. (4.20)

n=0

Thus, Eq. can be rewritten as

q ( /0 tV(s)uds) — (W - V(t)u) — lim HB /0 V() uds

n—oo
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This proves immediately th§l) < (2). Let us prove tha{2) —- (3). Observe that,
according to[f.T7

(A+B) ( /Vk uds) ka u—u—l—B/V Juds

so that, from(2) we deduce that the right-hand side convergeg(tou — u asn goes to
infinity. Since3";_, [2 Vi.(s)uds converges tgfo s)uds asn goes to infinity, one gets

immediately tha(3) holds with (A+ B) [, V(s)uds = V(t)u — u. Let us now assume
that(3) holds. Then, from@.9),

a ( /0 t V(s)uds) ~a ( /0 tV(s)uds)

ie. a (fo uds) = ||u|| = [[V(t)u|| which is nothing bui(1). Assume now(4) to
hold. Then, up to extracting a subsequence, we may assuméﬂfla? Juds converges
weakly to some € X. Then,> "} _, f(f Vi (s)uds converges weakly tgfo s)uds while

n t
(A+B) Z/ Vi(s)uds converges weakly t@V (t)u — u — v) .
0

In particular, fo s)uds, V(t)u —u — v ) belongs to the weak closure (and thus the
strong closure) of the graph of + B. In particular,(3) holds. Finally, it is clear that
2 = @) O

The following result proves that the two notions of honestg enild honesty are equiv-
alent:

THEOREM 4.9. The two functional& anda coincide and consequently the notions of
honest or mild honest trajectories are equivalent.

Proof. Letu € X, andX > 0 be given. One deduces frofi.P0) that

/OOO exp(—At)a (/Ot V(s)uds) dt = ; /OOO exp(—At)a (/Ot vk(s)uds) dt

because aII the functions involved are positive. On therdtaad, since the mappirtg>
0 — [y V(s)uds € 2(G) is continuous as well as the mapping: 0 — [, Vi(s)uds €
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2(A) C 2(G), we have

/0 " exp(—\)a ( /0 t V(s)uds) dt—a ( /O " exp(—A)d /0 t V(s)uds)

— 53 ([T ewtraveus) = a0 - 4

sincea is Z(G)-continuous. We also have, for ahye N

/OOO exp(—At)a (/Ot Vk(s)uds) dt = ag (/OOO exp(—At)dt /Ot vk(s)uds)
- 5o ( /OOO exp<—A8Wk<s>uds) = so0 (A= 47 (B - A7) )

_ %a (A= (BO -4 )

where we used4(9) and the fact thad, is Z(G)-continuous. Hence

o0

F(A-A) M) =Y a ((A — A (B — A u)

k=0
which proves (see Subsection 3.1) that a. O
REMARK 4.10. The above provides an alternative proof of Proposiftoh

REMARK 4.11. The equivalence between the two notions of honesty estabdlisere
above has some unsuspected consequences. For instanaeptesghat Theorenf3.3
and@-gimply that, for a given: € X,

t
/ V(s)uds € Z(A+B) Vt>0<+= [B(A—A)"u]" — 0asn — oc.
0
Notice also that, for any € X, the mass loss functiona,, (¢) defined in Sectiof.Bis
t
given byA,,(¢) = lim,, ... ||B / Vo (s)uds
0
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