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FREE COOLING AND HIGH-ENERGY TAILS OF GRANULAR GASES
WITH VARIABLE RESTITUTION COEFFICIENT

RICARDO J. ALONSO & BERTRAND LODS

ABSTRACT. We prove the so-called generalized Haff’s law yielding theoptimal alge-
braic cooling rate of the temperature of a granular gas described by the homogeneous
Boltzmann equation for inelastic interactions with non constant restitution coefficient.
Our analysis is carried through a careful study of the infinite system of moments of the
solution to the Boltzmann equation for granular gases and preciseLp estimates in the self-
similar variables. In the process, we generalize several results on the Boltzmann collision
operator obtained recently for homogeneous granular gaseswith constant restitution co-
efficient to a broader class of physical restitution coefficients that depend on the collision
impact velocity. This generalization leads to the so-called L1-exponential tails theorem
for this model.

1. INTRODUCTION

1.1. General setting. Rapid granular flows can be successfully described by the Boltz-
mann equation conveniently modified to account for the energy dissipation due to the
inelasticity of collisions. For such a description, one usually considers the collective dy-
namics of inelastic hard-spheres interacting through binary collisions [10, 22, 24]. The
loss of mechanical energy due to collisions is characterized by the so-called normal resti-
tution coefficient which quantifies the loss of relative normal velocity of a pair of colliding
particles after the collision with respect to the impact velocity. Namely, ifv andv⋆ denote
the velocities of two particles before they collide, their respective velocitiesv′ andv′⋆ after
collisions are such that

(u′ · n̂) = −(u · n̂) e, (1.1)

where the restitution coefficiente is such that0 6 e 6 1 and n̂ ∈ S2 determines the
impact direction, i.e.̂n stands for the unit vector that points from thev-particle center to
thev⋆-particle center at the instant of impact. Here above

u = v − v⋆, u′ = v′ − v′⋆,

denote respectively the relative velocity before and aftercollision. The major part of the
investigation, at the physical as well as the mathematical levels, has been devoted to the
particular case of a constant normal restitution. However,as described in the monograph
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2 RICARDO J. ALONSO & BERTRAND LODS

[10], it appears that a more relevant description of granular gases should deal with a
variable restitution coefficiente(·) depending on the impact velocity, i.e.

e := e(|u · n̂|).
The most common model is the one corresponding to visco-elastic hard-spheres for which
the restitution coefficient has been derived by Schwager andPöschel in [22]. For this
peculiar model,e(·) admits the following representation as an infinite expansion series:

e(|u · n̂|) = 1 +
∞∑

k=1

(−1)kak|u · n̂|k/5, u ∈ R
3, n̂ ∈ S

2 (1.2)

whereak > 0 for anyk ∈ N.We refer the reader to [10, 22] for the physical considerations
leading to the above expression (see also the Appendix A for several properties ofe(·) in
the case of visco-elastic hard-spheres). This is the principal example we have in mind for
most of the results in the paper, though, as we shall see, our approach will cover more
general cases including the one of constant restitution coefficient.

In a kinetic framework, behavior of the granular flows is described, in the spatially situ-
ation we shall consider here, by the so-called velocity distributionf(v, t)which represents
the probability density of particles with velocityv ∈ R3 at timet > 0. The time-evolution
of the one-particle distribution functionf(t, v), v ∈ R

3, t > 0 satisfies the following

∂tf(t, v) = Qe(f, f)(t, v), f(t = 0, v) = f0(v) (1.3)

whereQe(f, f) is the inelastic Boltzmann collision operator, expressingthe effect of bi-
nary collisions of particles. The collision operatorQe shares a common structure with the
classical Boltzmann operator for elastic collision [13, 23] but is conveniently modified in
order to take into account the inelastic character of the collision mechanism. In particular,
Qe depends in a very strong and explicit way on the restitution coefficiente. Of course,
for e ≡ 1, one recovers the classical Boltzmann operator. We postpone to Section2.1the
precise expression ofQe. Due to the dissipation of kinetic energy during collisions, in the
absence of external forces, the granular temperature

E(t) =
∫

R3

f(t, v)|v|2 dv

is continuously decreasing and is expected to go to zero as time goes to infinity, expressing
thecooling of the granular gases.

Determining the precise rate of decay to zero for the granular temperature is the main
goal of the present work. The asymptotic behavior for the granular temperature was
first explained in [15] by P. K. Haff at the beginning of the 80’s for the case of constant
restitution coefficient, thus, it has become standard to refer to this behavior simply as
Haff ’s law.

The mathematical study of Boltzmann models for granular flows was first restricted to
the so-called inelastic Maxwell molecules where the collision rate is independent of the
relative velocity [5, 6, 8, 11, 12]. Later, the mathematical investigation of hard-spheres
interactions was initiated in [14] for diffusively heated gases and continued in a series
of papers [17, 18] where the first rigorous proof of the Haff’s law was presented in the
case of constant restitution coefficient. Additional relevant work in the existence and
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stability of the homogeneous cooling state can be found in [19, 20]. We refer to [24]
for a mathematical overview of the relevant questions addressed by the kinetic theory of
granular gases and complete bibliography on the topic.

From the mathematical viewpoint the literature on granulargases withvariable resti-
tution coefficientis rather limited. However, the Cauchy problem for the homogeneous
inelastic Boltzmann equation has been studied in great detail and full generality in [17],
including the class of restitution coefficients that we are dealing with in this paper. For
the inhomogeneous inelastic Boltzmann equation the literature is yet more scarce, in this
respect we mention the work by one of the authors [1] that treats the Cauchy problem
in the case of near-vacuum data. It is worthwhile mentioningthat the scarcity of results
regarding existence of solutions for the inhomogeneous case is explained by the lack of
entropy estimates for the inelastic Boltzmann equation, thus, well known theories like the
DiPerna-Lionsrenormalized solutionsare no longer available. More complex behavior
that involve boundaries, for instance clusters and Maxwelldemons, a re well beyond of
the present techniques.

1.2. Main results and methodology. Physical considerations and careful dimensional
analysis led P. K. Haff [15] to predict that, forconstant restitution coefficient, the temper-
atureE(t) of a granular gas should cool down at a quadratic rate:

E(t) = O
(
t−2
)

ast→ ∞.

Similar considerations led Schwager and Pöschel [22] to conclude that, for the restitution
coefficient associated to the visco-elastic hard-spheres (1.2), the decay should be slower
than the one predicted by Haff, namely at an algebraic rate proportional tot−5/3. These
considerations are precisely described in the main result of this paper where the key in-
tuitive fact is that the decay rate ofE(t) is completely determined by the behavior of the
restitution coefficiente(|u · n̂|) for small impact velocity (Assumption(1) in 3.1). Pre-
cisely, our result is valid for restitution coefficient suchthat there exist some constants
α > 0 andγ > 0 such that

e(|u · n̂|) ≃ 1− α|u · n̂|γ for |u · n̂| ≃ 0

and reads as follows:

Theorem 1.1. For any initial distribution velocityf0 > 0 satisfying the conditions given
by (2.8) with f0 ∈ Lp0(R3) for some1 < p0 < ∞, the solutionf(t, v) to the associ-
ated Boltzmann equation(2.7) satisfies the generalized Haff ’s law for variable restitution
coefficiente(·) fulfilling Assumptions3.1and4.9:

c(1 + t)−
2

1+γ 6 E(t) 6 C(1 + t)−
2

1+γ , t > 0 (1.4)

whereE(t) =
∫
R3 f(t, v)|v|2 dv and c, C are positive constants depending only one(·)

andE(0).
We recover with Theorem1.1 the optimal decay for constant restitution coefficient

(γ = 0) given in [19] and the one predicted for viscoelastic hard-spheres (γ = 1/5) in
[22]. The method of the proof has similarities to that of the constant restitution coefficient
[19] but technically more challenging.
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The main tools to prove Theorem1.1are the following:

• The study of the moments of solutions to the Boltzmann equation using a generaliza-
tion of the Povzner’s lemma developed in [9].

• PreciseLp estimates, in the same spirit of [19], of the solution to the Boltzmann equa-
tion for p > 1.

• For the previous item, the analysis is understood in an easiest way usingrescaled solu-
tionsto (1.3) of the form

f(t, v) = V (t)3g(τ(t), V (t)v)

whereτ(·) andV (·) are fixed time-scaling functions to be crafted depending upon
the restitution coefficient. In theself-similar variables(τ, w) the functiong(τ, w) is a
solution of an evolution problem of the type

∂τg(τ, w) + ξ(τ)∇w · (wg(τ, w)) = Qẽ(τ)(g, g) (1.5)

for someξ(τ) depending on the time scaleτ . The collision operatorQẽ(τ)(g, g) is as-
sociated to a time-dependent restitution coefficientẽ(τ) (see Section2.3for details). In
this respect we notice that one notable difference with respect to the case of a constant
restitution coefficient treated in [19] is that the rescaled collision operator depends on
the (rescaled) timeτ , leading to anon-autonomous problemfor g. This is the main
reason why the construction of self-similar profileg independent ofτ obtained in [19]
(Homogeneous Cooling State) is not valid for non constant restitution coefficient.

Let us explain in more details our method of proof:

1. We start proving in Sections 2 and 3 an upper bound for the decay of the energy. This
shows that, for restitution coefficients satisfying3.1, the cooling of the temperature
is at least algebraic. More precisely, under suitable assumptions on the restitution
coefficiente(·), we exhibit a convex and increasing mappingΨe such that

d

dt
E(t) 6 −Ψe(E(t)) ∀t > 0,

which leads to an upper bound forE(t) of the type

E(t) 6 C(1 + t)−
2

1+γ ∀t > 0

for some positive constantC > 0.
2. The lower bound for the free cooling is much more intricateto establish and consists

in proving that the cooling rate found above is optimal, i.e., there existsc > 0 such
that

E(t) > c(1 + t)−
2

1+γ ∀t > 0. (1.6)

A careful study of the moments of the solution to (1.3) shows that it suffices to prove
a similar algebraic lower bound with some arbitrary rate, i.e. (1.6) will hold if there
existsλ > 0 andc > 0 such that

E(t) > c(1 + t)−λ ∀t > 0.

These two points are proved in the last part of Section 3.
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3. To prove that the lower bound with some unprescribed rateλ holds we use, as in
[19], preciseLp estimates (p > 1) for solutions to (1.3) in self-similar variables. We
craft a correct time scaling functionsτ(t) andV (t) such that (1.6) is equivalent to
Θ(τ(t)) > c (hereΘ(·) denotes the second moment ofg). Once this scale is fixed,
the functiong(τ, w) satisfies the rescaled Boltzmann equation (1.5) with ξ(τ) → 0
asτ → ∞. This is a major difference with the constant restitution coefficient case
whereξ(τ) ≡ 1. This technical difficulty is overcome proving that theLp-norms of
g(τ) behaves at most polynomially with respect toτ . For technical reasons which are
peculiar to the inelastic interactions, noticed in [3], we will restrict ourself to study
Lp-norms in the rangep ∈ [1, 3). The details can b e found in Section 5.

The derivation of preciseLp estimates for the solutiong(τ, w) to (1.5) requires a careful
study of the collision operatorQe and its regularity properties. We present in Section
4 a full discussion of the regularity and integrability properties of the gain part of the
collision operatorQ+

B,e associated to a general collision kernelB(u, σ) = Φ(|u|)b(û · σ)
satisfying Grad’s cut-off assumption (see Section 2 for definition). This Section is divided
in five subsections starting with the Carleman representation of the gain operatorQ+

B,e.
It is well-known [16, 21, 25, 18] that such a representation is essential for the study of
regularizing properties of the gain operatorQ+

B,e when smooth assumptions are imposed
on the kernelB(u, σ). Our contribution in Sections 4.3 and 4.4 is to extend the existent
theory to the inelastic case with variable restitution coefficient. Since the estimates of
Section 4 will be applied for solutions written in self-similar variables, we make sure that
such estimates areindependentof the restitution coefficient. This allows us to overcome
the technical problem of the time dependence of the gain operator in the self-similar
variables. Additional convolution-like inequalities [3, 21] are derived in subsection 4.2
assuming minimal regularity of the angular kernelb(·).

The final part of this work is devoted to the proof of propagation of exponentialL1-tails
where the full power of the Povzner’s lemma is exploited. Much of the argument with a
minor adaptation is taken from [9]. This important result is presented in the final Section
for convenience and not because the machinery of Sections 4 and 5 is needed to prove it.

Theorem 1.2(L1-exponential tails Theorem). LetB(u, σ) = |u|b(û ·σ) be the collision
kernel withb(·) satisfying(2.6) and b(·) ∈ Lq(S2) for someq > 1. Assume that the
variable restitution coefficiente(·) satisfies Assumptions3.1. Furthermore, assume that
f0 satisfies(2.8), and that there existsr0 > 0 such that

∫

R3

f0(v) exp (r0|v|) dv <∞.

Then, there exists somer 6 r0 such that

sup
t>0

∫

R3

f(t, v) exp (rV (t)|v|) dw <∞. (1.7)

The functionV (t) is the appropriate scaling, depending solely on the restitution coeffi-
cient, given in(3.16).
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1.3. Notations. Let us introduce the notations we shall use in the sequel. Throughout the
paper we shall use the notation〈·〉 =

√
1 + | · |2. We denote, for anyη ∈ R, the Banach

space

L1
η =

{
f : R3 → R measurable; ‖f‖L1

η
:=

∫

R3

|f(v)| 〈v〉η dv < +∞
}
.

More generally we define the weighted Lebesgue spaceLp
η(R

3) (p ∈ [1,+∞), η ∈ R)
by the norm

‖f‖Lp
η(R3) =

[∫

R3

|f(v)|p 〈v〉pη dv
]1/p

1 6 p <∞

while ‖f‖L∞
η (R3) = ess− supv∈R3 |f(v)|〈v〉η for p = ∞.

For anyk ∈ N, we denote byHk = Hk(R3) the usual Sobolev space defined by the
norm

‖f‖Hk =


∑

|j|6k

‖∂jvf‖pL2



1/p

where∂jv denotes the partial derivative associated with the multi-indexj ∈ NN . Moreover
this definition can be extended toHs for anys > 0 by using the Fourier transformF . The
binomial coefficients for non-integerp > 0 andk ∈ N are defined as

(
p
k

)
=
p(p− 1) . . . (p− k + 1)

k!
k > 1,

(
p
0

)
= 1.

2. PRELIMINARIES

2.1. The kinetic model. We assume the granular particles to be perfectly smooth hard-
spheres of massm = 1 performing inelastic collisions. Recall that, as explained in the
Introduction, the inelasticity of the collision mechanismis characterized by a single pa-
rameter, namely the coefficient of normal restitution0 6 e 6 1 which we assume to be
non constant. More precisely, let(v, v⋆) denote the velocities of two particles before they
collide. Their respective velocities after collisionsv′ andv′⋆ are given, in virtue of (1.1)
and the conservation of momentum, by

v′ = v − 1 + e

2
(u · n̂)n̂, v′⋆ = v⋆ +

1 + e

2
(u · n̂)n̂, (2.1)

where the symbolu stands for the relative velocityu = v − v⋆ and n̂ is the impact
direction. From the physical viewpoint, a common approximation consists in choosinge
as a suitable function of the impact velocity, i.e.e := e(|u · n̂|). The main assumptions
on the functione(·) are listed in the following (see [1]):

Assumptions 2.1.Assume the following hold:

(1) The mappingr ∈ R+ 7→ e(r) ∈ (0, 1] is absolutely continuous.
(2) The mappingr ∈ R+ → ϑ(r) := r e(r) is strictly increasing.
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FIGURE 1. Restitution coefficient for viscoelastic hard-spheres given by
Eq. (2.3) with a = 0.12.

Further assumptions on the functione(·) shall be needed later on. Given assumption
(2), the Jacobian of the transformation (2.1) can be computed as

J :=

∣∣∣∣
∂(v′, v′⋆)

∂(v, v⋆)

∣∣∣∣ = |u · n̂|+ |u · n̂| de
dr

(|u · n̂|) = dϑ

dr
(|u · n̂|) > 0.

In practical situations, the restitution coefficiente(·) is usually chosen among the follow-
ing three examples:

Example 2.2(Constant restitution coefficient). The most documented example in the
literature is the one in which

e(r) = e0 ∈ (0, 1] for anyr > 0.

Example 2.3(Monotone decreasing). A second example of interest is the one in which
the restitution coefficiente(·) is a monotone decreasing function:

e(r) =
1

1 + arη
∀r > 0 (2.2)

wherea > 0, η > 0 are two given constants.

Example 2.4 (Viscoelastic hard-spheres). This is the most physically relevant model
treated in this work. For such a model, the properties of the restitution coefficient have
been derived in[10, 22] where representation(1.2) is given. It also accepts the implicit
representation

e(r) + ar1/5e(r)3/5 = 1 (2.3)

wherea > 0 is a suitable positive constant depending on the material viscosity (see Figure
1).
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In the sequel, it shall be more convenient to use the following equivalent parametriza-
tion of the post-collisional velocities. For distinct velocitiesv andv⋆, let û = u

|u| be the
relative velocity unit vector. The change of variables

σ = û− 2 (û · n̂)n̂ ∈ S
2

provides an alternative parametrization of the unit sphereS
2 for which the impact velocity

reads

|u · n̂| = |u| |û · n̂| = |u|
√

1− û · σ
2

.

Then, the post-collisional velocities(v′, v′⋆) given in (2.1) are transformed to

v′ = v − β
u− |u|σ

2
, v′⋆ = v⋆ + β

u − |u|σ
2

(2.4)

where

β = β

(
|u|
√

1−û·σ
2

)
=

1 + e

2
∈
(
1
2
, 1
]
.

In this representation, theweak formulationof the Boltzmann collision operatorQB,e

given a collision kernelB(u, σ) reads
∫

R3

QB,e(f, g)(v)ψ(v) dv =
1

2

∫

R3×R3

f(v)g(v⋆)AB,e[ψ](v, v⋆) dv⋆ dv (2.5)

for any suitable test functionψ = ψ(v). Here

AB,e[ψ](v, v⋆) =

∫

S2

(
ψ(v′) + ψ(v′⋆)− ψ(v)− ψ(v⋆)

)
B(u, σ) dσ

with v′, v′⋆ defined in (2.4). We assume that the collision kernelB(u, σ) takes the form

B(u, σ) = Φ(|u|)b(û · σ)

whereΦ(·) is a suitable nonnegative function known aspotential, while theangular kernel
b(·) is usually assumed belonging toL1(−1, 1). For any fixed vector̂u, the angular kernel
defines a measure on the sphere through the mappingσ ∈ S2 7→ b(û · σ) ∈ [0,∞] that we
assume to satisfy the renormalizedGrad’s cut-offhypothesis

‖b‖L1(S2) = 2π ‖b‖L1(−1,1) = 1. (2.6)

The most relevant model in our case is hard-spheres which correspond toΦ(|u|) = |u| and
b(û · σ) = 1

4π
. We shall consider thegeneralized hard-spheres collision kernel for which

Φ(|u|) = |u| and the angular kernel is non necessarily constant but satisfying (2.6). For
the particular model of hard-spheres interactions, we simply denote the collision operator
QB,e by Qe.



HAFF’S LAW FOR VISCOESLASTIC HARD SPHERES 9

2.2. On the Cauchy problem. We consider the following homogeneous Boltzmann equa-
tion {

∂tf(t, v) = QB,e(f, f)(t, v) t > 0, v ∈ R3

f(0, v) = f0(v), v ∈ R3
(2.7)

where the initial datumf0 is anonnegativevelocity function such that
∫

R3

f0(v) dv = 1,

∫

R3

f0(v)v dv = 0 and
∫

R3

f0(v)|v|3 dv <∞. (2.8)

There is no loss of generality in assuming the two first moments conditions in (2.8) due to
scaling and translational arguments. We say that a nonnegative f = f(t, v) is a solution
to (2.8) if f ∈ C([0,∞), L1

2(R
3)) and

∫ ∞

0

dt

∫

R3

(
f(t, v)∂tψ(t, v) +QB,e(f, f)(t, v)ψ(t, v)

)
dv =

∫

R3

f0(v)ψ(0, v) dv

holds for any compactly supportedψ ∈ C1([0,∞)×R3). Under the Assumptions2.1, the
assumptionsH1 andH2 of [18] are fulfilled (with the terminology of [18], we are deal-
ing with a non-coupled collision rate and, more precisely, with the so-calledgeneralized
visco-elastic model, see [18], p. 661). In particular, [18, Theorem 1.2] applies direclty
and allows us to state:

Theorem 2.5(Mischler et al.). For any nonnegative velocity functionf0 satisfying(2.8),
there is a unique solutionf = f(t, v) to (2.7). Moreover,

∫

R3

f(t, v) dv = 1,

∫

R3

f(t, v)v dv = 0 ∀t > 0. (2.9)

2.3. Self-similar variables. Let us discuss precisely the rescaling using self-similar vari-
ables. Letf(t, v) be the solution to (2.7) associated to some initial datumf0 satisfying
(2.8) and collision kernel

B(u, σ) = Φ(|u|)b(û · σ)
with b(·) satisfying (2.6). The rescaled solutiong = g(τ, w) is defined such that

f(t, v) = V (t)3g(τ(t), V (t)v) (2.10)

whereτ(·) andV (·) are time-scaling functions to be determined solely on the behavior
of the restitution coefficient in the low impact velocity region. Since these are scaling
functions they are increasing and satisfyτ(0) = 0 andV (0) = 1. One has

1 =

∫

R3

f(t, v) dv =

∫

R3

g(τ(t), w) dw ∀t > 0

andg(0, w) = f0(w). Furthermore, some elementary calculations show that the function
g(τ, w) satisfies

V (t)−2Qe(f, f)(t, v) = τ̇(t)V (t)∂τg(τ, w) + V̇ (t)∇w · (wg(τ, w))
∣∣∣∣
w=V (t)v
τ=τ(t)

(2.11)
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where the dot symbol denotes the derivative with respect tot. Moreover, the expression
of the collision operator in the self-similar variables is

V (t)−2QB,e(f, f)

(
t,

v

V (t)

)
= QBτ ,ẽτ (g, g)(τ(t), v)

where the rescaled collision kernelBτ is given by

Bτ(t)(u, σ) := V (t)Φ

( |u|
V (t)

)
b(û · σ).

The rescaled restitution coefficientẽτ has been defined by

ẽτ : (r, t) 7−→ ẽτ(t)(r) := e

(
r

V (t)

)
for r > 0, t > 0.

Since the mappingt ∈ R+ 7−→ τ(t) ∈ R+ is injective with inverseζ , one can rewrite
equation (2.11) in terms ofτ only. Thus,g(τ, w) is a solution to the following rescaled
Boltzmann equation:

λ(τ)∂τg(τ, w) + ξ(τ)∇w · (wg(τ, w)) = QBτ ,ẽτ (g, g)(τ, w) ∀τ > 0 (2.12)

with
λ(·) = τ̇(ζ(·))V (ζ(·)) and ξ(·) = V̇ (ζ(·)),

and model parameters

Bτ (u, σ) = V (ζ(τ))Φ

( |u|
V (ζ(τ))

)
b(û · σ) and ẽτ (r) = e

(
r

V (ζ(τ))

)
. (2.13)

Notice that, for generalized hard-spheres interactions (i.e. wheneverΦ(|u|) = |u|) one
hasBτ = B. For true hard-spheres interactions, i.e.b(·) = 1

4π
, one simply denotes the

rescaled collision operator byQẽτ . In addition, observe that the rescaled operator depends
on time, and therefore,g is a solution to a non-autonomous problem.

2.4. Povzner-type inequalities.We extend in this section the results of [9] and [19] to
the case of variable restitution coefficient satisfying2.1. We consider a collision kernel of
the form

B(u, σ) = Φ(|u|)b(û · σ),
with angular kernelb(·) satisfying the renormalized Grad’s cut-off assumption (2.6). Let
f be anonnegativefunction satisfying (2.9) andψ(v) = Ψ(|v|2) be a given test-function
with Ψ nondecreasing and convex. Then, Eq. (2.5) leads to

∫

R3

QB,e(f, f)(v)ψ(v) dv =
1

2

∫

R3×R3

f(v)f(v⋆)AB,e[ψ](v, v⋆) dv⋆ dv

with
AB,e[ψ](v, v⋆) = Φ(|u|)

(
A+

B,e[Ψ](v, v⋆)−A−
B,e[Ψ](v, v⋆)

)

where

A+
B,e[Ψ](v, v⋆) =

∫

S2

(
Ψ(|v′|2) + Ψ(|v′⋆|2)

)
b(û · σ) dσ.
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Using (2.6) we also have,

A−
B,e[Ψ](v, v⋆) =

∫

S2

(ψ(v) + ψ(v⋆)) b(û · σ) dσ =
(
Ψ(|v|2) + Ψ(|v⋆|2)

)
.

Following [9], we define the velocity of the center of massU =
v + v⋆

2
so that

v′ = U +
|u|
2
ω, v′⋆ = U − |u|

2
ω with ω = (1− β)û+ βσ.

Recall that for any vectorx ∈ R3, we set̂x = x
|x| . Whene, or equivalentlyβ, is constant,

the strategy of [9] consists, roughly speaking, in performing a suitable change of unknown
σ → ω̂ to carefully estimateA+

B,e[ψ]. For variableβ, such strategy does not apply directly.
Instead, observe that|ω| 6 1 and, sinceΨ is increasing, one has

Ψ(|v′|2) + Ψ(|v′⋆|2) 6 Ψ

(
|U |2 + |u|2

4
+ |u||U |Û · ω

)
+Ψ

(
|U |2 + |u|2

4
− |u||U |Û · ω

)

= Ψ

(
E
1 + ξ Û · ω

2

)
+Ψ

(
E
1− ξ Û · ω

2

)

where we have setE := |v|2 + |v⋆|2 = 2|U |2 + |u|2
2

andξ = 2 |U | |u|
E

. SinceΨ(·) is convex
the mapping

Ψ0(t) = Ψ(x+ ty) + Ψ(x− ty)

is even and nondecreasing fort > 0 andx, y ∈ R (see [9]). Therefore, using thatξ 6 1
one gets

Ψ(|v′|2) + Ψ(|v′⋆|2) 6 Ψ

(
E
1 + Û · ω

2

)
+Ψ

(
E
1− Û · ω

2

)
. (2.14)

In the case that̂U · σ > 0 it follows that
∣∣∣Û · ω

∣∣∣ =
∣∣∣(1− β)Û · û+ βÛ · σ

∣∣∣ 6 (1− β) + βÛ · σ,

thus, using the fact thatΨ0(t) is even and nondecreasing fort > 0, we conclude from
(2.14) that

Ψ(|v′|2) + Ψ(|v′⋆|2) 6 Ψ

(
E
2− β + βÛ · σ

2

)
+Ψ

(
E
β − βÛ · σ

2

)
.

WhenÛ · σ 6 0 a similar argument shows that

Ψ(|v′|2) + Ψ(|v′⋆|2) 6 Ψ

(
E
2− β − βÛ · σ

2

)
+Ψ

(
E
β + βÛ · σ

2

)
.



12 RICARDO J. ALONSO & BERTRAND LODS

Hence, setting̃b(s) = b(s) + b(−s) and using these last two estimates with the change of
variablesσ → −σ we get

A+
B,e[Ψ](v, v⋆) 6

∫

{Û ·σ>0}

[
Ψ

(
E
2− β + βÛ · σ

2

)
+ Ψ

(
E
β − βÛ · σ

2

)]
b̃(û · σ) dσ

6

∫

{Û ·σ>0}

[
Ψ

(
E
3 + Û · σ

4

)
+Ψ

(
E
1− Û · σ

4

)]
b̃(û · σ) dσ,

(2.15)

where the second inequality can be shown writing

2− β + βÛ · σ
2

=
1

2
+

(
1

2
− β

2

(
1− Û · σ

))
and,

β − βÛ · σ
2

=
1

2
−
(
1

2
− β

2

(
1− Û · σ

))
.

The term in parenthesis is maximized whenβ = 1/2, thus the monotonicity ofΨ0 implies
the result.

Next, we particularize the previous estimates to the important caseΨ(x) = xp. This
choice will lead to the study of the moments of solutions.

Lemma 2.6. Let q > 1 be such thatb ∈ Lq(S2). Then, for any restitution coefficiente(·)
satisfying Assumptions2.1 and any realp > 1, there exists an explicit constantκp > 0
such that

Φ(|u|)−1AB,e[| · |p](v, v⋆) 6 −(1− κp)
(
|v|2p + |v⋆|2p

)

+ κp
[(
|v|2 + |v⋆|2

)p − |v|2p − |v⋆|2p
]
. (2.16)

This constantκp has the following properties:

(1) κ1 6 1.
(2) For p > 1 the mapp 7→ κp is strictly decreasing. In particular,κp < 1 for p > 1.
(3) κp = O

(
1/p1/q

′)
for largep, where1/q + 1/q′ = 1.

(4) For q = 1, one still hasκp ց 0 asp→ ∞.

Proof. Let Ψp(x) = xp. From (2.15), one sees that

A+
B,e[Ψp](v, v⋆) 6 κp E

p

where we recall thatE = |v|2 + |v⋆|2 and we set

κp = sup
Û,û

∫

Û ·σ>0

[
Ψp

(
3 + Û · σ

4

)
+Ψp

(
1− Û · σ

4

)]
b̃(û · σ) dσ. (2.17)

It is clear that the above inequality yields (2.16). Let us prove thatκp satisfies the afore-
mentioned conditions. First, we use Hölder inequality to obtain

κp 6 4π ‖b‖Lq(S2)

(∫ 1

−1

[
Ψp

(
3 + s

4

)
+Ψp

(
1− s

4

)]q′
ds

)1/q′

<
16π ‖b‖Lq(S2)

(q′p+ 1)1/q′
.
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This proves thatκp is finite and also yields item (3) forq > 1. For items (1) and (2)
observe that the integral in the right-hand-side (2.15) is continuous in the vectorŝU, û ∈
S2. This can be shown by changing the integral to polar coordinates. Thus, the supremum
in these arguments is achieved. Therefore, there existÛ0, û0 ∈ S2 (depending on the
angular kernelb) such that

κp =

∫

{Û0·σ>0}

[
Ψp

(
3 + Û0 · σ

4

)
+Ψp

(
1− Û0 · σ

4

)]
b̃(û0 · σ) dσ.

A simple computation with this estimate shows thatκ1 = ‖b‖L1(S2) = 1. Moreover, the
integrand is a.e. strictly decreasing asp increases and this proves (2). Finally, letp→ ∞
in this expression and use Dominated convergence to conclude (4) for the caseq = 1. �

The above lemma is the analogous of [9, Corollary 1] for variable restitution coefficient
e(·) and it proves that the subsequent results of [9] extend readily to variable restitution
coefficient. In particular, [9, Lemma 3] reads1:

Proposition 2.7. Letf be a nonnegative function satisfying(2.9). For anyp > 1, we set

mp =

∫

R3

f(v)|v|2p dv.

Assume that the collision kernelB(u, σ) = |u|b(û · σ) is such thatb(·) satisfies(2.6) with
b(·) ∈ Lq(S2) for someq > 1. For any restitution coefficiente(·) satisfying Assumptions
2.1and any realp > 1, one has

∫

R3

QB,e(f, f)(v)|v|2p dv 6 −(1 − κp)mp+1/2 + κp Sp, (2.18)

where,

Sp =

[ p+1
2

]∑

k=1

(
p
k

)(
mk+1/2 mp−k +mk mp−k+1/2

)
,

[p+1
2
] denoting the integer part ofp+1

2
andκp being the constant of Lemma2.6.

Inequality (2.18) was introduced in [9] because the termSp involves only moments of
orderp− 1/2. Thus, the above estimate has important consequences on thepropagation
of moments for the solution to (2.7) (see Section3 for more discussion).

3. FREE COOLING OF GRANULAR GASES: GENERALIZED HAFF’ S LAW

We investigate in this section the so-called generalizedHaff ’s law for granular gases
with variable restitution coefficient. More precisely, we aim to derive the exact rate of
decay of the temperatureE(t) of the solution to Eq. (2.7). In this section, weexclusively
study the generalized hard-spheres collision kernel.

B(u, σ) = |u|b(û · σ)
1Notice that, though stated for hard-spheres interactions only, [9, Lemma 3] applies to our situation

thanks to the above Lemma2.6and [9, Lemma 1].
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whereb(·) satisfies (2.6) but generalization to the so-called variable hard-spheres interac-
tions (i.e. Φ(|u|) = |u|s for s > 0) is easy to handle. Letf0 be a nonnegative velocity
distribution satisfying (2.8) and letf(t, v) be the associated solution to the Cauchy prob-
lem (2.7). We denote its temperature byE(t),

E(t) =
∫

R3

f(t, v)|v|2 dv.

The conditions (2.8) implies thatsupt>0 E(t) < ∞. Indeed, the evolution ofE(t) is gov-
erned by

d

dt
E(t) =

∫

R3

QB,e(f, f)(t, v)|v|2 dv =
1

2

∫

R3×R3

f(t, v)f(t, v⋆)|u|×

×
∫

S2

(
|v′|2 + |v′⋆|2 − |v|2 − |v⋆|2

)
b(û · σ) dσ dv⋆ dv

where we applied (2.5) with ψ(v) = |v|2. One checks readily that

|v′|2 + |v′⋆|2 − |v|2 − |v⋆|2 = −|u|21− û · σ
4

(
1− e2

(
|u|
√

1− û · σ
2

))
,

so that

d

dt
E(t) = −1

2

∫

R3×R3

f(t, v)f(t, v⋆)|u|3 dv dv⋆

×
∫

S2

1− û · σ
4

(
1− e2

(
|u|
√

1− û · σ
2

))
b(û · σ) dσ.

We compute this last integral overS2 (for fixedv andv⋆) using polar coordinates to get

|u|3
∫

S2

1− û · σ
8

(
1− e2

(
|u|
√

1− û · σ
2

))
b(û · σ) dσ =

2π|u|3
∫ 1

0

(
1− e2(|u|y)

)
b(1 − 2y2)y3 dy = Ψe(|u|2)

where we have defined

Ψe(r) := 2πr3/2
∫ 1

0

(
1− e(

√
rz)2

)
b
(
1− 2z2

)
z3 dz, ∀r > 0. (3.1)

In other words, the evolution of the temperatureE(t) is given by

d

dt
E(t) = −

∫

R3×R3

f(t, v)f(t, v⋆)Ψe(|u|2) dv dv⋆ 6 0, t > 0.

In addition to Assumptions2.1, we assume in the rest of the paper that the restitution
coefficiente(·) satisfies the following:

Assumptions 3.1.Assume that the mappingr 7→ e(r) ∈ (0, 1] satisfies Assumptions2.1
and
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(1) there existα > 0 andγ > 0 such that

e(r) ≃ 1− α rγ for r ≃ 0,

(2) lim infr→∞ e(r) = e0 < 1,
(3) b(·) ∈ Lq(S2) for someq > 1, and
(4) the functionr > 0 7−→ Ψe(r) defined in(3.1) is strictly increasing and convex

over(0,+∞).

Remark 3.2. For hard-spheres interactions,b(û · σ) = 1
4π

, thus,Ψe reduces to

Ψe(r) =
1

2
√
r

∫ √
r

0

(
1− e(y)2

)
y3 dy, r > 0.

We prove in the Appendix that Assumptions3.1 are satisfied for the viscoelastic hard-
spheres of Example2.4with γ = 1/5. More generally, in the case of hard-spheres inter-
actions, assumption (4) is fulfilled ife(·) is continuously decreasing (see Lemma A.1 in
Appendix A). For constant restitution coefficiente(r) = e0, these assumptions are trivially
satisfied.

3.1. Upper bound for E(t). We first prove the first half of Haff’s law, namely, the tem-
peratureE(t) has at least algebraic decay.

Proposition 3.3. Let f0 be a nonnegative velocity distribution satisfying(2.8) and let
f(t, v) be the associated solution to the Cauchy problem(2.7) where the variable restitu-
tion coefficient satisfies Assumptions3.1. Then,

d

dt
E(t) 6 −Ψe(E(t)) ∀t > 0.

Moreover, there existsC > 0 such that

E(t) 6 C (1 + t)−
2

1+γ ∀t > 0. (3.2)

Proof. Recall that the evolution of the temperature is given by

d

dt
E(t) = −

∫

R3×R3

f(t, v)f(t, v⋆)Ψe(|u|2) dv dv⋆, t > 0, (3.3)

whereu = v − v⋆. SinceΨe(| · |2) is convex according to Assumption3.1 (2) and
f(t, v⋆) dv⋆ is a probability measure overR3, Jensen’s inequality implies

∫

R3

f(t, v⋆)Ψe(|u|2) dv⋆ > Ψe

(∣∣∣∣v −
∫

R3

v⋆f(t, v⋆) dv⋆

∣∣∣∣
2
)

= Ψe(|v|2)

where we used (2.9). Applying Jensen’s inequality again we obtain
∫

R3

f(t, v)Ψe(|v|2) dv > Ψe

(∫

R3

f(t, v)|v|2 dv
)
,

and therefore,
d

dt
E(t) 6 −Ψe(E(t)) ∀t > 0.
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Note thatΨe(·) is strictly increasing withlimx→0Ψe(x) = 0, this ensures that

lim
t→∞

E(t) = 0.

Moreover, according to Assumptions3.1 (1), it is clear from (3.1) that

Ψe(x) ≃ Cγx
3+γ
2 for x ≃ 0,

where the constant can be taken asCγ = 2πα
∫ 1

0
y3+γb(1−2y2) dy <∞. SinceE(t) → 0,

there existst0 > 0 such thatΨe(E(t)) > 1
2
CγE(t)

3+γ
2 for all t > t0 which implies that

d

dt
E(t) 6 −Cγ

2
E(t) 3+γ

2 ∀t > t0.

This proves (3.2) �

Example 3.4. In the case of constant restitution coefficiente(r) = e0 ∈ (0, 1) for any
r > 0, for hard-spheres interactions, one has

Ψe(x) =
1− e20

8
x3/2.

Thus, one recovers from(3.2) the decay of the temperature established from physical
considerations (dimension analysis) in[15] and proved in[19], namely,E(t) 6 C(1+t)−2

for large t.

Example 3.5. For the restitution coefficiente(·) associated to viscoelastic hard-spheres
(see Example2.4), one hasγ = 1/5, thus, the above estimate(3.2) leads to a decay of the
temperature faster than(1 + t)−5/3 which is the one obtained in[22] (see also[10]) from
physical considerations and dimensional analysis.

Notice that, sinceE(t) → 0 ast → ∞, it is possible to resume the arguments of [18,
Prop. 5.1] to prove that the solutionf(t, v) to (2.7) converges to a Dirac mass ast goes to
infinity, namely

f(t, v) −→
t→∞

δv=0 weakly∗ in M1(R3)

whereM1(R3) denotes the space of normalized probability measures onR3. We shall not
investigate further on the question of long time asymptoticbehavior of the distribution
f(t, v) but rather try to capture the very precise rate of convergence of the temperature to
zero.

Using the Povzner-like estimate of Section2.4it is possible, from the decay inE(t), to
deduce the decay of any moments off . Indeed, for anyt > 0 and anyp > 1 we define
thep-momentof f as

mp(t) :=

∫

R3

f(t, v)|v|2p dv. (3.4)

Corollary 3.6. Letf0 be a nonnegative velocity distribution satisfying(2.8) and letf(t, v)
be the associated solution to the Cauchy problem(2.7) where the variable restitution
coefficient satisfies Assumptions3.1. For anyp > 1, there existsKp > 0 such that

mp(t) 6 Kp (1 + t)−
2p

1+γ ∀t > 0. (3.5)
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Proof. Setu(t) = (1+t)−
2

1+γ . We prove that, for anyp > 1, there existsKp > 0 such that
mp(t) 6 Kpu

p(t) for any t > 0. Observe that using classical interpolation, it suffices to
prove this for anyp such that2p ∈ N. We argue by induction. It is clear from Proposition
3.3that estimate (3.5) holds forp = 1. Let p > 1, with 2p ∈ N, be fixed and assume that
for any integer1 6 j 6 p − 1/2 there existsKj > 0 such thatmj(t) 6 Kju

j(t) holds.
According to Proposition2.7

d

dt
mp(t) =

∫

R3

QB,e(f, f)(t, v)|v|2p dv 6 −(1− κp)mp+1/2(t) + κp Sp(t), (3.6)

where

Sp(t) =

[ p+1
2

]∑

k=1

(
p
k

)(
mk+1/2(t) mp−k(t) +mk(t) mp−k+1/2(t)

)
, ∀t > 0.

For p > 2, the above expressionSp(t) involves moments of order less thanp− 1/2. The
casep = 3/2 is treated independently.

• Step 1 (p = 3/2). In this case (3.6) reads

d

dt
m3/2(t) 6 −(1− κ3/2)m2(t) +m3/2(t)m1/2(t) + E2(t) ∀t > 0. (3.7)

LetK be a positive number to be chosen later and define

U3/2(t) := m3/2(t)−Ku(t)3/2.

Using (3.7) one has

dU3/2

dt
(t) 6 −(1 − κ3/2)m2(t) + m3/2(t)m1/2(t) + E2(t) +

3K

1 + γ
(1 + t)−

4+γ
1+γ .

From Holder’s inequality,

m3/2(t) 6
√
E(t)

√
m2(t) and m1/2(t) 6

√
E(t) ∀t > 0 (3.8)

hence,

dU3/2

dt
(t) 6 −(1− κ3/2)

m2
3/2(t)

E(t) +
√

E(t)m3/2(t) + E2(t) +
3K

1 + γ
(1 + t)−

4+γ
1+γ .

SinceE(t) 6 C(1 + t)−
2

1+γ , there exista, b, c > 0 such that

dU3/2

dt
(t) 6 −am2

3/2(t)(1 + t)
2

1+γ + b (1 + t)−
4

1+γ

+ c (1 + t)−
1

1+γm3/2(t) +
3

1 + γ
K(1 + t)−

4+γ
1+γ ∀t > 0. (3.9)

Inequality (3.9) implies the result for the casep = 3/2 providedK is large enough.
Indeed, chooseK so thatm3/2(0) < Ku3/2(0) = K. Then, by time-continuity of the
moments, the result follows at least for some finite time. Assume that there exists a time
t⋆ > 0 such thatm3/2(t⋆) = Ku3/2(t⋆) = K(1 + t⋆)

− 3
1+γ , then (3.9) implies

dU3/2

dt
(t⋆) 6

(
−aK2 + b+ cK +

3

1 + γ
K

)
(1 + t⋆)

− 4
1+γ < 0
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wheneverK is large enough. Thus, (3.5) holds forp = 3/2 choosingK3/2 := K.

• Step 2 (p > 2). The induction hypothesis implies that there exists a constantCp > 0
such that

Sp(t) 6 Cp u(t)
p+1/2, ∀t > 0

whereCp can be taken as

Cp =

[ p+1
2

]∑

k=1

(
p
k

)(
Kk+1/2 Kp−k +Kk Kp−k+1/2

)
.

Furthermore, according to Jensen’s inequalitymp+1/2(t) > m
1+1/2p
p (t), for any t > 0.

Thus, from (3.6), we conclude that

d

dt
mp(t) 6 −(1− κp)m

1+1/2p
p (t) + κp Cp u(t)

p+1/2 ∀t > 0.

Arguing as inStep 1, for someK > 0 to be chosen later, we define

Up(t) := mp(t)−Ku(t)p.

In this way,

d

dt
Up(t) 6 −(1 − κp)m

1+1/2p
p (t) + κp Cp u(t)

p+1/2 +
2pK

1 + γ
(1 + t)−

2p+1
1+γ ∀t > 0.

Then, ifK is such thatUp(0) < 0, the result holds at least for some finite time. For any
t⋆ > 0 such thatUp(t⋆) = 0, one notices then that

d

dt
Up(t⋆) 6

(
−(1− κp)K

1+ 1
2p + κpCp +

2pK

1 + γ

)
(1 + t⋆)

− 2p+1
1+γ < 0

providedK is large enough. This proves (3.5) for anyp > 1. �

3.2. Lower bound for E(t): preliminary considerations. The next goal is to complete
the proof of Haff’s law by showing that the cooling rate (3.2) is optimal under Assump-
tions3.1. Thus, we have to show that there existsC > 0 such that

E(t) > C(1 + t)−
2

1+γ ∀t > 0.

First, we prove the following result that simplifies our endeavor.

Theorem 3.7. Assume a non constant (γ > 0) restitution coefficiente(·) satisfying As-
sumptions3.1. If there existC0 > 0 andλ > 0 such that

E(t) > C0 (1 + t)−λ ∀t > 0, (3.10)

then there existsCp > 0 such that

mp(t) 6 Cp Ep(t) for anyt > 0 and p > 1. (3.11)

As a consequence, there existsC > 0 such that

E(t) > C (1 + t)−
2

1+γ ∀t > 0. (3.12)
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Proof. According to Assumption3.1 (1)

Ψe(x) ≃ Cγx
3+γ
2 for x ≃ 0.

In addition, Assumption3.1 (2) implies that there existsCb > 0 such that

Ψe(x) ≃ Cbx
3/2 for largex,

where the constant can be taken asCb = 2π(1−e20)
∫ 1

0
b(1−2z2)z3 dz. Thus, there exists

another constantC > 0 such that

Ψe(x) 6 Cx
3+γ
2 ∀x > 0. (3.13)

Then, from (3.3) one deduces that for anyε > 0 andp > 3+γ
2

− d

dt
E(t) 6 C

(
ε

γ
2m3/2(t) +

1

εp−
3+γ
2

mp(t)

)

6 C

(
ε

γ
2m3/2(t) +

Cp

εp−
3+γ
2

(1 + t)−
2p

1+γ

)
∀t > 0.

where we have used Corollary3.6 for the second inequality. In particular, using (3.10)
and the fact thatE(t) is a non increasing function, one can choosep sufficiently large so
that

− d

dt
E(t) 6 C

(
ε

γ
2m3/2(t) +

C̃p

εp−
3+γ
2

E(t) 3
2

)

for some positive constant̃Cp. In other words, for anyδ > 0 there existsCδ > 0 such that

− d

dt
E(t) 6 δm3/2(t) + CδE(t)3/2 ∀t > 0. (3.14)

With this preliminary observation, the proof of (3.11) is a direct adaptation of that of
Corollary3.6. Here again, by simple interpolation, it is enough to prove the result for any
p such that2p ∈ N and argue using induction. The result is clearly true forp = 1 with
C1 = 1. Forp = 3/2, letK > 0 be a constant chosen later and define

u3/2(t) = m3/2(t)−KE(t)3/2.
Thus, from (3.7)

d

dt
u3/2(t) 6 −(1− κ3/2)m2(t) +m3/2(t)m1/2(t) + E2(t)− 3

2
K
√

E(t) d

dt
E(t).

Using (3.8) one deduces from (3.14) that, for anyδ > 0 there existsCδ > 0 such that

d

dt
u3/2(t) 6 −(1−κ3/2)

m2
3/2(t)

E(t) +

(
1 +

3

2
Kδ

)
m3/2(t)

√
E(t)+

(
1 +

3

2
KCδ

)
E2(t).

Fix δ =
1−κ3/2

3
and chooseK > 0 such thatu3/2(0) < 0. If t⋆ > 0 is such thatu3/2(t⋆) =

0, then the following holds

d

dt
u3/2(t⋆) 6

(
−1 − κ3/2

2
K2 +

(
K + 1 +

3

2
KCδ

))
E(t⋆)2 < 0,
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providedK is sufficiently large. This proves (3.11) for p = 3/2 with C3/2 := K. The
casep > 2 follows in the same lines of the proof of Corollary3.6 interchanging the roles
of E(t) andu(t).

To conclude the proof, observe that according to (3.13) and (3.3), there existsC > 0
such that

− d

dt
E(t) 6 Cm 3+γ

2
(t) ∀t > 0.

Then, applying (3.11) with p = 3+γ
2

, one deduces that there isCγ > 0 such that

− d

dt
E(t) 6 CγE(t)

3+γ
2 ∀t > 0.

A simple integration of this inequality yields (3.12). �

Remark 3.8. For constant restitution coefficient,e = e0, sinceγ = 0, (3.14) does not
hold anymore. However, for someCe > 0 we have

− d

dt
E(t) 6 Cem3/2(t) ∀t > 0.

Assuming thate0 ≃ 1 (quasi-elastic regime) the constantCe is small, thus, the argument
above can be reproduced to prove that the conclusion of Proposition3.7still holds. Recall
that forγ = 0 the second part of Haff ’s law(3.12) has been proved in[19, Theorem 1.2].

In order to prove that (3.10) is satisfied for someλ > 0, we will need preciseLp

estimates, following the spirit of [19], for the rescaled functiong given in Section2.3.
The idea to craft the correct time-scaling functionsτ(·) andV (·) is to choose them such
that the corresponding temperature ofg is bounded away from zero. Indeed, for any
τ > 0, define

Θ(τ) :=

∫

R3

g(τ, w)|w|2 dw.

Since,
E(t) = V (t)−2

Θ(τ(t)) ∀t > 0, (3.15)

we choose
V (t) = (1 + t)

1
γ+1 ∀t > 0. (3.16)

In this way, (3.12) is equivalent toΘ(τ(t)) > C for anyt > 0. Notice that (3.2) immedi-
ately translates into

sup
t>0

Θ(τ(t)) <∞. (3.17)

Moreover, for simplicity we pickτ(t) such thaṫτ (t)V (t) = 1, therefore forγ > 0,

τ(t) =

∫ t

0

ds

V (s)
=
γ + 1

γ

(
(1 + t)

γ
1+γ − 1

)
(3.18)

which is an acceptable time-scaling function. Thus, the rescaled solutiong(τ, w) satisfies
(2.12) with λ(τ) = 1,

ξ(τ) =
1

γτ + (1 + γ)
and ẽτ (r) = e

(
r

(
1 +

γ

γ + 1
τ

)−1/γ
)
. (3.19)
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If γ = 0 the restitution coefficient is constant [19], in particularẽτ = e, and the rescale
readsV (t) = 1 + t andτ(t) = ln(1 + t). In such a case,ξ(τ) ≡ 1.

To complete the proof of Haff’s law, one has to perform a careful study of the properties
of the collision operatorQe in Sobolev orLp spaces1 < p 6 ∞.

4. REGULARITY PROPERTIES OF THE COLLISION OPERATOR

In this section the regularity properties studied originally for the elastic case in [16,
21, 25] and later for the constant restitution coefficient in [19] are generalized to cover
variable restitution coefficients depending on the impact velocity. The path that we follow
closely follows [21].

4.1. Carleman representation. We establish here a technical representation of the gain
term Q+

B,e which is reminiscent of the classical Carleman representation in the elastic
case. More precisely, letB(u, σ) be a collision kernel of the form

B(u, σ) = Φ(|u|)b(û · σ)
whereΦ(·) > 0 andb(·) > 0 satisfies (2.6). For anyψ = ψ(v), define the following linear
operators

S±(ψ)(u) =

∫

S2

ψ(u±)b(û · σ) dσ, ∀u ∈ R
3, (4.1)

the symbolosu− andu+ are defined by

u− := β

(
|u |
√

1− û · σ
2

)
u− |u| σ

2
, and u+ := u− u−.

Lemma 4.1. For any continuous functionsψ andϕ,
∫

R3

ϕ(u)S−(ψ)(u)Φ(|u|) du =

∫

R3

ψ(x)ΓB(ϕ)(x) dx

where the linear operatorΓB is given by

ΓB(ϕ)(x) =

∫

ω⊥

B(z + α(r)ω, α(r))ϕ(α(r)ω+ z) dπz,

x = rω, r > 0, ω ∈ S
2. (4.2)

Here dπz is the Lebesgue measure in the hyperplaneω⊥ perpendicular toω andα(·) is
the inverse of the mappings 7→ sβ(s). Moreover,

B(z, ̺) = 8Φ(|z|)
|z|(̺β(̺))2 b

(
1− 2

̺2

|z|2
)

̺

1 + ϑ′(̺)
, ̺ > 0, z ∈ R

3 (4.3)

with ϑ(·) defined in Assumption2.1(2) andϑ′(·) denoting its derivative.

Proof. For simplicity assume thatΦ ≡ 1. Define

I :=

∫

R3

ϕ(u)S−(ψ)(u) du =

∫

R3

ϕ(u) du

∫

S2

ψ(u−)b(û · σ) dσ.
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For fixedu ∈ R3, we perform the integration overS2 using the formula
∫

S2

F

(
u− |u|σ

2

)
dσ =

4

|u|

∫

R3

δ(|x|2 − x · u)F (x) dx

valid for any given functionF . Then,

I = 4

∫

R3×R3

ϕ(u)|u|−1δ(|x|2 − x · u)ψ
(
xβ(|x|)

)
b

(
1− 2

|x|2
|u|2

)
dx du.

Setting nowu = z + x we get

I = 4

∫

R3×R3

ϕ(x+ z)|x+ z|−1δ(x · z)ψ
(
xβ(|x|)

)
b

(
1− 2

|x|2
|x+ z|2

)
dz dx.

Keepingx fixed, we remove the Dirac mass using to the identity
∫

R3

F (z)δ(x · z) dz = 1

|x|

∫

x⊥

F (z) dπz,

which leads to

I = 4

∫

R3

ψ
(
xβ(|x|)

) dx
|x|

∫

x⊥

ϕ(x+ z)

|x+ z| b
(
1− 2

|x|2
|x+ z|2

)
dπz.

Perform thex–integral using polar coordinatesx = ̺ ω and the change of variablesr =
̺ β(̺). Recall thatα(r) is the inverse of such mapping, furthermore, notice thatdr =
1
2
(1 + ϑ′(̺)) d̺. This yields

I = 8

∫ ∞

0

α(r) dr

1 + ϑ′(α(r))

∫

S2

ψ(rω) dω

∫

ω⊥

ϕ(z + α(r)ω)

|z + α(r)ω| b
(
1− 2

α(r)2

|z + α(r)ω|2
)

dπz.

Turning back to cartesian coordinatesx = rω we obtain the desired expression

I =

∫

R3

ψ(x)ΓB(ϕ)(x) dx,

with ΓB given by (4.2). �

The above result leads to a Carleman-like expression forQ+
B,e:

Corollary 4.2 (Carleman representation). Lete(·) be a restitution coefficient satisfying
Assumptions2.1and let

B(u, σ) = Φ(|u|)b(û · σ)
be a collision kernel satisfying(2.6). Then, for any velocity distribution functionsf, g one
has

Q+
B,e(f, g)(v) =

∫

R3

f(z) [(tz ◦ ΓB ◦ tz) g] (v) dz

where[tvψ](x) = ψ(v − x) for anyv, x ∈ R3 and test-functionψ.

Proof. The proof readily follows from the Lemma4.1and the identity∫

R3×R3

Q+
B,e(f, g)(v)ψ(v) dv =

1

2

∫

R3×R3

f(v)g(v − u)Φ(|u|)S−(tvψ)(u) dv du (4.4)

valid for any test-functionψ. �
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4.2. Convolution-like estimates forQ+
B,e. General convolution-like estimates are ob-

tained in [3, Theorem 1] for non-constant restitution coefficient. Suchestimates are given
in Lp

η with η > 0 and, for the applications we have in mind, we need to extend some
of them toη 6 0. This can be done using the method developed in [21] (see also [14])
together with the estimates of [3]. 2

Theorem 4.3. Assume that the collision kernelB(u, σ) = Φ(|u|)b(û · σ) satisfies(2.6)
andΦ(·) ∈ L∞

−k for somek ∈ R. In addition, assume thate(·) fulfills Assumption2.1.
Then, for any1 6 p 6 ∞ andη ∈ R, there existsCη,p,k(B) > 0 such that

∥∥Q+
B,e(f, g)

∥∥
Lp
η
6 Cη,p,k(B) ‖f‖L1

|η+k|+|η|
‖g‖Lp

η+k

where the constantCη,p,k(B) is given by:

Cη,p,k(B) = ck,η,p γ(η, p, b) ‖Φ‖L∞
−k

(4.5)

with a constantck,η,p > 0 depending only onk, η andp. Furthermore, the dependence on
the angular kernel is given by

γ(η, p, b) =

∫ 1

−1

(
1− s

2

)− 3+η+
2p′

b(s) ds, (4.6)

where1/p+1/p′ = 1 andη+ is the positive part ofη. Similarly, there exists̃Cη,p,k(B) > 0
such that ∥∥Q+

B,e(f, g)
∥∥
Lp
η
6 C̃η,p,k(B) ‖g‖L1

|η+k|+|η|
‖f‖Lp

η+k

where the constant̃Cη,p,k(B) is given by

C̃η,p,k(B) = c̃k,η,p γ̃(η, p, b) ‖Φ‖L∞
−k

(4.7)

for some constant̃ck,η,p > 0 depending only onk, η andp. The dependence on the angular
kernel is given by

γ̃(η, p, b) =

∫ 1

−1

(
1 + s

2
+ (1− β0)

2 1− s

2

)− 3+η+
2p′

b(s) ds (4.8)

where1/p+ 1/p′ = 1 andβ0 = β(0) = 1+e(0)
2

.

Proof. Fix 1 6 p 6 ∞ andη ∈ R and use the convention1/p′ + 1/p = 1. By duality,
∥∥Q+

B,e(f, g)
∥∥
Lp
η
= sup

{∣∣∣∣
∫

R3

Q+
B,e(f, g)(v)ψ(v) dv

∣∣∣∣ ; ‖ψ‖
Lp′

−η
6 1

}
.

Using (4.4),∫

R3

Q+
B,e(f, g)(v)ψ(v) dv =

∫

R3×R3

f(v)g(v − u)T−(tvψ)(u) dv du

with
T−(ψ)(u) = Φ(|u|)S−(ψ)(u), and tvψ(x) = ψ(v − x),

2Notice that the constantsγ(η, p, b) and γ̃(η, p, b) given by (4.6) and (4.8) are not finite for arbitrary
angular kernelb. It is implicitly assumed that the Theorem applies for the range of parameters leading to
finite constants (see also Remark4.4).
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with S− defined in equation (4.1). With the notation of [3], one recognizes thatS−(h) =
P(h, 1), thus, applying [3, Theorem 5] withq = ∞ andα = −η,

‖S−(h)‖Lp′

−η
6 γ(η, p, b)‖h‖

Lp′

−η

with γ(η, p, b) given by (4.6). Notice that, with respect to [3], we used the weight〈v〉η
instead of|v|η, this is the reason to introduceη+ in our definition ofγ(η, p, b). As a
consequence,

‖T−(h)‖Lp′

−η−k

6 γ(η, p, b)‖Φ‖L∞
−k
‖h‖

Lp′

−η
. (4.9)

Now,
∣∣∣∣
∫

R3

Q+
B,e(f, g)ψ dv

∣∣∣∣ 6
∫

R3

|f(v)| dv
(∫

R3

|g(u)| [(tv ◦ T− ◦ tv)ψ] (u) du
)

6 ‖g‖Lp
η+k

∫

R3

|f(v)| ‖(tv ◦ T− ◦ tv)ψ‖Lp′

−k−η

dv.

Using the inequality‖tvh‖Lp′
s
6 2|s|/2〈v〉|s|‖h‖

Lp′
s

for anys ∈ R andv,

∣∣∣∣
∫

R3

Q+
B,e(f, g)ψ dv

∣∣∣∣ 6 2|η+k|/2‖g‖Lp
η+k

∫

R3

|f(v)|〈v〉|η+k| ‖(T− ◦ tv)ψ‖Lp′

−k−η

dv

6 2|η+k|/2γ(η, p, b)‖Φ‖L∞
−k
‖g‖Lp

η+k

∫

R3

|f(v)|〈v〉|η+k| ‖tvψ‖Lp′

−η
dv

6 2|η+k|+|η|/2γ(η, p, b)‖Φ‖L∞
−k
‖g‖Lp

η+k

∫

R3

|f(v)|〈v〉|η+k|+|η| ‖ψ‖
Lp′

−η
dv

which proves the first part of the Theorem. To prove the secondpart, observe that
∫

R3

Q+
B,e(f, g)(v)ψ(v) dv =

∫

R3×R3

f(v − u)g(v)T+(tvψ)(u) dv du,

whereT+(ψ)(u) = Φ(|u|)S+(ψ)(u) andS+ defined in (4.1). Using the notation of [3] we
identify S+(h) = P(1, h). Thus, applying [3, Theorem 5] withp = ∞ andα = −η,

‖S−(h)‖Lp′

−η
6 γ̃(η, p, b)‖h‖

Lp′

−η

whereγ̃(η, p, b) given by (4.8). One concludes as above, interchanging the roles off and
g. �

Remark 4.4. The constantsγ(η, p, b) and γ̃(η, p, b) are not finite for arbitraryb(·) be-
cause of the possible singularity ats = ±1. However, if one assumes, as in[19], that
the angular kernelb(·) vanishes in the vicinity ofs = 1 thenγ(η, p, b) < ∞ for any
1 6 p 6 ∞ and η ∈ R. This is an additional difficulty of the inelastic regime that is
overcome in the elastic case using symmetry, i.e., definingb in half the domain. The care-
ful reader will also notice that the constants given in the theorem are independent ofe(·)
except for̃γ(η, p, b) which depends only on the valuee(0). Finally, we mention that, for
hard-sphere interactions, i.e.b ≡ 1

4π
, one hasγ(η, p, b) <∞ ⇐⇒ γ̃(η, p, b) <∞ ⇐⇒

1 6 p < 3+η+
1+η+

.
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4.3. Sobolev regularity for smooth collision kernel. For this section we assumeΦ(·)
andb(·) smooth and compactly supported

Φ ∈ C∞
0 (R3 \ {0}), b ∈ C∞

0 (−1, 1). (4.10)

Denote byQB,e the associated collision operator defined by (2.5).

Lemma 4.5. Assume thate(·) satisfies Assumptions2.1 with e(·) ∈ Cm(0,∞) for some
integerm ∈ N. Then, under assumption(4.10) on the collision kernel, for any0 6 s 6 m,
there existsC = C(s, B, e) such that

‖ΓB(f)‖Hs+1 6 C(s, B, e) ‖f‖Hs , ∀f ∈ Hs

whereΓB is the operator defined in Lemma4.1. The constantC(s, B, e) depends only on
s, on the collision kernelB and the restitution coefficiente(·). More precisely,C(s, B, e)
depends one(·) through theL∞ norm of the derivativesDke(·) (k = 1, . . . , m) over some
compact interval bounded away from zero depending only onB.

We postpone the proof of Lemma4.5and first prove its important consequence.

Theorem 4.6. LetB(u, σ) = Φ(|u|)b(û · σ) be a collision kernel satisfying(4.10) and
e(·) satisfying Assumption2.1. In addition, assume thate(·) ∈ Cm(0,∞) for some integer
m ∈ N. Then, for any0 6 s 6 m,

∥∥Q+
B,e(f, g)

∥∥
Hs+1

6 C(s, B, e) ‖g‖Hs ‖f‖L1

with constantC(s, B, e) given in Lemma4.5.

Proof. Let F
[
Q+

B,e(f, g)
]
(ξ) denote the Fourier transform ofQ+

B,e(f, g). According to
Corollary4.2,

F
[
Q+

B,e(f, g)
]
(ξ) =

∫

R3

f(v)F [(tv ◦ ΓB ◦ tv) g] (ξ) dv.

To simplify notation setG(v, ξ) = F [(tv ◦ ΓB ◦ tv) g] (ξ). Thus,

∥∥Q+
B,e(f, g)

∥∥2
Hs+1

=

∫

R3

∣∣F
[
Q+

B,e(f, g)
]
(ξ)
∣∣2 〈ξ〉2(s+1) dξ

=

∫

R3

〈ξ〉2(s+1)

∣∣∣∣
∫

R3

f(v)G(v, ξ) dv

∣∣∣∣
2

dξ

6 ‖f‖L1

∫

R3×R3

|f(v)| |G(v, ξ)|2〈ξ〉2(s+1) dξ dv.

(4.11)

SinceG(v, ξ) = F [(tv ◦ ΓB ◦ tv) g] (ξ),
∫

R3

|G(v, ξ)|2〈ξ〉2(s+1) dξ = ‖(tv ◦ ΓB ◦ tv) g‖2Hs+1 6 C(s, B, e)2 ‖g‖2Hs .

For this inequality we used Lemma4.5 and the fact that the translation operatortv has
norm one in any Sobolev space. Hence, estimate (4.11) yields the desired estimate. �
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Proof of Lemma4.5. The proof of the regularity property ofΓB can be obtained following
the lines of the one for the elastic Boltzmann operator [21]. Indeed, note that

Γ̃B(f)(r, ω) : = ΓB(f)(α
−1(r), ω) = ΓB(f)(rβ(r), ω)

=

∫

ω⊥

B(z + rω, r)ϕ(rω + z) dπz .

Assumption (4.10) implies that there existsδ > 0 such thatb(x) = 0 for |x± 1| 6 δ and
{|z| ; z ∈ Supp(Φ)} ⊂ (a,M) for some positive constants0 < a < M . Then, by virtue
of (4.3), B(z + rω, r) = 0 for anyr > 0, ω ∈ S2 andz ∈ ω⊥ provided that|z|2 > 2−δ

δ
r2.

For |z|2 6 2−δ
δ
r2, one has|z + rω|2 6 2r2/δ, thus,B(z + rω, r) = 0 if r <

√
δa2/2.

Putting these together we conclude that

B(z + rω, r) = 0 ∀r /∈ I :=
(√

δa2/2,M
)
, ω ∈ S

2 and anyz⊥ω. (4.12)

In particular,Γ̃B(f)(r, ω) = 0 for anyr /∈ I independently off . Define

B0(z, ̺) :=
1 + ϑ′(̺)

̺
β2(̺)B(z, ̺) =

Φ(|z|)b
(
1− 2 ̺2

|z|2

)

|z|̺2

and denotẽΓ0(f) the associated operator,

Γ̃0(f)(r, ω) :=

∫

ω⊥

B0(z + rω, r)ϕ(rω + z) dπz .

Then,B0 does not depend on the restitution coefficiente(·) andΓ̃0 is exactly of the form
of the operatorT studied in [21, Theorem 3.1]. Therefore, arguing as inop. cit., for any
s > 0, there is an explicit constantC0 = C0(s,Φ, b) such that

∥∥∥Γ̃0(f)
∥∥∥
Hs+1

6 C0(s,Φ, b) ‖f‖Hs , ∀f ∈ Hs. (4.13)

Setting

Ge(̺) =
̺

(1 + ϑ′(̺)) β2(̺)
∀̺ > 0, (4.14)

one observes thatGe is aCm function overI whose derivativesDkGe are bounded overI
for anyk 6 m and

Γ̃B(f)(r, ω) = Ge(r)χI(r)Γ̃0(f)(r, ω).

HereχI is the characteristic function ofI =
(√

δa2/2,M
)

(see Eq. (4.12)). Therefore,

for any0 6 s 6 m, there exists some constantC = C0(s, b, e) such that
∥∥∥Γ̃B(f)

∥∥∥
Hs+1

6 C0(s, B, e) ‖f‖Hs , ∀f ∈ Hs (4.15)

where the constantC0(s, B, e) can be chosen as

C0(s, B, e) = C0(s,Φ, b) max
k=0,...,s

‖DkGe‖L∞(I). (4.16)
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From estimate (4.15) we deduce Lemma4.5 with the following argument. Assume first
s = k > 1 is an integer. Using polar coordinates

‖ΓB(f)‖2Hk =
∑

|j|6k

∫ ∞

0

Fj(̺)̺
2 d̺

∫

S2

|∂jvΓ̃B(f)(̺, ω)|2 dω

where, for any|j| 6 k, the functionFj(̺) can be written as

Fj(̺) = Pj(ϑ
(1)(̺), . . . , ϑ(j)(̺))(1 + ϑ(1)(̺))−nj . (4.17)

HerePj(y1, . . . , yj) is a suitable polynomial,nj ∈ N andϑ(p) denotes thep-th deriva-
tive of ϑ(·). Sinceϑ ∈ Cm(0,∞) andI is a compact interval away from zero, one has
sup̺∈I Fj(̺) = Ck <∞ for any|j| 6 k. Thus

‖ΓB(f)‖Hk 6 Ck‖Γ̃B(f)‖Hk (4.18)

whereCk is an explicit constant involving theL∞ norm of the firstk-th order derivatives
of α(·) on I. This proves that the conclusion of the Lemma4.5holds true for any integer
s 6 m and we deduce the general case using interpolation. �

Remark 4.7. It is important, for our subsequent analysis, to obtain a precise expression
for the constantC(s, B, e). For instance, in the case in whiche(·) ∈ C1(0,∞), one
obtains that

C(1, B, e) 6 C0(1, B, e) sup
̺∈I

F1(̺)

whereF1 is of the form(4.17) with I defined in(4.12). Note thatC0(1, B, e) andGe(̺) are
given by(4.16) and (4.14) respectively. In particular, under Assumption2.1,Ge(̺) 6 4̺
for large̺ andGe(̺) ≃ ̺/2 for ̺ ≃ 0.

Arguing as in [21, Corollary 3.2] we translate the gain of regularity obtained in Theo-
rem4.6in gain of integrability.

Corollary 4.8. LetB(u, σ) = Φ(|u|)b(û · σ) be a collision kernel satisfying(4.10) and
e(·) ∈ C1(0,∞) satisfying Assumption2.1. Then, for any1 < p <∞∥∥Q+

B,e(f, g)
∥∥
Lp

6 C(p, B, e) (‖g‖Lq ‖f‖L1 + ‖g‖L1 ‖f‖Lq)

where the constantC(p, B, e) depends onB and e through the constantC(1, B, e) of
Theorem4.6. The exponentq < p is given by

q =





5p

3 + 2p
if p ∈ (1, 6]

p/3 if p ∈ [6,∞).
(4.19)

4.4. Regularity and integrability for hard-spheres. We consider in this section the
case of hard-spheres collision kernel

B(u, σ) =
|u|
4π
.

Such a collision kernel does not enjoy the regularity properties assumed in the previous
section. This does not present a problem since the dependence of the constant on the
collision kernelB permits to adapt the method developed in [21] for the elastic case. We
need some supplementary assumptions on the restitution coefficient e(·).



28 RICARDO J. ALONSO & BERTRAND LODS

Assumptions 4.9.In addition to the Assumptions2.1, suppose thate(·) ∈ C1(0,∞) and
that there existsk ∈ R such that

e′(r) = O(rk) when r → ∞,

wheree′(·) denotes the derivative ofe(·).
The above assumptions imply thatϑ′(̺) = O(̺k+1) for large̺ andϑ′(̺) ≃ 1 when

̺ ≃ 0. Recall thatϑ′(·) is the derivative ofϑ(r) = re(r).

Theorem 4.10. Assume thate(·) satisfies Assumptions4.9. For any p ∈ [1, 3) there
existκ > 0, θ ∈ (0, 1) and a constantCe > 0 depending only onp and the restitution
coefficiente(·) such that, for anyδ > 0

∫

R3

Q+
e (f, f) f

p−1 dv 6 Ceδ
−κ ‖f‖1+pθ

L1 ‖f‖p(1−θ)
Lp + δ ‖f‖L1

2
‖f‖p

Lp
1/p
.

Remark 4.11. The restrictionp ∈ [1, 3) is the major difference with respect to the classi-
cal case[21, Theorem 3.1]. The reason is that in the inelastic regime the lack of symmetry
does not permit to switch the roles ofv′ andv′⋆, therefore, generalb has to be defined in
the full interval[−1, 1].

Proof. We follow the same lines presented in [21] and subsequently used in [19]. We
present the argument for convenience. Fixp ∈ [1, 3) and letΘ : R → R+ be an evenC∞

function with compact support in(−1, 1) and
∫ 1

−1
Θ(s) ds = 1. In the same way, consider

a radialC∞ functionΞ : R3 → R with support in the ballB(0, 1) and
∫
R3 Ξ(v) dv = 1.

Define the mollificationsΞn(v) := n3Ξ(nv) andΘm(s) := mΘ(ms) for m,n > 1. Thus,
ΦSn = Ξn ∗ (| · |χAn) andbSm = Θm ∗ ( 1

4π
χ[−1+ 2

m
,1− 2

m
]) are smooth mollifications of the

collision kernel. Here we have defined the set

An =

{
v ∈ R

3 ; |v| ∈
[
2

n
, n

]}
n > 1.

Consider the smooth collision kernel

BSm,n(|u|, û · σ) = ΦSn(|u|) bSm(û · σ),
and observe that

supp(ΦSn) ⊆
{
1

n
6 |v| 6 n+ 1

}
and supp(bSm) ⊆

[
−1 +

1

m
, 1− 1

m

]
.

Define naturally

BSRm,n(|u|, û · σ) : = ΦSn(|u|) bRm(û · σ),
BRSm,n(|u|, û · σ) : = ΦRn(|u|) bSm(û · σ) and

BRRm,n(|u|, û · σ) : = ΦRn(|u|) bRm(û · σ).
HereΦRn(|u|) = |u|−ΦSn(|u|) andbRm(û ·σ) = 1

4π
− bSm(û ·σ) are the remainder parts.

Thus, one splitsQ+
e in four parts using obvious notation,

Q+
e = Q+

BSm,n ,e
+Q+

BSRm,n ,e
+Q+

BRSm,n ,e +Q+
BRRm,n ,e.
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SinceBSm,n(|u|, û·σ) fulfills (4.10) one deduces from Corollary4.8that there is a constant
C(m,n) such that

∥∥∥Q+
BSm,n ,e

(f, f)
∥∥∥
Lp

6 C(m,n)‖f‖Lq ‖f‖L1

for q < p given by (4.19). A simple application of Hölder’s inequality yields∫

R3

Q+
BSm,n ,e

(f, f) f p−1 dv 6 C(m,n) ‖f‖Lq ‖f‖L1 ‖f‖p−1
Lp . (4.20)

Recall from Corollary4.8thatC(m,n) depends onm andn through the constantC(1, BSm,n , e)
in Theorem4.6. Moreover, according to Remark4.7, one sees that

C(1, BSm,n, e) 6 C0(1,ΦSn , bSm) max
k=0,1

‖DkGe‖L∞(I) sup
̺∈I

F1(̺)

whereC0(s,Φ, b) is the constant appearing in (4.13), Ge(·) is given by (4.14), andF1 is
of the form (4.17). The intervalI = Im,n is defined in (4.12) with δ = 1/m, M = n + 1
anda = 1/n

I =

(√
1

2mn2
, n+ 1

)
.

ThatC0(1,ΦSn, bSm) depends onm andn in a polynomial way follows as in [21]. More-
over, from the properties ofGe given in Remark4.7 and the fact thatF1(̺) is a rational
function inϑ′(̺), one deduces from Assumption4.9 and the above expression ofI that
there exista, b > 0 such that

C(m,n) = O(ma nb) asm,n→ ∞. (4.21)

Now, applying Theorem4.3with k = 1 andη = −1/p′, we get
∥∥∥Q+

BSRm,n ,e
(f, f)

∥∥∥
Lp
η

+
∥∥∥Q+

BRRm,n ,e(f, f)
∥∥∥
Lp
η

6 ε0(m,n)‖f‖L1
1
‖f‖Lp

1/p

whereε0(m,n) = C−1/p′,p,1(BSRm,n) +C−1/p′,p,1(BRRm,n) for anym,n > 1. In particu-
lar, using the expression of the above constants in (4.5), there exists a constantc > 0 such
thatε0(m,n) 6 c γ(−1/p′, p, bRm) =: ε(m) for anym,n > 1. Then there exists some
r > 0 such that

ε(m) = O(m−r) asm→ ∞. (4.22)

Indeed, since1 6 p < 3, one sees from (4.5) thatγ(−1/p′, p, bRm) 6 C‖bRm‖Lq(S2) for
anyq such that1 < q′ < 2p′/3. Thus, one can choose a regularizing functionΘ so that the
Lq(S2)-norm ofbRm decays algebraically to zero asm grows. Using the above estimate
with η = −1/p′, we get

∫

R3

[
Q+

BSRm,n ,e
(f, f) +Q+

BRRm,n ,e(f, f)
]
f p−1 dv 6 ε(m)‖f‖L1

1
‖f‖p

Lp
1/p
. (4.23)

It remains only to estimate

I :=
∫

R3

Q+
BRSm,n ,e

(f, f) f p−1 dv.

One notes that

ΦRn(|v − v⋆|) 6 Cn−1
(
|v|2 + |v⋆|2

)
, ∀v, v⋆ ∈ R

3
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for someC > 0. Thus,

I 6 Cn−1

∫

R3×R3

f(v)f(v⋆)
(
|v|2 + |v⋆|2

)
dv dv⋆

∫

S2

f p−1(v′)bSm(û · σ) dσ.

Define

I1 : =
∫

R3×R3

f(v)f(v⋆)|v|2 dv dv⋆
∫

S2

f p−1(v′)bSm(û · σ) dσ, and

I2 : =
∫

R3×R3

f(v)f(v⋆)|v⋆|2 dv dv⋆
∫

S2

f p−1(v′)bSm(û · σ) dσ.

Observe that I1 can be written as

I1 =
∫

R3×R3

Q+
Bm,e(F, f)(v)ψ(v) dv

where
F (v) = |v|2f(v), ψ(v) = f p−1(v) ∈ Lp′(R3)

with the collision kernelBm(|u|, û · σ) = bSm(û · σ). Applying Theorem4.3 with η =
k = 0 gives

I1 6
∥∥Q+

Bm,e(F, f)
∥∥
Lp

‖ψ‖Lp′

6 C0,p,0(Bm) ‖F‖L1‖f‖Lp‖ψ‖Lp′ 6 C0,p,0(Bm)‖f‖L1
2
‖f‖pLp

whereC0,p,0(Bm) is defined by (4.5). Now, with the same notation,

I2 =
∫

R3×R3

Q+
Bm,e(f, F )(v)ψ(v) dv,

therefore, applying Theorem4.3with η = 0 andk = −2 yields

I2 6 C0,p,−2(Bm) ‖f‖L1
2
‖F‖Lp

−2
‖ψ‖Lp′ 6 C0,p,−2(Bm) ‖f‖L1

2
‖f‖pLp.

Combining the two estimates for I1 and I2,

I 6
C(m)

n
‖f‖L1

2
‖f‖pLp

whereC(m) = C0,p,0(Bm) + C0,p,−2(Bm). The support ofbSm(s) lies to a positive
distance, of order1/m, from s = 1. Then, we use the expression (4.5) to conclude that

C(m) 6 m
− 3

2p′ asm→ ∞. (4.24)

Estimates (4.24), (4.20) and (4.23) gives
∫

R3

Q+
e (f, f) f

p−1 dv 6 C(m,n) ‖f‖Lq ‖f‖L1 ‖f‖p−1
Lp +

+ ε(m)‖f‖L1
1
‖f‖p

Lp
1/p

+
C(m)

n
‖f‖L1

2
‖f‖pLp.

Using the polynomial bounds (4.21), (4.22) and (4.24) this leads to the result as in [19].
�



HAFF’S LAW FOR VISCOESLASTIC HARD SPHERES 31

Remark 4.12. Assumption4.9allows to present the explicit dependence of the constants
with respect toδ > 0. This dependence will be crucial in the proof of Haff ’s law inSection
5. Note that the constantCe in Theorem4.10depends on the regularity of the restitution
coefficient away from zero.

Corollary 4.13. Assume thate(·) satisfies Assumption4.9. For anyp ∈ [1, 3) there exist
κ > 0, θ ∈ (0, 1) and a constantCe > 0 depending only onp and the restitution coefficient
e(·) such that, for anyδ > 0
∫

R3

Q+
e (g, g) g

p−1〈v〉ηp dv 6 Ceδ
−κ ‖g‖1+pθ

L1
η

‖g‖p(1−θ)

Lp
η

+δ ‖g‖L1
2+η

‖g‖p
Lp
η+1/p

, ∀η > 0.

The constantCe is provided by Theorem4.10.

Proof. Fix g > 0, η > 0 and setf(v) = g(v)〈v〉η. Note that〈v′〉η 6 〈v〉η 〈v⋆〉η for any
v, v⋆ ∈ R3, then, using the weak formulation ofQ+

e∫

R3

Q+
e (g, g) g

p−1〈v〉ηp dv =
∫

R3

〈v〉ηQ+
e (g, g) f

p−1 dv 6

∫

R3

Q+
e (f, f)f

p−1 dv.

Conclude with Theorem4.10. �

The following result applies to the rescaled solutionsg(τ, w). Its importance lies in that
the estimate is uniform in the rescaled timeτ .

Corollary 4.14. Assume thate(·) satisfies Assumption4.9. For any τ > 0, let ẽτ be
the restitution coefficient defined by(2.13) and letQẽτ (f, f) be the associated collision
operator. Assume thatV (ζ(τ)) is continuous and goes to infinity asτ → ∞. For any
p ∈ [1, 3) there existκ > 0, θ ∈ (0, 1) andK > 0 all independent ofτ such that, for any
δ > 0∫

R3

Q+
ẽτ
(g, g) gp−1〈w〉ηp dw 6 Kδ−κ‖g‖1+pθ

L1
η

‖g‖p(1−θ)

Lp
η

+δ ‖g‖L1
2+η

‖g‖p
Lp
η+1/p

, ∀η > 0.

Proof. From Corollary4.13, for anyτ > 0 there existsK(τ) = Cẽτ for which the above
inequality holds. It suffices to prove thatK = supτ>0K(τ) < ∞. Recall thatK(τ)
depends onτ through the restitution coefficient̃eτ , more precisely,Cẽτ depends on the
L∞ norm of the derivativesDkẽτ (·), k = 0, 1, over some compact interval of(0,∞)
bounded away from zero (independent ofτ ). Now, for anyτ > 0,

Dkẽτ (·) = µ−k(τ)(Dke)

( ·
µ(τ)

)

with µ(τ) = V (ζ(τ)). Sinceµ−1(τ) is continuous and goes to zero asτ goes to∞, one
concludes that all theL∞ norms ofDkẽτ (·) remain uniformly bounded with respect toτ .
The same holds forK(τ). �

5. GENERALIZED HAFF’ S LAW CONTINUED

5.1. Proof of Haff’s law. In this section we prove the second part of Haff’s law es-
tablishing the lower bound of the temperature (3.12). Recall that, from Theorem3.7 it
suffices to prove (3.10). As explained in Section3 this is done using suitableLp estimates
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in the self-similar variables. In this section, the restitution coefficient fulfills Assump-
tions3.1and4.9and the collision kernel is that of hard-spheres interactions. Recall that
the rescaled functiong(τ, w) is solution to the Boltzmann equation in rescaled variables
(2.12)

∂τg(τ, w) + ξ(τ)∇w · (wg(τ, w)) = Qẽτ (g, g)(τ, w) τ > 0. (5.1)

The restitution coefficient̃eτ and the time-depending mappingξ(τ) are given by (3.19).

Proposition 5.1. Assume thate(·) fulfills Assumptions3.1 with γ > 0 and 4.9. Let f0
satisfying(2.8) with f0 ∈ L1

2 ∩ Lp(R3) for some1 < p < 3. Letg(τ, ·) be the solution to
the rescaled equation(5.1) with initial datumg(0, w) = f0(w). Then, there existC0 > 0
andκ0 > 0 such that

‖g(τ)‖Lp 6 C0(1 + τ)κ0 ∀τ > 0. (5.2)

Consequently, there existC1 > 0 andκ1 > 0 such that

Θ(τ) :=

∫

R3

g(τ, w)|w|2 dw > C1(1 + τ)−κ1 ∀τ > 0. (5.3)

Proof. The proof relies on Corollary4.14. Multiply (5.1) by gp−1 and integrate overR3

to obtain

1

p

d ‖g(τ)‖pLp

dτ
+ 3

(
1− 1

p

)
ξ(τ) ‖g(τ)‖pLp

=

∫

R3

Q+
ẽτ
(g, g)gp−1 dw −

∫

R3

Q−(g, g)gp−1 dw. (5.4)

From Jensen’s equality, one has
∫

R3

Q−(g, g)gp−1 dw >

∫

R3

gp(τ, w)|w| dw ∀τ > 0. (5.5)

According to Corollary4.14there existκ > 0, θ ∈ (0, 1) and a constantK > 0 that does
not depend onτ such that
∫

R3

Qẽτ (g, g) g
p−1 dw 6 Kδ−κ‖g(τ)‖1+pθ

L1 ‖g(τ)‖p(1−θ)
Lp +δ ‖g(τ)‖L1

2
‖g(τ)‖p

Lp
1/p
, ∀δ > 0.

From conservation of mass‖g(τ)‖ ≡ 1, furthermore,M2 := supτ>0 ‖g(τ)‖L1
2
<∞ from

(3.17). Thus, using (5.4) and (5.5),

d ‖g(τ)‖pLp

dτ
6 pKδ−κ ‖g(τ)‖p(1−θ)

Lp + pM2 δ ‖g(τ)‖pLp
1/p

− µ(τ)‖g(τ)‖p
Lp
1/p

(5.6)

whereµ(τ) = min (1, 3(p− 1)ξ(τ)). Sinceξ(τ) → 0 asτ → ∞ for γ > 0, there exists
τ0 > 0 such that

µ(τ) = 3(p− 1)ξ(τ) =
3(p− 1)

γτ + 1 + γ
for anyτ > τ0.

Choosingδ = µ(τ)/(pM2) in (5.6) we get

d ‖g(τ)‖pLp

dτ
6 pK (pM2)

κµ(τ)−κ‖g(τ)‖p(1−θ)
Lp 6 C(γτ +1+γ)κ‖g(τ)‖p(1−θ)

Lp ∀τ > τ0
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for some positive constantC > 0. Integrating the above estimate, we conclude the exis-
tence of some constantC0 > 0 such that

‖g(τ)‖pLp 6 C0 (γτ + 1 + γ)
κ+1
θ ∀τ > τ0,

and (5.2) readily follows.

Regarding estimate (5.3) note that for anyR > 0,

Θ(τ) =

∫

|w|6R

g(τ, w)|w|2 dw +

∫

|w|>R

g(τ, w)|w|2 dw

> R2

∫

|w|>R

g(τ, w) dw > R2

(
1−

∫

|w|6R

g(τ, w)|w| dw
)

∀τ > 0,

From Holder’s inequality,
∫

|w|6R

g(τ, w)|w| dw 6

(
4

3
πR3

)1/p′

‖g(τ)‖Lp with the convention
1

p
+

1

p′
= 1.

Therefore, using (5.2), there exists a positive constantC > 0 independent ofR such that

Θ(τ) > R2
(
1− C R3/p′(1 + τ)κ0

)
∀R > 0, ∀τ > 0.

PickR = R(τ) > 0 such thatC R3/p′(1 + τ)κ0 = 1/2, then

Θ(τ) >
1

2
R2(τ) =

1

2

(
1

2C(1 + τ)κ0

)p′/3

∀τ > 0,

which gives (5.3) with κ1 = p′κ0/3. �

The generalized Haff’s law is a consequence Theorem3.7and Proposition5.1.

Theorem 5.2. Let f0 > 0 satisfy the conditions given by(2.8) with f0 ∈ Lp0(R3) for
some1 < p0 < ∞. In addition, assume thate(·) fulfills Assumptions3.1and4.9. Then,
the solutionf(t, v) to the associated Boltzmann equation(2.7) satisfies the generalized
Haff ’s law

c(1 + t)−
2

1+γ 6 E(t) 6 C(1 + t)−
2

1+γ , t > 0 (5.7)

wherec, C are positive constants depending only one(·) andE(0).
Proof. The upper bound in (5.7) has already been obtained in Theorem3.3. The proof
of the lower bound is a straightforward consequence of Theorem3.7and Proposition5.1.
Indeed, notice that iff0 ∈ L1(R3) ∩ Lp0(R3) for some1 < p0 < ∞, using interpolation,
we may assume without loss of generally thatp0 ∈ (1, 3). Recall that forγ > 0,

E(t) = V −2(t)Θ(τ(t))

whereV (t) = (1 + t)
1

1+γ andτ(t) is given by (3.18). SinceΘ(·) decays at least alge-
braically (5.3), one recognizes that there exists some constanta > 0 such thatE(t) >

a (1 + t)−µ with µ = 2+γκ1

1+γ
with κ1 being the rate in (5.3). The result follows from

Theorem3.7. The proof forγ = 0 is identical. �
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Example 5.3. For constant restitution coefficientγ = 0, we recover the classical Haff ’s
law of [15] proved recently in[19]:

c(1 + t)−2 6 E(t) 6 C(1 + t)−2, t > 0.

Example 5.4. For viscoelastic hard-spheres given in Example2.4 one hasγ = 1/5.
Thus, Theorem5.2provides the first rigorous justification of the cooling rateconjectured
in [10, 22]:

c(1 + t)−5/3 6 E(t) 6 C(1 + t)−5/3, t > 0.

Remark 5.5. Theorem5.2 shows that the decay of the temperature is governed by the
behavior of the restitution coefficiente(r) for small impact. The cooling of the gases is
slower for largerγ.

From the explicit rate of cooling of the temperature, one deduces the algebraic decay
of any moments of the solution to (2.7). Under the assumptions of the above Theorem5.2
thep−momentmp(t) defined in (3.4) satisfies

cp(1 + t)−
2p

1+γ 6 E(t)p 6 mp(t) 6 C̃p E(t)p 6 Cp(1 + t)−
2p

1+γ , t > 0. (5.8)

The positive constantscp, Cp, C̃p depend onp, mp(0), E(0) ande(·). The lower bound
is a direct consequence of Jensen’s inequality and (5.7) while the upper bound has been
established in Theorem3.7.

5.2. Application: Propagation of Lebesgue norms.We complement Proposition5.1
by proving the propagation ofLp-norms in the range1 6 p < 3 for the solutiong(τ, w)
satisfying the rescaled equation (5.1). Thus, the method introduced in the elastic case
[21] and later used in [19] for constant restitution coefficient is extended to the case of a
variable restitution coefficient satisfying Assumptions3.1and4.9.

Lemma 5.6. Assume that the initialf0 > 0 satisfies the conditions given by(2.8) with
f0 ∈ Lp(R3) for some1 < p < ∞ and letg(τ, ·) be the solution to the rescaled equation
(5.1) with initial datumg(0, w) = f0(w). Then, there exists a constantν0 > 0 such that

∫

R3

g(τ, w⋆)|w − w⋆| dw⋆ > max {ν0, |w|} >
ν0
2
〈w〉, ∀w ∈ R

3, τ > 0.

In particular,
∫

R3

gp−1Q−
e (g, g) dw >

ν0
2

∫

R3

gp(τ, w)(1 + |w|2)1/2 dw =
ν0
2
‖g(τ)‖p

Lp
1/p
.

Proof. The proof is a simple consequence of

Θmin := inf
τ>0

∫

R3

g(τ, w)|w|2 dw > 0.
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Indeed, sincef0 ∈ L1
3 the propagation ofp-moments in the rescaled variables implies

supt>0 ‖g(τ)‖L1
3
<∞. Then, forR > 0 large enough

∫

{|w|6R}
g(τ, w)|w|2 dw =

∫

R3

g(τ, w)|w|2 dw −
∫

{|w|>R}
g(τ, w)|w|2 dw

> Θmin −
1

R
sup
{τ>0}

‖g(τ)‖L1
3
> Θmin/2 > 0.

We conclude that,
∫

R3

g(τ, w)|w| dw >
1

R

∫

{|w|6R}
g(τ, w)|w|2 dw >

Θmin

2R
=: ν0 > 0.

Using this observation and Jensen’s inequality we obtain the result. �

Theorem 5.7.Assume the variable restitution coefficiente(·) satisfy Assumptions3.1and
4.9for somepositiveγ > 0. Assume thatf0 > 0 satisfies(2.8) with f0 ∈ L1

2(1+η)∩Lp
η(R

3)

for some1 6 p < 3 andη > 0. Then, the rescaled solutiong(τ, ·) to (5.1) with initial
datumg(0, w) = f0(w) satisfies

sup
τ>0

‖g(τ)‖Lp
η
<∞.

In particular,

sup
t>0

{
V (t)−3/p′ ‖f(t)‖Lp

}
= sup

τ>0
‖g(τ)‖Lp <∞.

Recall thatV (t) = (1 + t)
1

1+γ .

Proof. Multiplying equation5.1by gp−1(τ, w) 〈w〉ηp and integrating overR3 yields

1

p

d ‖g(τ)‖p
Lp
η

dτ
+ 3

(
1− 1

p

)
ξ(τ) ‖g‖p

Lp
η
=

∫

R3

Q+
ẽτ
(g, g)gp−1 〈w〉ηp dw−

∫

R3

Q−(g, g)gp−1 〈w〉ηp dw + ηξ(τ)

∫

R3

gp(τ, w)|w|2 〈w〉ηp−2 dw.

Using Lemma5.6one has
∫

R3

Q−(g, g)gp−1 〈w〉ηp dw >
ν0
2
‖g(τ)‖p

Lp
η+1/p

.

Moreover,Cη = supτ>0 ‖g(τ)‖L1
2+η

< ∞ by virtue of the propagation of moments in
self-similar variables (5.8). Applying Corollary4.14with δ = ν0

4C
,

1

p

d

dτ
‖g(τ)‖p

Lp
η
+
ν0
4
‖g(τ)‖p

Lp
η+1/p

6 K ‖g(τ)‖p(1−θ)

Lp
η

+ ξ(τ)

(
η − 3

p′

)
‖g(τ)‖p

Lp
η

∀τ > 0 (5.9)

for some uniform constantK. Sinceγ > 0, the mappingξ(τ) decreases toward zero, thus
(5.9) leads to the result. �
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Remark 5.8. We refer to[19, Theorem 1.3]for a proof of the caseγ = 0. Furthermore,
additional pointwise estimates allow to extend the above result top > 3 assuming higher
moments forf0. We refer the reader to[4] for further similar estimates.

6. HIGH-ENERGY TAILS FOR THE SELF-SIMILAR SOLUTION

We finalize this work studying the high-energy tails off(t, v) of the solution to (1.3).
For models with variable restitution coefficient the high energy tail is dynamic since gas
changes its behavior during the cooling process. This is noted with a dynamic rate in the
tail. Here again, we shall deal with the generalized hard-spheres collision kernel

B(u, σ) = |u|b(û · σ)
whereb(·) satisfies (2.6). We argue in the self-similar variables, thus it is convenient to
define the rescaledp–moments

mp(τ) =

∫

R3

g(τ, w) |w|2p dw, p > 0.

Notice that (5.8) readily translates into

cp 6 mp(τ) 6 Cp for τ > 0. (6.1)

The following Theorem generalizes [19, Proposition 3.1] to the case of a variable restitu-
tion coefficient.

Theorem 6.1(L1-exponential tails Theorem). LetB(u, σ) = |u|b(û · σ) satisfy(2.6)
with b ∈ Lq(S2) for someq > 1. Assume thate(·) andf0 fulfill Assumptions3.1and(2.8)
respectively. Furthermore, assume that there existsr0 > 0 such that∫

R3

f0(v) exp (r0|v|) dv <∞.

Letg(τ, w) be the rescaled solution defined by(2.10). Then, there exists somer 6 r0 such
that

sup
τ>0

∫

R3

g(τ, w) exp (r|w|) dw <∞. (6.2)

Consequently,

sup
t>0

∫

R3

f(t, v) exp (rV (t)|v|) dw <∞. (6.3)

Proof. The method of proof is carefully documented in [2, 9]. We sketch the proof divid-
ing the argument in 5 steps.

Step 1.Note that formally
∫

R3

g(τ, w) exp (r|w|s) dw =

∞∑

k=0

rk

k!
msk/2(τ),

for anyr > 0 and anys > 0. Hence, the summability of the integral is described by the
behavior of the functions

msk/2(τ)

k!
. This motivates the introduction of the renormalized

moments

zp(τ) :=
mp(τ)

Γ(ap+ b)
, with a = 2/s,



HAFF’S LAW FOR VISCOESLASTIC HARD SPHERES 37

whereΓ(·) denotes the Gamma function. We shall prove that the series converges for
somer < r0 and withs = 1 (i.e. a = 2). To do so, it is enough to prove that, for some
b < 1 andQ > 0 large enough, one haszp(τ) 6 Qp for anyp > 1 and anyτ > 0.

Step 2.Recall that, according to Lemma2.6, the estimates of Proposition2.7are inde-
pendent of the restitution coefficiente(·). In particular, they hold for the time-dependent
collision operatorQẽτ providing bounds which areuniformwith respect toτ . Specifically,

∫

R3

Qẽτ (g, g)(τ, w)|w|2p dw 6 −(1 − κp)mp+1/2(τ) + κp Sp(τ), ∀τ > 0

whereκp is the constant introduced in Lemma2.6and

Sp(τ) =

[ p+1
2

]∑

k=1

(
p
k

)(
mk+1/2(τ) mp−k(τ) +mk(τ) mp−k+1/2(τ)

)
.

Step 3.An important simplification, first observed in [9], consists in noticing that the
termSp satisfies

Sp(τ) 6 A Γ(ap+ a/2 + 2b) Zp(τ) for a > 1, b > 0,

whereA = A(a, b) > 0 does not depend onp and

Zp(τ) = max
16k6kp

{
zk+1/2(τ) zp−k(τ), zk(τ) zp−k+1/2(τ)

}
.

With such an estimate, the rather involved termSp is more tractable.

Step 4.Using the above steps and the evolution problem (5.1) satisfied by the rescaled
solutiong, we check that

dmp

dτ
(τ) + (1− κp)mp+1/2(τ) 6 κp Γ(ap+ a/2 + 2b)Zp(τ) + 2p ξ(τ)mp(τ)

where we used the fact that∫

R3

|w|2p∇w · (wg(τ, w)) dw = −2pmp(τ).

Using the asymptotic formula

lim
p→∞

Γ(p+ r)

Γ(p + s)
ps−r = 1,

the fact thatξ(τ) 6 1 andκp ∼ 1/p1/q
′
for largep, one concludes that there are constants

ci > 0 (i = 1, 2) andp0 > 1 sufficiently large so that

dzp
dτ

(τ) + c1 p
a/2z1+1/2p

p (τ) 6 c2 p
a/2+b−1/q′ Zp(τ) + 2p zp(τ) ∀τ > 0, p > p0.

We also used thatmp+1/2(τ) > m
1+1/2p
p (τ) for anyτ > 0 thanks to Jensen’s inequality.

Final step. We claim that if we choosea = 2 and0 < b < 1/q′ it is possible to find
Q > 0 large enough so thatmp(τ) 6 Qp. Indeed, letp0 andQ <∞ such that

c2
c1
p
b−1/q′

0 6
1

2
, and Q >

{
max
16k6p0

sup
τ>0

zk(τ), Q0,
16

c21
, 1

}
,



38 RICARDO J. ALONSO & BERTRAND LODS

whereQ0 is a constant such thatzp(0) 6 Qp
0. This constant exists by the exponential

integrability assumption on the initial datum. Moreover, since moments ofg are uni-
formly propagated, the existence of suchfiniteQ is guaranteed. Arguing by induction and
standard comparison of ODE’s, one proves thatyp(τ) := Qp satisfies forp > p0

dyp
dτ

(τ) + c1 p
a/2y1+1/2p

p (τ) > c2 p
a/2+b−1/q′ Zp(τ) + 2p yp(τ), yp(0) > zp(0)

therefore,yp(τ) > zp(τ) for anyp > p0. Since this is trivially true forp < p0 we obtain
that

mp(τ) 6 Γ(2p+ b)Qp, ∀p > 1, τ > 0.

From Step 1, this is enough to prove the Theorem. �

Example 6.2.For viscoelastic hard-spheresV (t) = (1 + t)5/3. Therefore,
∫

R3

f0(v) exp (r0|v|) dv <∞ =⇒ sup
t>0

∫

R3

f(t, v) exp
(
r(1 + t)5/3|v|

)
dv <∞

for somer < r0. In particular, using the terminology of[9], f(t, v) has a (dynamic)
exponential tail of order 1.

APPENDIX A: V ISCOELASTIC HARD-SPHERES

In this Appendix we prove that Assumptions3.1 are met by the restitution coefficient
e(·) associated to the so-called viscoelastic hard-spheres as derived in [22] (see also [10,
Chapter 4]). In fact, we prove a more general result for the hard-spheres collision kernel

B(u, σ) =
|u|
4π

∀u ∈ R
3, σ ∈ S

2.

Recall thatΨe was defined in (3.1) as

Ψe(x) =
1

2
√
x

∫ √
x

0

(
1− e(z)2

)
z3 dz, x > 0.

Lemma A. 1. Assume thate(·) satisfies Assumption2.1 and that the mappingr > 0 7→
e(r) is decreasing. Then, the associated functionΨe defined in(3.1) is strictly increasing
and convex.

Proof. Sincee is decreasing,e′(r) 6 0 for anyr > 0. Heree′(·) denotes the derivative of
e(·). Define

Φ(x) :=
1

x

∫ x

0

(
1− e2(z)

)
z3 dz, x > 0.

Note thatΨe(·) is convex if and only ifxΦxx(x) − Φx(x) > 0 for anyx > 0 whereΦx

andΦxx denote the first and second derivatives ofΦ respectively. A simple calculation
shows that

xΦxx(x)− Φx(x) = −2x3e′(x)e(x) +
3

x2

∫ x

0

(1− e2(z))z3 dz, ∀x > 0.

Sincee′(x) 6 0 ande(·) ∈ (0, 1] one concludes thatxΦxx(x)−Φx(x) > 0 for anyx > 0.

Similarly, sincee′(·) 6 0 the mappingz > 0 7→ (1 − e2(z))z3 is nondecreasing, thus,
Φx(x) > 0 for anyx > 0. This implies thatΨe(·) is strictly increasing over(0,+∞). �
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For the visco-elastic hard-spheres, as derived in [22], the restitution coefficiente is
solution of the equation

e(r) + α r1/5e(r)3/5 = 1 ∀r > 0 (A.1)

whereα > 0 is a constant depending on the material viscosity. It was proved in [1, p.
1006] that, on the basis of (A.1), Assumptions2.1 are met. From equation (A.1), one
deduces that

lim
r→0+

e(r) = 1, and e(r) ≃ 1− αr1/5 for r ≃ 0

which means that Assumption3.1 (1) is met. Furthermore, equation (A.1) also implies
thate is continuously decreasing. According to Lemma A.1, e(·) satisfy Assumptions3.1.
Moreover, it is easy to deduce from (A.1) that Assumption4.9 is satisfied.

Example A. 1. For monotone decreasing restitution coefficient introduced in Example
2.3, Assumptions3.1are also met by virtue of the above Lemma. In such a case, according
to (2.2), the cooling of the temperatureE(t) is

E(t) = O
(
(1 + t)−

2
1+η

)
as t→ ∞.
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