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ON PERTURBED SUBSTOCHASTIC SEMIGROUPS IN ABSTRACT
STATE SPACES

L. ARLOTTI, B. LODS & M. MOKHTAR-KHARROUBI

ABSTRACT. The object of this paper is twofold: In the first part, we unify and extend
the recent developments on honesty theory of perturbed substochastic semigroups (on
L1(µ)-spaces or noncommutativeL1 spaces) to general state spaces; this allows us to
capture for instance a honesty theory in preduals of abstract von Neumann algebras or
subspaces of duals of abstractC∗-algebras. In the second part of the paper, we provide
another honesty theory (a semigroup-perturbation approach) independent of the previous
resolvent-perturbation approach and show the equivalenceof the two approaches. This
second viewpoint on honesty is new even inL1(µ) spaces. Several fine properties of
Dyson-Phillips expansions are given and a classical generation theorem by T. Kato is
revisited.
KEYWORDS: Substochastic semigroups; additive norm; total mass carried by a trajec-
tory; Dyson-Phillips expansion.

1. INTRODUCTION

In his famous paper on Kolmogorov’s differential equations(for Markov processes
with denumerable states) T. Kato [18] introduced the main tools for dealing with positive
unbounded perturbationsB of generatorsA of substochastic semigroups inℓ1(N) pro-
vided that a suitable dissipation on the positive cone is satisfied. Among other things,
he showed that there exists a unique extensionG ⊃ B + A which generates a sub-
stochastic semigroup and characterized the closure property G = B + A by the fact
that [B(λ−A)−1]

n
→ 0 strongly asn → +∞ (in general,G may be a proper ex-

tension ofB + A). We note that for “formally conservative” equations, such asKol-
mogorov’s differential equations, the propertyG = B + A is essential (i.e. necessary
and sufficient) to assert that the corresponding semigroup is mass-preservingon the pos-
itive cone. Finally, T. Kato [18] pointed out that his formalism is adapted to general
AL–spaces, i.e. Banach latticesX whose norm is additive on the positive coneX+ i.e.
‖x+ y‖ = ‖x‖ + ‖y‖ , x, y ∈ X+. Actually, even the lattice assumption is not essential
since Kato’s ideas were applied by E. B. Davies [11] to quantum dynamical semigroups
in the real Banach space of self-adjoint trace class operators; in this case, the closure
property G = B + A is essential to assert that the corresponding semigroup istrace-
preservingon the positive cone.
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By the end of the 1980’s, Kato’s paper [18] was revisited by means of Miyadera pertur-
bations inAL–spaces [34, 35, 2] and new functional analytic developments followed also
in the 2000’s [5, 4, 15] which are known nowadays as the honesty theory of perturbedsub-
stochastic semigroups inL1(µ) spaces [6, Chapter 6]. Of course, this theory is motivated
by various applications to kinetic theory, fragmentation equations, birth-and-death equa-
tions and so on; see [6] and references therein. We note also that the analysis of piecewise
deterministic Markov processes is nicely related to honesty theory inL1 spaces [33] (see
also [19] for related topics). On the other hand, in a noncommutativecontext, there exists
also an important literature (relying on Kato’s paper [18] or some dual version) on quan-
tum dynamical semigroups, e.g. [11, 26, 8, 9, 14, 16, 17, 30]; such semigroups acting
on spaces of operators arise in the theory of open quantum systems as models of irre-
versible (albeit conservative) quantum dynamics. We mention that quantum dynamical
semigroups enjoy the complete positivity property (a stronger property than the fact to
leave invariant the positive cone) which gives their generators a special structure (see e.g.
[14]).

More recently, in [23], the honesty theory of perturbed substochastic semigroups in
L1(µ) spaces has been improved and extended in different directions while a noncommu-
tative version of [23] was given in [22]. The first goal of the present paper is to provide
a general theory in abstractstate spaces(i.e. real ordered Banach spaces such that the
norm is additive on the positive cone) which covers both [23] and [22]. The interest of
this abstract approach is not simply motivated by a unified presentation of [23] and [22]:
it provides us with an intrinsic treatment of honesty theoryin much more general spaces
covering in particular preduals of abstract von Neumann algebras or more generally sub-
spaces of duals of abstractC∗-algebras (see for example [32, 24] on measure-valued gen-
eralization of Kolmogorov equations on abstract measurable spaces). We refer to E. B.
Davies [10, p. 30-31] for the relevance of the concept of abstract statespaces in proba-
bility theory, quantum statistical mechanics, etc. For itsmost part, the general theory we
give follows closely [23, 22] but we provide also new informations on the structure of the
set of honest trajectories in the Banach space of bounded measures on a measurable space
and in the Banach space of trace class operators on a Hilbert space. The second goal of
this paper is to provide another approach of honesty theory.This alternative approach
of honesty relies on Dyson-Phillips expansions (in contrast to the previous resolvent ap-
proach) and is new even inL1(µ) spaces. To this end, we give several fine properties
of Dyson-Phillips expansions. We also revisit a classical generation theorem by T. Kato
[18]. Finally, this alternative viewpoint on honesty presentsthe great advantage of being
adaptable tononautonomousproblems [3]

We recall briefly some properties of the class of Banach spaces we shall deal with in
this paper (more information on general real ordered Banachspace can be recovered from
[25, 7]). In all this paper, we shall assume thatX is a real ordered Banach space with a
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generating positive coneX+ (i.e. X = X+ − X+) on which the norm is additive, i.e.

‖u+ v‖ = ‖u‖ + ‖v‖ u, v ∈ X+.

The additivity of the norm implies that the norm is monotone,i.e.

0 6 u 6 v =⇒ ‖u‖ 6 ‖v‖.

In particular, the coneX+ is normal [7, Proposition 1.2.1]. It follows easily that any
bounded monotone sequence ofX+ is convergent. A property playing an important role
in this paper is the existence of a linear positive functional Ψ onX which coincides with
the norm on the positive cone (see e.g. [10, p. 30]), i.e.

Ψ ∈ X⋆
+, 〈Ψ, u〉 = ‖u‖, u ∈ X+ (1.1)

Note that‖Ψ‖ = 1. Indeed, givenu ∈ X, one hasu = u1 − u2 ∈ X with ui ∈ X+

(i = 1, 2) and | 〈Ψ, u〉 | = | ‖u1‖ − ‖u2‖ | 6 ‖u‖. This proves that‖Ψ‖ 6 1 and
the equality sign follows from (1.1). We note also that by a Baire category argument
there exists a constantM > 0 such that eachu ∈ X has a decompositionu = u1 − u2

whereui ∈ X+ and‖ui‖ 6 M‖u‖ (i = 1, 2); i.e. the positive coneX+ is non-flat,
see [25, Proposition 19.1]. We recall that aC0-semigroup(T (t))t>0 of bounded linear
operators onX is called substochastic (resp. stochastic) ifT (t) is positive (i.e. leavesX+

invariant for anyt > 0) and‖T (t)u‖ 6 ‖u‖ (resp.‖T (t)u‖ = ‖u‖) for all u ∈ X+ and
t > 0. It is not difficult to see that a positiveC0-semigroup(U(t))t>0 with generatorA is
substochastic (resp. stochastic) if and only if〈Ψ,Au〉 6 0 (resp. 〈Ψ,Au〉 = 0) for all
u ∈ D(A)+ = D(A) ∩ X+. Because of a lack (a priori) of a lattice structure,(T (t))t>0

need not be a contraction semigroup. However, one easily sees that‖T (t)‖ 6 2M for all
t > 0; in particular, its type is nonpositive.

The general structure of the paper is the following: our general setting is an abstract
state spaceX, a substochasticC0-semigroup(U(t))t>0 onX with generatorA and a linear
operatorB : D(A) → X which is assumed to be positive (i.e.B : D(A) ∩ X+ → X+)
and such that

〈Ψ,Au+ Bu〉 6 0 u ∈ D(A) ∩ X+.

In Section 2, we show that there exists a unique minimal substochasticC0-semigroup
(V(t))t>0 generated by an extensionG of A + B. This result was first given by T. Kato
[18] under a lattice assumption onX. Our purpose here is simply to show (by following
essentially Kato’s ideas) that the lattice assumption is actually unnecessary. We note that
this result has been proved differently by means of Miyaderaperturbations [32] or by
using Desch’s theorem [21]. We also show that the corresponding semigroup is given by
a (strongly convergent) Dyson-Phillips expansion

V(t)u =

∞∑

n=0

Vn(t)u
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without using the theory of Miyadera perturbations. It turns out that the resolvent ofG is
given by the strongly convergent series

(λ− G)−1u =

∞∑

n=0

(λ−A)−1
[
B(λ−A)−1

]n
u, λ > 0.

This series (which doesnot converge a priori in operator norm) is the corner-stone of a
general honesty theory of theC0-semigroup(V(t))t>0 given in Section 3 in the spirit of
the recent results [22, 23]. Besides the functional

a0 : u ∈ D(G) → −〈Ψ,Gu〉

and its restrictiona to D(A) we build up and study another functional

a : u ∈ D(G) → R

which has the properties thata|D(A) = a anda 6 a0 on D(G)+ = D(G) ∩ X+. The
trajectory(V(t)u)t>0 emanating fromu ∈ X+ is said to behonestif

‖V(t)u‖ = ‖u‖ − a

(∫ t

0

V(r)udr

)
, ∀t > 0

or equivalently if

a

(∫ t

0

V(r)udr

)
= a0

(∫ t

0

V(r)udr

)
∀t > 0.

Various characterization of honesty are given; in particular we show that(V(t)u)t>0 is
honest if and only iflimn→∞ ‖ (B(λ−A)−1)

n
u‖ = 0 which is equivalent to(λ−G)−1u ∈

D(A + B). Under the ”conservativity” assumption

〈Ψ,Au+ Bu〉 = 0, ∀u ∈ D(A),

the mass-preservation in time (i.e.‖V(t)u‖ = ‖u‖ for any t > 0) holds if and only if
the trajectory(V(t)u)t>0 is honest. The semigroup(V(t))t>0 is said to be honest if all
trajectories are honest. We show that the honesty of(V(t))t>0 is equivalent to the identity
a = a0 or to the closure propertyG = A + B. Actually, we extend most of the results
of [22, 23]; in particular we show that the setH of initial data giving rise to a honest
trajectory is a closed hereditary subcone ofX+ and provide a description of the order
idealH−H (induced by it) in the case whereX is either the Banach space of self-adjoint
trace class operators on a Hilbert space or the Banach space of bounded signed measures
on a measurable space.

In Section 4, the Dyson-Phillips expansion is the corner-stone ofanotherhonesty the-
ory of trajectories. To this end, we build up and study a new functional

â : u ∈ D(G) → R
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and show in particular that̂a|D(A) = a and â 6 a0 on D(G)+. To distinguish a priori
the second notion of honesty from the previous one, we say that a trajectory(V(t)u)t>0

emanating fromu ∈ X+ is mild honest if

‖V(t)u‖ = ‖u‖ − â(

∫ t

0

V(r)udr), t > 0.

Various characterizations of mild honesty are given; in particular we show that(V(t)u)t>0

is mild honest if and only if
∫ t

0
V(r)udr ∈ D(A + B) or if and only if the integral

B
∫ t

0
Vn(r)udr converges strongly to0 asn → ∞. This mild honesty is based on several

new fine properties of the operatorsVn. Finally we prove that the functionalŝa anda

coincide showing thus that the notions of honesty and mild honesty are actually equiva-
lent. Moreover, the equivalence of the two viewpoints on honesty theory provides us with
nontrivial additional results. As we already said it, a honesty theory in terms of Dyson-
Phillips expansions suggests a convenient tool for the study of nonautonomous problems
[3].

2. KATO’ S GENERATION THEOREM AND FIRST CONSEQUENCES

2.1. Classical Kato’s Theorem revisited.Let (U(t))t>0 be a substochasticC0-semigroup
on X with generatorA. Kato’s generation theorem [18] provides a useful sufficient con-
dition ensuring that some extension of(A + B,D(A)) generates a substochasticC0-
semigroup onX:

THEOREM 2.1. Let (U(t))t>0 be a substochasticC0-semigroup onX with generatorA.
LetB : D(A) → X be a positive linear operator satisfying:

〈Ψ, (A + B)u〉 6 0, ∀u ∈ D(A)+ := D(A) ∩ X+. (2.1)

Then, there exists an extensionG of (A + B,D(A)) that generates a substochasticC0-
semigroup(V(t))t>0 onX. Moreover, for anyλ > 0, the resolvent ofG is given by

(λ− G)−1u = lim
n→∞

(λ−A)−1

n∑

k=0

[
B(λ−A)−1

]k
u, u ∈ X. (2.2)

Finally, (V(t))t>0 is the smallest substochasticC0-semigroup whose generator is an ex-
tension of(A + B,D(A)).

The general strategy to prove such a result consists in two steps: show that

Gr = A + rB, D(Gr) = D(A)

is a generator of a substochasticC0-semigroup for any0 < r < 1 andthenuse a mono-
tonic convergence theorem by lettingr ր 1. The first step can be dealt with by means
of three different arguments: a direct approach via Hille-Yosida estimates; the use of
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Miyadera perturbation theory [32] or simply the use of Desch theorem [21]. We revisit
here the direct approach via Hille-Yosida estimates by T. Kato [18].

Proof. Our proof is inspired by the original one of T. Kato [18] that we adapt here to
the more general situation we are dealing with (recall in particular that substochastic
semigroups are contractingonlyonX+). The proof consists in several steps.
• Construction of(V(t))t>0: For anyλ > 0, setJ (λ) = B(λ−A)−1. Clearly,J (λ) is a
bounded linear positive operator onX and (2.1) implies that

‖J (λ)u‖ = 〈Ψ,J (λ)u〉 6 −
〈
Ψ,A(λ−A)−1u

〉

6 ‖u‖ − λ‖(λ−A)−1u‖ 6 ‖u‖, for anyu ∈ X+ and anyλ > 0.

Iterating such an inequality leads to

‖(J (λ))nu‖ 6 ‖u‖, for anyu ∈ X+ and anyλ > 0, n ∈ N

which implies that
‖(J (λ))n‖ 6 2M, ∀n ∈ N, λ > 0

where we recall (see the introduction) thatM > 0 is a positive constant such that any
u ∈ X admits a decompositionu = u1 − u2 with ui ∈ X+ and‖ui‖ 6 M‖u‖ (i = 1, 2).
In particular, the spectral radiusrσ(J (λ)) of the bounded operatorJ (λ) is such that

rσ(J (λ)) 6 1, ∀λ > 0. (2.3)

Moreover, the resolvent formula shows that0 6 J (µ) 6 J (λ) for any0 < λ < µ. Now,
for any0 6 r < 1, let us defineGr as

Gr = A + rB, D(Gr) = D(A).

Eq. (2.3) implies that(λ− Gr) is invertible for anyλ > 0 with

(λ− Gr)
−1 = (λ−A)−1

∞∑

n=0

rn [J (λ)]n , 0 6 r < 1 (2.4)

where the series converges inB(X). For any fixedf ∈ X+, setv = (λ−A)−1f , λ > 0.
One hasv ∈ D(A)+ and

‖(λ− Gr)v‖ = ‖(λ−A− rB)v‖ > ‖(λ−A)v‖ − r‖Bv‖

= λ 〈Ψ, v〉 − 〈Ψ,Av〉 − r 〈Ψ,Bv〉 > λ‖v‖.

Now givenu ∈ X+ and applying the above reasoning withf =
∑∞

n=0 r
n [J (λ)]n u, we

deduce from (2.4) that

‖(λ− Gr)
−1u‖ 6 λ−1‖u‖, for anyu ∈ X+. (2.5)

Iterating this relation, we see that

‖
[
(λ− Gr)

−1
]n
u‖ 6 λ−n‖u‖, for anyu ∈ X+ and anyn ∈ N.
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Then, sinceX+ is non flat, such an estimate extends to the whole spaceX leading to

‖
[
(λ− Gr)

−1
]n

‖ 6
2M

λn
, ∀λ > 0, n ∈ N,

and one deduces from Hille-Yosida Theorem that, for any0 6 r < 1, (Gr,D(A)) gener-
ates aC0-semigroup(Sr(t))t>0 in X. Since(λ − Gr)

−1 is positive and because of (2.5),
(Sr(t))t>0 is a substochasticC0-semigroup inX. Moreover, the mappingr 7→ (λ−Gr)

−1u
is nondecreasing for any fixedλ > 0 and anyu ∈ X+ and one sees from the exponential
formula

Sr(t)u = lim
n→∞

n

t

[(n
t
− Gr

)−1
]n

u, u ∈ X+,

that the mappingr ∈ [0, 1) 7−→ Sr(t)u is also nondecreasing for any fixedt > 0 and
anyu ∈ X+. Sincesup06r<1 ‖Sr(t)‖ 6 2M for any t > 0 and any bounded monotone
sequence ofX+ is convergent, one gets thatSr(t) converges strongly to some operator
V(t) for any fixedt > 0 asr → 1. Obviously,V(t) is a positive contraction onX+ with
Sr(t) 6 V(t) for any0 6 r < 1 and anyt > 0.
• (V(t))t>0 is aC0-semigroup onX.SinceSr(t+s) = Sr(t)Sr(s) for anyt, s > 0 and any
0 6 r < 1, one has, at the limit,V(t + s) = V(t)V(s), ∀t, s > 0. Moreover,V(0) = Id.
To prove that(V(t))t>0 is aC0-semigroup onX, it is enough to prove thatt > 0 7→ V(t)u
is continuous att = 0 for anyu ∈ X. Let us fixε > 0 andu ∈ X+. Since(U(t))t>0 is a
strongly continuous, there existsδ > 0 such that‖U(t)u− u‖ < ε for any0 6 t 6 δ. For
such at, we see that, for anyr ∈ [0, 1), sinceSr(t) > U(t), one has

‖Sr(t)u− U(t)u‖ = 〈Ψ,Sr(t)u− U(t)u〉 = 〈Ψ,Sr(t)u〉 − 〈Ψ,U(t)u〉

6 ‖u‖ − ‖U(t)u‖ 6 ‖u− U(t)u‖ < ε.

One deduces from this estimate that

‖Sr(t)u− u‖ 6 ‖Sr(t)u− U(t)u‖ + ‖U(t) − u‖ 6 2ε, ∀0 < t < δ.

The important fact is that such an estimate is uniform with respect tor ∈ [0, 1) so that,
letting r ր 1, one deduces that‖V(t)u − u‖ 6 2ε for any0 < t < δ. This shows that
limt→0 V(t)u = u for any u ∈ X+ and, by linearity, the result is true for anyu ∈ X

which proves thatV(t) is strongly continuous att = 0. We denote byG the generator of
(V(t))t>0. Clearly,]0,∞[⊂ ̺(G) and

(λ− G)−1 is positive, ‖(λ− G)−1u‖ 6 ‖u‖/λ, u ∈ X+.

Note that, sinceSr(t) 6 V(t) for anyt > 0 and anyr ∈ [0, 1), one also has(λ−Gr)
−1 6

(λ− G)−1 for anyr ∈ [0, 1) and anyλ > 0.
• (λ−Gr)

−1 converges strongly to(λ−G)−1 asr → 1. Since for anyu ∈ X+ the mapping
r 7→ Sr(t)u is nondecreasing, by Dini’s Theorem one has for anyT > 0 and anyu ∈ X+:

lim
r→1

sup
06t6T

‖Sr(t)u− V(t)u‖ = 0. (2.6)
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Now, writing

(λ− G)−1u− (λ− Gr)
−1u =

∫ T

0

exp(−λt) (V(t)u− Sr(t)u) dt+

∫ ∞

T

exp(−λt) (V(t)u− Sr(t)u) dt, ∀T > 0,

one sees from the uniform convergence that the first integralconverges to0 asr ր 1 for
anyT > 0 while the uniform boundsupt>0 ‖Sr(t)u − V(t)u‖ 6 2‖u‖ allows us to let
T → ∞ in the second integral leading to

lim
r→1

‖(λ− Gr)
−1u− (λ− G)−1u‖ = 0, ∀λ > 0, u ∈ X.

• Proof of Eq.(2.2). Let us fixλ > 0. From Eq. (2.4) and the fact that0 6 (λ− Gr)
−1 6

(λ − G)−1 for any0 6 r < 1, one hasR(n)
r 6 (λ − Gr)

−1 6 (λ − G)−1, for anyn > 1

whereR(n)
r (λ) = (λ−A)−1

∑n
k=0 r

k [J (λ)]k . Lettingr ր 1, one gets

R(n)(λ) := (λ−A)−1
n∑

k=0

[J (λ)]k 6 (λ− G)−1, ∀n > 1.

Since the sequence
(
R(n)(λ)

)
n

is nondecreasing, the strong limit

R(λ) := s − lim
n→∞

R(n)(λ)

exists andR(λ) 6 (λ−G)−1. We also haveR(n)
r (λ) 6 R(n)(λ) 6 R(λ) for all 0 6 r < 1

andn > 1. Hence,(λ − Gr)
−1 = s − limn→∞R

(n)
r (λ) 6 R(λ) and (λ − G)−1 =

s − limr→1(λ− Gr)
−1 6 R(λ). This proves finally thatR(λ) = (λ− G)−1 and Eq. (2.2)

is proved.
• G is a closed extension ofA+ B. With the notation of the previous item, sinceJ (λ) =
B(λ−A)−1, one has

R(n)(λ) = (λ−A)−1 + (λ−A)−1

(
n−1∑

k=0

[J (λ)]k

)
B(λ−A)−1

= (λ−A)−1 + R(n−1)(λ)B(λ−A)−1.

Thus, for anyu ∈ D(A), R(n)(λ)(λ−A)u = u + R(n−1)(λ)Bu for anyn > 1. Letting
n → ∞, Eq. (2.2) yields (λ − G)−1(λ − A)u = u + (λ − G)−1Bu or equivalently,
(λ−G)−1(λ−A−B)u = u. In particular,u ∈ D(G) and(λ−G)u = (λ−A−B)u. This
proves thatG is an extension ofA andG is closed as the generator of aC0-semigroup on
X.
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• (V(t))t>0 is minimal.Let (S(t))t>0 be a substochastic semigroup inX whose generator
G′ is a closed extension ofA + B. Let us prove thatS(t) > V(t) for anyt > 0. Actually,
for anyλ > 0, one has

(λ− G′)−1 − (λ− Gr)
−1 = (λ− G′)−1(G′ − Gr)(λ− Gr)

−1

and, since the range of(λ− Gr)
−1 is D(A) ⊂ D(G′) ∩ D(Gr), one has

(λ− G′)−1 − (λ− Gr)
−1 = (λ− G′)−1(A + B −A− rB)(λ− Gr)

−1

= (1 − r)(λ− G′)−1B(λ− Gr)
−1

and one sees that, at the (strong) limit,(λ − G′)−1 > (λ − G)−1. From the exponential
formula, one obtainsS(t) > V(t) for anyt > 0. �

2.2. On Dyson-Phillips expansion series.It is possible to strengthen the above Theorem
2.1by proving that the semigroup(V(t))t>0 is given by a Dyson-Phillips expansion series.
Our approach generalizes the result of [27] to the non lattice case and relies on different
arguments inspired by [20, Chapter 8]. We first need some preliminary result. Let us
define the spaceCsb(R

+,B(X)) of strongly continuous and bounded mappings

S : t > 0 7−→ S(t) ∈ B(X)

endowed with the norm

‖S‖∞ = sup
t>0

‖S(t)‖B(X)

which makes it a Banach space. For anyS ∈ Csb(R
+,B(X)), it is possible to define the

time-dependent operatorL (S)(t) defined overD(A) by

L (S)(t) : u ∈ D(A) 7−→

∫ t

0

S(t− s)BU(s)uds ∈ X, t > 0.

We shall write thatS ∈ Csb(R
+,B+(X)) if S ∈ Csb(R

+,B(X)) andS(t) is a positive
operator inX for anyt > 0. One has the following

LEMMA 2.2. For anyS ∈ Csb(R
+,B+(X)) and anyt > 0, L (S)(t) extends uniquely to

a bounded positive operator inX, still denotedL (S)(t). Moreover, for anyu ∈ X, the
mappingt > 0 7→ L (S)(t)u ∈ X is continuous.

Proof. It is clear thatL (S)(t) is a nonnegative operator and, for anyu ∈ D(A)+ and
λ > 0 one has
∥∥∥∥
∫ t

0

S(t− s)BU(s)uds

∥∥∥∥ =

∫ t

0

‖S(t− s)BU(s)u‖ds 6 ‖S‖∞

∫ t

0

‖BU(s)u‖ds.
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Now,
∫ t

0

‖BU(s)u‖ds =

∫ t

0

〈Ψ,BU(s)u〉ds 6 −

∫ t

0

〈Ψ,AU(s)u〉ds

= −

〈
Ψ,

∫ t

0

AU(s)uds

〉
= −

〈
Ψ,

∫ t

0

d

ds
U(s)uds

〉

= 〈Ψ, u− U(t)u〉 6 ‖u‖.

(2.7)

Therefore,
∥∥∥∥
∫ t

0

S(t− s)BU(s)uds

∥∥∥∥ 6 ‖S‖∞‖u‖ ∀t > 0, ∀u ∈ D(A)+. (2.8)

Now, let u ∈ D(A) be arbitrary and letu = u1 − u2 whereui ∈ X+ are such that -
ui‖ 6 M‖u‖, i = 1, 2. Then, for anyn > 1, ui

n := n
∫ 1/n

0
U(s)uids ∈ D(A)+ with

ui
n −→ ui in X asn→ ∞, while

u1
n − u2

n = n

∫ 1/n

0

U(s)uds −→ u in D(A), i = 1, 2.

Therefore,
∥∥∥∥
∫ t

0

S(t− s)BU(s)uds

∥∥∥∥ = lim
n→∞

∥∥∥∥
∫ t

0

S(t− s)BU(s)(u1
n − u2

n)ds

∥∥∥∥

6 lim
n→∞

∥∥∥∥
∫ t

0

S(t− s)BU(s)u1
nds

∥∥∥∥+

lim
n→∞

∥∥∥∥
∫ t

0

S(t− s)BU(s)u2
nds

∥∥∥∥

and Eq. (2.8) yields
∥∥∥∥
∫ t

0

S(t− s)BU(s)uds

∥∥∥∥ 6 ‖S‖∞ lim
n→∞

(
‖u1

n‖ + ‖u2
n‖
)

= ‖S‖∞ (‖u1‖ + ‖u2‖) .

Consequently,
∥∥∥∥
∫ t

0

S(t− s)BU(s)uds

∥∥∥∥ 6 2M‖S‖∞‖u‖, ∀u ∈ D(A).

SinceD(A) is dense inX, L (S)(t) extends uniquely to a bounded operator onX. We still
denoteL (S)(t) this extension. Notice that, sinceD(A)+ is dense inX+, the extension
L (S)(t) is still positive. One notes that, for anyu ∈ D(A), the mappingt 7→ L (S)(t)u
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is continuous. Now, ifu ∈ X, considering a sequence(un)n ⊂ D(A) which converges to
u, one has, for anyT > 0

sup
t∈[0,T ]

‖L (S)(t)un − L (S)(t)um‖ 6 2M‖S‖∞ ‖un − um‖, n,m ∈ N,

which implies that the mappingt ∈ [0,∞[7→ L (S)(t)u is continuous. �

Arguing as in [20, Lemma 8.4], we prove the following

THEOREM 2.3. For anyt > 0, the following Duhamel formula holds:

V(t)u = U(t)u+

∫ t

0

V(t− s)BU(s)uds, t > 0, u ∈ D(A). (2.9)

Moreover, the semigroup(V(t))t>0 defined in Theorem2.1is given by theDyson-Phillips
expansion series

V(t) =

∞∑

n=0

L
n(U)(t), t > 0 (2.10)

where the series converges strongly inX.

Proof. Let us first establish Duhamel formula. We use the ideas of [27, Lemma 1.4]. Let
u ∈ D(A) andλ > 0. We see from (2.2) that

(λ− G)−1u− (λ−A)−1u = (λ− G)−1B(λ−A)−1u. (2.11)

Moreover, sinceB is A-bounded, the mappingt ∈ [0,∞) 7→ BU(t)u ∈ X is continuous
for all u ∈ D(A) and

B(λ−A)−1u = B

∫ ∞

0

exp(−λt)U(t)udt =

∫ ∞

0

exp(−λt)BU(t)udt.

Since(λ− G)−1 is the Laplace transform of(V(t))t>0, one gets from (2.11)
∫ ∞

0

exp(−λt) (V(t)u− U(t)u) dt =

∫ ∞

0

dt

∫ ∞

0

exp(−λ(t+ s))V(t)BU(s)uds

=

∫ ∞

0

exp(−λt)

(∫ t

0

V(t− s)BU(s)uds

)
dt.

Finally, the uniqueness theorem for the Laplace transform provides the conclusion. Let
us prove now that(V(t))t>0 is given by the Dyson–Phillips expansion (2.10). Duhamel
formula (2.9) reads

V(t)u = U(t)u+ L (T )(t)u, ∀t > 0, u ∈ X

and, by iteration,

V(t)u =

n∑

k=0

L
k(U)(t)u+ L

n+1(T )(t)u, t > 0, n > 1, u ∈ X.
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In particular, for anyu ∈ X+, one has

n∑

k=0

L
k(U)(t)u 6 V(t)u, n > 1, u ∈ X+ (2.12)

and the series
∑∞

n=0 L n(U)u is convergent towards a limit that we denoteT̃ (t)u. Notice
that, for a givenu ∈ X+, the mappingt ∈ [0,∞[7→ T̃ (t)u is measurable. One has

T̃ (t)u 6 V(t)u, ∀u ∈ X+, t > 0. (2.13)

Now, it is not difficult to check by induction that
∫ ∞

0

exp(−λt)L n(U)(t)udt = (λ−A)−1
[
B(λ−A)−1

]n
u (2.14)

so that,
∞∑

n=0

(λ−A)−1
[
B(λ−A)−1

]n
u =

∫ ∞

0

exp(−λt)T̃ (t)udt

and Eq. (2.13) together with Eq. (2.2) yield
∫ ∞

0

exp(−λt)T̃ (t)udt =

∫ ∞

0

exp(−λt)V(t)udt, ∀u ∈ X+, λ > 0.

The uniqueness theorem for the Laplace transform implies then T̃ (t)u = V(t)u for any
t > 0 and anyu ∈ X+ so that

∞∑

n=0

L
n(U)(t)u = V(t)u, ∀u ∈ X+, t > 0.

Note that, according to Dini’s convergence theorem, the series converges uniformly in
bounded time. One extends then the convergence to arbitraryu ∈ X by linearity. �

REMARK 2.4. Notice that the family of operatorsVn(t) = L n(U)(t) (n ∈ N, t > 0), is
nothing but the classical Dyson-Phillips iterated usuallydefined by induction[20, Chapter
7]:

Vn+1(t)u =

∫ t

0

Vn(t− s)BU(s)uds, ∀n ∈ N, u ∈ D(A). (2.15)

Notice that, according to(2.12), one sees easily that

n∑

k=0

‖Vk(t)u‖ 6 ‖u‖ for any t > 0, u ∈ X+. (2.16)
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Moreover, for anyn ∈ N, the mappingt ∈ [0,∞) 7→ Vn(t)u is continuous for anyu ∈ X.
Finally, arguing as in[6, p. 129], it is not difficult to prove that, for anyn ∈ N, the
following relation holds:

Vn(t+ s)u =

n∑

k=0

Vk(t)Vn−k(s)u for anyu ∈ X, t, s > 0. (2.17)

3. ON HONESTY THEORY: RESOLVENT APPROACH

From now, in all the paper, we assume that the assumptions of Theorem2.1are met.

3.1. About some useful functionals.Since theC0-semigroup(V(t))t>0 is substochastic,
one has, for anyu ∈ X+,

〈Ψ,V(t)u− u〉 = ‖V(t)u‖ − ‖u‖ 6 0, ∀t > 0, u ∈ X+.

In particular, if one choosesu ∈ D(G)+ here above, since,

〈Ψ,Gu〉 = lim
tց0

t−1 〈Ψ,V(t)u− u〉

one gets
〈Ψ,Gu〉 6 0, u ∈ D(G)+. (3.1)

Because of this elementary but fundamental inequality, a crucial role in the present ap-
proach will be based on the properties of the following functional:

a0 : u ∈ D(G) 7→ a0(u) = −〈Ψ,Gu〉 ∈ R.

Because of (3.1), this functionala0 is nondecreasing, i.e.a0(u) > a0(v) for anyu, v ∈
D(G) with u > v. Moreover, since‖Ψ‖ 6 1, one hasa0(u) 6 ‖Gu‖ for anyu ∈ D(G).
We denote bya its restriction toD(A), i.e.

a : u ∈ D(A) 7→ a(u) = −〈Ψ,Au+ Bu〉 ∈ R.

Let λ > 0 befixed. The following obvious identity

− a((λ−A)−1u) = λ‖(λ−A)−1u‖ + ‖B(λ−A)−1u‖ − ‖u‖, (3.2)

is valid for anyu ∈ X+. Moreover, the sequence
(∑n

k=0(λ−A)−1[B(λ−A)−1]ku
)

n
is

nondecreasing and convergent to(λ− G)−1u. Sincea(·) is nondecreasing, one gets

a

(
n∑

k=0

(λ−A)−1[B(λ−A)−1]ku

)
6 a0((λ− G)−1u),

for all u ∈ X+ and anyn ∈ N. The bounded and nondecreasing real sequence
(

a

(
n∑

k=0

(λ−A)−1[B(λ−A)−1]ku

))

n
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is therefore convergent. This convergence holds for anyu ∈ X = X+ −X+ and therefore
defines a functionalaλ (that dependsa priori onλ > 0) on the domain ofG by

aλ

(
(λ− G)−1u

)
=

∞∑

n=0

a
(
(λ−A)−1

[
B(λ−A)−1

]n
u
)
, u ∈ X.

Following [23], we derive another expression foraλ from the identity

(λ− Gr)
−1u =

∞∑

n=0

rn(λ−A)−1
[
B(λ−A)−1

]n
u, u ∈ X+

established in the proof of Theorem2.1. We recall that, denotingDA andDG the domain
of A andG equipped with their respective graph norm, the series is convergent inDA and,
since(λ−A)−1 6 (λ− G)−1, the embeddingDA →֒ DG is continuous. Therefore,

a((λ− Gr)
−1u) =

∞∑

n=0

rna
(
(λ−A)−1

[
B(λ−A)−1

]n
u
)
, u ∈ X+.

Letting nowr → 1, one gets

aλ

(
(λ− G)−1u

)
= lim

rր1
a((λ− Gr)

−1u) =

∞∑

n=0

a
(
(λ−A)−1

[
B(λ−A)−1

]n
u
)
.

One has the following basic result which can be proved exactly as [23, Prop. 1.1] (see
also an alternative proof at the end of the paper, Theorem4.9):

PROPOSITION3.1. Let0 < λ < µ. Then,

(1) aλ|D(A) = a;
(2) aλ = aµ.

This defines a functionala := aλ for anyλ.

REMARK 3.2. Let us point out thata is continuous with respect to the graph norm ofG.

The above definitions of functionalsa anda0 lead to the following:

DEFINITION 3.3. For anyλ > 0, we define the functionalΞλ ∈ X⋆ by

〈Ξλ, u〉 = a0

(
(λ− G)−1u

)
− a

(
(λ− G)−1u

)
, u ∈ X.

One has the following Lemma:

LEMMA 3.4. For anyλ > 0 andu ∈ X

〈Ξλ, u〉 = lim
n→∞

〈
Ψ,
[
B(λ−A)−1

]n
u
〉

= lim
rր1

(1 − r)
〈
Ψ,B(λ− Gr)

−1u
〉
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Proof. One has to compute〈Ξλ, u〉 = a0 ((λ− G)−1u) − a ((λ− G)−1u). First,

a
(
(λ− G)−1u

)
=

∞∑

n=0

a
(
(λ−A)−1

(
B(λ−A)−1

)n
u
)

=
∞∑

n=0

〈
Ψ,−(A + B)(λ−A)−1

(
B(λ−A)−1

)n
u
〉
.

Now, the latter is equal to
∞∑

n=0

(〈
Ψ,
(
B(λ−A)−1

)n
u−

(
B(λ−A)−1

)n+1
u− λ(λ−A)−1

(
B(λ−A)−1

)n
u
〉)

.

Thus

a
(
(λ− G)−1u

)
= 〈Ψ, u〉 − lim

n→∞

〈
Ψ,
(
B(λ−A)−1

)n
u
〉
−

λ

〈
Ψ,

∞∑

n=0

(λ−A)−1
(
B(λ−A)−1

)n
u

〉

= 〈Ψ, u〉 − lim
n→∞

〈
Ψ,
(
B(λ−A)−1

)n
u
〉
− λ

〈
Ψ, (λ− G)−1u

〉

= a0

(
(λ− G)−1u

)
− lim

n→∞

〈
Ψ,
(
B(λ−A)−1

)n
u
〉

which proves the first assertion. On the other hand,

a
(
(λ− G)−1u

)
= lim

rր1
a
(
(λ− Gr)

−1u
)

= lim
rր1

〈
Ψ, (λ−A− rB − λ− (1 − r)B)(λ− Gr)

−1u
〉

= lim
rր1

(
〈Ψ, u〉 − λ

〈
Ψ, (λ− Gr)

−1u
〉
− (1 − r)

〈
Ψ,B(λ− Gr)

−1u
〉)

= 〈Ψ, u〉 − λ
〈
Ψ, (λ− G)−1u

〉
− lim

rր1
(1 − r)

〈
Ψ,B(λ− Gr)

−1u
〉

provides the second assertion. �

We end this section with the following fundamental result:

THEOREM 3.5. Letλ > 0 andu ∈ X+ be fixed. The following assertions are equivalent:

(i) the set{[B(λ−A)−1]nu}n is relatively weakly compact;
(ii) limn→∞ ‖[B(λ−A)−1]nu‖ = 0;
(iii) 〈Ξλ, u〉 = 0;
(iv) (λ− G)−1u ∈ D(A + B).
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Proof. It is clear from the definition ofΞλ that(ii) =⇒ (iii) and that(iii) =⇒ (ii) =⇒
(i).

(i) =⇒ (ii) and (iv). Let vn :=
∑n

k=0(λ − A)−1 [B(λ−A)−1]
k
u. Clearly, vn ∈

D(A+B) andvn converges tov = (λ−G)−1u in X asn goes to infinity. Moreover, it is
not difficult to see that

(λ−A− B)vn = u−
[
B(λ−A)−1

]n+1
u.

If some subsequence([B(λ−A)−1]nku)k converges weakly inX to somez ∈ X, then
(λ − A − B)vnk

converges weakly tou − B(λ − A)−1z ask → ∞. It follows from the
weak closedness of the graphA + B thatv ∈ D(A + B) and

(λ−A + B)v = u− B(λ−A)−1z.

SinceG is a closed extension ofA + B andv = (λ− G)−1u, the latter reads

u = u− B(λ−A)−1z

so thatB(λ−A)−1z = 0. Hence,[B(λ−A)−1]nk+1u converges weakly to0 ask → ∞.
In particular,

lim
k→∞

〈
Ψ,

[
B(λ−A)−1

]nk+1

u

〉
= 0 and lim

n→∞

〈
Ψ,

[
B(λ−A)−1

]n

u

〉
= 0

since the whole sequence is always convergent. This proves(ii) . Notice also thatv =
(λ− G)−1u ∈ D(A + B) and(iv) is proved.

(iv) =⇒ (iii) . One can assume without loss of generality thatΞλ 6= 0. Assume that
(λ − G)−1u ∈ D(A + B). According to the following identity (see [6, Lemma 4.5, p.
117])

D(A + B) = (λ− G)−1(I − B(λ−A)−1)X (3.3)

one sees that there exists a sequence(un)n ⊂ (I −B(λ−A)−1)X such thatlimn un = u.
It is easy to see that〈Ξλ, un〉 = 0 for anyn ∈ N so that〈Ξλ, u〉 = 0. �

One deduces from the above result thatD(A+B) is a core forG if and only ifΞλ = 0:

COROLLARY 3.6. One hasG = A + B if and only ifΞλ = 0 for some (or equivalently
for all) λ > 0.

REMARK 3.7. For v ∈ D(G)+ one can show as in[23, Proposition 1.6]that v ∈
D(A + B) if and only ifa0(v) = a(v) which strengthens Proposition3.1.
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3.2. On honest trajectories. We note that, for anyu ∈ X+ and anyt > 0, one has
∫ t

0

V(s)uds ∈ D(G) with V(t)u− u = G

∫ t

0

V(s)uds.

Since the semigroup is positive, one has

‖V(t)u‖ − ‖u‖ = −a0

(∫ t

0

V(s)uds

)
. (3.4)

DEFINITION 3.8. Let u ∈ X+ be given. Then, the trajectory(V(t)u)t>0 is said to be
honest if and only if

‖V(t)u‖ = ‖u‖ − a

(∫ t

0

V(s)uds

)
, for anyt > 0.

The wholeC0-semigroup(V(t))t>0 will be said to be honest if all trajectories are honest.

REMARK 3.9. Note that, in the spirit of[23], it is possible to define a more general
concept of local honest trajectory on an intervalI ⊂ [0,∞) by

a

(∫ t

s

V(r)udr

)
= a0

(∫ t

s

V(r)udr

)
, for anyt, s ∈ I, t > s.

We do not try to elaborate on this point here.

REMARK 3.10. One can deduce from Theorem3.5and Corollary3.6the following: given
u ∈ X+, one sees from(3.4) that (V(t)u)t>0 is honest if and only if

a

(∫ t

s

V(r)udr

)
= a0

(∫ t

s

V(r)udr

)
for anyt > s > 0.

Moreover, it is easy to see that this is equivalent toa(
∫ t

0
V(r)udr) = a0(

∫ t

0
V(r)udr) for

anyt > 0.

The link between honest trajectory and the functionalΞλ given by Definition3.3 is
provided by the following:

THEOREM 3.11. Letu ∈ X+. The trajectory(V(t)u)t>0 is honest if and only if〈Ξλ, u〉 =
0 for all/someλ > 0.

Proof. We recall that, for anyλ > 0,

(λ− G)−1u =

∫ ∞

0

exp(−λt)V(t)udt = λ

∫ ∞

0

exp(−λt)

(∫ t

0

V(s)uds

)
dt. (3.5)
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Moreover, the functiont 7−→
∫ t

0
V(s)uds is continuous and linearly bounded as aDG-

function. This means that the above outer integral in (3.5) is convergent inDG and com-
mute witha0. Moreover, according to Prop.3.1, it also commutes witha so that

a0

(
(λ− G)−1u

)
= λ

∫ ∞

0

exp(−λt)a0

(∫ t

0

V(s)uds

)
dt

and

a

(
(λ− G)−1u

)
= λ

∫ ∞

0

exp(−λt)a

(∫ t

0

V(s)uds

)
dt.

One sees therefore thata0

(∫ t

0

V(s)uds

)
= a

(∫ t

0

V(s)uds

)
for anyt > 0 is equiva-

lent toa0

(
(λ− G)−1u

)
= a

(
(λ− G)−1u

)
for anyλ > 0 and proves the Theorem.�

REMARK 3.12. Notice that the whole semigroup(V(t))t>0 is honest if and onlyG =
A + B and this is also equivalent toΞλ = 0 for some / allλ > 0.

3.3. On an order ideal invariant under (V(t))t>0. We already know that, for anyu ∈
X+, the property〈Ξλ, u〉 = 0 is independent of the choice ofλ > 0. This allows us to
define the set

H =

{
u ∈ X+ ; 〈Ξλ, u〉 = 0 for anyλ > 0

}
. (3.6)

Notice that, by virtue of Theorem3.11, H is precisely the set of initial positive datau
giving rise to honest trajectories:

H =

{
u ∈ X+ ; (V(t)u)t>0 is honest

}
.

One has the following

PROPOSITION 3.13. The setH is invariant under(V(t))t>0 and (λ − G)−1 (λ > 0).
Moreover, for anyu ∈ H, if Iu = {z ∈ X+ ; ∃p ∈ R+ such thatpu− z ∈ X+} then
span(Iu) ∩ X+ ⊂ H.

Proof. Let u ∈ H. This means that

‖V(t)u‖ − ‖u‖ = −a

(∫ t

0

V(s)uds

)
, ∀t > 0.

Let t0 > 0 be fixed and setv = V(t0)u. One has‖v‖ − ‖u‖ = −a

(∫ t0

0

V(s)uds

)
and,

for anyt > t0,

‖V(t− t0)v‖ − ‖u‖ = −a

(∫ t

0

V(s)uds

)
= −a

(∫ t0

0

V(s)uds

)
− a

(∫ t

t0

V(s)uds

)
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so that

‖V(t− t0)v‖ = ‖v‖ − a

(∫ t

t0

V(s)uds

)
= ‖v‖ − a

(∫ t−t0

0

V(s)vds

)
, ∀t > t0.

In other words,v ∈ H andH is invariant under the action of(V(t))t>0. Let λ > 0 and
u ∈ H be fixed. One hasa0((λ − G)−1u) = a((λ − G)−1u) anda0((µ − G)−1u) =
a((µ − G)−1u) for anyµ > 0. One sees as a direct application of the resolvent formula
that

a0

(
(µ− G)−1(λ− G)−1u

)
= a

(
(µ− G)−1(λ− G)−1u

)
, ∀µ > 0

which amounts to(λ−G)−1u ∈ H. Finally, letu ∈ H andz ∈ Iu be fixed, there is some
nonnegative real numberp such thatpu− z ∈ X+. Then, for anyn ∈ N,

[B(λ−A)−1]n+1z 6 p[B(λ−A)−1]n+1u.

Since〈Ξλ, u〉 = 0, Lemma3.4clearly implies that

lim
n→∞

〈
Ψ,
[
B(λ−A)−1

]n+1
z
〉

= 0

and(V(t)z)t>0 is honest according to Theorem3.5. This proves thatIu ⊂ H and, since
Ξλ is a continuous and positive linear form onX, one deduces easily thatspan(Iu)∩X+ ⊂
H. �

Thanks to the above structure ofH, it is possible to provide sufficient conditions en-
suring that the whole semigroup is honest.

THEOREM 3.14.

(1) If H contains a quasi-interior elementu, then the whole semigroup(V(t))t>0 is
honest.

(2) Assume(V(t))t>0 to be irreducible. Let there existsu ∈ X+ \ {0} such that
(V(t)u)t>0 is honest. Then, the whole semigroup(V(t))t>0 is honest.

Proof. (1) If X contains a quasi-interior elementu, then [29, 25] span(Iu) = X+. One
sees then that, ifu ∈ H, Proposition3.13impliesH = X+.

(2) According to Proposition3.13, H is invariant by(λ− G)−1 for anyλ > 0. There-
fore, v = (λ − G)−1u is a quasi-interior element ofH and we conclude by the first
point. �

Before giving some more precise properties ofH let us introduce the notions of ideal
and hereditary subcone:

DEFINITION 3.15. A subconeC of X+ is said to behereditary if 0 6 u 6 v andv ∈ C
implyu ∈ C. Anorder ideal of X is a linear subspaceA of X such thatu1 6 v 6 u2 and
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ui ∈ A , i = 1, 2 imply v ∈ A . An order idealA of X is said to bepositively generated
if A = (A ∩ X+) − (A ∩ X+) .

REMARK 3.16. Notice that, ifA is a positively generated order ideal ofX then

u ∈ A =⇒ |u| ∈ A .

Indeed, sinceA is positively generated one hasu = u1−u2 withui ∈ A ∩X+. Moreover,
according to[28, Lemma 2], A ∩X+ is an hereditary subcone ofX+. In particular, since
0 6 |u| 6 u1 + u2 one gets|u| ∈ A ∩ X+.

The subset
H := H−H

enjoys the following properties:

THEOREM 3.17. Let H be defined by(3.6). Then,H is a closed hereditary subcone of
X+ andH is an order ideal with induced positive coneH+ equal toH. Moreover,H is
invariant under(V(t))t>0.

Proof. We first note that, sinceΞλ is a positive and continuous linear form overX,

H =

{
u ∈ X ; 〈Ξλ, u〉 = 0 for anyλ > 0

}
∩ X+

is clearly a closed convex subcone ofX+. Moreover, if0 6 u 6 v with v ∈ H then,
for anyλ > 0, 〈Ξλ, v〉 = 0 and consequently〈Ξλ, u〉 = 0 sinceΞλ is positive, i.e.H
is a closed hereditary subcone ofX+. It is easy to see thatH := H − H is the linear
space generated byH. Then, by [28, Lemma 2],H is an order ideal with positive cone
H. The fact thatH is invariant under the semigroup(V(t))t>0 follows from the previous
Proposition. �

A priori, in the general setting above, it isnot clearthatH is closed inX. However,
we have more precise results inAL-spaces (i.e. Banach lattices with additive norm) and
in preduals of von Neumann algebras.

PROPOSITION3.18. (i) If X is aAL-space thenH is a closed lattice ideal (and therefore
a projection band) ofX. In particular, there exists a band projectionP ontoH such that
H = PX and X = H ⊕ Hd where the disjoint complementHd of H is given by
Hd = (I − P)X.

(ii) Let X be the predual of a von Neumann algebra. Then,H is a closed order ideal.

Proof. (i) Let (un)n ⊂ H be such thatun → u in X. By assumption,un = vn −wn with
vn, wn ∈ H. In particular,|un| 6 vn + wn and〈Ξλ, |un|〉 6 〈Ξλ, vn〉 + 〈Ξλ, wn〉 = 0
whence|un| ∈ H. It follows that the negative and positive partsu−n andu+

n both belong
to H. SinceX is a vector lattice, the mappingsv ∈ X 7→ v± ∈ X+ are continuous
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[29, Proposition 5.2], one hasu±n → u± andu+, u− belong toH. This proves thatu =
u+ − u− ∈ H .

(ii) If A is a von Neumann algebra andX = A⋆ is its predual, then the mapping
u ∈ X 7→ |u| ∈ X+ is continuous (see e.g. [31, Proposition 4.10, p. 415] ) and then,
arguing as in (i), one gets the conclusion. �

REMARK 3.19. In the above case (i), the positive cone of the disjoint complementHd

does not contain non-trivial elements with a honest trajectory. In particular, dishonest
trajectories are all emanating from elements of the positive cone ofX = H ⊕Hd having
a non-trivial component overHd.

We now deal with two practical examples for concrete spaces:

Example 1: The space of bounded signed measures.Let (Σ,F) be a measure space and
X = M(Σ,F) denote the Banach space of all bounded signed measures over(Σ,F)
endowed with the total variation norm:

‖µ‖ = |µ|(Σ), ∀µ ∈ M.

We recall here thatX = M(Σ,F) is aAL-space [29, Example 3, p. 114] and every
µ ∈ X splits asµ = µ+ − µ whereµ± ∈ X+ and|µ| = µ+ + µ−. Given two measures
µ andν of X, we shall denoteν ≺ µ if ν is absolutely continuous with respect to|µ|.
Using the terminology of [1], we shall say that a closed subspaceA of X = M(Σ,F) is
aM-ideal if, for anyµ ∈ A and anyν ∈ X, ν ≺ µ impliesν ∈ A . Then, one has the
following

PROPOSITION3.20. A subspaceA ofM(Σ,F) is aM-ideal ofM if and only ifA is a
closed and positively generated order ideal ofM(Σ,F).

Proof. Let us first assume thatA is a closed and positively generated order ideal ofX and
let µ ∈ A andν ∈ X such thatν ≺ µ. From Radon-Nikodym Theorem, there is some
h ∈ L1(Σ,F), d |µ|) such thatν = h |µ|. Thus,|ν| = |h| |µ| and

lim
n→∞

‖|ν| − βn‖ = 0

whereβn := (|h| ∧ n) |µ|. Indeedβn 6 |ν| for anyn ∈ N and

‖|ν| − βn‖ = |ν| (Σ) − βn(Σ) =

∫

Σ

[|h| − (|h| ∧ n)] d |µ|

goes to zero asn → ∞ according to the dominated convergence theorem. Now,βn 6

n |µ| with |µ| ∈ A (see Remark3.16) and, from the ideal property,βn ∈ A. From the
closedness ofA , one gets that|ν| ∈ A. Since− |ν| 6 ν 6 |ν|, one finally obtainsν ∈ A
andA is aM-ideal. Conversely, letA be aM-ideal. By definition, ifµ ∈ A then
|µ| ∈ A andµ± ∈ A . In particular,A = (A ∩ X+) − (A ∩ X+). Moreover, since
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0 6 µ 6 ν =⇒ µ ≺ ν, one sees thatA ∩ X+ is an hereditary subcone ofX+ andA is
an order ideal ofX according to [28, Lemma 2]. �

One deduces from this the following which allows to give a complete description of
the stateµ leading to a dishonest trajectory (see Remark3.19):

PROPOSITION 3.21. Under the assumptions of Theorem3.17with X = M(Σ,F), one
hasH is aM-ideal ofX andX = H ⊕ Hd where

Hd = {µ ∈ X = M(Σ,F) such thatν ≺ µ andν ∈ H =⇒ ν = 0 }. (3.7)

Proof. We saw in Theorem3.17thatH is a closed lattice ideal ofX. In particular, one
can define a band projectionP ontoH such thatH = PX and the disjoint complement
Hd of H given byHd = (I − P)X are such thatX = H ⊕ Hd [29]. Since, according
to Prop.3.20, H is aM-ideal ofX, one deduces from [1] thatHd = H ⊥ whereH ⊥ is
given by (3.7). �

Example 2: The space of trace class operators.We assume here thatX = Ts(h) is the
Banach space of all linear self-adjoint trace class operators on some separable Hilbert
spaceh endowed with the trace norm‖̺‖ = Trace[ |̺| ] for any ̺ ∈ X (see [22] for
details). The scalar product ofh shall be denoted by(·, ·). Under the assumptions of
the present section, one deduces from [22, Theorem 5] that, for anyλ > 0, there exists
βλ ∈ L +

s (h) such that

〈Ξλ, u〉 = Trace[βλ̺] ∀̺ ∈ X+

whereL +
s (h) is the space of all positive bounded self-adjoint operatorson h. One has

the following

THEOREM 3.22. The null space ofβλ is independent ofλ and

H = {̺ ∈ X+ ; ̺ = P̺ = ̺P } = {̺ ∈ X+ ; Q̺ = ̺Q = 0 }

whereP is the projection ofh ontoNull(βλ) whileQ = Idh −P.

Proof. Let λ > 0 be fixed. According to Theorem 3.15,H is a closed hereditary subcone
of X+. On the other hand, closed hereditary cones ofX are characterized in [10, Lemma
3.2, P. 54-55] which tells us that the set

h0 = {h ∈ h ; |h〉〈h| ∈ H}

is a closed linear subspace1 of h and

H = {̺ ∈ X+ ; ̺ = P̺ = ̺P }

whereP is the orthogonal projection ofh ontoh0 while |h〉〈h| denotes the one-dimensional
trace class operator :x 7→ (x, h)h. The proof consists in showing thatNull(βλ) = h0 for

1Notice that, in [10, Lemma 3.2, P. 54-55], Davies calls idealwhat we call closed hereditary subcone
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anyλ > 0. First, leth ∈ h0, h 6= 0 and let̺ = |h〉〈h|. For any orthonormal basis(en)n

of h we have

Trace[βλ̺] =
∑

n

(βλ̺(en), en) =
∑

n

(̺en, βλ(en))

=
∑

n

(h, en) (h, βλ(en)) =
∑

n

(h, en) (βλ(h), en).

Choosing in particular a basis(en)n with e0 = h/‖h‖, one gets that

Trace[βλ̺] = 0 ⇐⇒ (βλ(h), h) = 0 ⇐⇒ h ∈ Null(βλ)

sinceβλ > 0. This proves thath0 = Null(βλ) which, in particular, turns out to be inde-
pendent ofλ > 0. Finally, sincePQ = 0 andP + Q = Id, we see that̺ = P̺ = ̺P
amounts toQ̺ = ̺Q = 0. This is equivalent toQ̺Q = 0. �

This allows to provide a full characterization ofH :

COROLLARY 3.23. One hasH = H−H = {̺ ∈ X ; ̺ = P̺ = ̺P } .

Proof. The fact thatH ⊂ {̺ ∈ X ; ̺ = P̺ = ̺P } is clear. Conversely, let̺ ∈ X be
such that̺ = P̺ = ̺P. Since̺ ∈ Ts(h), one has

̺ =
∑

n

αn|en〉〈en|

where(en)n is an orthonormal basis ofh made of eigenvectors of̺associated to the real
eigenvalues(αn)n, i.e. ̺(h) =

∑
n αn(h, en)en for anyh ∈ h. Since̺ = ̺P, one has

̺(h) =
∑

n

αn(h, en)en =
∑

n

αn(Ph, en)en =
∑

n

αn(h,Pen)en ∀h ∈ h

while, sinceP̺ = ̺, one has̺ (h) =
∑

n αn(h,Pen)Pen for anyh ∈ h. In particular,

̺ =
∑

n

αn|Pen〉〈Pen|.

As we saw in the proof of the above theorem,|Pen〉〈Pen| ∈ H for anyn ∈ N so that,
writing αn = α+

n − α−
n with α±

n > 0, we see that̺ = ̺+ − ̺− with ̺± ∈ H. �

3.4. Sufficient conditions of honesty.We provide here sufficient conditions of honesty
based on the above Theorem3.11and on a new derivation of the functionalΞλ

THEOREM 3.24. For anyλ > 0, let (ψn(λ))n ⊂ X⋆ be defined inductively by

ψn+1(λ) =
[
B(λ−A)−1

]⋆
ψn(λ), ψ0(λ) = Ψ
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where we recall thatΨ is the positive functional defined in(1.1). Then,(ψn(λ))n is
nonincreasing and converges in the weak-⋆ topology ofX toψ(λ) such that

[
B(λ−A)−1

]⋆
ψ(λ) = ψ(λ). (3.8)

Moreover,ψ(λ) = Ξλ for all λ > 0 andΞλ is the maximal element of{ψ ∈ X⋆, ψ 6 Ψ}
satisfying(3.8).

Proof. It is clear that[B(λ−A)−1]
⋆ is a positive contraction inX⋆. Then, for allψ ∈ X⋆

+

with ‖ψ‖ 6 1, ∥∥[B(λ−A)−1
]⋆
ψ
∥∥ 6 1

or, in an equivalent way,
〈[
B(λ−A)−1

]⋆
ψ, u

〉
6 ‖u‖ = 〈Ψ, u〉 , ∀u ∈ X+,

i.e. Ψ− [B(λ−A)−1]
⋆
ψ is an element of the positive cone ofX⋆. Actually, it is straight-

forward to see that, for any givenu ∈ X+, the sequence(〈ψn(λ), u〉)n is bounded and
nonincreasing inR+. This means that(ψn(λ))n converges in the weak-⋆ topology to
someψ(λ) 6 Ψ. Let u ∈ X+ be given. Then,

〈ψn+1(λ), u〉 =
〈[
B(λ−A)−1

]⋆
ψn(λ), u

〉
=
〈
ψn(λ),B(λ−A)−1u

〉

so, lettingn→ ∞,
〈ψ(λ), u〉 =

〈
ψ(λ),B(λ−A)−1u

〉

which shows (3.8). Now, since

〈Ξλ, u〉 = lim
n→∞

〈
Ψ,

[
B(λ−A)−1

]n+1

u

〉

= lim
n→∞

〈([
B(λ−A)−1

]n+1
)⋆

Ψ, u

〉

= lim
n→∞

〈ψn+1(λ), u〉 = 〈ψ(λ), u〉

one sees thatψ(λ) = Ξλ. Let us now prove thatψ(λ) = Ξλ is the maximal element of
{ψ ∈ X⋆, 0 6 ψ 6 Ψ} satisfying (3.8) (λ > 0). To do so, letψ be in the positive cone of
X⋆, ψ 6 Ψ be such that[B(λ−A)−1]

⋆
ψ = ψ. Then,

ψ =

([
B(λ−A)−1

]⋆
)n

ψ 6

([
B(λ−A)−1

]⋆
)n

Ψ

which proves, lettingn go to infinity, thatψ 6 Ξλ. �

As a consequence, one has

COROLLARY 3.25. Assume there existsλ > 0 such thatB(λ−A)−1 is irreducible. Then,
the whole semigroup(V(t))t>0 is honest if and only if there is someu ∈ X+, u 6= 0, for
which the trajectory(V(t)u)t>0 is honest.
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Proof. We give two proofs of this result. The first one uses Theorem3.14and the second
one the spectral interpretation of the functionalΞλ.

Proof 1. Let u ∈ X+ \ {0} andω ∈ X⋆
+ \ {0}. Then,(λ−A⋆)−1ω ∈ X⋆

+ \ {0} and

〈
ω, (λ− G)−1u

〉
=

∞∑

k=0

〈
ω, (λ−A)−1

[
B(λ−A)−1

]k
u
〉

=

∞∑

k=0

〈
(λ−A⋆)−1ω,

[
B(λ−A)−1

]k
u
〉
> 0

where we used the fact that there existsk0 > 0 such that〈
(λ−A⋆)−1ω,

[
B(λ−A)−1

]k0 u
〉
> 0.

One obtains then that〈ω, (λ− G)−1u〉 > 0 for anyω ∈ X⋆
+ \ {0}, i.e. (λ − G)−1u is

quasi-interior for anyu ∈ X+ \ {0}. Thus,(V(t))t>0 is irreducible and Theorem3.14
leads to the conclusion.

Proof 2. LetB(λ−A)−1 be irreducible and assume there exists some honest trajectory
(V(t)u)t>0 with u ∈ X+ \ {0}. Then, from Theorem3.11, 〈Ξλ, u〉 = 0. Assume that
Ξλ 6= 0. Then, for anyz ∈ X+ \ {0}, there exists an integern > 0 such that

〈
Ξλ,

[
B(λ−A)−1

]n
z
〉
> 0.

According to Theorem3.24, it is clear that

〈Ξλ, z〉 =
〈([

B(λ−A)−1
]⋆)n

Ξλ, z
〉

=
〈
Ξλ,

[
B(λ−A)−1

]n
z
〉

i.e. 〈Ξλ, z〉 > 0 for anyz ∈ X+ \ {0}. This is a contradiction and, necessarily,Ξλ = 0.
Thus, the whole semigroup(V(t))t>0 is honest. �

We end this section with two practical sufficient conditionsensuring the existence of
honest trajectories:

THEOREM 3.26. Letλ > 0 andu ∈ X+ be such that

B(λ−A)−1u 6 u, (3.9)

then the trajectory(V(t)u)t>0 is honest.

Proof. SinceB(λ − A)−1 is positive, our assumption (3.9) implies that the sequence
([B(λ−A)−1]nu)n is nonincreasing inX and

[
B(λ−A)−1

]n
u 6 u, ∀n > 1.

Therefore the whole sequence([B(λ−A)−1]nu)n is convergent inX which ends the proof
because of Theorem3.5. �

This provides another honesty criterion in terms of sub-eigenvalues ofA + B.
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COROLLARY 3.27. Assume that there existsλ > 0 andu ∈ D(A)+ such that(A+B)u 6

λu, Then,(V(t)u)t>0 is honest.

Proof. Definez = (λ − A)u. One hasz > Bu > 0 andz satisfies (3.9). The trajectory
(V(t)z)t>0 is therefore honest from Theorem3.26. Definingv = (λ − G)−1z, one has
also that(V(t)v)t>0 is honest (see Proposition3.13). Since0 6 u = (λ − A)−1z 6 v,
(V(t)u)t>0 is honest sinceH is a closed hereditary subcone ofX+ (see Theorem3.17).

�

3.5. Instantaneous dishonesty.According to Definition3.8, if a trajectory(V(t)u)t>0

is not honest, then there existst0 > 0 such that

‖V(t0)u‖ < ‖u‖ − a

(∫ t0

0

V(s)uds

)
(3.10)

This suggests to introduce the following mass loss functional

∆u(t) = ‖V(t)u‖ − ‖u‖ + a

(∫ t

0

V(s)uds

)
, t > 0.

One has the following property:

LEMMA 3.28. For anyu ∈ X+, the mappingt > 0 7→ ∆u(t) is nonincreasing.

Proof. Let t2 > t1 > 0 be fixed. Then,

∆u(t2) − ∆u(t1) = ‖V(t2)u‖ − ‖V(t1)u‖ + a(

∫ t2

t1

V(s)uds)

= 〈Ψ,V(t2)u− V(t1)u〉 + a(

∫ t2

t1

V(s)uds).

SinceV(t2)u− V(t1)u = G

∫ t2

t1

V(s)uds, one sees that

∆u(t2) − ∆u(t1) = a(

∫ t2

t1

V(s)uds) − a0(

∫ t2

t1

V(s)uds) > 0,

sincea always dominatea0. �

LEMMA 3.29. Let u ∈ X+. If the trajectory(V(t)u)t>0 is dishonest, then there exists
t0 > 0 such that∆u(t) < 0 for anyt > t0 and∆v(t) < 0 for anyt > 0 wherev = V(t0)u.

Proof. By definition of dishonest trajectory and since∆u(t) 6 0 for anyt > 0, one has

t0 := inf{t > 0 such that∆u(t) < 0}
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is well-defined. Since∆u(·) is nonincreasing, one has∆u(t) < 0 for any t > t0. More-
over, since the mappingt 7→ ∆u(t) ∈ (−∞, 0] is clearly continuous, one has∆u(t) = 0
for anyt ∈ [0, t0]. Setv = V(t0)u. For anyt > 0, since∆u(t+ t0) < 0 one has

‖V(t)v‖ = ‖V(t+ t0)u‖ < ‖u‖ − a(

∫ t+t0

0

V(s)uds)

while the identity∆u(t0) = 0 reads‖u‖ = ‖v‖ + a(
∫ t0
0

V(s)uds). Consequently,

‖V(t)v‖ < ‖V(t0)u‖ + a

(∫ t0

0

V(s)uds

)
− a

(∫ t+t0

0

V(s)uds

)

= ‖v‖ − a

(∫ t+t0

t0

V(s)uds

)
= ‖v‖ − a

(∫ t

0

V(r)vdr

)

i.e. ∆v(t) < 0 for all t > 0. �

To summarize, when the semigroup(V(t))t>0 is dishonest, that is, if some trajectory
(V(t)u)t>0 is not honest, then it is possible to find somez ∈ X+ \ {0} such that the
trajectory emanating fromz is instantaneouslydishonest, i.e.∆z(t) < 0 for any t > 0.
In particular, whenever

〈Ψ, (A + B)u〉 = 0 ∀u ∈ D+,

the semigroup(V(t))t>0 is dishonest if and only if there exists somez ∈ X+ \ {0} such
that

‖V(t)z‖ < ‖z‖, ∀t > 0.

THEOREM 3.30. Assume that〈Ψ, (A + B)u〉 = 0 for anyu ∈ D+. If G 6= A + B then

‖V(t)u‖ < ‖u‖, t > 0

for any quasi-interioru ∈ X+.

Proof. If (V(t))t>0 is dishonest, then, according to Lemma3.29, there existsz ∈ X+\{0}
such that‖V(t)z‖ < ‖z‖ for all t > 0. In particular,

〈Ψ,V(t)z − z〉 < 0, ∀t > 0.

DefineZt := Ψ − V⋆(t)Ψ ∈ X⋆, for anyt > 0 where(V⋆(t))t>0 is the dual contractions
semigroup of(V(t))t>0. Since〈Ψ,V(t)u− u〉 6 0 for anyu ∈ X+, Zt belongs to the
positive coneX⋆

+ of X⋆ for anyt > 0 while

〈Zt, z〉 > 0, ∀t > 0.

Therefore,Zt belongs toX⋆
+\{0} for anyt > 0. Therefore, for any quasi-interioru ∈ X+

one has
〈Zt, u〉 > 0, ∀t > 0.

This proves the result. �
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REMARK 3.31. WheneverX is an AL-space, it is possible to prove a more general re-
sult of immediate dishonesty by resuming in a straightforward way the arguments of[23,
Corollary 2.12]. Precisely, recall that, ifX is anAL-space,H is a projection band
of X (see Prop.3.18) and letP be the band projection ontoH . Then, one can prove
the following: let us assume that(V(t))t>0 is not honest and letu ∈ X+ be such that
v = (I − P)u is a quasi-interior element of the disjoint complement ofH . Then, the
trajectory(V(t)u)t>0 is immediately dishonest, i.e. ‖V(t)u‖ < ‖u‖ − a(

∫ t

0
V(s)uds) for

anyt > 0. However, from the technical point of view, the formal arguments need the use
of the concept of local honesty as in[23].

4. ON HONESTY THEORY: DYSON-PHILLIPS APPROACH

We establish here an alternative of concept of honesty of thetrajectory in terms of the
Dyson-Phillips iterated defined by (2.15). To do so, we have first to investigate several
fine properties of these iteration terms.

4.1. Fine properties of the Dyson-Phillips iterations. The various terms of the Dyson-
Phillips series (2.15) enjoy the following properties:

PROPOSITION4.1. For anyn ∈ N, n > 1, the Dyson-Phillips iterated defined in(2.15)
satisfy:

(1) For anyu ∈ D(A), the mappingt ∈ (0,∞) 7−→ Vn(t)u is continuously differen-
tiable with

d

dt
Vn(t)u = Vn(t)Au+ Vn−1(t)Bu.

(2) For anyu ∈ D(A), Vn(t)u ∈ D(A), the mappingt ∈ (0,∞) 7−→ AVn(t)u is
continuous and

AVn(t)u = Vn(t)Au+ Vn−1(t)Bu− BVn−1(t)u

(3) For anyu ∈ X and anyt > 0,
∫ t

0

Vn(s)uds ∈ D(A), the mappingt ∈ (0,∞) 7−→

A
∫ t

0
Vn(s)uds is continuous with

A

∫ t

0

Vn(s)uds = Vn(t)u− B

∫ t

0

Vn−1(s)uds. (4.1)

(4) For anyu ∈ X+ and anyt > 0,
〈

Ψ,B

∫ t

0

Vn(s)uds

〉
6 −〈Ψ,Vn(t)u〉 +

〈
Ψ,B

∫ t

0

Vn−1(s)uds

〉
. (4.2)
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(5) For anyu ∈ X, andλ > 0, the limit

lim
t→∞

∫ t

0

exp(−λs)Vn(s)uds =:

∫ ∞

0

exp(−λs)Vn(s)uds

exists in the graph norm ofA and

(λ−A)

∫ ∞

0

exp(−λs)Vn(s)uds = B

∫ ∞

0

exp(−λs)Vn−1(s)uds. (4.3)

REMARK 4.2. Notice that, in Eq.(4.3), B
∫∞

0
exp(−λs)Vn−1(s)uds is well-defined since

B isA-bounded and the integral converges in the graph norm ofA. Moreover, it is easily
deduced from(4.3) that

B

∫ ∞

0

exp(−λs)Vn(s)uds =
[
B(λ−A)−1

]n+1
u, ∀u ∈ X, n > 1. (4.4)

Proof. We first recall that the formula (2.15) reads onD(A) as:

Vn+1(t)u =

∫ t

0

Vn(t− s)BU(s)uds, ∀u ∈ D(A), t > 0, n ∈ N.

Then

h−1Vn+1(h)u = h−1

∫ h

0

Vn(h− s)BU(s)u −→ Vn(0)BU(0)u as h→ 0+

because the mapping(s, h) 7→ Vn(h − s)BU(s)u is strongly continuous on{(s, h) ∈
R+ × R+ ; 0 6 s 6 h}. SinceV0(0) = U0(0) = Id while Vn(0) = 0 for anyn > 1, we
see that

lim
h→0

h−1Vn+1(h)u =

{
Bu whenn = 0

0 whenn > 1, ∀u ∈ D(A).
(4.5)

(1) Let n > 1 be fixed. Letu ∈ D(A) andt, h > 0 be fixed. One deduces from (2.17)
that, givent > 0 andh > 0,

Vn(t+ h)u− Vn(t)u =

n−1∑

k=0

Vk(t)Vn−k(h)u+ Vn(t)(V0(h)u− u)

=

n∑

k=1

Vn−k(t)Vk(h)u+ Vn(t)(V0(h)u− u).

Thus,

h−1(Vn(t+ h)u− Vn(t)u) =

n∑

k=1

Vn−k(t)

(
1

h
Vk(h)u

)
+ Vn(t)

V0(h)u− u

h
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which yields, sinceu ∈ D(A),

lim
h→0+

Vn(t+ h)u− Vn(t)u

h
= Vn−1(t)Bu+ Vn(t)Au.

Similarly, it is easy to prove that, for anyt > 0 and any0 < h < t,

Vn(t)u− Vn(t− h)u =

n∑

k=1

Vn−k(t− h)Vk(h)u+ Vn(t− h)(V0(h)u− u) (4.6)

and therefore

lim
h→0+

Vn(t)u− Vn(t− h)u

h
= Vn−1(t)Bu+ Vn(t)Au.

Since, for anyu ∈ D(A), the mappingt 7→ Vn−1(t)Bu + Vn(t)Au is continuous (see
Remark2.4), property(1) holds true.

(2) Let u ∈ D(A). It is clear that the two properties

Vk(t)u ∈ D(A) and t > 0 7→ AVk(t)u is continuous

hold true fork = 0. Letn > 1 be fixed and assume the above properties hold true for any
k 6 n and prove they still hold fork = n+ 1. For anyt, h > 0, Eq. (2.17) yields

Vn+1(t+ h)u = Vn+1(h+ t)u =

n+1∑

k=0

Vk(h)Vn+1−k(t)u

so that

V0(h)Vn+1(t)u−Vn+1(t)u = (Vn+1(t+h)u−Vn+1(t)u)−
n+1∑

k=1

Vk(h)Vn+1−k(t)u. (4.7)

Assume nowu ∈ D(A), by virtue of point(1) and (4.5), we have

lim
h→0+

V0(h)Vn+1(t)u− Vn+1(t)u

h
= Vn(t)Bu + Vn+1(t)Au− BVn(t)u.

This shows thatVn+1(t)u ∈ D(A) for anyu ∈ D(A) with

AVn+1(t)u = Vn+1(t)Au+ Vn(t)Bu− BVn(t)u

and proves(2) since the continuity of the mappingt > 0 7→ AVn+1(t)u is easy to prove.

(3) The first part of point(3) clearly holds forn = 0. Let u ∈ X andn ∈ N be

fixed. Assume that, for anyt > 0 and anyk 6 n,
∫ t

0

Vk(s)uds ∈ D(A), the mapping
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t ∈ (0,∞) 7−→ A
∫ t

0
Vk(s)uds is continuous. Let us prove the result fork = n + 1. Let

t, h > 0. From (4.7) we have

(V0(h) − Id)

∫ t

0

Vn+1(s)uds =

∫ t

0

(V0(h)Vn+1(s)u− Vn+1(s)u)ds

=

∫ t

0

(Vn+1(s+ h)u− Vn+1(s)u)ds−

n+1∑

k=1

Vk(h)

∫ t

0

Vn+1−k(s)uds

=

∫ t+h

t

Vn+1(r)udr −

∫ h

0

Vn+1(r)udr −

n+1∑

k=1

Vk(h)

∫ t

0

Vn+1−k(s)uds.

Since we assumed that
∫ t

0
Vj(s)uds ∈ D(A) ⊂ D(B) for any0 6 j 6 n, we deduce

immediately

lim
h→0+

h−1(V0(h) − Id)

∫ t

0

Vn+1(s)uds = Vn+1(t)u− B

∫ t

0

Vn(s)uds

where we used (4.5) and the fact thath−1
∫ t+h

t
Vn+1uds → Vn+1(t)u ash → 0+. There-

fore, property(3) holds true forn+ 1.

(4) Let u ∈ X andt > 0 be fixed. Applying (2.1) to v =

∫ t

0

Vn(s)uds (which belongs

to D(A) from point(3)), one deduces easily (4.2) from (4.1).

(5) It is clear that the definition ofVn(t) given in (2.15) is equivalent to

exp(−λt)Vn+1(t)u =

∫ t

0

exp (−λ(t− s))Vn(t− s)B [exp (−λs)U(s)]uds

for any u ∈ D(A), n ∈ N and anyλ > 0. Moreover, for anyλ > 0, the operators
Aλ := A− λ (with domainD(A)) andB satisfy the assumptions of Theorems2.1since

〈Ψ, (Aλ + B)u〉 6 −λ 〈Ψ, u〉 6 0, ∀u ∈ D(A)+, λ > 0.

One sees then that there is an extension ofAλ+B that generates aC0-semigroup(Vλ(t))t>0

in X. Clearly, the family(exp(−λt)Vn(t))n∈N
is the family of Dyson-Phillips iterated

associated toAλ, B and Vλ(t). In particular, applying Formula (4.1) to Aλ, B and
(exp(−λt)Vn(t))n∈N

, one gets

A

∫ t

0

exp(−λs)Vn(s)uds = exp(−λt)Vn(t)u+ λ

∫ t

0

exp(−λs)Vn(s)uds

− B

∫ t

0

exp(−λs)Vn−1(s)uds, ∀λ > 0, ∀u ∈ X, n > 1. (4.8)
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Notice that, since for anyn ∈ N, Vn(t) = L n(U)(t), we already saw in the proof of
Theorem2.3that, for anyu ∈ X and anyλ > 0, the limit

lim
t→∞

∫ t

0

exp(−λs)Vn(s)uds

exists inX and
∫ ∞

0

exp(−λs)Vn(s)uds = (λ−A)−1
[
B(λ−A)−1

]n
u, ∀n ∈ N. (4.9)

Now, forn = 0, since

A

∫ t

0

exp(−λs)U(s)uds = exp(−λt)U(t)u − u+ λ

∫ t

0

exp(−λs)U(s)uds

one easily sees that the limitlimt→∞A
∫ t

0
exp(−λs)U(s)uds exists inX with

lim
t→∞

A

∫ t

0

exp(−λs)U(s)uds = −u+ λ

∫ ∞

0

exp(−λs)U(s)uds,

i.e.
∫ ∞

0

exp(−λs)U(s)uds converges in the graph norm ofA. SinceB is A-bounded,

the limit

lim
t→∞

B

∫ t

0

exp(−λs)U(s)uds = B

∫ ∞

0

exp(−λs)U(s)uds = B(λ−A)−1u

exists inX. Now, applying (4.8) ton = 1, the integral
∫ ∞

0

exp(−λs)V1(s)uds converges

in the graph norm ofA with

A

∫ ∞

0

exp(−λs)V1(s)uds = λ

∫ ∞

0

exp(−λs)V1(s)uds− B

∫ ∞

0

exp(−λs)U(s)uds

and, as above, sinceB is A-bounded,

lim
t→∞

B

∫ t

0

exp(−λs)V1(s)uds = B

∫ ∞

0

exp(−λs)V1(s)uds

converges inX. A simple induction leads to the result for anyn ∈ N. �
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REMARK 4.3. Note thatA is closed but a prioriA + B is not; however foru ∈ D(A)

(A + B)

∫ t

0

Vk(r)udr = (A + B)

∫ t

0

Vk(r)udr =

∫ t

0

(A + B)Vk(r)udr

=

∫ t

0

(A + B)Vk(r)udr =

∫ t

0

(A + B)Vk(r)udr

=

∫ t

0

(A + B)Vk(r)udr =

∫ t

0

AVk(r)udr +

∫ t

0

BVk(r)udr;

(4.10)

in particular

B

∫ t

0

Vk(r)udr =

∫ t

0

BVk(r)udr.

From the above Proposition,limt→∞ B
∫∞

t
exp(−λs)Vn(s)uds converges to zero for

anyn ∈ N and anyu ∈ X+. Actually, this convergence is uniform with respect ton:

PROPOSITION4.4. For anyλ > 0 and anyu ∈ X, one has

lim
t→∞

sup
n∈N

∥∥∥∥B
∫ ∞

t

exp(−λs)Vn(s)uds

∥∥∥∥ = 0.

Proof. The combination of (4.8) and (4.3) gives

A

∫ ∞

t

exp(−λs)Vn(s)uds = −e−λtVn(t)u+ λ

∫ ∞

t

exp(−λs)Vn(s)uds

− B

∫ ∞

t

exp(−λs)Vn−1(s)uds

so that
〈
Ψ,A

∫ ∞

t

exp(−λs)Vn(s)u ds

〉
=

〈
Ψ, λ

∫ ∞

t

exp(−λs)Vn(s)uds

〉

−
〈
Ψ, e−λtVn(t)u

〉
−

〈
Ψ,B

∫ ∞

t

exp(−λs)Vn−1(s)uds

〉
.

Since
∫∞

t
exp(−λs)Vn(s)uds ∈ D(A)+ for u ∈ X+ then by (2.1)

〈
Ψ,A

∫ ∞

t

exp(−λs)Vn(s)uds

〉
6 −

〈
Ψ,B

∫ ∞

t

exp(−λs)Vn(s)uds

〉
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whence
〈

Ψ,B

∫ ∞

t

exp(−λs)Vn(s)uds

〉
+

〈
Ψ, λ

∫ ∞

t

exp(−λs)Vn(s)uds

〉

6
〈
Ψ, e−λtVn(t)u

〉
+

〈
Ψ,B

∫ ∞

t

exp(−λs)Vn−1(s)uds

〉
.

In particular for alln
〈

Ψ,B

∫ ∞

t

exp(−λs)Vn(s)uds

〉
6
〈
Ψ, e−λtVn(t)u

〉
+

〈
Ψ,B

∫ ∞

t

exp(−λs)Vn−1(s)uds

〉

and it follows by induction that

〈
Ψ,B

∫ ∞

t

exp(−λs)Vn(s)uds

〉
6

n∑

j=1

〈
Ψ, e−λtVj(t)u

〉
+

〈
Ψ,B

∫ ∞

t

exp(−λs)V0(s)uds

〉

6
〈
Ψ, e−λtV(t)u

〉
+

〈
Ψ,B

∫ ∞

t

exp(−λs)V0(s)uds

〉

and then
∥∥∥∥B
∫ ∞

t

exp(−λs)Vn(s)uds

∥∥∥∥ 6 e−λt ‖u‖ +

∥∥∥∥B
∫ ∞

t

exp(−λs)V0(s)uds

∥∥∥∥

which ends the proof sinceX = X+ − X+. �

4.2. A new functional. While, in Section 3, we introduced a functionala related to
a through the resolvent(λ − A)−1, we introduce here a new functionalâ constructed
through the Dyson-Phillips iteration terms:

PROPOSITION4.5. Under the assumption of Theorem2.1, for anyv ∈ D(G), there exists

lim
t→0+

1

t

∞∑

n=0

a

(∫ t

0

Vn(s)vds

)
=: â(v) (4.11)

with |â(v)| 6 4M (‖v‖ + ‖Gv‖). Furthermore, forv ∈ D(G)+, â(v) 6 a0(v) 6 ‖Gv‖.

Proof. First, one notices that, for anyu ∈ X+, n ∈ N and anyt > 0, one has
n∑

k=0

a

(∫ t

0

Vk(s)uds

)
6 a0

(∫ t

0

V(s)uds

)
= −

〈
Ψ,G

∫ t

0

V(s)uds

〉
.
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In particular, the series
∑∞

k=0 a
(∫ t

0
Vk(s)uds

)
converges with

∞∑

k=0

a

(∫ t

0

Vk(s)uds

)
6 −

〈
Ψ,G

∫ t

0

V(s)uds

〉
6 ‖u‖. (4.12)

Now, for any integers0 < n1 < n2 < n3, since, for anys, r > 0

n1∑

k=0

Vk(s)

(
n2∑

p=0

Vp(r)u

)
6

2n2∑

k=0

2n2−k∑

p=0

Vk(s)Vp(r)u =

2n2∑

k=0

Vk(s+ r)u

6

2n2∑

k=0

Vk(s)

(
2n3∑

p=0

Vp(r)u

)
, ∀u ∈ X+

we get, for anyt, τ > 0

n1∑

k=0

a

(∫ t

0

Vk(s)

[∫ τ

0

n2∑

p=0

Vp(r)udr

]
ds

)
6

2n2∑

k=0

a

(∫ t

0

ds

∫ τ

0

Vk(s+ r)udr

)

6

2n2∑

k=0

a

(∫ t

0

Vk(s)

[∫ τ

0

2n3∑

p=0

Vp(r)udr

]
ds

)
∀u ∈ X+.

Letting firstn3 thenn2 and finallyn1 go to infinity, we get

∞∑

k=0

a

(∫ t

0

Vk(s)

[∫ τ

0

V(r)udr

]
ds

)
6

∞∑

k=0

a

(∫ t

0

ds

∫ τ

0

Vk(s+ r)udr

)

6

∞∑

k=0

a

(∫ t

0

Vk(s)

[∫ τ

0

V(r)udr

]
ds

)

i.e.
∞∑

k=0

a

(∫ t

0

Vk(s)

[∫ τ

0

V(r)udr

]
ds

)
=

∞∑

k=0

a

(∫ t

0

ds

∫ τ

0

Vk(s+ r)udr

)
, ∀u ∈ X+.

In particular, for anyt, τ > 0
∞∑

k=0

a

(∫ t

0

Vk(s)

[∫ τ

0

V(r)udr

]
ds

)
=

∞∑

k=0

a

(∫ τ

0

Vk(s)

[∫ t

0

V(r)udr

]
ds

)
. (4.13)

From Eq. (4.12)
∣∣∣∣∣

∞∑

k=0

a

(∫ t

0

Vk(s)uds

)∣∣∣∣∣ 6 2M‖u‖ ∀u ∈ X.
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Sincelimτ→0+ τ−1
∫ τ

0
V(s)uds = u, one gets that

lim
τ→0+

1

τ

∞∑

k=0

a

(∫ t

0

Vk(s)

[∫ τ

0

V(r)udr

]
ds

)
=

∞∑

k=0

a

(∫ t

0

Vk(s)uds

)
∀t > 0.

(4.14)
Now, foru ∈ D(G)+, Eq. (4.12) reads

∞∑

k=0

a

(∫ t

0

Vk(s)uds

)
6 −

〈
Ψ,

∫ t

0

V(s)Guds

〉
=

∥∥∥∥
∫ t

0

V(s)Guds

∥∥∥∥ 6 t‖Gu‖ (4.15)

since‖Ψ‖ 6 1. One extends this estimate toD(G) in the following way: letu ∈ D(G)
be given and letv = u − Gu ∈ X. Then, there existv1, v2 in X+ with v = v1 − v2 and
‖vi‖ 6 M‖v‖, i = 1, 2. Setui = (1 − G)−1vi, i = 1, 2. Then,ui ∈ D(G)+, ‖ui‖ 6 ‖vi‖,
i = 1, 2 and

‖Gu1‖ + ‖Gu2‖ 6 2 (‖v1‖ + ‖v2‖) 6 4M‖v‖ 6 4M (‖u‖ + ‖Gu‖) .

Now, from (4.15),
∣∣∣∣∣

∞∑

k=0

a

(∫ t

0

Vk(s)uds

)∣∣∣∣∣ =

∣∣∣∣∣

∞∑

k=0

a

(∫ t

0

Vk(s)(u1 − u2)ds

)∣∣∣∣∣ 6 t (‖Gu1‖ + ‖Gu2‖)

i.e.
∣∣∣∣∣

∞∑

k=0

a

(∫ t

0

Vk(s)uds

)∣∣∣∣∣ 6 4Mt (‖u‖ + ‖Gu‖) ∀u ∈ D(G), t > 0. (4.16)

For anyv ∈ X and anyt1, t2 > 0 fixed, applying the above estimate tou = 1
t1

∫ t1
0

V(r)vdr−
1
t2

∫ t2
0

V(r)vdr ∈ D(G) we get

∣∣∣∣∣

∞∑

k=0

a

(∫ t

0

Vk(s)

[
1

t1

∫ t1

0

V(r)vdr −
1

t2

∫ t2

0

V(r)vdr

]
ds

)∣∣∣∣∣ 6

4Mt

∥∥∥∥
1

t1

∫ t1

0

V(r)vdr −
1

t2

∫ t2

0

V(r)vdr

∥∥∥∥+

4Mt

∥∥∥∥
1

t1
G

∫ t1

0

V(r)vdr −
1

t2
G

∫ t2

0

V(r)vdr

∥∥∥∥
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which, by virtue of (4.13), reads

∣∣∣∣∣
1

t1

∞∑

k=0

a

(∫ t1

0
Vk(s)zds

)
−

1

t2

∞∑

k=0

a

(∫ t2

0
Vk(s)zds

)∣∣∣∣∣ 6

4M

∥∥∥∥
1

t1

∫ t1

0
V(r)vdr −

1

t2

∫ t2

0
V(r)vdr

∥∥∥∥+ 4M

∥∥∥∥
1

t1
G

∫ t1

0
V(r)vdr −

1

t2
G

∫ t2

0
V(r)vdr

∥∥∥∥

wherez = t−1
∫ t

0
V(r)vdr. Letting nowt→ 0+ one deduces from (4.14) that

∣∣∣∣∣
1

t1

∞∑

k=0

a

(∫ t1

0
Vk(s)vds

)
−

1

t2

∞∑

k=0

a

(∫ t2

0
Vk(s)vds

)∣∣∣∣∣ 6

4M

∥∥∥∥
1

t1

∫ t1

0
V(r)vdr −

1

t2

∫ t2

0
V(r)vdr

∥∥∥∥+ 4M

∥∥∥∥
1

t1
G

∫ t1

0
V(r)vdr −

1

t2
G

∫ t2

0
V(r)vdr

∥∥∥∥

If v ∈ D(G) then 1
ti
G
∫ ti
0
V(r)vdr = 1

ti

∫ ti
0
V(r)Gvdr, i = 1, 2 and it is easy to see that,

for anyε > 0, there existsδ > 0 such that
∣∣∣∣∣
1

t1

∞∑

k=0

a

(∫ t1

0

Vk(s)vds

)
−

1

t2

∞∑

k=0

a

(∫ t2

0

Vk(s)vds

)∣∣∣∣∣ 6 4Mε, ∀0 < t1 < t2 < δ.

This achieves to prove that, for anyv ∈ D(G), the limit limt→0+
1
t

∑∞
k=0 a

(∫ t

0
Vk(s)vds

)

exists. We denote this limit bŷa(v) and the first part of the Theorem is proved. The first
estimate|â(v)| 6 4M (‖v‖ + ‖Gv‖) is a direct consequence of (4.16). Finally, since

∞∑

k=0

a

(∫ t

0

Vk(s)vds

)
6 a0

(∫ t

0

V(s)vds

)

one gets that

â(v) = lim
t→0+

t−1
∞∑

k=0

a

(∫ t

0

Vk(s)vds

)
6 lim

t→0+
t−1a0

(∫ t

0

V(s)vds

)
= a0(v)

since limt→0+
1
t

∫ t

0
V(s)vds = v in the graph norm ofG anda0(·) is continuous with

respect to the graph norm ofD(G). The fact thata0(v) 6 ‖Gv‖ is a direct consequence
of the estimate‖Ψ‖ 6 1. �

Before investigating further properties of the functionalâ we need to establish several
properties of the various termsVn(t) appearing in (2.15).
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4.3. Further properties of â. We are now in position to establish very useful properties
of the functional̂a complementing Proposition4.5.

PROPOSITION 4.6. The functional̂a(·) : D(G) → R defined by(4.11) is such that
â(v) = a0(v) for anyv ∈ D(A). Consequently,

â(u) = a0(u), ∀u ∈ D(A + B).

Proof. From (4.1) one sees that, for anyn > 1 and anyu ∈ X+

n∑

k=0

(A + B)

∫ t

0

Vk(s)uds =
n∑

k=0

Vk(s)u− u+ B

∫ t

0

Vn(s)uds, ∀n ∈ N. (4.17)

In particular,

−

〈
Ψ,

n∑

k=0

(A + B)

∫ t

0

Vk(s)uds

〉
= 〈Ψ, u〉−

n∑

k=0

〈Ψ,Vk(s)u〉−

〈
Ψ,B

∫ t

0

Vn(s)uds

〉
.

Lettingn go to infinity, we see thatlimn→∞

∥∥∥B
∫ t

0
Vn(s)uds

∥∥∥ exists and

∞∑

k=0

a

(∫ t

0

Vk(s)uds

)
= 〈Ψ, u− V(t)u〉 − lim

n→∞

〈
Ψ,B

∫ t

0

Vn(s)uds

〉
, ∀t > 0.

(4.18)
Now, for anyu ∈ D(A)+ and anyk > 1, one deduces from Proposition4.1, (2) that

〈Ψ,BVk(s)u〉 6 −〈Ψ,AVk(s)u〉 = 〈Ψ,BVk−1(s)u〉−〈Ψ,Vk(s)Au〉−〈Ψ,Vk−1(s)Bu〉

and

〈Ψ,BVk(s)u〉 − 〈Ψ,BVk−1(s)u〉 6 −〈Ψ,Vk(s)Au〉 ∀s > 0. (4.19)

Since, for anyu ∈ D(A) the series
∑∞

k=0 Vk(t)Au converges toV(t)Au uniformly on
every bounded time interval, for anyT > 0 and anyε > 0, there existsN > 1 such that,
for anys ∈ (0, T ) and anyn > N , |

∑n
k=N 〈Ψ,Vk(s)Au〉| 6 ε. From (4.19), one gets

n∑

k=N

(〈Ψ,BVk(s)u〉 − 〈Ψ,BVk−1(s)u〉) 6 ε, ∀s ∈ (0, T )

i.e. 〈Ψ,BVn(s)u〉 6 〈Ψ,BVN−1(s)u〉 + ε for any s ∈ (0, T ). FixedN > 1 andu ∈
D(A), the mappings ∈ (0, T ) 7→ BVN−1(s)u being continuous and converging to zero
ass → 0+, there existst > 0 such that〈Ψ,BVN−1(s)u〉 < ε for any 0 < s < t and
consequently〈Ψ,BVn(s)u〉 < 2ε for anyn > N and any0 < s < t. Now, from Eq.
(4.10) one has

〈
Ψ,B

∫ t

0

Vn(s)uds

〉
=

〈
Ψ,

∫ t

0

BVn(s)uds

〉
6 2εt ∀n > N.



39

Then, one deduces from (4.18) that
∣∣∣∣∣

∞∑

k=0

t−1a

(∫ t

0

Vk(s)uds

)
−

〈
Ψ,

u− V(t)u

t

〉∣∣∣∣∣ 6 2ε ∀t > 0.

Letting t → 0+, sincelimt→0+ t−1

〈
Ψ,

u− V(t)u

t

〉
= −〈Ψ,Gu〉 = a0(u), we get that

|â(u) − a0(u)| 6 2ε. This proves that̂a coincides witha0 on D(A) sinceε is arbitrary.
Finally, if u ∈ D(A + B), there exists a sequence(un)n ⊂ D(A) with un → u and
(A + B)un → Gu asn → ∞. Sinceâ(un) = a0(un) for anyn ∈ N, one deduces easily
that â(u) = a0(u). �

4.4. Mild honesty. We introduce now another concept of honest trajectories. Todistin-
guish it a priori from the previous one, we will speak rather of mild honesty.

DEFINITION 4.7. Letu ∈ X+ be given. Then, the trajectory(V(t)u)t>0 is said to bemild
honest if and only if

‖V(t)u‖ = ‖u‖ − â

(∫ t

0

V(s)uds

)
, for anyt > 0.

We are now in position to state the main result of this section, reminiscent to Theorem
3.5:

THEOREM 4.8. Givenu ∈ X+, the following statements are equivalent

(1) the trajectory(V(t)u)t>0 is mild honest;
(2) limn→∞ ‖B

∫ t

0
Vn(s)uds‖ = 0 for anyt > 0;

(3)
∫ t

0
V(s)uds ∈ D(A + B) for anyt > 0;

(4) the set
(
B
∫ t

0
Vn(s)uds

)
n

is relatively weakly compact inX for anyt > 0.

Proof. Let u ∈ X+ andt > 0 be fixed. One has
∫ t

0
V(s)uds ∈ D(G) and

â

(∫ t

0

V(s)uds

)
= lim

τ→0+
τ−1

∞∑

n=0

a

(∫ τ

0

Vn(s)ds

[∫ t

0

V(r)udr

])
.

From (4.13) and (4.14), it is easy to deduce that

â

(∫ t

0

V(s)uds

)
=

∞∑

n=0

a

(∫ t

0

Vn(s)uds

)
, ∀u ∈ X+, t > 0. (4.20)

Thus, Eq. (4.18) can be rewritten as

â

(∫ t

0

V(s)uds

)
= 〈Ψ, u− V(t)u〉 − lim

n→∞

∥∥∥∥B
∫ t

0

Vn(s)uds

∥∥∥∥ .
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This proves immediately that(1) ⇐⇒ (2). Let us prove that(2) =⇒ (3). Observe that,
according to (4.17)

(A + B)

(
n∑

k=0

∫ t

0

Vk(s)uds

)
=

n∑

k=0

Vk(t)u− u+ B

∫ t

0

Vn(s)uds

so that, from(2) we deduce that the right-hand side converges toV(t)u − u asn goes to
infinity. Since

∑n
k=0

∫ t

0
Vk(s)uds converges to

∫ t

0
V(s)uds asn goes to infinity, one gets

immediately that(3) holds with
(
A + B

) ∫ t

0
V(s)uds = V(t)u − u. Let us now assume

that(3) holds. Then, from (4.6),

â

(∫ t

0

V(s)uds

)
= a0

(∫ t

0

V(s)uds

)

i.e. â
(∫ t

0
V(s)uds

)
= ‖u‖ − ‖V(t)u‖ which is nothing but(1). Assume now(4) to

hold. Then, up to extracting a subsequence, we may assume thatB
∫ t

0
Vn(s)uds converges

weakly to somev ∈ X. Then,
∑n

k=0

∫ t

0
Vk(s)uds converges weakly to

∫ t

0
V(s)uds while

(A + B)

n∑

k=0

∫ t

0

Vk(s)uds converges weakly to(V(t)u− u− v) .

In particular,
(∫ t

0
V(s)uds,V(t)u− u− v

)
belongs to the weak closure (and thus the

strong closure) of the graph ofA + B. In particular,(3) holds. Finally, it is clear that
(2) =⇒ (4). �

The following result proves that the two notions of honesty and mild honesty are equiv-
alent:

THEOREM 4.9. The two functionalŝa and a coincide and consequently the notions of
honest or mild honest trajectories are equivalent.

Proof. Let u ∈ X+ andλ > 0 be given. One deduces from (4.20) that

∫ ∞

0

exp(−λt)â

(∫ t

0

V(s)uds

)
dt =

∞∑

k=0

∫ ∞

0

exp(−λt)a

(∫ t

0

Vk(s)uds

)
dt

because all the functions involved are positive. On the other hand, since the mappingt >

0 7→
∫ t

0
V(s)uds ∈ D(G) is continuous as well as the mappingt > 0 7→

∫ t

0
Vk(s)uds ∈
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D(A) ⊂ D(G), we have
∫ ∞

0

exp(−λt)â

(∫ t

0

V(s)uds

)
dt = â

(∫ ∞

0

exp(−λt)dt

∫ t

0

V(s)uds

)

=
1

λ
â

(∫ ∞

0

exp(−λs)V(s)uds

)
=

1

λ
â
(
(λ−A)−1u

)

sinceâ is D(G)-continuous. We also have, for anyk ∈ N

∫ ∞

0

exp(−λt)a

(∫ t

0

Vk(s)uds

)
dt = a0

(∫ ∞

0

exp(−λt)dt

∫ t

0

Vk(s)uds

)

=
1

λ
a0

(∫ ∞

0

exp(−λs)Vk(s)uds

)
=

1

λ
a0

(
(λ−A)−1

(
B(λ−A)−1

)k
u
)

=
1

λ
a
(
(λ−A)−1

(
B(λ−A)−1

)k
u
)

where we used (4.9) and the fact thata0 is D(G)-continuous. Hence

â
(
(λ−A)−1u

)
=

∞∑

k=0

a
(
(λ−A)−1

(
B(λ−A)−1

)k
u
)

which proves (see Subsection 3.1) thatâ = a. �

REMARK 4.10. The above provides an alternative proof of Proposition3.1.

REMARK 4.11. The equivalence between the two notions of honesty established here
above has some unsuspected consequences. For instance, onenotes that Theorems3.5
and4.8 imply that, for a givenu ∈ X+,

∫ t

0

V(s)uds ∈ D(A + B) ∀t > 0 ⇐⇒
[
B(λ−A)−1u

]n
→ 0 asn→ ∞.

Notice also that, for anyu ∈ X+, the mass loss functional∆u(t) defined in Section3.5 is

given by∆u(t) = limn→∞

∥∥∥∥B
∫ t

0

Vn(s)uds

∥∥∥∥.
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