
Closed sets based discovery of small covers for

association rules

Nicolas Pasquier, Yves Bastide, Rafik Taouil, Lotfi Lakhal

To cite this version:

Nicolas Pasquier, Yves Bastide, Rafik Taouil, Lotfi Lakhal. Closed sets based discovery of small
covers for association rules. BDA’1999 international conference on Advanced Databases, Oct
1999, Bordeaux, France. pp.361-381, 1999. <hal-00467748>

HAL Id: hal-00467748

https://hal.archives-ouvertes.fr/hal-00467748

Submitted on 26 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Closed Set Based Dis
overy of Small Coversfor Asso
iation RulesNi
olas Pasquier Yves Bastide Ra�k Taouil Lot� LakhalLaboratoire d'Informatique (LIMOS)Universit�e Blaise Pas
al - Clermont-Ferrand IIComplexe S
ienti�que des C�ezeaux24 Avenue des Landais, 63177 Aubi�ere Cedex Fran
efpasquier,bastide,taouil,lakhalg�libd2.univ-bp
lermont.frAbstra
tIn this paper, we address the problem of the usefulness of the set of dis
overed asso
iation rules. Thisproblem is important sin
e real-life databases yield most of the time several thousands of rules withhigh 
on�den
e. We propose new algorithms based on Galois 
losed sets to redu
e the extra
tionto small 
overs, or bases, for exa
t and approximate rules. On
e frequent 
losed itemsets { whi
h
onstitute a generating set for both frequent itemsets and asso
iation rules { have been dis
overed,no additional database pass is needed to derive these bases. Experiments 
ondu
ted on real-lifedatabases show that these algorithms are eÆ
ient and valuable in pra
ti
e.Keywords: data mining, Galois 
losure operator, frequent 
losed itemsets, bases for asso
iationrules, algorithms.1 Introdu
tion and MotivationData mining has been extensively addressed for the last years, spe
ially the problem of dis
overingasso
iation rules. The aim when dis
overing asso
iation rules is to exhibit relationships between dataitems (or attributes) and 
ompute the pre
ision of ea
h relationship in the database. Usual pre
isionmeasures are support and 
on�den
e [1℄ that point the proportion of database transa
tions (or obje
ts)upholding ea
h rule out. When an asso
iation rule has support and 
on�den
e ex
eeding some user-de�ned minimum thresholds, the rule is 
onsidered as relevant and the extra
ted knowledge would likelybe used for supporting de
ision making. A 
lassi
al example of asso
iation rules �ts in the 
ontext ofmarket basket data analysis and highlights a parti
ular feature in 
ustomers behavior: 80% of 
ustomerswho buy 
ereals and sugar also buy milk.Sin
e the problem was stated [1℄, various approa
hes have been proposed for an in
reased eÆ
ien
yof rule dis
overy [2, 4, 8, 17, 23, 24, 26, 30, 33℄. However, fully taking advantage of exhibited knowledgemeans 
apabilities to handle su
h a knowledge. In fa
t, by using a syntheti
 dataset 
ontaining 100,000obje
ts, ea
h of whi
h en
ompassing around 10 items, our experiments yield more than 16,000 rules with
on�den
e out
oming 90%. The problem is mu
h more 
riti
al when 
olle
ted data is highly 
orrelatedor dense, like in statisti
al or medi
al databases. For instan
e, when applied to a 
ensus dataset of 10,000obje
ts, ea
h of whi
h 
hara
terized by values of 73 attributes, experiments result in more than 2,000,000rules with support and 
on�den
e out
oming 90%.Thus the talked issue 
ould be rephrased as follows: whi
h relevant knowledge 
an be learned fromseveral thousands of rules highly redundant? Whi
h aid 
ould be o�ered to users for handling 
ountlessrules and fo
using on useful ones? Before explaining how our approa
h answers the previous questions,let us examine proposed solutions for meeting su
h needs.



1.1 Related Work: an OutlineAmong approa
hes addressing the des
ribed issue, two main trends 
an be distinguished. The formerprovides users with me
hanisms for �ltering rules. In [3, 16℄, the user de�nes templates, and rules notmat
hing with them are dis
arded. In [22, 29℄, boolean operators are introdu
ed for sele
ting rulesin
luding (or not) given items. A similar approa
h expanded with a measure of usefulness of extra
tedrules, 
alled improvement, is proposed in [5℄. In [21℄, an SQL-like operator 
alled MINE RULE, allowing thespe
i�
ation of general extra
tion 
riteria, is proposed. The quoted approa
hes operate \a posteriori",i.e. on
e huge amount of rules are extra
ted, querying fa
ilities make it possible to handle rule subsetssele
ted a

ording to the user preferen
es. In 
ontrast, the se
ond trend addresses the problem withan \a priori" vision, by attempting to minimize the number of exhibited rules. In [14, 28℄, informationabout taxonomies are used to de�ne 
riteria of interest whi
h apply for pruning redundant rules. In[7, 25℄, statisti
al measures su
h as Pearson's 
orrelation or the 
hi-squared test are used instead of the
on�den
e measure.1.2 Contribution: an OverviewThe approa
h presented in this paper belongs to the se
ond trend sin
e it aims to extra
t not all possiblerules but a sub-set 
alled small 
over or basis for asso
iation rules. When 
omputing su
h a basis, re-dundant rules are dis
arded sin
e they do not vehi
ule relevant knowledge. Su
h a pruning operation isa key-step during rule extra
tion, and signi�
antly redu
es the resulting set. For example, experimentsperformed using a real-life dataset des
ribing 
hara
teristi
s of mushrooms yield the 9 following asso
i-ation rules with free gills in the ante
edent and eatable in the 
onsequent, and with 
ommon support(51%) and 
on�den
e (54%).1) free gills ! eatable 6) free gills, white veil ! eatable, partial veil2) free gills ! eatable, partial veil 7) free gills, partial veil ! eatable3) free gills ! eatable, white veil 8) free gills, partial veil ! eatable, white veil4) free gills ! eatable, partial veil, white veil 9) free gills, white veil, partial veil ! eatable5) free gills, white veil ! eatableAmong these rules, 8 are redundant be
ause they 
an be dedu
ed from the 4th rule: free gills ! eatable,partial veil, white veil. Moreover, sin
e rules unexpe
ted by the user are important [18, 27℄, presenting alist of rules 
overing all the frequent items in the dataset is also needed.First, using the 
losure operator of the Galois 
onne
tion [6℄, we 
hara
terize frequent 
losed itemsets[23, 24℄. Then, we show that frequent 
losed itemsets represent a generating set for both frequent itemsetsand asso
iation rules. The underlying theorem states the foundations of our approa
h sin
e it makes itpossible to generate the bases from frequent 
losed itemsets by avoiding handling of large sets of rules.We propose two new algorithms: the former a
hieves frequent 
losed itemsets from frequent itemsetswithout a

essing the dataset, and the latter, 
alled Apriori-Close, extends the Apriori algorithm [2℄ bydis
overing simultaneously frequent itemsets and frequent 
losed itemsets without additional exe
utiontime.Then, using the frequent 
losed itemsets and the pseudo-
losed itemsets de�ned by Duquenne andGuigues in latti
e theory [9, 11℄, we de�ne the Duquenne-Guigues basis for exa
t asso
iation rules (ruleswith a 100% 
on�den
e). Rules in this basis are non-redundant exa
t rules with minimal ante
edent andmaximal 
onsequent. Besides, using the frequent 
losed itemsets and results proposed by Luxenburgerin latti
e theory [19, 32℄, we de�ne the proper basis and the stru
tural basis for approximate asso
iationrules. The proper basis is a small set 
ontaining the most informative and useful approximate rules: thenon-redundant informative rules. The stru
tural basis 
an be viewed as an abstra
t of all approximaterules that hold and 
an be useful when the proper basis is large. We propose three algorithms intendedfor yielding these three bases. Using the set of frequent 
losed itemsets, generating the evoked bases isperformed without any a

ess to the dataset.An algorithm dis
overing 
losed and pseudo-
losed itemsets has been proposed in [12℄ and implementedin ConImp [9℄. However, this algorithm does not 
onsider the support of itemsets and, sin
e it works



only in main memory, it 
annot be applied when the number of obje
ts ex
eeds some hundreds and thenumber of items some tens. From the results presented in [19℄, no algorithm was proposed. In [24℄,the asso
iation rule framework based on the Galois 
onne
tion is de�ned. Fitting in this groundwork,two eÆ
ient algorithms that dis
over frequent 
losed itemsets for asso
iation rules are de�ned: the Closealgorithm [24℄ for 
orrelated data and the A-Close algorithm [23℄ for weakly 
orrelated data. The workpresented in this paper di�ers from [23, 24℄ in the following points:1. It shows that frequent 
losed itemsets 
onstitute a generating set for frequent itemsets and asso
i-ation rules.2. It extends the Apriori algorithm and algorithms for dis
overing maximal frequent itemsets to gen-erate frequent 
losed itemsets.3. It adapts the Duquenne-Guigues basis and Luxenburger results for exa
t and partial impli
ationsto the 
ontext of asso
iation rules. This adaptation is based on 1. (generating set).4. It presents new algorithms for generating bases for exa
t and approximate asso
iation rules usingfrequent 
losed itemsets.5. It shows that the algorithms proposed are eÆ
ient for both improving the usefulness of extra
tedasso
iation rules and de
reasing the exe
ution time of the asso
iation rule extra
tion.As shown by experiments, the proposed pro
ess for extra
ting bases does not require any overhead
ompared with the traditional approa
hes for dis
overing asso
iation rules.1.3 Paper OrganizationIn Se
tion 2, we present the asso
iation rule framework based on the Galois 
onne
tion. Se
tion 3addresses the 
on
ept of basis for both exa
t and approximate asso
iation rules. New algorithms fordis
overing frequent and frequent 
losed itemsets are des
ribed in Se
tion 4 and the following se
tionpresents algorithms 
omputing the bases for asso
iation rules from the frequent 
losed itemsets. Experi-mental results a
hieved from various datasets are given in Se
tion 6. Finally, as a 
on
lusion, we evokefurther work in Se
tion 7.2 Asso
iation Rule FrameworkIn this se
tion, we present the asso
iation rule framework based on the Galois 
onne
tion, primarilyintrodu
ed in [23, 24℄.De�nition 1 (Data mining 
ontext) A data mining 
ontext1 is de�ned as D = (O; I;R), where Oand I are �nite sets of obje
ts and items respe
tively. R � O�I is a binary relation between obje
ts anditems. Ea
h 
ouple (o; i) 2 R denotes the fa
t that the obje
t o 2 O is related to the item i 2 I.Depending on the target system, a data mining 
ontext 
an be a relation, a 
lass, or the result of anSQL/OQL query.Example 1 An example data mining 
ontext D 
onsisting of 5 obje
ts (identi�ed by their OID) and 5items is illustrated in Table 1.De�nition 2 (Galois 
onne
tion) Let D = (O, I, R) be a data mining 
ontext. For O � O andI � I, we de�ne:f : 2O ! 2I g : 2I ! 2Of(O)=fi 2 I j 8o 2 O; (o; i) 2 Rg g(I)=fo 2 O j 8i 2 I; (o; i) 2 Rg1By extension, we will 
all dataset a data mining 
ontext.



OID Items1 A C D2 B C E3 A B C E4 B E5 A B C ETable 1: The Example Data Mining Context D.f(O) asso
iates with O the items 
ommon to all obje
ts o 2 O and g(I) asso
iates with I the obje
tsrelated to all items i 2 I. The 
ouple of appli
ations (f; g) is a Galois 
onne
tion between the power set ofO (2O) and the power set of I (2I). The following properties hold for all I; I1; I2 � I and O;O1; O2 � O:(1) I1 � I2 ) g(I1) � g(I2) (1') O1 � O2 ) f(O1) � f(O2)(2) O � g(I)() I � f(O)De�nition 3 (Frequent itemsets) Let I � I be a set of items from D. The support 
ount of theitemset I in D is: supp(I) = kg(I)kkOkI is said to be frequent if the support of I in D is at least minsupp. The set L of frequent itemsets in Dis: L = fI � I j supp(I) � minsuppgDe�nition 4 (Asso
iation rules) An asso
iation rule is an impli
ation between two itemsets, withthe form I1 ! I2 where I1; I2 � I, I1; I2 6= ? and I1 \ I2 = ?. I1 and I2 are 
alled respe
tively theante
edent and the 
onsequent of the rule. The support supp(r) and 
on�den
e 
onf(r) of an asso
iationrule r : I1!I2 are de�ned using the Galois 
onne
tion as follows:supp(r) = kg(I1 [ I2)kkOk ; 
onf(r) = supp(I1 [ I2)supp(I1)Asso
iation rules holding in the 
ontext are those that have support and 
on�den
e greater than or equalto the minsupp and min
onf thresholds respe
tively. We de�ne the set AR of asso
iation rules holding inD given minsupp and min
onf thresholds as follows:AR = fr : I1 ! I2�I1 j I1 � I2 � I ^ supp(I2) � minsupp ^ 
onf(r) � min
onfgIf 
onf(r)=1 then r is 
alled an exa
t asso
iation rule or impli
ation rule, otherwise r is 
alled approximateasso
iation rule.Example 2 Exa
t and approximate asso
iation rules extra
ted from D for minsupp = 2/5 and min
onf= 1/2 are given in Table 2.3 Bases for Asso
iation RulesIn this se
tion, we �rst demonstrate that the frequent 
losed itemsets 
onstitute a generating set forfrequent itemsets and asso
iation rules. Then, we 
hara
terize the Duquenne-Guigues basis for exa
tasso
iation rules and the proper and stru
tural bases for approximate asso
iation rules. The Duquenne-Guigues basis, as de�ned in [11℄, is extended in this paper to the 
ontext of asso
iation rules. Proofs ofTheorems 2, 3 and 4 are straightforward from Theorem 1 and [11, 19, 32℄. Interested readers 
ould referto [6, 31℄ for further details on 
losed sets.



Exa
t rule Supp Approximate rule Supp Conf Approximate rule Supp ConfABC ) E 2/5 BCE ! A 2/5 2/3 B ! AE 2/5 2/4ABE ) C 2/5 AC ! BE 2/5 2/3 E ! AB 2/5 2/4ACE ) B 2/5 BE ! AC 2/5 2/4 A ! CE 2/5 2/3AB ) CE 2/5 CE ! AB 2/5 2/3 C ! AE 2/5 2/4AE ) BC 2/5 AC ! B 2/5 2/3 E ! AC 2/5 2/4AB ) C 2/5 BC ! A 2/5 2/3 B ! CE 3/5 3/4AB ) E 2/5 BE ! A 2/5 2/4 C ! BE 3/5 3/4AE ) B 2/5 AC ! E 2/5 2/3 E ! BC 3/5 3/4AE ) C 2/5 CE ! A 2/5 2/3 A ! B 2/5 2/3BC ) E 3/5 BE ! C 3/5 3/4 B ! A 2/5 2/4CE ) B 3/5 A ! BCE 2/5 2/3 C ! A 3/5 3/4A ) C 3/5 B ! ACE 2/5 2/4 A ! E 2/5 2/3B ) E 4/5 C ! ABE 2/5 2/4 E ! A 2/5 2/4E ) B 4/5 E ! ABC 2/5 2/4 B ! C 3/5 3/4A ! BC 2/5 2/3 C ! B 3/5 3/4B ! AC 2/5 2/4 C ! E 3/5 3/4C ! AB 2/5 2/4 E ! C 3/5 3/4A ! BE 2/5 2/3Table 2: Asso
iation Rules Extra
ted from D for minsup = 2/5 and min
onf = 1/2.3.1 Generating SetDe�nition 5 (Galois 
losure operators) The operators h = fÆg in 2I and h0 = gÆf in 2O are Galois
losure operators2. Given the Galois 
onne
tion (f; g), the following properties hold for all I; I1; I2 � Iand O;O1; O2 � O [6℄:Extension : (3) I � h(I) (3') O � h0(O)Idempoten
y : (4) h(h(I)) = h(I) (4') h0(h0(O)) = h0(O)Monotoni
ity : (5) I1 � I2 ) h(I1) � h(I2) (5') O1 � O2 ) h0(O1) � h0(O2)De�nition 6 (Frequent 
losed itemsets) An itemset I � I in D is a 
losed itemset i� h(I) = I. A
losed itemset I is said to be frequent if the support of I in D is at least minsupp. The smallest (minimal)
losed itemset 
ontaining an itemset I is h(I), the 
losure of I. The set FC of frequent 
losed itemsetsin D is de�ned as follows: FC = fI � I j I = h(I) ^ supp(I) � minsuppgExample 3 A frequent 
losed itemset is a maximal set of items 
ommon to a set of obje
ts, for whi
hsupport is at least minsupp. The frequent 
losed itemsets in the 
ontext D forminsupp=2/5 are presentedin Table 3. The itemset BCE is a frequent 
losed itemset sin
e it is the maximal set of items 
ommonto the obje
ts f2; 3; 5g. The itemset BC is not a frequent 
losed itemset sin
e it is not a maximal set ofitems 
ommon to some obje
ts: all obje
ts in relation with the items B and C (obje
ts 2, 3 and 5) arealso in relation with the item E.Hereafter, we demonstrate that the set of frequent 
losed itemsets with their support is the smallest
olle
tion from whi
h frequent itemsets with their support and asso
iation rules 
an be generated (it isa generating set).Lemma 1 [24℄ The support of an itemset I is equal to the support of the smallest 
losed itemset 
on-taining I: supp(I) = supp(h(I)).Lemma 2 [24℄ The set of maximal frequent itemsets M = fI 2 L j � I 0 2 L where I � I 0g is identi
alto the set of maximal frequent 
losed itemsets MC = fI 2 FC j � I 0 2 FC where I � I 0g.2Here, we use the following notation: fÆg(I) = f(g(I)) and gÆf(O) = g(f(O)).



Frequent 
losed itemset Supportf?g 5/5fCg 4/5fACg 3/5fBEg 4/5fBCEg 3/5fABCEg 2/5Table 3: Frequent Closed Itemsets Extra
ted from D for minsupp = 2/5.Theorem 1 (Generating set) The set FC of frequent 
losed itemsets with their support is a generatingset for all frequent itemsets and their support, and for all asso
iation rules holding in the dataset, theirsupport and their 
on�den
e.Proof. Based on Lemma 2, all frequent itemsets 
an be derived from the maximal frequent 
loseditemsets. Based on Lemma 1, the support of ea
h frequent itemset 
an be derived from the support offrequent 
losed itemsets. Then, the set of frequent 
losed itemsets FC is a generating set for both theset of frequent itemsets L and the set of asso
iation rules AR3. �3.2 Duquenne-Guigues Basis for Exa
t Asso
iation RulesDe�nition 7 (Frequent pseudo-
losed itemsets) An itemset I � I in D is a pseudo-
losed itemseti� h(I) 6= I and 8I 0 � I su
h as I 0 is a pseudo-
losed itemset, we have h(I 0) � I. The set FP of frequentpseudo-
losed itemsets in D is de�ned asFP = fI � I j supp(I) � minsupp ^ I 6= h(I) ^ 8I 0 2 FP su
h as I 0 � I we have h(I 0) � IgTheorem 2 (Duquenne-Guigues Basis for Exa
t Asso
iation Rules) Let FP be the set of fre-quent pseudo-
losed itemsets in D. The setDG = fr : I1 ) h(I1)� I1 j I1 2 FP ^ I1 6= ?gis a basis for all exa
t asso
iation rules holding in the dataset.The Duquenne-Guigues basis is minimal with respe
t to the number of rules sin
e there 
an be no
omplete set with fewer rules than there are frequent pseudo-
losed itemsets [10, 13℄.Example 4 A frequent pseudo-
losed itemset I is a frequent non-
losed itemset that in
ludes the 
losuresof all frequent pseudo-
losed itemsets in
luded in I . The set FP of frequent pseudo-
losed itemsets and theDuquenne-Guigues basis for exa
t asso
iation rules extra
ted from D for minsupp=2=5 and min
onf=1=2are presented in Table 4. The itemset AB is not a frequent pseudo-
losed itemset sin
e the 
losures ofA and B (respe
tively AC and BE) are not in
luded in AB. ABCE is not a frequent pseudo-
loseditemset sin
e it is 
losed.Frequent pseudo-
losed itemset SupportfAg 3/5fBg 4/5fEg 4/5 Exa
t rule SupportA ) C 3/5B ) E 4/5E ) B 4/5Table 4: Frequent Pseudo-Closed Itemsets and Duquenne-Guigues Basis Extra
ted from D for minsupp= 2=5.3Furthermore, FC is the smallest generating set for L and AR. Hen
e, even if frequent itemsets 
an be derived from themaximal frequent itemsets, passes over the dataset are still needed to 
ompute the frequent itemset supports.



3.3 Proper Basis for Approximate Asso
iation RulesTheorem 3 (Proper Basis for Approximate Asso
iation Rules) Let FC be the set of frequent
losed itemsets in D. The setPB = fr : I1 ! I2 � I1 j I1; I2 2 FC ^ I1 6= ? ^ I1 � I2 ^ 
onf(r) � min
onfgis a basis for all approximate asso
iation rules holding in the dataset. Asso
iation rules in PB are properapproximate asso
iation rules.Example 5 The proper basis for approximate asso
iation rules extra
ted from D for minsupp=2/5 andmin
onf=1/2 are presented in Table 5.Approximate rule Support Con�den
eBCE ! A 2/5 2/3AC ! BE 2/5 2/3BE ! AC 2/5 2/4BE ! C 3/5 3/4C ! ABE 2/5 2/4C ! BE 3/5 3/4C ! A 3/5 3/4Table 5: Proper Basis Extra
ted from D for minsupp = 2/5 and min
onf = 1/2.3.4 Stru
tural Basis for Approximate Asso
iation RulesDe�nition 8 (Undire
ted graph GFC) Let FC be the set of frequent 
losed itemsets in D. We de�neGFC = (V;E) as the undire
ted graph asso
iated with FC where the set of verti
es V and the set of edgesE are de�ned as follows: V = fI � I j I 2 FCgE = f(I1; I2) 2 V � V j I1 � I2 ^ supp(I2)=supp(I1) � min
onfgWith ea
h edge in GFC between two verti
es I1 and I2 with I1 � I2 is asso
iated the 
on�den
e = supp(I2)/ supp(I1) of the proper approximate asso
iation rule I1 ! I2 � I1 represented by the edge.De�nition 9 (Maximal Con�den
e Spanning Forest FFC) Let FFC = (V;E0) be the maximal 
on-�den
e spanning forest asso
iated with FC. FFC is obtained from the undire
ted graph GFC = (V;E)by suppressing transitive edges and 
y
les. Cy
les are removed by deleting some edges that enter the lastvertex I (maximal vertex with respe
t to the in
lusion) of the 
y
le. Among all edges entering in I, thosewith 
on�den
e less than the maximal 
on�den
e value asso
iated with an edge with the form (I 0; I) 2 Eare deleted. If more than one edge have the maximal 
on�den
e value, the �rst one in lexi
ographi
 orderis kept.Theorem 4 (Stru
tural Basis for Approximate Asso
iation Rules) Let SB be the set of asso
i-ation rules represented by edges in FFC ex
ept rules from the vertex f?g. The setSB = fr : I1 ! I2 � I1 j I1; I2 2 V ^ I1 � I2 ^ I1 6= ? ^ (I1; I2) 2 E0gis a basis for all approximate asso
iation rules holding in the dataset (I is the 
onsequent of at most oneapproximate asso
iation rule in SB).Example 6 The stru
tural basis for approximate asso
iation rules extra
ted from D for minsupp=2/5and min
onf=1/2 is presented in Table 6.
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ØFFCFigure 1: Undire
ted Graph GFC and Maximal Con�den
e Spanning Forest FFC (a tree in this example)Derived from D for minsupp = 2/5 and min
onf = 1/2.Approximate rule Support Con�den
eAC ! BE 2/5 2/3BE ! C 3/5 3/4C ! A 3/5 3/4Table 6: Stru
tural Basis Extra
ted from D for minsupp = 2/5 and min
onf = 1/2.4 Dis
overing Frequent and Frequent Closed ItemsetsIn Se
tion 4.1, we propose a new algorithm to a
hieve frequent 
losed itemsets from frequent itemsetswithout a

essing the dataset. This algorithm dis
overs frequent 
losed itemsets while for instan
e analgorithm for dis
overing maximal frequent itemsets [4, 17, 33℄ is used. In Se
tion 4.2, we present anextension of the Apriori algorithm [2℄ 
alled Apriori-Close for dis
overing frequent and frequent 
loseditemsets without additional 
omputation time. Like in the Apriori algorithm, we assume in the followingthat items are sorted in lexi
ographi
 order and that k is the size of the largest frequent itemsets. Basedon Lemma 2, k is also the size of the largest frequent 
losed itemsets.4.1 Computing Frequent Closed Itemsets from Frequent ItemsetsMany eÆ
ient algorithms for mining frequent itemsets and their support have been proposed. Well-known proposals are presented in [2, 8, 26, 30℄. EÆ
ient algorithms for dis
overing the maximal frequentitemsets and then a
hieve all frequent itemsets have also been proposed [4, 17, 33℄. All these algorithmsgive as result the set L = Si=ki=1 Li where Li 
ontains all frequent i-itemsets (itemsets of size i). Based onProposition 1 and Lemma 2 (Se
tion 3.1), the frequent 
losed itemsets and their support 
an be 
omputedfrom the frequent itemsets and their support without any dataset a

ess.The pseudo-
ode to determine frequent 
losed itemsets among frequent itemsets is given in Algorithm1. Notations are given in Table 7. The input of the algorithm are sets Li, 1� i�k, 
ontaining all frequentitemsets in the dataset. It re
ursively generates the sets FCi, 0� i�k, of frequent 
losed i-itemsets fromFCk to FC0. Li Set of frequent i-itemsets and their support.FCi Set of frequent 
losed i-itemsets and their support.is
losed Variable indi
ating if the 
onsidered itemset is 
losed or not.Table 7: Notations.Proposition 1 The support of a 
losed itemset is greater than the supports of all its supersets.



Proof. Let l be a 
losed i-itemset and s a superset of l. We have l � s ) g(l) � g(s) (Property (1) ofthe Galois 
onne
tion). If g(l) = g(s) then h(l) = h(s) ) l = h(s) ) s � l (absurd). It follows thatg(l) � g(s) ) supp(l) > supp(s). �Algorithm 1 Deriving Frequent Closed Itemsets from Frequent Itemsets.1) FCk  Lk;2) for (i k�1; i 6= 0; i - -) do begin3) FCi  fg;4) forall itemsets l 2 Li do begin5) is
losed true;6) forall itemsets l0 2 Li+1 do begin7) if (l � l0) and (l.support= l0.support) then is
losed false;8) end9) if (is
losed = true) then FCi  FCi [ flg;10) end11) end12) FC0  f?g;13) forall itemsets l 2 L1 do begin14) if (l.support = kOk) then FC0  fg;15) endFirst, the set FCk is initialized with the set of largest frequent itemsets Lk (step 1). Then, thealgorithm iteratively determines whi
h i-itemsets in Li are 
losed from Lk�1 to L1 (steps 2 to 11). Atthe beginning of the ith iteration the set FCi of frequent 
losed i-itemsets is empty (step 3). In steps 4to 10, for ea
h frequent itemset l in Li, we verify that l has the same support as a frequent (i+1)-itemsetl0 in Li+1 in whi
h it is in
luded. If so, we have l0 � h(l) and then l 6= h(l): l is not 
losed (step 7).Otherwise, l is a frequent 
losed itemset and is inserted in FCi (step 9). During the last phase, thealgorithm determines if the empty itemset is 
losed by �rst initializing FC0 with the empty itemset (step12) and then 
onsidering all frequent 1-itemsets in L1 (steps 13 to 15). If a 1-itemset l has a supportequal to the number of obje
ts in the 
ontext, meaning that l is 
ommon to all obje
ts, then the itemset? 
annot be 
losed (we have supp(f?g) = kOk = supp(l)) and is removed from FC0 (step 14). Thus, atthe end of the algorithm, ea
h set FCi 
ontains all frequent 
losed i-itemsets.Corre
tness Sin
e all maximal frequent itemsets are maximal frequent 
losed itemsets (Lemma 2), the
omputation of the set FCk 
ontaining the largest frequent 
losed itemsets is 
orre
t. The 
orre
tness ofthe 
omputation of sets FCi for i<k relies on Proposition 1. This proposition enables to determine if afrequent i-itemset l is 
losed by 
omparing its support and the supports of the frequent (i+1)-itemsetsin whi
h l is in
luded. If one of them has the same support as l, then l 
annot be 
losed.4.2 Apriori-Close AlgorithmIn this se
tion, we present an extension of the Apriori algorithm [2℄ 
omputing simultaneously frequentand frequent 
losed itemsets. The pseudo-
ode is given in Algorithm 2 and notations in Table 8. Thealgorithm iteratively generates the sets Li of frequent i-itemsets from L1 to Lk. Besides, during the ithiteration, all frequent 
losed (i�1)-itemsets in FCi�1 are determined. The set FCk is determined duringthe last step of the algorithm.Li Set of frequent i-itemsets, their support and marker is
losed indi
ating if 
losed or not.FCi Set of frequent 
losed i-itemsets and their support.Table 8: Notations.First, the variable k is initialized to 0 (step 1). Then, the set L1 of frequent 1-itemsets is initializedwith the list of items in the 
ontext (step 2) and one pass is performed to 
ompute their support (step



Algorithm 2 Dis
overing Frequent and Frequent Closed Itemsets with Apriori-Close.1) k  0;2) itemsets in L1  f1-itemsetsg;3) L1  Support-Count(L1);4) FC0  f?g;5) forall itemsets l 2 L1 do begin6) if (l.support < minsupp) then L1  L1 n flg;7) else if (l.support = kOk) then FC0  fg;8) end9) for (i 1; Li 6= fg; i++) do begin10) forall itemsets l0 2 Li do l0.is
losed  true;11) Li+1  Apriori-Gen(Li);12) forall itemsets l 2 Li+1 do begin13) forall i-subsets l0 of l do begin14) if (l0 62 Li) then Li+1  Li+1 n flg;15) end16) end17) Li+1  Support-Count(Li+1);18) forall itemsets l 2 Li+1 do begin19) if (l.support < minsupp) then Li+1  Li+1 n flg;20) else do begin21) forall i-subsets l0 2 Li of l do begin22) if (l.support = l0.support) then l0.is
losed  false;23) end24) end25) end26) FCi  fl 2 Li j l:is
losed = trueg;27) k  i;28) end29) FCk  Lk;3). The set FC0 is initialized with the empty itemset (step 4) and the supports of itemsets in L1 are
onsidered (steps 5 to 8). All infrequent 1-itemsets are removed from L1 (step 6) and if a frequent 1-itemset has a support equal to the number of obje
ts in the 
ontext then the empty itemset is removedfrom FC0 (step 7). During ea
h of the following iterations (steps 9 to 28), frequent itemsets of size i+1,k > i � 1, and frequent 
losed itemsets of size i are 
omputed as follows. For all frequent i-itemsets inLi, the marker is
losed is initialized to true (step 10). A set Li+1 of possible frequent (i+1)-itemsets is
reated by applying the Apriori-Gen fun
tion to the set Li (step 11). For ea
h of these possible frequent(i+1)-itemsets, we 
he
k that all its subsets of size i exist in Li (steps 12 to 16). One pass is performed to
ompute the supports of the remaining itemsets in Li+1 (step 17). Then, for ea
h (i+1)-itemsets l 2 Li+1(steps 18 to 25), if l is infrequent then it is dis
arded from L1+1 (step 19). Otherwise for all i-subsets l0of l, we verify that supports of l0 and l are equal; if so, then l0 
annot be a 
losed itemset and its markeris
losed is set to false (steps 20 to 24). Then, all frequent i-itemsets in Li for whi
h marker is
losed istrue are inserted in the set FCi of frequent 
losed i-itemsets (step 26) and the variable k is set to thevalue of i (step 27). Finally, the set FCk is initialized with the frequent k-itemsets in Lk (step 29).Apriori-Gen fun
tion The Apriori-Gen fun
tion [2℄ applies to a set Li of frequent i-itemsets. Itreturns a set Li+1 of potential frequent (i+1)-itemsets. A new itemset in Li+1 is 
reated by joining twoitemsets in Li sharing 
ommon �rst i-1 items.Support-Count fun
tion The Support-Count fun
tion takes a set Li of i-itemsets as argument. IteÆ
iently 
omputes the supports of all itemsets l 2 Li. Only one dataset pass is required: for ea
h obje
to read, the supports of all itemsets l 2 Li that are in
luded in the set of items asso
iated with o, i.e.l � f(fog), are in
remented. The subsets of f(fog) are qui
kly found using the Subset fun
tion des
ribed



in Se
tion 5.2.Corre
tness Sin
e the support of a frequent 
losed itemset l is di�erent from the support of all itssupersets (Proposition 1), the 
omputation of sets FCi for i< k is 
orre
t. Hen
e, a frequent i-itemsetl0 2 Li is determined 
losed or not by 
omparing its support with the supports of all frequent (i + 1)-itemsets l 2 Li+1 for whi
h l0 � l. Lemma 2 ensures the 
orre
tness of the 
omputation of the set FCk
ontaining the largest frequent 
losed itemsets.Example 7 Figure 2 illustrates the exe
ution of the Apriori-Close algorithm with the 
ontext D for aminimum support of 2/5.
S
an D�! L1Itemset SuppfAg 3/5fBg 4/5fCg 4/5fDg 1/5fEg 4/5 Pruninginfrequent�! L1Itemset SuppfAg 3/5fBg 4/5fCg 4/5fEg 4/5 Determining
losed�! FC0Itemset Suppf?g 5/5
S
an D�! L2Itemset SuppfABg 2/5fACg 3/5fAEg 2/5fBCg 3/5fBEg 4/5fCEg 3/5 Pruninginfrequent�! L2Itemset SuppfABg 2/5fACg 3/5fAEg 2/5fBCg 3/5fBEg 4/5fCEg 3/5 Determining
losed�! FC1Itemset SuppfCg 4/5
S
an D�! L3Itemset SuppfABCg 2/5fABEg 2/5fACEg 2/5fBCEg 3/5 Pruninginfrequent�! L3Itemset SuppfABCg 2/5fABEg 2/5fACEg 2/5fBCEg 3/5 Determining
losed�! FC2Itemset SuppfACg 3/5fBEg 4/5S
an D�! L4Itemset SuppfABCEg 2/5 Pruninginfrequent�! L4Itemset SuppfABCEg 2/5 Determining
losed�! FC3Itemset SuppfBCEg 3/5L4Itemset SuppfABCEg 2/5 Closedk-itemsets�! FC4Itemset SuppfABCEg 2/5Figure 2: Dis
overing Frequent and Frequent Closed Itemsets with Apriori-Close.5 Generating Bases for Asso
iation RulesIn Se
tion 5.1, we present an algorithm to generate the Duquenne-Guigues basis for exa
t asso
iationrules. In Se
tions 5.2 and 5.3 are des
ribed algorithms a
hieving the proper basis and the stru
tural basisfor approximate asso
iation rules respe
tively.



5.1 Generating Duquenne-Guigues Basis for Exa
t Asso
iation RulesThe pseudo-
ode generating the Duquenne-Guigues basis for exa
t asso
iation rules is given in Algorithm3. Notations are given in Table 9. The algorithm takes as input the sets Li, 1� i� k, 
ontaining thefrequent itemsets and their support, and the sets FCi; 0� i�k, 
ontaining the frequent 
losed itemsetsand their support. It �rst 
omputes the frequent pseudo-
losed itemsets iteratively (steps 2 to 17) andthen uses them to generate the Duquenne-Guigues basis for exa
t asso
iation rules DG (steps 18 to 22).Li Set of frequent i-itemsets and their support.FCi Set of frequent 
losed i-itemsets and their support.FPi Set of frequent pseudo-
losed i-itemsets, their 
losure and their support.DG Duquenne-Guigues basis for exa
t asso
iation rules.Table 9: Notations.First, the set DG is initialized to the empty set (step 1). If the empty itemset is not a 
losed itemset(it is then ne
essarily a pseudo-
losed itemset), it is inserted in FP0 (step 2). Otherwise FP0 is empty(step 3). Then, the algorithm re
ursively determines whi
h i-itemsets in Li are pseudo-
losed from L1to Lk (steps 4 to 16). At ea
h iteration, the set FPi is initialized with the list of frequent i-itemsetsthat are not 
losed (step 5) and ea
h frequent i-itemsets l in FPi is 
onsidered as follows (steps 6 to15). The variable pseudo is set to true (step 7). We verify for ea
h frequent pseudo-
losed itemset ppreviously dis
overed (i.e. in FPj with j < i) if p is 
ontained in l (steps 8 to 13). In that 
ase and ifthe 
losure of p is not in
luded in l, then l is not pseudo-
losed and is removed from FPi (steps 9 to 12).Otherwise, the 
losure of l (i.e. the smallest frequent 
losed itemset 
ontaining l) is determined (step14). On
e all frequent pseudo-
losed itemsets p and their 
losure are 
omputed, all rules with the formr : p ) (p.
losure � p) are generated (steps 17 to 21). The algorithm results in the set DG 
ontainingall rules in the Duquenne-Guigues basis for exa
t asso
iation rules.Algorithm 3 Generating Duquenne-Guigues Basis for Exa
t Asso
iation Rules.1) DG fg;2) if (FC0 = fg) then FP0  f?g;3) else FP0  fg;4) for (i 1; i � k; i++) do begin5) FPi  Li n FCi;6) forall itemsets l 2 FPi do begin7) pseudo true;8) forall itemsets p 2 FPj with j < i do begin9) if (p � l) and (p.
losure 6� l) then do begin10) pseudo false;11) FPi  FPi n flg;12) end13) end14) if (pseudo = true) then l.
losure  Min�(f
 2 FCj>i j l � 
g);15) end16) end17) forall sets FPi where FPi 6= fg do begin18) forall pseudo-
losed itemsets p 2 FPi do begin19) DG DG [ fr : p) (p.
losure�p),p.supportg;20) end21) endCorre
tness Sin
e the itemset ? has no subset, if it is not a 
losed itemset then it is by de�nition apseudo-
losed itemset and the 
omputation of the set FP0 is 
orre
t. The 
orre
tness of the 
omputationof frequent pseudo-
losed i-itemsets in FPi for 1 � i � k relies on De�nition 7. All frequent i-itemsets l



in Li that are not 
losed, i.e. not in FCi, are 
onsidered. Those l 
ontaining the 
losures of all frequentpseudo-
losed itemsets that are subsets of l are inserted in FPi. A

ording to De�nition 7, these i-itemsetsare all frequent pseudo-
losed i-itemsets and the sets FPi are 
orre
t. The asso
iation rules generatedin the last phase of the algorithm are all rules with a frequent pseudo-
losed itemset in the ante
edent.Then, the resulting set DG 
orresponds to the rules in the Duquenne-Guigues basis for exa
t asso
iationrules de�ned in Theorem 2.Example 8 Figure 3 shows the generation of the Duquenne-Guigues basis for exa
t asso
iation rulesfrom the 
ontext D for a minimum support of 2/5.L1Itemset SuppfAg 3/5fBg 4/5fCg 4/5fEg 4/5FC1Itemset SuppfCg 4/5 1�! FP1Itemset Closure SuppfAg fACg 3/5fBg fBEg 4/5fEg fBEg 4/5
L3Itemset SuppfABCg 2/5fABEg 2/5fACEg 2/5fBCEg 3/5FC3Itemset SuppfBCEg 3/5 3�! FP3?

L2Itemset SuppfABg 2/5fACg 3/5fAEg 2/5fBCg 3/5fBEg 4/5fCEg 3/5FC2Itemset SuppfACg 3/5fBEg 4/5
2�! FP2? L4Itemset SuppfABCEg 2/5FC4Itemset SuppfABCEg 2/5 4�! FP4?

FP = SFPiItemset Closure SuppfAg fACg 3/5fBg fBEg 4/5fEg fBEg 4/5 5�! DGRuleA ) CB ) EE ) BFigure 3: Generating Duquenne-Guigues Basis for Exa
t Asso
iation Rules.5.2 Generating Proper Basis for Approximate Asso
iation RulesThe pseudo-
ode generating the proper basis for approximate asso
iation rules is presented in Algorithm4. Notations are given in Table 10. The algorithm takes as input the sets FCi, 1� i�k, 
ontaining thefrequent 
losed non-empty itemsets and their support. The output of the algorithm is the proper basisfor approximate asso
iation rules PB.The set PB is �rst initialized to the empty set (step 1). Then, the algorithm iteratively 
onsiders allfrequent 
losed itemsets l 2 FCi for 2 � i � k. It determines whi
h frequent 
losed itemsets l0 2 FCj<iare subsets of l and generates asso
iation rules with the form l0 ! l � l0 that have suÆ
ient 
on�den
e(steps 2 to 12) as follows. During the ith iteration, ea
h itemset l in FCi is 
onsidered (steps 3 to 11).For ea
h set FCj , 1�j<i, a set Sj 
ontaining all frequent 
losed j-itemsets in FCj that are subsets of lis 
reated (step 5). Then, for ea
h of these subsets l0 2 Sj (steps 6 to 9), we 
ompute the 
on�den
e of



FCi Set of frequent 
losed i-itemsets and their support.Sj Set of j-itemsets that are subsets of the 
onsidered itemset.PB Proper basis for approximate asso
iation rules.Table 10: Notations.the proper approximate asso
iation rule r : l0 ! l � l0 (step 7). If the 
on�den
e of r is suÆ
ient then ris inserted in PB (step 8). At the end of the algorithm, the set PB 
ontains all rules of the proper basisfor approximate asso
iation rules.Algorithm 4 Generating Proper Basis for Approximate Asso
iation Rules.1) PB  fg2) for (i 2; i � k; i++) do begin3) forall itemsets l 2 FCi do begin4) for (j  i�1; j > 0; j- -) do begin5) Sj  Subsets(FCj ; l);6) forall itemsets l0 2 Sj do begin7) 
onf(r) l.support / l0.support;8) if (
onf(r) � min
onf) then PB  PB [ fr : l0 ! l � l0; l.support, 
onf(r)g;9) end10) end11) end12) endSubset fun
tion The subset fun
tion takes a set X of itemsets and an itemset y as arguments. Itdetermines all itemsets x 2 X that are subsets of y. In algorithm implementation, frequent and frequent
losed itemsets are stored in a pre�x-tree stru
ture [24℄ in order to improve eÆ
ien
y of the subset sear
h.Corre
tness The 
orre
tness of the algorithm relies on the fa
t that we inspe
t all proper approximateasso
iation rules holding in the dataset. For ea
h frequent 
losed itemset, the algorithm 
omputes, amongits subsets, all other frequent 
losed itemsets. Then, the generation of all rules between two frequent 
loseditemsets having suÆ
ient 
on�den
e is ensured. These rules are all proper approximate asso
iation rulesholding in the dataset, and the resulting set PB is the proper basis for approximate asso
iation rulesde�ned in Theorem 3.Example 9 Figure 4 shows the generation of the proper basis for approximate asso
iation rules in the
ontext D for a minimum support of 2/5 and a minimum 
on�den
e of 1/2.5.3 Generating Stru
tural Basis for Approximate Asso
iation RulesThe pseudo-
ode generating the stru
tural basis for approximate asso
iation rules is given in Algorithm5. Notations are given in Table 11. The algorithm takes as input the sets FCi, 1 � i � k, of frequent
losed non-empty itemsets and their support. It generates the stru
tural basis for approximate asso
iationrules SB represented by the maximal 
on�den
e spanning forest FFC asso
iated with FC = Si=ki=1 FCi(without the empty itemset).FCi Set of frequent 
losed i-itemsets and their support.Sj Set of j-itemsets that are subsets of the itemset 
onsidered.CR Set of 
andidate approximate asso
iation rules.SB Stru
tural basis for approximate asso
iation rules.Table 11: Notations.



FC2Itemset SuppfACg 3/5fBEg 4/5FC1Itemset SuppfCg 4/5 1�! PBRule Supp ConfC ! A 3/5 3/4 FC3Itemset SuppfBCEg 3/5FC2 [ FC1Itemset SuppfACg 3/5fBEg 4/5fCg 4/5 2�! PBRule Supp ConfC ! A 3/5 3/4C ! BE 3/5 3/4BE ! C 3/5 3/4FC4Itemset SuppfABCEg 2/5FC3 [ FC2 [ FC1Itemset SuppfBCEg 3/5fACg 3/5fBEg 4/5fCg 4/5 3�! PBRule Supp ConfC ! A 3/5 3/4C ! BE 3/5 3/4BE ! C 3/5 3/4C ! ABE 2/5 2/4AC ! BE 2/5 2/3BE ! AC 2/5 2/4BCE ! A 2/5 2/3Figure 4: Generating Proper Basis for Approximate Asso
iation Rules.The set SB is �rst initialized to the empty set (step 1). Then, the algorithm iteratively 
onsiders allfrequent 
losed itemsets l 2 FCi for 2 � i � k. It determines whi
h frequent 
losed itemsets l0 2 FCj<iare 
overed by l, i.e. are dire
t prede
essors of l, and then generates the maximal 
on�den
e asso
iationrules with the form l! l0� l that hold (steps 2 to 25). During the ith iteration, ea
h itemset l in FCi is
onsidered (steps 3 to 24) as follows. The set CR of 
andidate asso
iation rules with l in the 
onsequentis initialized to the empty set (step 4). For 1 � j < i, sets Sj 
ontaining all frequent 
losed j-itemsetsin FCj that are subsets of l are 
reated (steps 5 to 7). Then, all these subsets of l are 
onsidered inde
reasing order of their sizes (steps 8 to 18). For ea
h of these subsets l0 2 Sj , the 
on�den
e of theproper approximate asso
iation rule r : l0 ! l�l0 is 
omputed (step 10). If the 
on�den
e of r is suÆ
ient,r is inserted in CR (step 12) and all subsets l00 of l0 are removed from Sn<j (steps 13 to 15). This be
auserules with the form l00 ! l � l00 with l00 2 Sn<j are transitive proper approximate rules. Finally, the
andidate proper approximate rules with l in the 
onsequent that are in CR are pruned (steps 19 to 23):the maximum 
on�den
e value max
onf of rules in CR is determined (step 20) and the �rst rule withsu
h a 
on�den
e is inserted in SB (steps 21 and 22). At the end of the algorithm, the set SB thus
ontains all rules in the stru
tural basis for approximate asso
iation rules.Corre
tness The algorithm 
onsiders all asso
iation rules l0! l � l0 with 
on�den
e � min
onf be-tween two frequent 
losed itemsets l and l0 where l 
overs l0. These rules are all proper non-transitiveapproximate asso
iation rules that hold and 
an be represented by the edges of the graph GFC (De�nition8) without transitive edges. Moreover, among all rules with the form X ! l � X (generated from l),we keep only the �rst one with 
on�den
e equal to the maximal 
on�den
e of rules X! l � X . Onlypreserving this rule is equivalent to the 
y
le removing in the graph GFC in the same manner as explainedin De�nition 9. Then, the resulting set SB 
an be represented as the maximal 
on�den
e spanning forestFFC without edges from the empty itemset. SB 
ontains all rules in the stru
tural basis for approximateasso
iation rules de�ned in Theorem 4.Example 10 Figure 5 depi
ts the generation of the stru
tural basis for approximate asso
iation rules inthe 
ontext D for a minimum support of 2/5 and a minimum 
on�den
e of 1/2.



Algorithm 5 Generating Stru
tural Basis for Approximate Asso
iation Rules.1) SB  fg;2) for (i 2; i � k; i++) do begin3) forall itemsets l 2 FCi do begin4) CR fg;5) for (j  i�1; j > 0; j- -) do begin6) Sj  Subsets(FCj ; l);7) end8) for (j  i�1; j > 0; j- -) do begin9) forall itemsets l0 2 Sj do begin10) 
onf(r) l.support / l0.support;11) if (
onf(r) � min
onf) then do begin12) CR CR [ fr : l0 ! l� l0; l.support, 
onf(r)g;13) for (n j�1; n > 0; n- -) do begin14) Sn  Sn� Subsets(Sn; l0);15) end16) end17) end18) end19) if (CR 6= fg) then do begin20) max
onf  Maxr2CR(
onf(r));21) �nd �rst fr 2 CR j 
onf(r) = max
onfg;22) SB  SB [ frg;23) end24) end25) endFC2Itemset SuppfACg 3/5fBEg 4/5 1�! SBRule ConfC ! A 3/4 FC3Itemset SuppfBCEg 3/5 2�! SBRule ConfC ! A 3/4BE ! C 3/4FC4Itemset SuppfABCEg 2/5 3�! SBRule ConfC ! A 3/4BE ! C 3/4AC ! BE 2/3Figure 5: Generating Stru
tural Basis for Approximate Asso
iation Rules.6 Experimental ResultsExperiments were performed on a Pentium II PC with a 350 Mhz 
lo
k rate, 128 MBytes of RAM,running the Linux operating system. Algorithms were implemented in C++. Chara
teristi
s of thedatasets used are given in Table 12. These datasets are the T10I4D100K4 syntheti
 dataset that mimi
smarket basket data, the C20D10K and the C73D10K 
ensus datasets from the PUMS sample �le5 , andthe Mushrooms6 dataset des
ribing mushroom 
hara
teristi
s. In all experiments, we attempted to
hoose signi�
ant minimum support and 
on�den
e threshold values: we observed threshold values usedin other papers for experiments on similar data types and inspe
ted rules extra
ted in the bases.4http://www.almaden.ibm.
om/
s/quest/syndata.html5ftp://ftp2.

.ukans.edu/pub/ippbr/
ensus/pums/pums90ks.zip6ftp://ftp.i
s.u
i.edu/~
merz/mldb.tar.Z



Name Number of obje
ts Average size of obje
ts Number of itemsT10I4D100K 100,000 10 1,000Mushrooms 8,416 23 127C20D10K 10,000 20 386C73D10K 10,000 73 2,177Table 12: Datasets.6.1 Relative Performan
e of Apriori and Apriori-CloseWe 
ondu
ted experiments to 
ompare response times obtained with Apriori and Apriori-Close on thefour datasets. Results for the T10I4D100K and Mushrooms datasets are presented in Table 13. We
an observe that exe
ution times are identi
al for the two algorithms: adding the frequent 
losed itemsetderivation to the frequent itemset dis
overy does not indu
e additional 
omputation time. Similar resultswere obtained for C20D10K and C73D10K datasets.Minsupp Apriori Apriori-Close2.0% 1.99s 1.97s1.0% 3.47s 3.46s0.5% 9.62s 9.70s0.25% 15.02s 14.92s Minsupp Apriori Apriori-Close90% 0.28s 0.28s70% 0.73s 0.73s50% 2.40s 2.70s30% 18.22s 17.93sT10I4D100K MushroomsTable 13: Exe
ution Times of Apriori and Apriori-Close.6.2 Number of Rules and Exe
ution Times of the Rule GenerationTable 14 shows the total number of exa
t asso
iation rules and their number in the Duquenne-Guiguesbasis for exa
t rules. Table 15 shows the total number of approximate asso
iation rules, their number inthe proper basis and in the stru
tural basis for approximate rules, and the number of non-transitive rulesin the proper basis for approximate rules (5th 
olumn). For example in the 
ontext D, rules C ! A andAC ! BE are extra
ted, as well as the rule C ! ABE whi
h is 
learly transitive. Sin
e by 
onstru
tion,its 
on�den
e { retrieved by multiplying the 
on�den
es of the two former { is less than theirs, this rule isthe less interesting among the three. Redu
ing the extra
tion to non-transitive rules in the proper basisfor approximate rules 
an also be interesting. Su
h rules are generated by a variant of Algorithm 5 withthe last pruning strategy (steps 20 and 21) removed: all 
andidate rules in CR are inserted in SB.Table 16 shows for the four datasets the average relative size of bases 
ompared with the sets of allrules obtained. In the 
ase of weakly 
orrelated data (T10I4D100K), no exa
t rule is generated and theproper basis for approximate rules 
ontains all approximate rules that hold. The reason is that, in su
hdata, all frequent itemsets are frequent 
losed itemsets. In the 
ase of 
orrelated data (Mushrooms,C20D10K and C73D10K), the number of extra
ted rules in bases is mu
h smaller than the total numberof rules that hold.Figure 6 shows for ea
h dataset the exe
ution times of the 
omputation of all rules (using the algorithmdes
ribed in [2℄) and bases. Exe
ution times of the derivation of the Duquenne-Guigues basis for exa
trules and the proper basis for non-transitive approximate rules are not presented sin
e they are identi
alto those of the derivation of the Duquenne-Guigues basis for exa
t rules and the stru
tural basis forapproximate rules (Duquenne-Guigues and stru
tural bases).7 Con
lusionIn this paper, we present new algorithms for eÆ
iently generating bases for asso
iation rules. A basis isa set of non-redundant rules from whi
h all asso
iation rules 
an be derived, thus it 
aptures all useful



Dataset Minsupp Exa
t rules Duquenne-Guigues basisT10I4D100K 0.5% 0 0Mushrooms 30% 7,476 69C20D10K 50% 2,277 11C73D10K 90% 52,035 15Table 14: Number of Exa
t Asso
iation Rules Extra
ted.Dataset Min
onf Approximate Proper Non-transitive Stru
tural(Minsupp) rules basis basis basis90% 16,260 16,260 3,511 916T10I4D100K 70% 20,419 20,419 4,004 1,058(0.5%) 50% 21,686 21,686 4,191 1,14030% 22,952 22,952 4,519 1,36790% 12,911 806 563 313Mushrooms 70% 37,671 2,454 968 384(30%) 50% 56,703 3,870 1,169 41030% 71,412 5,727 1,260 42490% 36,012 4,008 1,379 443C20D10K 70% 89,601 10,005 1,948 455(50%) 50% 116,791 13,179 1,948 45530% 116,791 13,179 1,948 45595% 1,606,726 23,084 4,052 939C73D10K 90% 2,053,896 32,644 4,089 941(90%) 85% 2,053,936 32,646 4,089 94180% 2,053,936 32,646 4,089 941Table 15: Number of Approximate Asso
iation Rules Extra
ted.Dataset Duquenne-Guigues Proper Non-transitive Stru
turalbasis basis basis basisT10I4D100K - 100.00% 20.05% 5.49%Mushrooms 0.92% 6.90% 2.69% 1.19%C20D10K 0.48% 11.21% 2.33% 0.63%C73D10K 0.03% 1.55% 0.21% 0.05%Table 16: Average Relative Size of Bases.information. Moreover, its size is signi�
antly redu
ed 
ompared with the set of all possible rules be
auseredundant, and thus useless, rules are dis
arded. Our approa
h has a twofold advantage: on one hand,the user is provided with a smaller set of resulting rules, easier to handle, and vehi
uling informationof improved quality. On the other hand, exe
ution times are redu
ed 
ompared with the dis
overing ofall asso
iation rules. Su
h results are proved (in the groundwork of latti
e theory) and illustrated byexperiments, a
hieved from real-life datasets.Integrating redu
tion methods Templates, as de�ned in [3, 16℄, 
an dire
tly be used for extra
tingfrom the bases all asso
iation rules mat
hing some user spe
i�ed patterns. Information in taxonomiesasso
iated with the dataset 
an also be integrated in the pro
ess as proposed in [14, 28℄ for extra
tingbases for generalized (multi-level) asso
iation rules. Integrating item 
onstraints and statisti
al measures,su
h as des
ribed in [5, 22, 29℄ and [7, 25℄ respe
tively, in the generation of bases requires further work.Fun
tional and approximate dependen
ies Algorithms presented in this paper 
an be adaptedto generate bases for fun
tional and approximate dependen
ies. In [15, 20℄, su
h bases and algorithmsfor generating them were proposed. However, the Duquenne-Guigues basis is smaller than the basis forfun
tional dependen
ies 
onstituted of minimal non-trivial fun
tional dependen
ies. Hen
e, the numberof rules in the Duquenne-Guigues basis is minimal; moreover these rules have minimal ante
edent and
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C73D10KFigure 6: Exe
ution Times of the Asso
iation Rule Derivation.maximal 
onsequent [10, 13℄. Furthermore, the proper and stru
tural bases for approximate rules arealso smaller than the basis for approximate dependen
ies de�ned in [15℄. Adapting our algorithms to thedis
overy of fun
tional and approximate dependen
ies is an ongoing resear
h.A
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