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Abstract

In this paper, we address the problem of the usefulness of the set of discovered association rules. This
problem is important since real-life databases yield most of the time several thousands of rules with
high confidence. We propose new algorithms based on Galois closed sets to reduce the extraction
to small covers, or bases, for exact and approximate rules. Once frequent closed itemsets — which
constitute a generating set for both frequent itemsets and association rules — have been discovered,
no additional database pass is needed to derive these bases. Experiments conducted on real-life
databases show that these algorithms are efficient and valuable in practice.

Keywords: data mining, Galois closure operator, frequent closed itemsets, bases for association
rules, algorithms.

1 Introduction and Motivation

Data mining has been extensively addressed for the last years, specially the problem of discovering
association rules. The aim when discovering association rules is to exhibit relationships between data
items (or attributes) and compute the precision of each relationship in the database. Usual precision
measures are support and confidence [1] that point the proportion of database transactions (or objects)
upholding each rule out. When an association rule has support and confidence exceeding some user-
defined minimum thresholds, the rule is considered as relevant and the extracted knowledge would likely
be used for supporting decision making. A classical example of association rules fits in the context of
market basket data analysis and highlights a particular feature in customers behavior: 80% of customers
who buy cereals and sugar also buy milk.

Since the problem was stated [1], various approaches have been proposed for an increased efficiency
of rule discovery [2, 4, 8, 17, 23, 24, 26, 30, 33]. However, fully taking advantage of exhibited knowledge
means capabilities to handle such a knowledge. In fact, by using a synthetic dataset containing 100,000
objects, each of which encompassing around 10 items, our experiments yield more than 16,000 rules with
confidence outcoming 90%. The problem is much more critical when collected data is highly correlated
or dense, like in statistical or medical databases. For instance, when applied to a census dataset of 10,000
objects, each of which characterized by values of 73 attributes, experiments result in more than 2,000,000
rules with support and confidence outcoming 90%.

Thus the talked issue could be rephrased as follows: which relevant knowledge can be learned from
several thousands of rules highly redundant? Which aid could be offered to users for handling countless
rules and focusing on useful ones? Before explaining how our approach answers the previous questions,
let us examine proposed solutions for meeting such needs.



1.1 Related Work: an Outline

Among approaches addressing the described issue, two main trends can be distinguished. The former
provides users with mechanisms for filtering rules. In [3, 16], the user defines templates, and rules not
matching with them are discarded. In [22, 29], boolean operators are introduced for selecting rules
including (or not) given items. A similar approach expanded with a measure of usefulness of extracted
rules, called improvement, is proposed in [5]. In [21], an SQL-like operator called MINE RULE, allowing the
specification of general extraction criteria, is proposed. The quoted approaches operate “a posteriori”,
i.e. once huge amount of rules are extracted, querying facilities make it possible to handle rule subsets
selected according to the user preferences. In contrast, the second trend addresses the problem with
an “a priori” vision, by attempting to minimize the number of exhibited rules. In [14, 28], information
about taxonomies are used to define criteria of interest which apply for pruning redundant rules. In
[7, 25], statistical measures such as Pearson’s correlation or the chi-squared test are used instead of the
confidence measure.

1.2 Contribution: an Overview

The approach presented in this paper belongs to the second trend since it aims to extract not all possible
rules but a sub-set called small cover or basis for association rules. When computing such a basis, re-
dundant rules are discarded since they do not vehicule relevant knowledge. Such a pruning operation is
a key-step during rule extraction, and significantly reduces the resulting set. For example, experiments
performed using a real-life dataset describing characteristics of mushrooms yield the 9 following associ-
ation rules with free g¢ills in the antecedent and eatable in the consequent, and with common support

(51%) and confidence (54%).
1) free gills — eatable 6) free gills, white veil — eatable, partial veil
2) free gills — eatable, partial veil 7) free gills, partial veil — eatable
3) free gills — eatable, white veil 8) free gills, partial veil — eatable, white veil
4) free gills — eatable, partial veil, white veil 9) free gills, white veil, partial veil — eatable

5) free gills, white veil — eatable
Among these rules, 8 are redundant because they can be deduced from the 4t rule: free gills — eatable,
partial veil, white veil. Moreover, since rules unexpected by the user are important [18, 27], presenting a
list of rules covering all the frequent items in the dataset is also needed.

First, using the closure operator of the Galois connection [6], we characterize frequent closed itemsets
[23, 24]. Then, we show that frequent closed itemsets represent a generating set for both frequent itemsets
and association rules. The underlying theorem states the foundations of our approach since it makes it
possible to generate the bases from frequent closed itemsets by avoiding handling of large sets of rules.
We propose two new algorithms: the former achieves frequent closed itemsets from frequent itemsets
without accessing the dataset, and the latter, called Apriori-Close, extends the Apriori algorithm [2] by
discovering simultaneously frequent itemsets and frequent closed itemsets without additional execution
time.

Then, using the frequent closed itemsets and the pseudo-closed itemsets defined by Duquenne and
Guigues in lattice theory [9, 11], we define the Duquenne-Guigues basis for exact association rules (rules
with a 100% confidence). Rules in this basis are non-redundant exact rules with minimal antecedent and
maximal consequent. Besides, using the frequent closed itemsets and results proposed by Luxenburger
in lattice theory [19, 32], we define the proper basis and the structural basis for approximate association
rules. The proper basis is a small set containing the most informative and useful approximate rules: the
non-redundant informative rules. The structural basis can be viewed as an abstract of all approximate
rules that hold and can be useful when the proper basis is large. We propose three algorithms intended
for yielding these three bases. Using the set of frequent closed itemsets, generating the evoked bases is
performed without any access to the dataset.

An algorithm discovering closed and pseudo-closed itemsets has been proposed in [12] and implemented
in CoNIMP [9]. However, this algorithm does not consider the support of itemsets and, since it works



only in main memory, it cannot be applied when the number of objects exceeds some hundreds and the
number of items some tens. From the results presented in [19], no algorithm was proposed. In [24],
the association rule framework based on the Galois connection is defined. Fitting in this groundwork,
two efficient algorithms that discover frequent closed itemsets for association rules are defined: the Close
algorithm [24] for correlated data and the A-Close algorithm [23] for weakly correlated data. The work
presented in this paper differs from [23, 24] in the following points:

1. Tt shows that frequent closed itemsets constitute a generating set for frequent itemsets and associ-
ation rules.

2. Tt extends the Apriori algorithm and algorithms for discovering maximal frequent itemsets to gen-
erate frequent closed itemsets.

3. It adapts the Duquenne-Guigues basis and Luxenburger results for exact and partial implications
to the context of association rules. This adaptation is based on 1. (generating set).

4. Tt presents new algorithms for generating bases for exact and approximate association rules using
frequent closed itemsets.

5. It shows that the algorithms proposed are efficient for both improving the usefulness of extracted
association rules and decreasing the execution time of the association rule extraction.

As shown by experiments, the proposed process for extracting bases does not require any overhead
compared with the traditional approaches for discovering association rules.

1.3 Paper Organization

In Section 2, we present the association rule framework based on the Galois connection. Section 3
addresses the concept of basis for both exact and approximate association rules. New algorithms for
discovering frequent and frequent closed itemsets are described in Section 4 and the following section
presents algorithms computing the bases for association rules from the frequent closed itemsets. Experi-
mental results achieved from various datasets are given in Section 6. Finally, as a conclusion, we evoke
further work in Section 7.

2 Association Rule Framework

In this section, we present the association rule framework based on the Galois connection, primarily
introduced in [23, 24].

Definition 1 (Data mining context) A data mining context' is defined as D = (O,Z,R), where O
and T are finite sets of objects and items respectively. R C O x T is a binary relation between objects and
items. Each couple (0,i) € R denotes the fact that the object o € O is related to the item i € T.

Depending on the target system, a data mining context can be a relation, a class, or the result of an

SQL/OQL query.

Example 1 An example data mining context D consisting of 5 objects (identified by their OID) and 5
items is illustrated in Table 1.

Definition 2 (Galois connection) Let D = (O, Z, R) be a data mining context. For O C O and
I C 7T, we define:
f:20 = 2f g: 25 —2°
f(O)={i €T |YoeO,(o,i) € R} g(I)={oe O|Viel,(o,i) €ER}

1By extension, we will call dataset a data mining context.




OID Ttems
1 A C D
2 B C E
3 A B C E
4 B E
5 A B C E

Table 1: The Example Data Mining Context D.

f(O) associates with O the items common to all objects o € O and g(I) associates with I the objects
related to all items i € I. The couple of applications (f,g) is a Galois connection between the power set of
O (2°) and the power set of T (2%). The following properties hold for all I,1,,Is C T and O,01,05 C O:

(1) I C L= g(h) 2 g(l>) (1’) O1 C Oz = f(O1) 2 f(O2)
(2) OCg(l)+=1C f(O)

Definition 3 (Frequent itemsets) Let I C T be a set of items from D. The support count of the
itemset I in D 1is:
_ llg(@l

I is said to be frequent if the support of I in D is at least minsupp. The set L of frequent itemsets in D
18:
L ={I CT|supp(I)> minsupp}

Definition 4 (Association rules) An association rule is an implication between two itemsets, with
the form I, — Is where Iy,Is C T, I1,I, # @ and [y NIy = &. I, and I> are called respectively the
antecedent and the consequent of the rule. The support supp(r) and confidence conf(r) of an association
rule r : Iy — I are defined using the Galois connection as follows:

Association rules holding in the context are those that have support and confidence greater than or equal
to the minsupp and minconf thresholds respectively. We define the set AR of association rules holding in
D given minsupp and minconf thresholds as follows:

AR={r: I > L1, | I, C I, CT A supp(lz) > minsupp A conf(r) > minconf}

If conf(r)=1 then r is called an exact association rule or implication rule, otherwise r is called approximate
association rule.

Example 2 Exact and approximate association rules extracted from D for minsupp = 2/5 and minconf
= 1/2 are given in Table 2.

3 Bases for Association Rules

In this section, we first demonstrate that the frequent closed itemsets constitute a generating set for
frequent itemsets and association rules. Then, we characterize the Duquenne-Guigues basis for exract
association rules and the proper and structural bases for approrimate association rules. The Duquenne-
Guigues basis, as defined in [11], is extended in this paper to the context of association rules. Proofs of
Theorems 2, 3 and 4 are straightforward from Theorem 1 and [11, 19, 32]. Interested readers could refer
to [6, 31] for further details on closed sets.



Exact rule  Supp | Approximate rule Supp Conf | Approximate rule Supp Conf
ABC=E 2/5 BCE — A 2/5  2/3 B — AE 2/5  2/4
ABE=C 2/5 AC — BE 2/5  2/3 E — AB 2/5  2/4
ACE=B 2/5 BE — AC 2/5  2/4 A — CE 2/5  2/3
AB=CE 2/5 CE — AB 2/5  2/3 C — AE 2/5  2/4
AE = BC 2/5 AC - B 2/5  2/3 E — AC 2/5  2/4
AB=C 2/5 BC — A 2/5 2/3 B —» CE 3/5 3/4
AB=E 2/5 BE —» A 2/5 2/4 C —» BE 3/5 3/4
AE =B 2/5 AC - E 2/5 2/3 E — BC 3/5 3/4
AE = C 2/5 CE - A 2/5  2/3 A B 2/5  2/3
BC = E 3/5 BE — C 3/5 3/4 B— A 2/5 2/4
CE=B 3/5 A — BCE 2/5 2/3 C—A 3/5 3/4
A=C 3/5 B — ACE 2/5  2/4 A—>E 2/5  2/3
B=E 4/5 C — ABE 2/5 2/4 E—A 2/5 2/4
E=B 4/5 E - ABC 2/5 2/4 B—>C 3/5 3/4
A —» BC 2/5 2/3 C—>B 3/5 3/4
B —» AC 2/5 2/4 C—E 3/5 3/4
C — AB 2/5 2/4 E—-C 3/5 3/4
A - BE 2/5  2/3

Table 2: Association Rules Extracted from D for minsup = 2/5 and minconf = 1/2.

3.1 Generating Set

Definition 5 (Galois closure operators) The operators h = fog in 27 and h' = gof in 2° are Galois
closure operators®. Given the Galois connection (f,g), the following properties hold for all I,1,I5 C T
and 0,01,02 g O [6]

Eztension : (8) I Ch(I) (8°) O C W' (0)
Idempotency :  (4) h(h(I)) = h(I) (47) '(R'(0)) = h'(0)
Monotonicity :  (5) I C I = h(l1) Ch(ly) (5°) O1 C O3 = h'(01) Ch'(02)

Definition 6 (Frequent closed itemsets) An itemset I CZ in D is a closed itemset iff h(I) = 1. A
closed itemset I is said to be frequent if the support of I in D is at least minsupp. The smallest (minimal)
closed itemset containing an itemset I is h(I), the closure of 1. The set FC of frequent closed itemsets
in D is defined as follows:

FC={ICZ|I=h({I) A supp(I) > minsupp}

Example 3 A frequent closed itemset is a maximal set of items common to a set of objects, for which
support is at least minsupp. The frequent closed itemsets in the context D for minsupp=2/5 are presented
in Table 3. The itemset BCE is a frequent closed itemset since it is the maximal set of items common
to the objects {2,3,5}. The itemset BC is not a frequent closed itemset since it is not a maximal set of
items common to some objects: all objects in relation with the items B and C (objects 2, 3 and 5) are
also in relation with the item FE.

Hereafter, we demonstrate that the set of frequent closed itemsets with their support is the smallest
collection from which frequent itemsets with their support and association rules can be generated (it is
a generating set).

Lemma 1 [2/] The support of an itemset I is equal to the support of the smallest closed itemset con-
taining I: supp(I) = supp(h(I)).

Lemma 2 [24] The set of mazimal frequent itemsets M = {I € L | I' € L where I C I'} is identical
to the set of mazimal frequent closed itemsets MC = {I € FC | 3I' € FC where I C I'}.

2Here, we use the following notation: fog(T) = f(g(I)) and gof(O) = g(f(0)).




Frequent closed itemset  Support
{&} 5/5
{C} 4/5
{AC} 3/5
{BE} 4/5
{BCE} 3/5
{ABCE} 2/5

Table 3: Frequent Closed Itemsets Extracted from D for minsupp = 2/5.

Theorem 1 (Generating set) The set FC of frequent closed itemsets with their support is a generating
set for all frequent itemsets and their support, and for all association rules holding in the dataset, their
support and their confidence.

Proof. Based on Lemma 2, all frequent itemsets can be derived from the maximal frequent closed
itemsets. Based on Lemma 1, the support of each frequent itemset can be derived from the support of
frequent closed itemsets. Then, the set of frequent closed itemsets F'C is a generating set for both the
set of frequent itemsets L and the set of association rules AR*. O

3.2 Duquenne-Guigues Basis for Exact Association Rules

Definition 7 (Frequent pseudo-closed itemsets) An itemset I C T in D is a pseudo-closed itemset
iff h(I) £ 1T and VI' C I such as I' is a pseudo-closed itemset, we have h(I') C I. The set FP of frequent
pseudo-closed itemsets in D is defined as

FP ={ICT|supp(l)>minsupp A I # h(I) AVI' € FP such as I' C I we have h(I') C I}

Theorem 2 (Duquenne-Guigues Basis for Exact Association Rules) Let FP be the set of fre-
quent pseudo-closed itemsets in D. The set

DG:{Tiflih(Il)—Il| I, EFP/\Il;éQ}
is a basis for all exact association rules holding in the dataset.

The Duquenne-Guigues basis is minimal with respect to the number of rules since there can be no
complete set with fewer rules than there are frequent pseudo-closed itemsets [10, 13].

Example 4 A frequent pseudo-closed itemset I is a frequent non-closed itemset that includes the closures
of all frequent pseudo-closed itemsets included in I. The set F'P of frequent pseudo-closed itemsets and the
Duquenne-Guigues basis for exact association rules extracted from D for minsupp=2/5 and minconf=1/2
are presented in Table 4. The itemset AB is not a frequent pseudo-closed itemset since the closures of
A and B (respectively AC and BE) are not included in AB. ABCE is not a frequent pseudo-closed
itemset since it is closed.

Frequent pseudo-closed itemset  Support Exact rule  Support
{A} 3/5 A=2C 3/5
{B} 4/5 B=E 4/5
{E} 4/5 E=B 4/5

Table 4: Frequent Pseudo-Closed Itemsets and Duquenne-Guigues Basis Extracted from D for minsupp
=2/5.

3Furthermore, F'C is the smallest generating set for L and AR. Hence, even if frequent itemsets can be derived from the
maximal frequent itemsets, passes over the dataset are still needed to compute the frequent itemset supports.



3.3 Proper Basis for Approximate Association Rules

Theorem 3 (Proper Basis for Approximate Association Rules) Let FC be the set of frequent
closed itemsets in D. The set

PB={r:I1 - L -5 |L,Le FCANL #@3 NI CI A conf(r) > minconf}

is a basis for all approximate association rules holding in the dataset. Association rules in PB are proper
approximate association rules.

Example 5 The proper basis for approximate association rules extracted from D for minsupp=2/5 and
minconf=1/2 are presented in Table 5.

Approximate rule  Support Confidence
BCE — A 2/5 2/3
AC - BE 2/5 2/3
BE — AC 2/5 2/4
BE —» C 3/5 3/4
C — ABE 2/5 2/4
C —» BE 3/5 3/4
C—A 3/5 3/4

Table 5: Proper Basis Extracted from D for minsupp = 2/5 and minconf = 1/2.

3.4 Structural Basis for Approximate Association Rules

Definition 8 (Undirected graph Grc) Let FC be the set of frequent closed itemsets in D. We define
Gre = (V, E) as the undirected graph associated with FC where the set of vertices V and the set of edges
E are defined as follows:

V={ICI|IeFC}

E={(,,b) eV x V|L CI N supp(l2)/supp(ly) > minconf}

With each edge in Grc between two vertices I and Iy with Iy C Iy is associated the confidence = supp(Is)
/ supp(ly) of the proper approximate association rule Iy — I — I, represented by the edge.

Definition 9 (Maximal Confidence Spanning Forest Frc) Let Fpc = (V, E') be the mazimal con-
fidence spanning forest associated with FC. Fpc is obtained from the undirected graph Gpe = (V, E)
by suppressing transitive edges and cycles. Cycles are removed by deleting some edges that enter the last
vertex I (mazimal vertex with respect to the inclusion) of the cycle. Among all edges entering in I, those
with confidence less than the mazimal confidence value associated with an edge with the form (I',I) € E
are deleted. If more than one edge have the maximal confidence value, the first one in lexicographic order
is kept.

Theorem 4 (Structural Basis for Approximate Association Rules) Let SB be the set of associ-
ation rules represented by edges in Frc except rules from the vertex {@}. The set
SB:{’I":Il—>[2—Il |[1,IQEV NI ClIs /\1175@ A ([1,]2)€EI}

is a basis for all approximate association rules holding in the dataset (I is the consequent of at most one
approzimate association rule in SB).

Example 6 The structural basis for approximate association rules extracted from D for minsupp=2/5
and minconf=1/2 is presented in Table 6.
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Figure 1: Undirected Graph Gpc and Maximal Confidence Spanning Forest Fpe (a tree in this example)
Derived from D for minsupp = 2/5 and minconf = 1/2.

Approximate rule  Support Confidence
AC —- BE 2/5 2/3
BE — C 3/5 3/4
C—A 3/5 3/4

Table 6: Structural Basis Extracted from D for minsupp = 2/5 and minconf = 1/2.

4 Discovering Frequent and Frequent Closed Itemsets

In Section 4.1, we propose a new algorithm to achieve frequent closed itemsets from frequent itemsets
without accessing the dataset. This algorithm discovers frequent closed itemsets while for instance an
algorithm for discovering maximal frequent itemsets [4, 17, 33] is used. In Section 4.2, we present an
extension of the Apriori algorithm [2] called Apriori-Close for discovering frequent and frequent closed
itemsets without additional computation time. Like in the Apriori algorithm, we assume in the following
that items are sorted in lexicographic order and that & is the size of the largest frequent itemsets. Based
on Lemma 2, k is also the size of the largest frequent closed itemsets.

4.1 Computing Frequent Closed Itemsets from Frequent Itemsets

Many efficient algorithms for mining frequent itemsets and their support have been proposed. Well-
known proposals are presented in [2, 8, 26, 30]. Efficient algorithms for discovering the maximal frequent
itemsets and then achieve all frequent itemsets have also been proposed [4, 17, 33]. All these algorithms
give as result the set L = Uzzf L; where L; contains all frequent i-itemsets (itemsets of size 7). Based on
Proposition 1 and Lemma 2 (Section 3.1), the frequent closed itemsets and their support can be computed
from the frequent itemsets and their support without any dataset access.

The pseudo-code to determine frequent closed itemsets among frequent itemsets is given in Algorithm
1. Notations are given in Table 7. The input of the algorithm are sets L;, 1 <i <k, containing all frequent
itemsets in the dataset. It recursively generates the sets F'C;, 0<i <k, of frequent closed i-itemsets from
FCk to FC()

L; Set of frequent i-itemsets and their support.
FC; Set of frequent closed i-itemsets and their support.
isclosed  Variable indicating if the considered itemset is closed or not.

Table 7: Notations.

Proposition 1 The support of a closed itemset is greater than the supports of all its supersets.



Proof. Let [ be a closed i-itemset and s a superset of [. We have Il C s = ¢(I) D g(s) (Property (1) of
the Galois connection). If g(I) = g(s) then h(l) = h(s) = 1 = h(s) = s C I (absurd). It follows that

g(l) D g(s) = supp(l) > supp(s). O

Algorithm 1 Deriving Frequent Closed Itemsets from Frequent Itemsets.

1) FCy « Ly;
2) for (i < k—1; 4 #0; i--) do begin
3) FC; + {};
4) forall itemsets [ € L; do begin
5) isclosed < true;
6) forall itemsets I’ € L; 41 do begin
7) if (I ') and (I.support =1".support) then isclosed < false;
8) end
9) if (isclosed = true) then FC; «+ FC; U {l};
10) end
11) end
12) FCo + {o};
13) forall itemsets | € L; do begin
14) if (I.support = ||O||) then FCo + {};
15) end

First, the set FC}, is initialized with the set of largest frequent itemsets Ly (step 1). Then, the
algorithm iteratively determines which i-itemsets in L; are closed from Ly, to L; (steps 2 to 11). At
the beginning of the ‘" iteration the set F'C; of frequent closed i-itemsets is empty (step 3). In steps 4
to 10, for each frequent itemset [ in L;, we verify that [ has the same support as a frequent (i+1)-itemset
I"in L;y1 in which it is included. If so, we have I’ C h(l) and then [ # h(l): [ is not closed (step 7).
Otherwise, [ is a frequent closed itemset and is inserted in F'C; (step 9). During the last phase, the
algorithm determines if the empty itemset is closed by first initializing F'Cy with the empty itemset (step
12) and then considering all frequent 1l-itemsets in L; (steps 13 to 15). If a l-itemset [ has a support
equal to the number of objects in the context, meaning that [ is common to all objects, then the itemset
& cannot be closed (we have supp({@}) = [|O]| = supp(l)) and is removed from FCj (step 14). Thus, at
the end of the algorithm, each set F'C; contains all frequent closed i-itemsets.

Correctness Since all maximal frequent itemsets are maximal frequent closed itemsets (Lemma 2), the
computation of the set F'C}, containing the largest frequent closed itemsets is correct. The correctness of
the computation of sets F'C; for i <k relies on Proposition 1. This proposition enables to determine if a
frequent i-itemset [ is closed by comparing its support and the supports of the frequent (i+1)-itemsets
in which [ is included. If one of them has the same support as [, then [ cannot be closed.

4.2 Apriori-Close Algorithm

In this section, we present an extension of the Apriori algorithm [2] computing simultaneously frequent
and frequent closed itemsets. The pseudo-code is given in Algorithm 2 and notations in Table 8. The
algorithm iteratively generates the sets L; of frequent i-itemsets from L; to L. Besides, during the ‘"
iteration, all frequent closed (i—1)-itemsets in F'C;_; are determined. The set F'C}, is determined during
the last step of the algorithm.

L; Set of frequent i-itemsets, their support and marker isclosed indicating if closed or not.
FC; Set of frequent closed i-itemsets and their support.

Table &: Notations.

First, the variable k is initialized to 0 (step 1). Then, the set Ly of frequent 1-itemsets is initialized
with the list of items in the context (step 2) and one pass is performed to compute their support (step



Algorithm 2 Discovering Frequent and Frequent Closed Itemsets with Apriori-Close.
1) k+«0;

N

itemsets in Li < {1l-itemsets};
L, < Support-Count(L1);
FCoy + {@},

NIt

)
)
)
5) forall itemsets [ € L; do begin
6) if (I.support < minsupp) then L; <+ L; \ {l};
7) else if (I.support = ||O||) then FCy + {};
8) end
9) for (i < 1; L; # {}; i++) do begin
10) forall itemsets I’ € L; do I'.isclosed < true;
11) L;11 < Apriori-Gen(L;);
12) forall itemsets [ € L;1+1 do begin
13) forall i-subsets I of | do begin
14) if (l’ o4 Li) then L1 < Lt \ {l},
15) end
16) end
17) L;4+1 < Support-Count(L;4+1);
18) forall itemsets [ € L;11 do begin
19) if (I.support < minsupp) then L;y1 < L;+1 \ {l};
20) else do begin
21) forall i-subsets I’ € L; of [ do begin
22) if (I.support = I'.support) then ['.isclosed « false;
23) end
24) end
25) end
26) FC; «+ {l € L; | Lisclosed = true};
27) k < i
28) end
29) FOk- — Lk;

3). The set F(p is initialized with the empty itemset (step 4) and the supports of itemsets in L; are
considered (steps 5 to 8). All infrequent 1-itemsets are removed from L; (step 6) and if a frequent 1-
itemset has a support equal to the number of objects in the context then the empty itemset is removed
from F'Cy (step 7). During each of the following iterations (steps 9 to 28), frequent itemsets of size i+1,
k > i > 1, and frequent closed itemsets of size i are computed as follows. For all frequent i-itemsets in
L;, the marker isclosed is initialized to true (step 10). A set L;i1 of possible frequent (i+1)-itemsets is
created by applying the Apriori-Gen function to the set L; (step 11). For each of these possible frequent
(i+1)-itemsets, we check that all its subsets of size i exist in L; (steps 12 to 16). One pass is performed to
compute the supports of the remaining itemsets in L;; (step 17). Then, for each (i+1)-itemsets | € L;11
(steps 18 to 25), if [ is infrequent then it is discarded from Lqy; (step 19). Otherwise for all i-subsets I’
of I, we verify that supports of I’ and [ are equal; if so, then I’ cannot be a closed itemset and its marker
isclosed is set to false (steps 20 to 24). Then, all frequent i-itemsets in L; for which marker isclosed is
true are inserted in the set F'C; of frequent closed i-itemsets (step 26) and the variable & is set to the
value of i (step 27). Finally, the set FC} is initialized with the frequent k-itemsets in L;, (step 29).

Apriori-Gen function The Apriori-Gen function [2] applies to a set L; of frequent i-itemsets. It
returns a set L;y; of potential frequent (i+1)-itemsets. A new itemset in L;11 is created by joining two
itemsets in L; sharing common first i-1 items.

Support-Count function The Support-Count function takes a set L; of i-itemsets as argument. It
efficiently computes the supports of all itemsets I € L;. Only one dataset pass is required: for each object
o read, the supports of all itemsets [ € L; that are included in the set of items associated with o, i.e.
I C f({o}), are incremented. The subsets of f({o}) are quickly found using the Subset function described



in Section 5.2.

Correctness Since the support of a frequent closed itemset [ is different from the support of all its
supersets (Proposition 1), the computation of sets F'C; for i < k is correct. Hence, a frequent i-itemset
I" € L; is determined closed or not by comparing its support with the supports of all frequent (7 + 1)-
itemsets [ € L;y; for which I’ C I. Lemma 2 ensures the correctness of the computation of the set F'Cy
containing the largest frequent closed itemsets.

Example 7 Figure 2 illustrates the execution of the Apriori-Close algorithm with the context D for a

minimum support of 2/5.
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Figure 2: Discovering Frequent and Frequent Closed Itemsets with Apriori-Close.

5 Generating Bases for Association Rules

In Section 5.1, we present an algorithm to generate the Duquenne-Guigues basis for exact association
rules. In Sections 5.2 and 5.3 are described algorithms achieving the proper basis and the structural basis
for approximate association rules respectively.




5.1 Generating Duquenne-Guigues Basis for Exact Association Rules

The pseudo-code generating the Duquenne-Guigues basis for exact association rules is given in Algorithm
3. Notations are given in Table 9. The algorithm takes as input the sets L;, 1 <i <k, containing the
frequent itemsets and their support, and the sets F'C;, 0 <i <k, containing the frequent closed itemsets
and their support. It first computes the frequent pseudo-closed itemsets iteratively (steps 2 to 17) and
then uses them to generate the Duquenne-Guigues basis for exact association rules DG (steps 18 to 22).

L; Set of frequent i-itemsets and their support.

FC; Set of frequent closed i-itemsets and their support.

FP; Set of frequent pseudo-closed i-itemsets, their closure and their support.
DG Duquenne-Guigues basis for exact association rules.

Table 9: Notations.

First, the set DG is initialized to the empty set (step 1). If the empty itemset is not a closed itemset
(it is then necessarily a pseudo-closed itemset), it is inserted in F'Py (step 2). Otherwise F'Py is empty
(step 3). Then, the algorithm recursively determines which i-itemsets in L; are pseudo-closed from L
to Ly (steps 4 to 16). At each iteration, the set F'P; is initialized with the list of frequent i-itemsets
that are not closed (step 5) and each frequent i-itemsets [ in F'P; is considered as follows (steps 6 to
15). The variable pseudo is set to true (step 7). We verify for each frequent pseudo-closed itemset p
previously discovered (i.e. in FP; with j < ¢) if p is contained in I (steps 8 to 13). In that case and if
the closure of p is not included in [, then [ is not pseudo-closed and is removed from F'P; (steps 9 to 12).
Otherwise, the closure of I (i.e. the smallest frequent closed itemset containing ) is determined (step
14). Once all frequent pseudo-closed itemsets p and their closure are computed, all rules with the form
r : p = (p.closure — p) are generated (steps 17 to 21). The algorithm results in the set DG containing
all rules in the Duquenne-Guigues basis for exact association rules.

Algorithm 3 Generating Duquenne-Guigues Basis for Exact Association Rules.
1) DG« {};

if (FCo = {}) then FP, + {@};
else FPy «+ {};
for (i + 1; i <k; i++) do begin

FP; + L; \ FC,‘;

forall itemsets [ € F'P; do begin

pseudo < true;

~N O Ot = W N

8 forall itemsets p € FP; with j < ¢ do begin
9 if (p C ) and (p.closure ¢ [) then do begin
10 pseudo < false;
12 end
13 end
14 if (pseudo = true) then l.closure < Minc ({c € FCj>; |l Cc});
15 end

—
(=2}

end
forall sets F'P; where F'P; # {} do begin
forall pseudo-closed itemsets p € F'P; do begin
DG + DG U {r: p = (p.closure—p),p.support};

e
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end

[N]
—_

end

Correctness Since the itemset @ has no subset, if it is not a closed itemset then it is by definition a
pseudo-closed itemset and the computation of the set F'P, is correct. The correctness of the computation
of frequent pseudo-closed i-itemsets in F'P; for 1 < i < k relies on Definition 7. All frequent i-itemsets [



in L; that are not closed, i.e. not in F'C;, are considered. Those [ containing the closures of all frequent
pseudo-closed itemsets that are subsets of [ are inserted in F'P;. According to Definition 7, these i-itemsets
are all frequent pseudo-closed i-itemsets and the sets F'P; are correct. The association rules generated
in the last phase of the algorithm are all rules with a frequent pseudo-closed itemset in the antecedent.
Then, the resulting set DG corresponds to the rules in the Duquenne-Guigues basis for exact association
rules defined in Theorem 2.

Example 8 Figure 3 shows the generation of the Duquenne-Guigues basis for exact association rules
from the context D for a minimum support of 2/5.
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Figure 3: Generating Duquenne-Guigues Basis for Exact Association Rules.

5.2 Generating Proper Basis for Approximate Association Rules

The pseudo-code generating the proper basis for approximate association rules is presented in Algorithm
4. Notations are given in Table 10. The algorithm takes as input the sets F'C;, 1 <i <k, containing the
frequent closed non-empty itemsets and their support. The output of the algorithm is the proper basis
for approximate association rules PB.

The set PB is first initialized to the empty set (step 1). Then, the algorithm iteratively considers all
frequent closed itemsets ! € FC; for 2 <14 < k. It determines which frequent closed itemsets ' € FCj;
are subsets of [ and generates association rules with the form I’ — | — I’ that have sufficient confidence
(steps 2 to 12) as follows. During the i'* iteration, each itemset [ in F'C; is considered (steps 3 to 11).
For each set F'C;, 1<j<i, a set S; containing all frequent closed j-itemsets in F'C; that are subsets of
is created (step 5). Then, for each of these subsets I’ € S; (steps 6 to 9), we compute the confidence of



FC; Set of frequent closed i-itemsets and their support.
S; Set of j-itemsets that are subsets of the considered itemset.
PB  Proper basis for approximate association rules.

Table 10: Notations.

the proper approximate association rule r : I — 1 — [’ (step 7). If the confidence of r is sufficient then r
is inserted in PB (step 8). At the end of the algorithm, the set PB contains all rules of the proper basis
for approximate association rules.

Algorithm 4 Generating Proper Basis for Approximate Association Rules.
1) PB+« {}

2) for (i < 2; i <k;i++) do begin
3) forall itemsets [ € FC; do begin
4) for (j < i—1; j > 0; j--) do begin
5) S; « Subsets(FCj,1);
6) forall itemsets I' € S; do begin
7) conf(r) « l.support /I’ support;
8) if (conf(r) > minconf) then PB <~ PBU{r:1I' =1 —1', l.support, conf(r)};
9) end
10) end
11) end
12) end

Subset function The subset function takes a set X of itemsets and an itemset y as arguments. It
determines all itemsets z € X that are subsets of y. In algorithm implementation, frequent and frequent
closed itemsets are stored in a prefiz-tree structure [24] in order to improve efficiency of the subset search.

Correctness The correctness of the algorithm relies on the fact that we inspect all proper approximate
association rules holding in the dataset. For each frequent closed itemset, the algorithm computes, among
its subsets, all other frequent closed itemsets. Then, the generation of all rules between two frequent closed
itemsets having sufficient confidence is ensured. These rules are all proper approximate association rules
holding in the dataset, and the resulting set PB is the proper basis for approximate association rules
defined in Theorem 3.

Example 9 Figure 4 shows the generation of the proper basis for approximate association rules in the
context D for a minimum support of 2/5 and a minimum confidence of 1/2.

5.3 Generating Structural Basis for Approximate Association Rules

The pseudo-code generating the structural basis for approximate association rules is given in Algorithm
5. Notations are given in Table 11. The algorithm takes as input the sets F'C;, 1 < i < k, of frequent
closed non-empty itemsets and their support. It generates the structural basis for approximate association
rules SB represented by the maximal confidence spanning forest Fpc associated with F'C' = U:zlf FC;
(without the empty itemset).

FC; Set of frequent closed i-itemsets and their support.

S; Set of j-itemsets that are subsets of the itemset considered.
CR  Set of candidate approximate association rules.

SB  Structural basis for approximate association rules.

Table 11: Notations.



FCs

FCe Itemset  Supp
Itemset  Supp {BCE} 3/ PB
{AC} 3/5 ; PB FC, UFC, 9 Rule Supp Conf
{BE} 4/5 N Rule Supp Conf Ttomset  Su . C—A 3/5 3/4
FC, C—A 3/5 3/4 TACT 3/p5p C—BE 3/5 3/4
Itemset  Supp BE—-C 3/5 3/4
15 {BE}  4/5
{C} 4/5
FCy PB
Ttemset Supp Rule Supp Conf
{ABCE} 2/5 C— A 3/5 3/4
FC; UFCyUFC 3 C — BE 3/5 3/4
Itemset Supp . BE — C 3/5 3/4
{BCE} 3/5 C— ABE 2/5 2/4
{AC} 3/5 AC—-BE 2/5 2/3
{BE} 4/5 BE - AC 2/5 2/4
{C} 4/5 BCE - A 2/5 2/3

Figure 4: Generating Proper Basis for Approximate Association Rules.

The set SB is first initialized to the empty set (step 1). Then, the algorithm iteratively considers all
frequent closed itemsets | € FC; for 2 <4 < k. It determines which frequent closed itemsets I' € FC;«;
are covered by [, i.e. are direct predecessors of [, and then generates the maximal confidence association
rules with the form [ — I’ — [ that hold (steps 2 to 25). During the i iteration, each itemset [ in FC; is
considered (steps 3 to 24) as follows. The set C'R of candidate association rules with [ in the consequent
is initialized to the empty set (step 4). For 1 < j < i, sets S; containing all frequent closed j-itemsets
in FC; that are subsets of | are created (steps 5 to 7). Then, all these subsets of [ are considered in
decreasing order of their sizes (steps 8 to 18). For each of these subsets I’ € S, the confidence of the
proper approximate association rule r : I — [ —1" is computed (step 10). If the confidence of r is sufficient,
r is inserted in C'R (step 12) and all subsets I" of I’ are removed from S, (steps 13 to 15). This because
rules with the form [ — [ — " with 1" € S,«; are transitive proper approximate rules. Finally, the
candidate proper approximate rules with [ in the consequent that are in C'R are pruned (steps 19 to 23):
the maximum confidence value mazconf of rules in CR is determined (step 20) and the first rule with
such a confidence is inserted in SB (steps 21 and 22). At the end of the algorithm, the set SB thus
contains all rules in the structural basis for approximate association rules.

Correctness The algorithm considers all association rules I’ — [ — I’ with confidence > minconf be-
tween two frequent closed itemsets | and !’ where [ covers I'. These rules are all proper non-transitive
approximate association rules that hold and can be represented by the edges of the graph Gr¢o (Definition
8) without transitive edges. Moreover, among all rules with the form X — [ — X (generated from 1),
we keep only the first one with confidence equal to the maximal confidence of rules X — [ — X. Only
preserving this rule is equivalent to the cycle removing in the graph Gp¢ in the same manner as explained
in Definition 9. Then, the resulting set SB can be represented as the maximal confidence spanning forest
Frc without edges from the empty itemset. SB contains all rules in the structural basis for approximate
association rules defined in Theorem 4.

Example 10 Figure 5 depicts the generation of the structural basis for approximate association rules in
the context D for a minimum support of 2/5 and a minimum confidence of 1/2.



Algorithm 5 Generating Structural Basis for Approximate Association Rules.
1) SB+« {};

2) for (i + 2; 4 < k; i++) do begin
3) forall itemsets [ € FC; do begin
4) CR «+ {}
5) for (j « i—1; j > 0; j--) do begin
6) S;j < Subsets(FC},1);
7) end
8) for (j « i—1; j > 0; j--) do begin
9) forall itemsets I' € S; do begin
10) conf(r) « l.support /I’ support;
11) if (conf(r) > minconf) then do begin
12) CR+ CRU{r:1I' > 1—1, lsupport, conf(r)};
13) for (n < j—1; n > 0; n--) do begin
14) Sy < Sp— Subsets(Sy,I');
15) end
16) end
17) end
18) end
19) if (CR # {}) then do begin
20) mazxconf < Mazrccr(conf(r));
21) find first {r € CR | conf(r) = maxconf};
22) SB + SBU {r};
23) end
24) end
25) end
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Figure 5: Generating Structural Basis for Approximate Association Rules.

6 Experimental Results

Experiments were performed on a Pentium II PC with a 350 Mhz clock rate, 128 MBytes of RAM,
running the Linux operating system. Algorithms were implemented in C++. Characteristics of the
datasets used are given in Table 12. These datasets are the T10I4D100K* synthetic dataset that mimics
market basket data, the C20D10K and the C73D10K census datasets from the PUMS sample file® , and
the MusHrooMs® dataset describing mushroom characteristics. In all experiments, we attempted to
choose significant minimum support and confidence threshold values: we observed threshold values used
in other papers for experiments on similar data types and inspected rules extracted in the bases.

4http://www.almaden.ibm.com/cs/quest /syndata.html
5ftp://ftp2.cc.ukans.edu/pub/ippbr/census/pums/pums90ks.zip
6£tp://ftp.ics.uci.edu/ cmerz/mldb.tar.Z



Name Number of objects  Average size of objects Number of items
T1014D100K 100,000 10 1,000
MusHROOMS 8,416 23 127

C20D10K 10,000 20 386
C73D10K 10,000 73 2,177

Table 12: Datasets.

6.1 Relative Performance of Apriori and Apriori-Close

We conducted experiments to compare response times obtained with Apriori and Apriori-Close on the
four datasets. Results for the T10I4D100K and MUSHROOMS datasets are presented in Table 13. We
can observe that execution times are identical for the two algorithms: adding the frequent closed itemset
derivation to the frequent itemset discovery does not induce additional computation time. Similar results
were obtained for C20D10K and C73D10K datasets.

Minsupp Apriori  Apriori-Close Minsupp Apriori  Apriori-Close
2.0% 1.99s 1.97s 90% 0.28s 0.28s
1.0% 3.47s 3.46s 70% 0.73s 0.73s
0.5% 9.62s 9.70s 50% 2.40s 2.70s
0.25% 15.02s 14.92s 30% 18.22s 17.93s

T10I4D100K MUSHROOMS

Table 13: Execution Times of Apriori and Apriori-Close.

6.2 Number of Rules and Execution Times of the Rule Generation

Table 14 shows the total number of exact association rules and their number in the Duquenne-Guigues
basis for exact rules. Table 15 shows the total number of approximate association rules, their number in
the proper basis and in the structural basis for approximate rules, and the number of non-transitive rules
in the proper basis for approximate rules (5t column). For example in the context D, rules C — A and
AC — BE are extracted, as well as the rule C' — ABE which is clearly transitive. Since by construction,
its confidence — retrieved by multiplying the confidences of the two former — is less than theirs, this rule is
the less interesting among the three. Reducing the extraction to non-transitive rules in the proper basis
for approximate rules can also be interesting. Such rules are generated by a variant of Algorithm 5 with
the last pruning strategy (steps 20 and 21) removed: all candidate rules in CR are inserted in SB.

Table 16 shows for the four datasets the average relative size of bases compared with the sets of all
rules obtained. In the case of weakly correlated data (T10I4D100K), no exact rule is generated and the
proper basis for approximate rules contains all approximate rules that hold. The reason is that, in such
data, all frequent itemsets are frequent closed itemsets. In the case of correlated data (MUSHROOMS,
C20D10K and C73D10K), the number of extracted rules in bases is much smaller than the total number
of rules that hold.

Figure 6 shows for each dataset the execution times of the computation of all rules (using the algorithm
described in [2]) and bases. Execution times of the derivation of the Duquenne-Guigues basis for exact
rules and the proper basis for non-transitive approximate rules are not presented since they are identical
to those of the derivation of the Duquenne-Guigues basis for exact rules and the structural basis for
approximate rules (Duquenne-Guigues and structural bases).

7 Conclusion

In this paper, we present new algorithms for efficiently generating bases for association rules. A basis is
a set of non-redundant rules from which all association rules can be derived, thus it captures all useful



Dataset Minsupp Exact rules Duquenne-Guigues basis
T10I4D100K 0.5% 0 0
MUSHROOMS 30% 7,476 69

C20D10K 50% 2,277 11
C73D10K 90% 52,035 15

Table 14: Number of Exact Association Rules Extracted.

Dataset Minconf Approximate Proper Non-transitive Structural
(Minsupp) rules basis basis basis
90% 16,260 16,260 3,511 916
T10I4D100K 70% 20,419 20,419 4,004 1,058
(0.5%) 50% 21,686 21,686 4,191 1,140
30% 22,952 22,952 4,519 1,367
90% 12,911 806 563 313
MUSHROOMS 70% 37,671 2,454 968 384
(30%) 50% 56,703 3,870 1,169 410
30% 71,412 5,727 1,260 424
90% 36,012 4,008 1,379 443
C20D10K 70% 89,601 10,005 1,948 455
(50%) 50% 116,791 13,179 1,948 455
30% 116,791 13,179 1,948 455
95% 1,606,726 23,084 4,052 939
C73D10K 90% 2,053,896 32,644 4,089 941
(90%) 85% 2,053,936 32,646 4,089 941
80% 2,053,936 32,646 4,089 941

Table 15: Number of Approximate Association Rules Extracted.

Dataset Duquenne-Guigues  Proper  Non-transitive Structural
basis basis basis basis
T1014D100K - 100.00% 20.05% 5.49%
MUSHROOMS 0.92% 6.90% 2.69% 1.19%
C20D10K 0.48% 11.21% 2.33% 0.63%
C73D10K 0.03% 1.55% 0.21% 0.05%

Table 16: Average Relative Size of Bases.

information. Moreover, its size is significantly reduced compared with the set of all possible rules because
redundant, and thus useless, rules are discarded. Our approach has a twofold advantage: on one hand,
the user is provided with a smaller set of resulting rules, easier to handle, and vehiculing information
of improved quality. On the other hand, execution times are reduced compared with the discovering of
all association rules. Such results are proved (in the groundwork of lattice theory) and illustrated by
experiments, achieved from real-life datasets.

Integrating reduction methods Templates, as defined in [3, 16], can directly be used for extracting
from the bases all association rules matching some user specified patterns. Information in taxonomies
associated with the dataset can also be integrated in the process as proposed in [14, 28] for extracting
bases for generalized (multi-level) association rules. Integrating item constraints and statistical measures,
such as described in [5, 22, 29] and [7, 25] respectively, in the generation of bases requires further work.

Functional and approximate dependencies Algorithms presented in this paper can be adapted
to generate bases for functional and approximate dependencies. In [15, 20], such bases and algorithms
for generating them were proposed. However, the Duquenne-Guigues basis is smaller than the basis for
functional dependencies constituted of minimal non-trivial functional dependencies. Hence, the number
of rules in the Duquenne-Guigues basis is minimal; moreover these rules have minimal antecedent and
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Figure 6: Execution Times of the Association Rule Derivation.

maximal consequent [10, 13]. Furthermore, the proper and structural bases for approximate rules are
also smaller than the basis for approximate dependencies defined in [15]. Adapting our algorithms to the
discovery of functional and approximate dependencies is an ongoing research.

Acknowledgements

The authors would like to gratefully acknowledge Rosine Cicchetti and Mohand-Said Hacid for their
constructive comments.

References

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large
databases. Proc. of the ACM SIGMOD Conference, pages 207-216, May 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. Proc. of the 20th VLDB
Conference, pages 478-499, June 1994. Expanded version in IBM Research Report RJ9839.

[3] E. Baralis and G. Psaila. Designing templates for mining association rules. Journal of Intelligent
Information Systems, 9(1):7-32, July 1997.

[4] R. J. Bayardo. Efficiently mining long patterns from databases. Proc. of the ACM SIGMOD Con-
ference, pages 85-93, June 1998.

[5] R. J. Bayardo, R. Agrawal, and D. Gunopulos. Constraint-based rule mining in large, dense
databases. Proc. of the 15th ICDE Conference, pages 188—197, March 1999.



[6] G. Birkhoff. Lattices theory. In Colloguium Publications XXV. American Mathematical Society,
1967. Third edition.

[7] S. Brin, R. Motwani, and C. Silverstein. Beyond market baskets: Generalizing association rules to
correlation. Proc. of the ACM SIGMOD Conference, pages 265-276, May 1997.

[8] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules
for market basket data. Proc. of the ACM SIGMOD Conference, pages 255-264, May 1997.

[9] P. Burmeister. Formal concept analysis with CONIMP: Introduction to the basic features. Technical
report, Technische Hochschule Darmstadt, Germany, 1998.

[10] J. Demetrovics, L. Libkin, and I. B. Muchnik. Functional dependencies in relational databases: A
lattice point of view. Discrete Applied Mathematics, 40:155-185, 1992.

[11] V. Duquenne and J.-L. Guigues. Famille minimale d’implication informatives résultant d’un tableau
de données binaires. Mathématiques et Sciences Humaines, 24(95):5-18, 1986.

[12] B. Ganter and K. Reuter. Finding all closed sets: A general approach. In Order, pages 283-290.
Kluwer Academic Publishers, 1991.

[13] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations. Springer, 1998.

[14] J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. Proc. of the
21st VLDB Conference, pages 420—431, September 1995.

[15] Y. Huhtala, J. Kdrkkénen, P. Porkka, and H. Toivonen. Efficient discovery of functional and approx-
imate dependencies using partitions. Proc. of the 14th ICDE Conference, pages 392-401, Febuary
1998.

[16] M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting
rules from large sets of discovered association rules. Proc. of the 3rd CIKM Conference, pages
401-407, November 1994.

[17] D. Lin and Z. M. Kedem. Pincer-search: A new algorithm for discovering the maximum frequent
set. Proc. of the 6th EDBT Conference, pages 105-119, March 1998.

[18] B. Liu, W. Hsu, and S. Chen. Using general impressions to analyse discovered classification rules.
Proc. of the 8rd KDD Conference, pages 31-36, August 1997.

[19] M. Luxenburger. Implications partielles dans un contexte. Mathématiques, Informatique et Sciences
Humaines, 29(113):35-55, 1991.

[20] H. Mannila and K. J. Riihd. Algorithms for inferring functional dependencies from relations. Data
& Knowledge Engineering, 12(1):83-99, Febuary 1994.

[21] R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association rules. Proc. of the
22nd VLDB Conference, pages 122-133, September 1996.

[22] R. T. Ng, V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning optimizations
of constrained association rules. Proc. of the ACM SIGMOD Conference, pages 13-24, June 1998.

[23] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association
rules. Proc. of the 7Tth ICDT Conference, pages 398416, January 1999.

[24] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association rules using closed
itemset lattices. Information Systems, 24(1):25-46, 1999.

[25] G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. Knowledge Discovery in
Databases, pages 229-248, 1991.



[26]

[27]

[28]

[29]

[30]

31]

[32]

[33]

A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in
larges databases. Proc. of the 21st VLDB Conference, pages 432-444, September 1995.

A. Silberschatz and A. Tuzhilin. What makes patterns interesting in knowledge discovery systems.
IEEFE Transactions on Knowledge and Data Engineering, 8(6):970-974, December 1996.

R. Srikant and R. Agrawal. Mining generalized association rules. Proc. of the 21st VLDB Conference,
pages 407419, September 1995.

R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints. Proc. of the 3rd
KDD Conference, pages 67-73, August 1997.

H. Toivonen. Sampling large databases for association rules. Proc. of the 22nd VLDB Conference,
pages 134-145, September 1996.

R. Wille. Concept lattices and conceptual knowledge systems. Computers and Mathematics with
Applications, 23:493-515, 1992.

M. J. Zaki and M. Ogihara. Theoretical foundations of association rules. 3rd SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery, June 1998.

M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast discovery of association
rules. Proc. of the 3rd KDD Conference, pages 283-286, August 1997.



