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We propose a new approach to treat the nucleon structure in terms of an effective chiral La-

grangian. We formulate the state vector, φ(p), of the nucleon in light-front dynamics, and solve

the eigenvalue equation P̂2φ(p) = M2φ(p) in a truncated Fock space. The effective Lagrangian

is decomposed in terms of pion fields in order to match the Fock expansion of the state vector.

We use a general renormalization scheme consistent with Fock state truncation. We present our

first results in a two-body Fock space truncation.
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1. Introduction

For the last 40 years pion-nucleon systems and their theoretical investigation within the general

framework of chiral perturbation theory have been of great interest. Since the nucleon mass is not

zero in the chiral limit, all momentum scales are involved in the calculation of baryon properties

(like masses or electro-weak observables) beyond tree level. This is at variance with the meson

sector for which a meaningful power expansion of any physical amplitude can be done. While there

is not much freedom, thanks to chiral symmetry, for the construction of the effective Lagrangian

in Chiral Perturbation Theory (CPT), LCPT , in terms of the pion field - or more precisely in terms

of the U field defined by U = eiτ.π/ fπ where fπ is the pion decay constant - one should settle

an appropriate approximation scheme in order to calculate baryon properties. Up to now, two

main strategies have been adopted. The first one is to force the bare (and hence the physical)

nucleon mass to be infinite, in Heavy Baryon Chiral Perturbation Theory [1]. In this case, by

construction, an expansion in characteristic momenta can be developed. The second one is to use

a specific regularization scheme [2] in order to separate contributions which exhibit a meaningful

power expansion, and hide the other parts in appropriate counterterms. In both cases however, the

explicit calculation of baryon properties relies on an extra approximation in the sense that physical

amplitudes are further calculated by expanding LCPT in a finite number of pion fields.

Following [3], we propose to calculate nucleon properties using the general eigenvalue equa-

tion for the state vector projected on the light front. This non-perturbative equation is then solved

in a truncated Fock space. This enables to consider irreducible contributions arising from ππNN

contact interactions in a systematic way, as shown in Fig.(1). It was calculated in perturbation the-

ory in [4]. This decomposition of the state vector in a finite number of Fock components implies

Figure 1: Two-body irreducible contribution to the nucleon state vector.

to consider an effective Lagrangian which enables all possible elementary couplings between the

pion and the nucleon fields to the same order. This is indeed easy to achieve in chiral perturbation

theory since each derivative of the U field involves one derivative of the pion field. In the chiral

limit, the chiral effective Lagrangian of order p involves p derivatives and at least p pion fields. In

order to calculate the state vector in the N-body truncation, with one fermion and (N − 1) pions,

one has to include contributions up to 2(N − 1) pion fields in the effective Lagrangian, as shown

in Fig. (2). We thus should calculate the state vector in the N-body truncation with an effective

Lagrangian, denoted by L N
e f f , and given by

L
N

e f f = L
p=2(N−1)

CPT . (1.1)

2. Description of bound states in light-front dynamics

One of the main advantages of Light-Front Dynamics (LFD) is that the vacuum state of a
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(N − 1) bosons(N − 1) bosons

Figure 2: General vertex including a maximum of (N −1) pion fields in the initial and final states.

physical system coincides with the free vacuum. All intermediate states result from fluctuations of

the physical system. So it is very natural to decompose the state vector φ(p) in a series of Fock

sectors:

φ(p) = |1〉+ |2〉+ ...+ |N〉+ ...

Each term of this expansion denotes a state with a fixed number, n, of particles from which the

physical system can be constructed. For obvious practical reasons, this expansion should be trun-

cated. We shall call N the maximal number of Fock sectors under consideration. Each Fock sector

is then described by a non-perturbative many-body component, called vertex function. Graphically,

the vertex function of order n, i.e. including n particles, in a truncation to order N, is represented

by the diagram of Fig. (3). It is denoted by Γ
(N)
n . This state vector is a solution of the general

eigenvalue equation

P̂2φ(p) = M2φ(p) , (2.1)

where P̂ is the full momentum operator and M is the physical bound state mass.

(n − 1) bosons

Γ
(N)
n

Figure 3: Vertex function of order n for the N-body Fock space truncation.

In the standard version of LFD the state vector is defined on the plane t + z
c

= 0. This plane

is not invariant under spatial rotations. This may lead to many unpleasant consequences for any

approximate calculation. We use in our work the so-called explicitly Covariant formulation of LFD

(CLFD) [5]. Within this formalism, the state vector is defined on the plane characterized by the

equation ω ·x = 0, where ω is an arbitrary light-like 4-vector. The standard LFD plane corresponds

to the particular choice ω = (1,0,0,−1). Of course, physical observables should coincide in both

approaches in any exact calculation. However, in approximate calculations, the use of CLFD is of

particular interest. In that case, this framework allows to separate physical observables from ω-

dependent unphysical ones in a very transparent way, while exact calculations should not depend

on the arbitrary position of the light front.

In order to make definite predictions for physical observables we should define a renormal-

ization scheme. It should be done with care since any truncation of the Fock space may induce

uncancelled divergences. Let us look for instance to the calculation of the physical fermion prop-

agator in second order perturbation theory as represented in Fig. (4). The propagator has three

contributions: free propagator, the self-energy contribution and the mass counterterm. The last
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Figure 4: Renormalization of the fermion propagator in second order of perturbation theory

contribution corresponds to the one-body Fock sector (single fermion). It should however be op-

posite to the two-body Fock sector contribution (one fermion plus one boson) at p2 = M2, in order

to recover the free physical propagator. It is thus clear that if the Fock state is truncated, such can-

cellation, to all orders, may be broken. A general renormalization scheme to deal with Fock state

truncation in Light-Front dynamics has been developed in [6].

3. Eigenvalue equation

In order to show how one should proceed, we start from the following typical pion-nucleon

interaction Lagrangian

Lint = −
1

2

gA

F0

Ψ̄γµ γ5 τb ∂µφ b
Ψ−

1

4F2
0

Ψ̄γµ ~τ · ~φ × ∂µ
~φ Ψ. (3.1)

The first term is the standard pseudo-vector pion-nucleon coupling, and the second one is the

leading contact ππNN interaction. Other contributions involving two pion fields arise from the

second order πN chiral perturbation theory Lagrangian [7]. They can be included in a very similar

way to the ππNN contact interaction.

Solving the eigenvalue equation (2.1) [6], we can represent the system of coupled equations

for the vertex functions in the two-body truncated Fock space by the diagrams of Fig. (5). It can be

written as

ū(p1)Γ1u(p) = ū(p1)(V1 +V2)u(p), (3.2)

ū(k1)Γ2u(p) = ū(k1)(V3 +V4)u(p). (3.3)

Here p is the momentum of the physical fermion, p1 and k1 are the momenta of the constituent

fermion in the one-body and two-body Fock space truncation respectively. The graph denoted by

V4 corresponds to the second term in the interaction Lagrangian (3.1).

The vertex functions Γ1 and Γ2 should be decomposed in independent spin structures. Using

the explicit covariance of our approach, we can write

ū(k1)Γ1u(p) = (m2 −M2)a1ū(k1)u(p) (3.4)

ū(k1)Γ2u(p) = iū(k1)

(

(6k2− 6ωτ)b1(R⊥,x)+
m 6ω

ω · p
b2(R⊥,x)

)

γ5u(p) , (3.5)

where

τ =
s−M2

2ω · p
(3.6)
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Figure 5: System of equations for the pion-nucleon vertex functions in the two-body Fock space truncation.

is the off-shell energy, with s = (k1 +k2)
2. The usual longitudinal momentum fraction, with respect

to the position ω of the light front, is given by

x =
ω·k2

ω·p
. (3.7)

The transverse momentum R⊥ with respect to ω is defined from

R2 = k2 − xp with R2 = (R0
2,R⊥,R0

2) , (3.8)

since by construction ω·R2 = 0. The last component in (3.8) corresponds to the longitudinal mo-

mentum R2 with respect to ω . The mass of the physical bound state is denoted by M, while m is

the mass of the constituent fermion. In the final result, one should take the limit m → M. Generally

speaking, b1(R⊥,x) and b2(R⊥,x) are scalar functions depending on the dynamical variables (mo-

menta). In the two-body truncation, with the Lagrangian (3.1), they are just constants. The spin

decomposition of the two-body component in terms of independent spin structures is of course not

unique. We choose here the most convenient one.

On the energy shell, i.e. for s = M2, the two-body vertex function Γ2 should be independent of

the arbitrary position of the light front, so that, since b2 is a constant, one should have the condition

b2 = 0. (3.9)

Due to the Fock state truncation, this may be however not the case in practice. In order to inforce

this condition, one may consider an ω-dependent vertex counterterm in the effective Lagrangian,

of the form

δLint = iZ3 Ψ̄ 6ω γ5 τb φ b
Ψ. (3.10)

This amounts to extend the pion-nucleon vertex in Fig. (5) by a new contribution proportional to

Z3 6ω .

The loop contributions of Fig. (5) are a-priori divergent, and one should use an appropriate

regularization scheme in order to give them a mathematical sens. In our preliminary study, we

shall use the Pauli-Villars (PV) regularization scheme as applied to CLFD [6]. We thus should

extend all physical components to incorporate PV particles. For simplicity, we have left over all

indices relative to physical and PV particles in the vertex functions in the eigenvalue equations

(3.2,3.3) and in Fig. (5).

5



Baryon structure in chiral effective field theory on the light front Natalia Tsirova

The general strategy to solve the coupled eigenvalue equations shown in Fig. (5) is detailed in

[6]. Its solution for the simplest case, namely, without the ππNN contact interaction, i.e. without

the graph V4 from the system presented in Fig. (5) can be found analytically as a function of

PV masses. The necessary condition (3.9) is satisfied automatically. We are analyzing the ω-

independent component. It should correspond exactly to the perturbative calculation.

We also have found a solution in the more general case given by the Lagrangian (3.1), i.e.

with ππNN contact interaction. The solution is also analytic but much more complicated and in

that case the physical component b2(s = M2) is a constant different from 0. It should be killed by

an appropriate counterterm (3.10).

4. Perspectives

We have outlined in this preliminary study the main steps in the calculation of nucleon proper-

ties within light front chiral effective field theory. Our formalism is based on the Fock expansion of

the nucleon state vector, projected on the light front. Using the properties of the explicitly covari-

ant formulation of light-front dynamics, and an adequate renormalization scheme when the Fock

expansion is truncated, we have calculated explicitly the spin components of the state vector in the

two-body truncation.

We are now analyzing our results in terms of an expansion of the nucleon mass as a function

of the pion mass, and calculate the scalar form factor.
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