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FREE COOLING AND HIGH-ENERGY TAILS OF GRANULAR GASES
WITH VARIABLE RESTITUTION COEFFICIENT

RICARDO J. ALONSO & BERTRAND LODS

ABSTRACT. We prove the so-called generalized Haff's law yielding tpgimal alge-
braic cooling rate of the temperature of a granular gas destby the homogeneous
Boltzmann equation for inelastic interactions with non stant restitution coefficient.
Our analysis is carried through a careful study of the irdisigstem of moments of the
solution to the Boltzmann equation for granular gases aecigel.? estimates in the self-
similar variables. In the process, we generalize sevesaltseon the Boltzmann collision
operator obtained recently for homogeneous granular geiie€onstant restitution co-
efficient to a broader class of physical restitution coedfits that depend on the collision
impact velocity. This generalization leads to the so-chllé-exponential tails theorem
for this model.

1. INTRODUCTION

1.1. General setting. Rapid granular flows can be successfully described by thizBol
mann equation conveniently modified to account for the gndrgsipation due to the
inelasticity of collisions. For such a description, onealguconsiders the collective dy-
namics of inelastic hard-spheres interacting throughricallisions [LQ, P73, 4. The
loss of mechanical energy due to collisions is charactedmethe so-called normal resti-
tution coefficient which quantifies the loss of relative natwelocity of a pair of colliding
particles after the collision with respect to the impacbegly. Namely, ifv andv, denote
the velocities of two particles before they collide, theispective velocities’ andv’, after
collisions are such that

(v -n)=—(u-n)e, (1.1)

where the restitution coefficientis such tha) < ¢ < 1 andn € S? determines the
impact direction, i.en stands for the unit vector that points from thgarticle center to
thev,-particle center at the instant of impact. Here above

U= —1,, u =0 -,

denote respectively the relative velocity before and aftdlision. The major part of the
investigation, at the physical as well as the mathemat&adl§, has been devoted to the
particular case of a constant normal restitution. Howeagdescribed in the monograph
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2 RICARDO J. ALONSO & BERTRAND LODS

[LQ], it appears that a more relevant description of granulaegahould deal with a
variable restitution coefficient(-) depending on the impact velocity, i.e.

e :=e(|u-nl).

The most common model is the one corresponding to viscaielesd-spheres for which
the restitution coefficient has been derived by SchwagerRissthel in [f4]. For this
peculiar modele(-) admits the following representation as an infinite expamseries:

e(ju-7) =1+ (~Dfapfu-a"°,  weR’ Aes? (1.2)
k=1

whereq;, > 0 for anyk € N. We refer the reader td{[}, P7] for the physical considerations
leading to the above expression (see also the Appendix Aefaaral properties of(-) in
the case of visco-elastic hard-spheres). This is the patheixample we have in mind for
most of the results in the paper, though, as we shall see,pproach will cover more
general cases including the one of constant restitutiofficiaat.

In a kinetic framework, behavior of the granular flows is ddxsad, in the spatially situ-
ation we shall consider here, by the so-called velocityithstion f (v, t) which represents
the probability density of particles with velocityc R? at timet > 0. The time-evolution
of the one-particle distribution functiofit, v), v € R3, ¢ > 0 satisfies the following

Oif(t,v) = Qe(f, )t 0), [t =0,0)= folv) (1.3)

whereQ.(f, f) is the inelastic Boltzmann collision operator, expresshrgeffect of bi-
nary collisions of particles. The collision operatdr shares a common structure with the
classical Boltzmann operator for elastic collisifid[PJ] but is conveniently modified in
order to take into account the inelastic character of thisstmh mechanism. In particular,
Q. depends in a very strong and explicit way on the restitutmeffcciente. Of course,
for e = 1, one recovers the classical Boltzmann operator. We postfm8ectior.] the
precise expression @.. Due to the dissipation of kinetic energy during collisipinsthe
absence of external forces, the granular temperature

E(t) = /RS ft,v)|v|*dv

is continuously decreasing and is expected to go to zeron@gines to infinity, expressing
thecooling of the granular gases

Determining the precise rate of decay to zero for the grartataperature is the main
goal of the present work. The asymptotic behavior for thengla temperature was
first explained in[[4] by P. K. Haff at the beginning of the 80'’s for the case of canst
restitution coefficient, thus, it has become standard terr&f this behavior simply as
Haff’s law.

The mathematical study of Boltzmann models for granularglawas first restricted to
the so-called inelastic Maxwell molecules where the doligate is independent of the
relative velocity [, B, B, L1, [L3]. Later, the mathematical investigation of hard-spheres
interactions was initiated irf[f] for diffusively heated gases and continued in a series
of papers[[1, where the first rigorous proof of the Haff’s law was presenie the
case of constant restitution coefficient. Additional relevwork in the existence and
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stability of the homogeneous cooling state can be found# Q. We refer to P4
for a mathematical overview of the relevant questions astar@ by the kinetic theory of
granular gases and complete bibliography on the topic.

From the mathematical viewpoint the literature on grangkses withvariable resti-
tution coefficienis rather limited. However, the Cauchy problem for the hoer@pus
inelastic Boltzmann equation has been studied in greatl detd full generality in [L7],
including the class of restitution coefficients that we agalthg with in this paper. For
the inhomogeneous inelastic Boltzmann equation the titezas yet more scarce, in this
respect we mention the work by one of the auth@liistliat treats the Cauchy problem
in the case of near-vacuum data. It is worthwhile mentionivag the scarcity of results
regarding existence of solutions for the inhomogeneous isasxplained by the lack of
entropy estimates for the inelastic Boltzmann equatiaus ttvell known theories like the
DiPerna-Lionsrenormalized solutionare no longer available. More complex behavior
that involve boundaries, for instance clusters and Maxdethons, a re well beyond of
the present techniques.

1.2. Main results and methodology. Physical considerations and careful dimensional
analysis led P. K. Haff[] to predict that, forconstant restitution coefficierthe temper-
ature&(t) of a granular gas should cool down at a quadratic rate:

E(t) =0 (t7?) ast — oco.

Similar considerations led Schwager and PosdidItpb conclude that, for the restitution
coefficient associated to the visco-elastic hard-sphfrdy ¢he decay should be slower
than the one predicted by Haff, namely at an algebraic raipgstional tot—°/3. These
considerations are precisely described in the main re$ahi® paper where the key in-
tuitive fact is that the decay rate 6ft) is completely determined by the behavior of the
restitution coefficient(|u - n|) for small impact velocity (Assumptio(t) in B-1). Pre-
cisely, our result is valid for restitution coefficient suittat there exist some constants
a > 0 andy > 0 such that

e(Jlu-n|)~1—alu-n|” for |u-n|~0
and reads as follows:

Theorem 1.1. For any initial distribution velocityf, > 0 satisfying the conditions given
by @3 with f, € L (R®) for somel < p, < oo, the solutionf(¢,v) to the associ-
ated Boltzmann equatidff.]) satisfies the generalized Haff’s law for variable restibuti
coefficient(-) fulfilling Assumptiong.Jandf.g;

c(14+1) T <EBKCA+1) T,  t>0 (1.4)
where&(t) = [s f(t,v)[v]*dv and ¢, C are positive constants depending only @)
and&(0).

We recover with Theorerfi.] the optimal decay for constant restitution coefficient
(v = 0) given in [[9] and the one predicted for viscoelastic hard-sphefes: (1/5) in
[E3]. The method of the proof has similarities to that of the ¢ansrestitution coefficient
[[L9] but technically more challenging.
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The main tools to prove Theordin] are the following:

The study of the moments of solutions to the Boltzmann eqgoatsing a generaliza-
tion of the Povzner’s lemma developed [j.[

Precisel? estimates, in the same spirit ], of the solution to the Boltzmann equa-
tion forp > 1.

For the previous item, the analysis is understood in an siaseey usingescaled solu-
tionsto (L.3) of the form

f(t,0) = V(£)’g(r(t), V(t)v)

wherer(-) and V' (-) are fixed time-scaling functions to be crafted dependinghupo
the restitution coefficient. In theelf-similar variableqr, w) the functiong(r, w) is a
solution of an evolution problem of the type

87'9(7—7 ’LU) + £(7->Vw ’ (wg(Tv w)) = Qg("r) (g, g) (15)

for some¢ () depending on the time scate The collision operatoQz- (g, g) is as-
sociated to a time-dependent restitution coefficign} (see Sectioff-3for details). In
this respect we notice that one notable difference witheetsip the case of a constant
restitution coefficient treated ifif)] is that the rescaled collision operator depends on
the (rescaled) time, leading to anon-autonomous problefar g. This is the main
reason why the construction of self-similar profjlendependent of obtained in[[Y]
(Homogeneous Cooling State) is not valid for non constastittgion coefficient.

Let us explain in more details our method of proof:

1. We start proving in Sections 2 and 3 an upper bound for thaydef the energy. This
shows that, for restitution coefficients satisfyid, the cooling of the temperature
is at least algebraic More precisely, under suitable assumptions on the réstitu
coefficiente(-), we exhibit a convex and increasing mappifig such that

%S(t) < =W (E(1)) Yt >0,
which leads to an upper bound f6(t) of the type

ER) <O+ V=0

for some positive constant > 0.

2. The lower bound for the free cooling is much more intridatestablish and consists
in proving that the cooling rate found above is optimal,, itbere exists: > 0 such
that

E() > c(l+)" ™ V>0 (1.6)

A careful study of the moments of the solution [io3) shows that it suffices to prove
a similar algebraic lower bound with some arbitrary rate, {I.8) will hold if there
exists\ > 0 andc > 0 such that

Ety=c(l+t)™  Vt=0.

These two points are proved in the last part of Section 3.
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3. To prove that the lower bound with some unprescribed kat®lds we use, as in
[LY], preciseL? estimates){ > 1) for solutions to in self-similar variables. We
craft a correct time scaling functiongt) and V' (¢) such that[[.) is equivalent to
O(7(t)) = c (here®(-) denotes the second momentg®f Once this scale is fixed,
the functiong(r, w) satisfies the rescaled Boltzmann equatipr)(with £(7) — 0
asT — oo. This is a major difference with the constant restitutioef@icient case
where¢(7) = 1. This technical difficulty is overcome proving that thé-norms of
g(7) behaves at most polynomially with respecttd~or technical reasons which are
peculiar to the inelastic interactions, noticed [}, [we will restrict ourself to study
LP-norms in the rangg € [1, 3). The details can b e found in Section 5.

The derivation of precisé? estimates for the solutiofn(r, w) to (L.}) requires a careful
study of the collision operato®,. and its regularity properties. We present in Section
4 a full discussion of the regularity and integrability peogies of the gain part of the
collision operatorQ}; . associated to a general collision kert&hi, o) = ®(|ul)b(t - o)
satisfying Grad’s cut-off assumption (see Section 2 fomilgdin). This Section is divided

in five subsections starting with the Carleman represamaif the gain operato@ge.

It is well-known [, P27, 25, [[§] that such a representation is essential for the study of
regularizing properties of the gain opera@E,e when smooth assumptions are imposed
on the kernelB(u, o). Our contribution in Sections 4.3 and 4.4 is to extend theteri
theory to the inelastic case with variable restitution Gioeint. Since the estimates of
Section 4 will be applied for solutions written in self-slarivariables, we make sure that
such estimates aradependenof the restitution coefficient. This allows us to overcome
the technical problem of the time dependence of the gainabpem the self-similar
variables. Additional convolution-like inequalitie§, 23] are derived in subsection 4.2
assuming minimal regularity of the angular kerhg).

The final part of this work is devoted to the proof of propagratf exponential !-tails
where the full power of the Povzner's lemma is exploited. Mo€the argument with a
minor adaptation is taken frorff[. This important result is presented in the final Section
for convenience and not because the machinery of Sectiond 8 & needed to prove it.

Theorem 1.2(L'-exponential tails Theoren). Let B(u, o) = |u|b(u- o) be the collision
kernel withd(-) satisfying(@.9) and b(-) € L%(S?) for someq > 1. Assume that the
variable restitution coefficient(-) satisfies Assumptiofis]. Furthermore, assume that
fo satisfieq2.9), and that there existg > 0 such that

/ fo(v) exp (ro|v]) dv < 0.
R3
Then, there exists some< r, such that

sup [ f(t,v)exp (rV(t)|v]) dw < oc. (1.7)

t20 JR3

The functionV/(¢) is the appropriate scaling, depending solely on the restitucoeffi-
cient, given inB.16).
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1.3. Notations. Let us introduce the notations we shall use in the sequebulirout the
paper we shall use the notation = /1 + | - |2. We denote, for any € R, the Banach
space

L, = {f : R® — R measurable | f|.: := /]RS |f ()] (v)"dv < +oo}.

More generally we define the weighted Lebesgue spg¢R?) (p € [1,+00), n € R)
by the norm

1/p
e = | [ 1F0F o]~ 1<p<oc

while || f|| oo (rs) = ess — sup,cps| f(v)[(v)" for p = oo.
For anyk € N, we denote byi7/* = H*(R?) the usual Sobolev space defined by the

norm
1/p

e = | D 119 F 117
il<k

whered? denotes the partial derivative associated with the mottek; € N. Moreover
this definition can be extended 0’ for anys > 0 by using the Fourier transforch. The
binomial coefficients for non-integer> 0 andk € N are defined as

(1)t s ()

2. PRELIMINARIES

2.1. The kinetic model. We assume the granular particles to be perfectly smooth hard
spheres of mass, = 1 performing inelastic collisions. Recall that, as expldimne the
Introduction, the inelasticity of the collision mechanigsrcharacterized by a single pa-
rameter, namely the coefficient of normal restitutibrl e < 1 which we assume to be
non constantMore precisely, letv, v,) denote the velocities of two particles before they
collide. Their respective velocities after collisionlsand/ are given, in virtue of[[.])

and the conservation of momentum, by

, 1+e o~

1
vV =v— (u-n)n, v, = v, + € - -)m

(u-n)n, (2.1)

where the symbol: stands for the relative velocity = v — v, andn is the impact
direction. From the physical viewpoint, a common approxioraconsists in choosing
as a suitable function of the impact velocity, ie:= e(|u - n|). The main assumptions
on the functiore(+) are listed in the following (se€]):

Assumptions 2.1.Assume the following hold:

(1) The mapping € R, — e(r) € (0, 1] is absolutely continuous.
(2) The mapping € R, — 9J(r) := r e(r) is strictly increasing.
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FIGURE 1. Restitution coefficient for viscoelastic hard-spheriegmg by
Eq. @3 with a = 0.12.

Further assumptions on the functief) shall be needed later on. Given assumption
(2), the Jacobian of the transformatighl) can be computed as

o(v',v)) de dv

Al T = |u-7] + Ju- 0= (lu-7]) = 7 (|ju-n[) > 0.

dr

In practical situations, the restitution coefficiert) is usually chosen among the follow-
ing three examples:

Example 2.2(Constant restitution coefficien). The most documented example in the
literature is the one in which

e(r) =ep € (0,1] foranyr > 0.

Example 2.3(Monotone decreasing. A second example of interest is the one in which
the restitution coefficient(-) is a monotone decreasing function:

1
e(r) = 14 arm

wherea > 0, n > 0 are two given constants.

Vr >0 (2.2)

Example 2.4 (Viscoelastic hard-spheres This is the most physically relevant model
treated in this work. For such a model, the properties of tstitution coefficient have

been derived iffL(, P7] where representatioffL.d) is given. It also accepts the implicit

representation

e(r) + ar'Pe(r)¥® =1 (2.3)
wherea > 0 is a suitable positive constant depending on the matersalogity (see Figure
1).
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In the sequel, it shall be more convenient to use the follgvaquivalent parametriza-
tion of the post-collisional velocities. For distinct veibesv andv,, letu = i be the
relative velocity unit vector. The change of variables

~

o=1—2(7 A)ieSs?

provides an alternative parametrization of the unit spEéfer which the impact velocity

reads
. A 1—-u-0
w7l = |ul[u- 7] = |ul\ —F—

Then, the post-collisional velociti€s’, v/ ) given in €.J) are transformed to

u — |ulo
2

u— |ulo
2 Y

vV=v-7 v, =wv,+ (2.4)

where

o= 1y =52 = 5 e (1),

In this representation, theeak formulationof the Boltzmann collision operata® .
given a collision kerneB(u, o) reads

1

[ enrouwan=3 [ fegto)dnlilen) dude (@8

for any suitable test function = ¢ (v). Here

Anlulv,0) = [

SQ

(40 + 0001) = 0(0) = (0 ) B, do

with o/, v, defined in2.4). We assume that the collision kerre{u, o) takes the form
B(u,0) = ®(|ul)b(@ - o)

whered(-) is a suitable nonnegative function knowrpeential while theangular kernel
b(+) is usually assumed belonging£d(—1, 1). For any fixed vectoi, the angular kernel
defines a measure on the sphere through the mappin§* — b(u - o) € [0, oc] that we
assume to satisfy the renormaliz8dad’s cut-off hypothesis

Hb”Ll(SQ) =27 ”bHLl(fl,l) = 1. (2.6)

The most relevant model in our case is hard-spheres whicbsmond teb(|u|) = |u| and
b(u- o) = ;. We shall consider thgeneralized hard-spheres collision kernel for which
®(|u|) = |u| and the angular kernel is non necessarily constant bufygatgP.6). For
the particular model of hard-spheres interactions, we lsigignote the collision operator

QB,e by Qe-
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2.2. Onthe Cauchy problem. We consider the following homogeneous Boltzmann equa-
tion

f0,v) = fo(v), veR3
where the initial datunf, is anonnegativerelocity function such that

{atf(t, v) = Qp.(f. f)(tv) t>0,veR’ (2.7)

fo(v)dv =1, fo(w)vdv =0 and / fo()|v]? dv < oo. (2.8)

There is no loss of generality in assuming the two first moseanditions inff.§) due to
scaling and translational arguments. We say that a nonmegat f(t,v) is a solution
to @B if f € C([0,00), Ly(R?)) and

[T [ (50000 + @n. s Dttt o= [ uwwo.0a

holds for any compactly supportede C*([0, oo) x R?). Under the Assumptior{z ], the
assumption$il andH2 of [[Lg] are fulfilled (with the terminology off[g], we are deal-
ing with a non-coupled collision rate and, more preciseighuhe so-calledyeneralized
visco-elastic modelsee [[g], p. 661). In particular,[I§, Theorem 1.2] applies direclty
and allows us to state:

Theorem 2.5(Mischler et al.). For any nonnegative velocity functigi satisfying(2.9),
there is a unique solutiofi = f(¢,v) to (2.1). Moreover,

f(t,v)dv =1, / f(t,v)vdv =0 Vit > 0. (2.9)

2.3. Self-similar variables. Let us discuss precisely the rescaling using self-sim#dair v
ables. Letf(¢,v) be the solution tof{.]) associated to some initial datufy satisfying
(-9 and collision kernel

B(u,0) = ®(|ul)b(@ - o)

with b(-) satisfying P.6). The rescaled solution= g(, w) is defined such that

f(t,0) = V(£)’g(r(t), V(t)v) (2.10)

wherer(-) andV'(-) are time-scaling functions to be determined solely on theabier
of the restitution coefficient in the low impact velocity reg. Since these are scaling
functions they are increasing and satisf9) = 0 andV(0) = 1. One has

1= f(t,v)dv = / g(7(t), w)dw vVt >0
R3 R3

andg(0,w) = fy(w). Furthermore, some elementary calculations show thatthetibn

g(7, w) satisfies

V() 2Qu(f, N)(t,0) = 7OV (1), g(r,w) + V(1) Vi - (wy(T, w)) e (2.11)
r=7(t)
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where the dot symbol denotes the derivative with respett Moreover, the expression
of the collision operator in the self-similar variables is

v

V2 0n (1 0) (1715 ) = On (0.9)(7 (010

where the rescaled collision kerngl is given by

Bry(u,0) :=V(t)® <%) b(u-o).

The rescaled restitution coefficiefnit has been defined by

r
e, @ (rt)—e; =e|l——] forr>0, t>0.
et (rt) erw(r)=e (V(t)) r
Since the mapping € Rt — 7(¢) € R" is injective with inverse,, one can rewrite
equation in terms ofr only. Thus,g(7,w) is a solution to the following rescaled
Boltzmann equation:

M7)0-g(T,w) + &(T)Vy - (wg(T,w)) = OB, & (9,9)(T,w) V7 >0  (2.12)
with
AC) =FCOVECH) and &) =V(C(),

and model parameters

[ul R N r
B (u,0) =V (¢(1))® (7 b(u-o) and e, (r)=e| ————|. (2.13)
V(¢(r)) V(¢(r))
Notice that, for generalized hard-spheres interactioes (vheneve(|u|) = |u|) one
hasB, = B. For true hard-spheres interactions, ib¢.) = ﬁ one simply denotes the
rescaled collision operator l&y-_. In addition, observe that the rescaled operator depends
on time, and therefore, is a solution to a non-autonomous problem.

2.4. Povzner-type inequalities. We extend in this section the results Bf pnd [L9 to
the case of variable restitution coefficient satisfyfindy We consider a collision kernel of
the form

B(u,0) = ®(Jul)b(u - o),
with angular kerneb(-) satisfying the renormalized Grad’s cut-off assumptd), Let
f be anonnegativdunction satisfying[.9) and« (v) = ¥(|v|?) be a given test-function
with ¥ nondecreasing and convex. Then, BfH)Y leads to

[ Qur @i dr =3 [ )0 Anfol(w.0.) dv.do
with
Ap [i)(0,02) = @(Jul) (Ah, [)(0,0.) = A5, [W](v,v.))
where

Af [T (v, 0,) = / (W) + W (J2) b(@ - o) do.
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Using @.8) we also have,

A [0.0) = [ (0(0) + 0(0)) (@~ @) do = (W0 + B(Ju ).

Following [H], we define the velocity of the center of madss= Y 50 that
v’:U+%w, vi:U—%w with  w = (1 — p)u+ fo.

Recall that for any vector € R?, we sett = ﬁ Whene, or equivalentlys, is constant,
the strategy offf] consists, roughly speaking, in performing a suitable gesof unknown

o — @ to carefully estimatelge[z/z]. For variables, such strategy does not apply directly.
Instead, observe that| < 1 and, sincel is increasing, one has

[ul®

2 o~
W)+ 0ol < v (0P + B aiog o) + o (0P B - g o)

:\I]<E1+§2U-w> +\I[<E1—£2U~w>

where we have sdf := |v]? + |v,|? = 2|UJ* + % and¢ = 2! Since(-) is convex
the mapping

Uo(t) = V(x +ty) + U(z — ty)

is even and nondecreasing fob 0 andz,y € R (see []). Therefore, using thag < 1

one gets
(') + ¥(Jeif?) < w(EL%}£>+m<E£%§£>. (2.14)

In the case thal - o > 0 it follows that
’(A]-w’ — ’(1—6)[7~ﬂ+ﬁ(7-a‘ <(1—B)+80-0,

thus, using the fact thak(¢) is even and nondecreasing for> 0, we conclude from

(13 that
WW”)+WWH)\W<E2_ﬁ;m%a>+W<E£:%iﬁ>_

WhenU - ¢ < 0 a similar argument shows that

(Jo'?) + W (o) < w<E2‘5;“”“>+@<Eétng>,
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Hence, setting(s) = b(s) + b(—s) and using these last two estimates with the change of
variabless — —o we get

[ 9 _ [ - _ B0 - _
A [0 (0,0,) </ g (p2= 00U Ly (PP 9 G o) o
’ {U-0>0} | 2 2
</ U Ew + U Eﬂ b(@ - o) do,
{0020} | 4 4
(2.15)

where the second inequality can be shown writing

2o A0 L (5-2(-00)) and

2 2 2
B—BU'U:%_G_ﬁ(l_ﬁ.g))

2 2 2

The term in parenthesis is maximized wheg- 1/2, thus the monotonicity of, implies
the result.

Next, we particularize the previous estimates to the ingrdrtasel (x) = zP. This
choice will lead to the study of the moments of solutions.

Lemma 2.6. Letq > 1 be such thab € L(S?). Then, for any restitution coefficieat-)
satisfying Assumptiorfs] and any realp > 1, there exists an explicit constarj > 0
such that

O[u) T Apell - PI(0,00) < (1 = k) ([0 + [v.f*)
+ Kp [(|U|2 + |U*|2)p - |U|2p - |U*|2p} . (2.16)
This constant, has the following properties:
(1) k1 < 1.
(2) Forp > 1the mapp — &, is strictly decreasing. In particular, < 1 forp > 1.
(3) kp, = O (1/p'/7) for large p, wherel/q + 1/¢ = 1.
(4) For ¢ = 1, one still hass, N\, 0 asp — oo.

Proof. Let ¥,,(x) = 2”. From @.19), one sees that
AJEr;,e[\I’p] (v, v0) < Ky BP

where we recall thak = |v|? + |v,|* and we set

340 - 1-U -
fip:sup/ v, 2rUe +v, e
OaJUo0>0 4 4

It is clear that the above inequality yield319). Let us prove thak, satisfies the afore-
mentioned conditions. First, we use Holder inequality titam

/ 1/q
1 q
3+ s 1—3s 167T”b”Lq(SZ)
Rp < 47 ”bHLq(SQ) (/_1 |:\Ilp < 4 ) + \I]p < 1 >:| dS) < —(q’p+ 1)1/(1/ .

b(d - o) do. (2.17)
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This proves thak, is finite and also yields item (3) fay > 1. For items (1) and (2)
observe that the integral in the right-hand-side[) is continuous in the vecto@, u €
S?. This can be shown by changing the integral to polar cootdmarhus, the supremum
in these arguments is achieved. Therefore, there @xlstao € S? (depending on the
angular kerneb) such that

3+ U, - 1— 0 - -
Ky = /A v, (TOO') +, <TOU>] by - o) do.
{U()-U}O}

A simple computation with this estimate shows that= [|b[| .., = 1. Moreover, the
integrand is a.e. strictly decreasingpaisicreases and this proves (2). Finally,pet> oo
in this expression and use Dominated convergence to com{)dor the case = 1. [

The above lemma is the analogousf@fCorollary 1] for variable restitution coefficient
e(+) and it proves that the subsequent resultgghEktend readily to variable restitution
coefficient. In particular], Lemma 3] readk

Proposition 2.7. Let f be a nonnegative function satisfyi@9). For anyp > 1, we set

iy = / (@)l .

Assume that the collision kernBl(u, o) = |u|b(u - o) is such thab(-) satisfieqP.8) with
b(-) € L(S?) for someg > 1. For any restitution coefficient(-) satisfying Assumptions
E-1and any reab > 1, one has

/3 Qp.(f, f)(v)|v|2p dv < —(1 = Kp)mypr12 + £y Sp, (2.18)
R
where,
(B3]
Sp = Z < z ) (Mis1j2 Mp—p + Mk Mp_eg12)
k=1

[p—;‘l] denoting the integer part (ﬁg—l andx, being the constant of Lemrfiag.

Inequality was introduced inf]] because the terrf, involves only moments of
orderp — 1/2. Thus, the above estimate has important consequences progeggation
of moments for the solution t(7) (see Sectioff for more discussion).

3. FREE COOLING OF GRANULAR GASES GENERALIZED HAFF'S LAW

We investigate in this section the so-called generalldaft’s law for granular gases
with variable restitution coefficientMore precisely, we aim to derive the exact rate of
decay of the temperatugt) of the solution to Eq.H.7). In this section, wexclusively
study the generalized hard-spheres collision kernel.

B(u,0) = |ulb(u - o)

INotice that, though stated for hard-spheres interactiong {ﬁ Lemma 3] applies to our situation
thanks to the above Lemrfiag and f], Lemma 1].
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whereb(-) satisfies[f.§) but generalization to the so-called variable hard-sphierterac-
tions (i.e. ®(Ju|) = |u|® for s > 0) is easy to handle. Lef, be a nonnegative velocity
distribution satisfying[f.9) and letf (¢, v) be the associated solution to the Cauchy prob-
lem @.7). We denote its temperature Byt),

E(t) = /R F(t,0)[o]? dv.

The conditions[f.g) implies thatsup,., £(t) < oo. Indeed, the evolution of (¢) is gov-
erned by

FEO = [ Qurntaian =5 [ vl

3xR3
X / <|v'|2 + L2 — |v* - \v*|2) b(u-o)do du,dv
S2

where we appliedd3) with ¢(v) = |v|%. One checks readily that

1—u-0o l1—u-o
2+ olf? = [of? — fouf? = —Juf? 2= (1—e2<|u|\/ : ))

so that

FEO==3 [ vl dvdv,

dt 2
1—7- 1—7-

x/ “ 0'(1_62 <\uw U “))b(a.o—)do—.
e 4 2

We compute this last integral ovBt (for fixed v andv,) using polar coordinates to get

1—7- 1—7-
|u|3/ YT e |yl YOV ) b(@-o)do =
e 8 2

2rluf / (1= (uly)) b(1 — 257) dy = W (Juf’)

where we have defined
1
W, (r):= 27‘("/‘3/2/ (1—e(vrz)?) b (1 —22%) 2% dz, Vr > 0. (3.1)
0
In other words, the evolution of the temperat@éie) is given by

ié:(t) = —/ ft,v)f(t,v)¥,(Jul?) dvdo, <0, t>0.
dt R3XR3

In addition to Assumptiong.], we assume in the rest of the paper that the restitution
coefficiente(-) satisfies the following:

Assumptions 3.1.Assume that the mapping— e(r) € (0, 1] satisfies Assumptiofis]
and
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(1) there existv > 0 and~ > 0 such that
e(r)y~1—ar” for r~0,

(2) liminf, ,, e(r) = e < 1,

(3) b() € LI(S?) for someg > 1, and

(4) the functionr > 0 — W.(r) defined in(BJ) is strictly increasing and convex
over (0, +00).

Remark 3.2. For hard-spheres interaction(u - o) = -, thus, ¥, reduces to

W (r) 2\/_/ 1—6 ydy, r > 0.

We prove in the Appendix that Assumptifn$ are satisfied for the viscoelastic hard-
spheres of Examp[4 with v = 1/5. More generally, in the case of hard-spheres inter-
actions, assumption (4) is fulfilleddf-) is continuously decreasing (see Lemmdlln
Appendix A). For constant restitution coefficiefit) = e,, these assumptions are trivially
satisfied.

3.1. Upper bound for £(t). We first prove the first half of Haff’'s law, namely, the tem-
peraturef(t) has at least algebraic decay.

Proposition 3.3. Let f, be a nonnegative velocity distribution satisfyi@¥) and let
f(t,v) be the associated solution to the Cauchy prob{gnj) where the variable restitu-
tion coefficient satisfies Assumptighg. Then,

%S(t) < =W (E(1)) Vi > 0.
Moreover, there exist§' > 0 such that
EH) < C(1+1) Vit > 0. (3.2)
Proof. Recall that the evolution of the temperature is given by
FEO=— [ peoste) e, 1z0. @3

whereu = v — v,. Since (] - |?) is convex according to Assumpti§h] (2) and
f(t,v,) dv, is a probability measure ov&®, Jensen’s inequality implies

) = W(|v*)

where we used9). Applying Jensen’s inequality again we obtain

/ftv (o) (/ftv|v\2dv)

d
3£ < —Te(Et) V=0

ft, v)W,(Jul?) dv, > P, <
RS

v—/ v f(t, vy) do,
RS

and therefore,
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Note that¥.(-) is strictly increasing withim, .o ¥.(z) = 0, this ensures that
lim £(t) = 0.
t—o0
Moreover, according to Assumptiofis] (1), it is clear from B.]) that
v, (r) ~ CL,J:SJFT7 for x>0,

where the constant can be takertgs= 2ra fol y¥Tb(1—2y?) dy < oo. Since€(t) — 0,
there exists$, > 0 such thatw.(E(t)) > %Cﬁ(t)* for all ¢t > ¢, which implies that

d C 3+~
— < —= = > 1.
dtS(t) <=5 E(t) vVt >t

This proves[§.2) O

Example 3.4.In the case of constant restitution coefficie(t) = ¢, € (0,1) for any
r > 0, for hard-spheres interactions, one has

1 — 2
W (z) = Teox?,/g

Thus, one recovers froif8.2) the decay of the temperature established from physical
considerations (dimension analysis)[ij] and proved irf[L3], namely£ (t) < C(1+t)2
for larget.

Example 3.5. For the restitution coefficient(-) associated to viscoelastic hard-spheres
(see Examplg.9), one hasy = 1/5, thus, the above estimafg.]) leads to a decay of the
temperature faster thafi + ¢)=*® which is the one obtained {f£7] (see alsd[L{]) from
physical considerations and dimensional analysis.

Notice that, sinc& (t) — 0 ast — oo, it is possible to resume the arguments[od,[
Prop. 5.1] to prove that the solutigftt, v) to (2.1) converges to a Dirac massiagoes to
infinity, namely

f(t,v) — du—g  weaklyxin M (R?)

whereM*'(R?) denotes the space of normalized probability measuré’owe shall not
investigate further on the question of long time asymptb&bavior of the distribution
f(t,v) but rather try to capture the very precise rate of convergefthe temperature to
zero.

Using the Povzner-like estimate of Sect@#A it is possible, from the decay (), to
deduce the decay of any momentsfofindeed, for any > 0 and anyp > 1 we define
thep-momenof f as

my(t) == . f(t,v)|v|* dv. (3.4)

Corollary 3.6. Let f, be a nonnegative velocity distribution satisfy{@g}) and letf (¢, v)

be the associated solution to the Cauchy probl@m) where the variable restitution
coefficient satisfies Assumptighd. For anyp > 1, there existgs,, > 0 such that

my(t) <K, (L+1) 1 V> 0. (3.5)
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Proof. Setu(t) = (1 +t)_ﬁ. We prove that, for any > 1, there existd{,, > 0 such that
my(t) < K,uP(t) foranyt > 0. Observe that using classical interpolation, it suffices to
prove this for any such tha2p € N. We argue by induction. It is clear from Proposition
B3 that estimatef{ ) holds forp = 1. Letp > 1, with 2p € N, be fixed and assume that
for any integerl < j < p — 1/2 there existss; > 0 such thatm;(t) < K;u’(¢) holds.
According to Propositioff. ]

0= [ Qe L AE A < ~(L = mpi(®) 5, 5,0, (36)
]RS

where
(244

S0= 3 () (onsa) mps ) 4 1)y ssia0) 0.

Forp > 2, the above expressias),(t) involves moments of order less than- 1/2. The
casep = 3/2 s treated independently.

e Step 1 p = 3/2). In this case[f.8) reads

Let K be a positive number to be chosen later and define
Ug/g(t) = mg/g(t) — Ku(t)3/2
Using B.7) one has

dU. 3K 4ty
0 < (U= myahma(t) + maa(ma(t) + E0) + {1+ )7

From Holder’s inequality,

mgz/2 (t) < v/ g(t)\/ mz(t) and mi/2 (t) < g(t> Vi>=0 (38)

hence,
du. m 3K v
—3/2(75) < —(1 — K3)2) 3/2 + VE[)mype(t) + EX(t) + —— (1 + t)_ﬁr_7
dt 1+~
Since&(t) < C(1 + t)_m, there exist, b, ¢ > 0 such that
dU3 2 2 _ 4
Z2(1) < —amip(D)(1+ )T +b(141)7T

1 3

Inequality .9) implies the result for the cage = 3/2 provided K is large enough.
Indeed, choosé so thatms»(0) < Ku*?(0) = K. Then, by time-continuity of the
moments, the result follows at least for some finite time.ukss that there exists a time
t, > 0 such thatmy o (t,) = Ku*?(t,) = K(1+t,) ™, then B3) implies
dUs s
dt

3
(t.) < (—aK2 +b+cK + ?K) (1+4) %5 <0
gl
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wheneverK is large enough. Thug3{) holds forp = 3/2 choosingK, := K.

e Step 2 f > 2). The induction hypothesis implies that there exists a consta > 0
such that

Sy(t) < Cou(t)P2 Wt >0
whereC, can be taken as
[237]

Cp = Z < Z ) (Kit12 Kpoi + Ki Kp_jr1/2) -
=1

Furthermore, according to Jensen's inequality, »(t) > mj,""/*(t), for any¢ > 0.
Thus, from [B.), we conclude that

d
(1) < —(L = r)mp " (0) + 5, Cpu(t)? W20,
Arguing as inStep 1 for someK > 0 to be chosen later, we define

U (t) = my(t) — Ku(t).

In this way,
d 20K 2p+1
S U(t) < —(1 = mp)my 2 (0) 4 sy ()2 4 %(1 I )
Y

Then, if K is such that/,(0) < 0, the result holds at least for some finite time. For any
t, > 0 such that/,(¢,) = 0, one notices then that

4
dt
providedK is large enough. This proveB.f) for anyp > 1. O

2pK p
Up(ts) < <_(1 - ’%)KHﬁ + #p Cp + %) (1+ t*)_zljwl <0
v

3.2. Lower bound for £(t): preliminary considerations. The next goal is to complete
the proof of Haff's law by showing that the cooling rafe3) is optimal under Assump-
tionsB.1. Thus, we have to show that there exiéts> 0 such that

E(#)>C(L+1) T Vt>0.
First, we prove the following result that simplifies our eader.

Theorem 3.7. Assume a non constant (> 0) restitution coefficient(-) satisfying As-
sumptiong.7. If there existC;, > 0 and\ > 0 such that

E)=>Co(14+t) V=0, (3.10)
then there exist§’, > 0 such that
my(t) < C,EP(t) foranyt > 0 and p > 1. (3.11)

As a consequence, there exists> 0 such that

E)=>C(1+t)™ W0 (3.12)
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Proof. According to Assumptiof.] (1)

W, () ~ ng for z ~0.
In addition, Assumptiof$.] (2) implies that there existS;, > 0 such that

U, (z) ~ Cyr®/? for largez,

where the constant can be takerCys= 2rr(1—¢2) [} b(1 —222)2° dz. Thus, there exists
another constar’ > 0 such that

v, (z) < Cz’2 vz > 0. (3.13)
Then, from one deduces that for amy> 0 andp > 2

1

d y
—Eg(t) < C (Eng/Q(t) + ﬁmp(t))

C 2

<C (e%mg/Q(t) +— T—(1+1) fipw) vt > 0.
erT 2

where we have used CorollaBy§ for the second inequality. In particular, usirf§10)

and the fact tha£(t) is a non increasing function, one can chopsifficiently large so

that

€

d C
dt P——
for some positive constarﬁp. In other words, for any > 0 there exist€’s > 0 such that

— %S(t) < Omyp(t) + C:E()? Yt > 0. (3.14)

With this preliminary observation, the proof d.[]) is a direct adaptation of that of
Corollary[3.6. Here again, by simple interpolation, it is enough to prdveresult for any
p such thalp € N and argue using induction. The result is clearly truegfee 1 with
Cy = 1. Forp = 3/2,let K > 0 be a constant chosen later and define

Ug/z(t) = m3/2(t) — Kg(t)3/2
Thus, from B.7)
d 3 d
a/2(1) < —(1 = Kay2)malt) + maya(t)m () + E2(1) — K VEW)FE()
Using .9) one deduces fron(19 that, for anys > 0 there exist<’s > 0 such that

d mg o (t) 3 3 ,
U3/2( ) NS —(1—l‘€3/2)7+ 1+—K(5 mg/z(t)\/ 5(t)+ 1+—KC(5 g (t)
dt E(t) 2 2

Fix 6 = —** and choosé( > 0 such thatus,(0) < 0. If ¢, > 0is such thatuz s (t,) =
0, then the following holds

d

1
pten(ts) < <_

#Kﬁt <K+1+ gKC(;)) E(t)* <0,
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provided K is sufficiently large. This proveg(1]) for p = 3/2 with C5,, := K. The
casep > 2 follows in the same lines of the proof of CorollgByg interchanging the roles
of £(t) andu(t).

To conclude the proof, observe that according@d  and B.3), there exists” > 0

such that

d
——E() <Cmap () VE20.

Then, applyingf-1]) with p = 25, one deduces that thereds > 0 such that

—%5@) <SCEMR)T W0

A simple integration of this inequality yield§{3). OJ

Remark 3.8. For constant restitution coefficient, = ¢,, sincey = 0, (8-14) does not
hold anymore. However, for sonmié > 0 we have

d
—ag(w < Cemg/g(t) Vit 2 0.

Assuming that, ~ 1 (quasi-elastic regime) the constafit is small, thus, the argument
above can be reproduced to prove that the conclusion of RitipaB-]still holds. Recall
that fory = 0 the second part of Haff’s lag.17) has been proved iffLg, Theorem 1.2]

In order to prove thatd 1) is satisfied for someé > 0, we will need precisd.?
estimates, following the spirit offf], for the rescaled functiog given in SectiorZ.3.
The idea to craft the correct time-scaling functioris andV'(-) is to choose them such
that the corresponding temperaturegofs bounded away from zero. Indeed, for any
T > 0, define

O(r) := /3 g(m, w)|w|* dw.
Since, ‘
Et)=V () ?O(r(t)) Vt=0, (3.15)
we choose
V()= (1+8)71  W>0 (3.16)
In this way, B.19) is equivalent ta®(7(¢)) > C for anyt > 0. Notice that B.2) immedi-

ately translates into
sup O(7(t)) < 0. (3.17)

t>0
Moreover, for simplicity we pick-(¢) such that-(¢)V'(¢t) = 1, therefore fory > 0,

bods v+1 -
t) = =— (1 4+¢)1+ =1 3.18
e CR L) (3.18)
which is an acceptable time-scaling function. Thus, thealesl solutiory(, w) satisfies
with (1) = 1,

B 1 N B ~ -1/
(1) = pomy ) and e, (r)=e <r (1 + pon 17) ) : (3.19)
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If v = 0 the restitution coefficient is constaiffitd], in particulare. = e, and the rescale
readsV/ (t) = 1 +tandr(t) = In(1 +¢). In such a casg,(7) = 1.

To complete the proof of Haff’s law, one has to perform a adrstludy of the properties
of the collision operato@, in Sobolev orL? spaced < p < oc.
4. REGULARITY PROPERTIES OF THE COLLISION OPERATOR

In this section the regularity properties studied originébr the elastic case irflf,
B3, B3] and later for the constant restitution coefficient it are generalized to cover
variable restitution coefficients depending on the impatbeity. The path that we follow
closely follows PT].

4.1. Carleman representation. We establish here a technical representation of the gain
term Qj, . which is reminiscent of the classical Carleman represiemtah the elastic
case. More precisely, 1d8(u, o) be a collision kernel of the form

B(u,0) = &(lul)b(u - o)

whered(-) > 0 andb(-) > 0 satisfies[l.8). For anyy = ¢ (v), define the following linear
operators

S+(Y)(u) = /S2 Y(uF)b(t - o) do, Vu € R, (4.1)

the symbolos:~ andu™ are defined by

1—a- _
u:zﬁ(\uw ;J> “ 2\u\07 and u"i=u—u".

Lemma 4.1. For any continuous functiong and ¢,

[ et wwetuau= [ s@rstee

where the linear operatar'z is given by

Pa(e)() = [ B+ alrw,alr)ela(r)s +2)dr.
r=rw,r>0 weS: (4.2)

Here dr. is the Lebesgue measure in the hyperplartieperpendicular tav anda(-) is
the inverse of the mapping— sf(s). Moreover,
89(|z]) ( 0* ) 0 5
B(z,0)=———=b(1-2— ) ——, 0=20, z€eR 4.3
59 = Lestor’ \' T *F) 110 (“3)

with 9(-) defined in Assumptida] (2) andy’(-) denoting its derivative.

Proof. For simplicity assume that = 1. Define

I = /RS o(u)S—_(¢Y)(u) du = /RS o(u) du . Y(u")b(u - o) do.
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For fixedu € R3, we perform the integration ov&f using the formula

/ F(u_ |u|a) do = 4 §(|z]* — - u)F(z) dw
s2 2 |ul Jrs

valid for any given functiort’. Then,

= -t 2 x-u)(zp(|x — ||2 T du
= [ el e — o osah)s (1- 27 ) dedu

Setting nowu = z + x we get

2
I= 4/RSXR3 oz +2)|z + 2|7 6(x - 2)y (zB(|z]))b <1 — 2|x|i‘z|2) dzdx.

Keepingz fixed, we remove the Dirac mass using to the identity

/F( )o(x - z)dz = — / z)dm,,
||
which leads to

1:4/}R (x5(|:c\))| | %b (1—2|x|j|z|2) dr..

Perform ther—integral using polar coordinates: ow and the change of variables=
0 3(0). Recall thata(r) is the inverse of such mapping, furthermore, notice that=
s(1+ (o)) do. This yields

1:8/000M w(rw)dw[Jwa(l—Q%) dr..

L+ (a(r)) Jse |z 4+ a(r)w] |z 4+ a(r)
Turning back to cartesian coordinates- rw we obtain the desired expression
= | ¥(@)Ts(p)(x)dz,
R3
with ' given by @.7). O

The above result leads to a Carleman-like expressio@for:

Corollary 4.2 (Carleman representatior). Lete(-) be a restitution coefficient satisfying
Assumptiong.] and let

B(u,0) = ®(|ul)b(u - o)
be a collision kernel satisfyinf.g). Then, for any velocity distribution functiotfsg one
has

0 (£.9)0) = [ F:) [0 Twot.) o] (v)d
where[t,](z) = (v — z) for anyv, x € R? and test-functiony.
Proof. The proof readily follows from the Lemnfa] and the identity

[ ehawi@dr =3 [ - @) (te)w dvdu (44)

R3 xR3
valid for any test-functionp. O
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4.2. Convolution-like estimates for Q.. General convolution-like estimates are ob-
tained in [§, Theorem 1] for non-constant restitution coefficient. Sestimates are given
in Lb with n > 0 and, for the applications we have in mind, we need to extenteso
of them ton < 0. This can be done using the method developeil (see also[[4])
together with the estimates d][ f

Theorem 4.3. Assume that the collision kern8(u, o) = ®(|u|)b(u - o) satisfies[.8)
and®(-) € L for somek € R. In addition, assume thaf(-) fulfills Assumptiorf?.].
Then, for anyl < p < co andn € R, there existE, , ,(B) > 0 such that

HQB,e f,g HL;; = n7p7k< )Hf”L
where the constar@, , »(B) is given by:
Copk(B) = ckpp ¥(n,p,b) ”(I)HLgok (4.5)

with a constanty,,,, > 0 depending only o&, n andp. Furthermore, the dependence on
the angular kernel is given by

lgllzr,,

[n+k|+[n]

3+n+

s = [ (557) 7 o (@6)

wherel/p+1/p’ = 1 andn, is the positive part of. Similarly, there existénvpvk(B) > 0
such that

HQBe f.9) HLP = npk< ) g1l 22
where the constar(ﬁnvpvk( ) is given by
Cpk(B) = o 71, 2,0) |1, (4.7)

for some constand, ,,,, > 0 depending only ok, » andp. The dependence on the angular
kernel is given by

1l

[n+k|+|n

3+n4

o= [ (R ra-ar i) T e @)

wherel/p + 1/p = 1and g, = 4(0) = 242,
Proof. Fix 1 < p < oo andy € R and use the conventiayp’ 4+ 1/p = 1. By duality,

95 )l = {| [ @btr i@ ar] s ol <1}
Using .9,

[ @b @i = [ gl =T (b)) dvdu
with

T-(¥)(u) = (lu)S-(¢)(u), and t,i(x) = (v — ),

2Notice that the constantg(n, p, b) and7(n, p, b) given by §.8) and f-.8) are not finite for arbitrary
angular kerneb. It is implicitly assumed that the Theorem applies for thegeof parameters leading to
finite constants (see also Rem§rH).
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with S_ defined in equatiorfi(1). With the notation offf], one recognizes tha& (h) =
P(h, 1), thus, applyingfl, Theorem 5] withy = oo anda = —n,

IS-(P)ll < (s, D)1

with v(n, p,b) given by f.8). Notice that, with respect t@], we used the weightv)”
instead of|v|", this is the reason to introdueg in our definition ofy(n, p,b). As a
consequence,

IT- 0l < 901, 1l (4.9)

< [ reias ([ ol o ot ) au)

[ V@ T ol .

Now,

QL.(f, 9)vdv

< lgllz

n+k

Using the inequality|t,h||,,» < 21/2(v)l*l||p|| , for anys € R andw,

< 22 g ]|

n-Hc

/ QBef9¢dU

/ | f(v) |n+k‘ (T ot )IDH dv
k—n
< 2|77+k\/2fy(7)7p7 )Hq)HLoo ”gHLf]M/ |f(v) \17+k| £, 1/}”

< 2R (. 0)]|] 1 gl oo / e ‘"+k'+‘"'||¢|| , dv

which proves the first part of the Theorem. To prove the sepamt] observe that

[ @b ra@wtdo= [ fo-u)go)T: () ) dodu,

whereT, (¥)(u) = O(|u])S4+(v)(u) andS,. defined in fi.7). Using the notation of] we
identify S, (h) = P(1, h). Thus, applyingfll, Theorem 5] withp = cc anda = —1,

IS- ()l <m0l

where¥(n, p, b) given by .8). One concludes as above, interchanging the rolgsasfd
g- 0

Remark 4.4. The constants/(n, p,b) and5(n, p,b) are not finite for arbitraryb(-) be-
cause of the possible singularity at= +1. However, if one assumes, as[[{], that
the angular kerneb(-) vanishes in the vicinity of = 1 then~(n,p,b) < oo for any
1 < p < ocandn € R. This is an additional difficulty of the inelastic regime tha
overcome in the elastic case using symmetry, i.e., deftnimpalf the domain. The care-
ful reader will also notice that the constants given in thediem are independent of-)
except fory(n, p, b) which depends only on the valu@). Finally, we mention that, for
hard-sphere interactions, i.6.= 4 ,one hasy(n,p,b) < oo < J(n,p,b) < 0 <—

3+n+
1<p< Tro,
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4.3. Sobolev regularity for smooth collision kernel. For this section we assunde-)
andb(-) smooth and compactly supported

¢ e CP(RP\{0}),  belr(-1,1). (4.10)
Denote byQj . the associated collision operator defined

Lemma 4.5. Assume that(-) satisfies Assumptiofis] with e(-) € C™(0, co) for some
integerm € N. Then, under assumpti@A.T0) on the collision kernel, forany < s < m,
there exists” = C(s, B, e) such that

ITB()]lgser < Cls, B, e) || /]

wherel ' is the operator defined in Lemrial. The constant’(s, B, ) depends only on
s, on the collision kerneB and the restitution coefficiemt-). More precisely((s, B, e)
depends or(-) through theL> norm of the derivative®*e(-) (k = 1, ..., m) over some
compact interval bounded away from zero depending onlg.on

s Vfe H®

We postpone the proof of Lemnfla3 and first prove its important consequence.

Theorem 4.6.Let B(u,0) = ®(|u|)b(u - o) be a collision kernel satisfyin(f.17) and
e(+) satisfying Assumptida]. In addition, assume that-) € C™(0, o) for some integer
m € N. Then, for any) < s < m,

”Qg,e(f7 g)’ Hs+1 < C<S7Bu 6) ”gHHS Hf”Ll

with constantC(s, B, e) given in Lemmg.5.

Proof. Let F [Q}.(f, )] (€) denote the Fourier transform @} .(f, g). According to
Corollaryf.2,

F1f9]© = | f@F(toTsot)gl (€ dv

To simplify notation seGG (v, &) = F [(t,o ' ot,) g] (£). Thus,

. /\f Q% (f.9)] <5>\2<s>2<8+1>d5

:/ s+1/f vgdv

< [1/1lzs / G ORE ds o

SinceG(v, &) = F(t,oTgot,) g] (£),

Q% (. 9)]

dé (4.11)

?JSH < 0(37376)2 ||g|2

Hs -

|G v, E)PE)* TV dg = ||(t, o Tp o t,) g

RS

For this inequality we used Lemnfaj and the fact that the translation operatphas
norm one in any Sobolev space. Hence, estinfafe]) yields the desired estimate. [J
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Proof of Lemm&.5. The proof of the regularity property 6f; can be obtained following
the lines of the one for the elastic Boltzmann operdid}.[Indeed, note that

p(f)(rw) : = Tp(f)(a ' (r),w) = Ta(f)(rB(r),w)
= /l B(z + rw,r)p(rw + z) dm,.

Assumption [f.I0) implies that there exist$ > 0 such thab(z) = 0 for |z £ 1| < § and
{|z]; z € Supp(®)} C (a, M) for some positive constants< a < M. Then, by virtue
of @3, B(z + rw,r) = 0 for anyr > 0,w € S? andz € w™ provided thatz|*> > 25212,

For |22 < %72, one hagz + rw|? < 2r?/4, thus,B(z + rw,r) = 0if r < \/da?/2.

Putting these together we conclude that

B(z+rw,r)=0 Vr ¢l .= ( da?/2, M) , w € S*and anyz Lw. (4.12)

In particular,l 5 (f)(r,w) = 0 for anyr ¢ I independently off. Define
1+ (o)

2 o(2)b (1 -2
By(z,0) := Tﬁ (0)B(z,0) = 2] 02

and denoté( f) the associated operator,

Fo(Nr)i= [ Bole ol +2) d.
Then, B, does not depend on the restitution coefficiefnj and[, is exactly of the form
of the operatofl” studied in [P1, Theorem 3.1]. Therefore, arguing asop. cit, for any
s > 0, there is an explicit constant, = Cy(s, @, b) such that

IEn] . < Cots, 2.0 117

wer  VfEH. (4.13)

Hs+
Setting

B 0
O e 070 (#44

one observes that, is aC™ function over! whose derivative®*G, are bounded over
foranyk < m and

Fa(f)(r,w) = Ge(r)xi(NTo(f)(r.w).
Herey; is the characteristic function df= (\/5a2/2, M) (see Eq. {:I9). Therefore,
for any0 < s < m, there exists some constarit= Cy(s, b, ¢) such that
[Foun)
where the constart, (s, B, ¢) can be chosen as

Co(s, B,e) = Cy(s, P,b) kg})ax ||DkGe||Loo([). (4.16)

-----

L < CO(Sane) ||f||HS 5 \V/f S (415)

Hs+
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From estimatef{.1}) we deduce Lemm.5 with the following argument. Assume first
s = k > 1is an integer. Using polar coordinates

sl = 3 [ B0 ao [ Tatew) s

l7|<k

where, for anyjj| < k, the functionF;(p) can be written as
Fj(0) = P{(0W(0), ... 09(0))(1 + 9 (o)) ™. (4.17)

Here P;(yi, . . .,y,) is a suitable polynomialy; € N and9® denotes the-th deriva-
tive of J(-). Sinced € C™(0,00) and! is a compact interval away from zero, one has
sup s Fj(0) = Cy, < oo forany|j| < k. Thus

IT(H)le < CllTa(f)|a (4.18)

where(, is an explicit constant involving the> norm of the firstk-th order derivatives
of a(+) on I. This proves that the conclusion of the Lemfhg holds true for any integer
s < m and we deduce the general case using interpolation. O

Remark 4.7. It is important, for our subsequent analysis, to obtain agBe expression
for the constantC(s, B,e). For instance, in the case in whiak{(-) € C'(0,00), one
obtains that

C(lv Ba 6) < 00(17 Bv 6) sup Fl(g)

o€l

whereF; is of the form(.1]) with I defined in{A.17). Note that”y(1, B, e¢) andG.(o) are
given by(.I9 and (£.19) respectively. In particular, under Assumptipr, G.(o) < 4o
for large o and G, (o) ~ o/2 for o ~ 0.

Arguing as in P71, Corollary 3.2] we translate the gain of regularity obtaire Theo-
rem@-gin gain of integrability.

Corollary 4.8. Let B(u,0) = ®(|u|)b(u - o) be a collision kernel satisfyinff.1) and
e(-) € C1(0, 0o) satisfying Assumptida.]. Then, for anyl < p < oo
195 (£, )|, < Clo, B,e) (gllea L/l + Ngllzr [1f1lze)

where the constant’(p, B, e) depends om3 and e through the constant’(1, B, e) of
Theoren.§. The exponent < p is given by

op .
if pe (1,6
g=4 3+2p pe (L6

p/3 if pe6,00).

4.4. Regularity and integrability for hard-spheres. We consider in this section the
case of hard-spheres collision kernel

(4.19)

|ul
B(u,0) = e
Such a collision kernel does not enjoy the regularity propgerassumed in the previous
section. This does not present a problem since the depemdadribe constant on the
collision kernelB permits to adapt the method developedi] [for the elastic case. We
need some supplementary assumptions on the restitutidice® e(-).



28 RICARDO J. ALONSO & BERTRAND LODS

Assumptions 4.9.In addition to the Assumptiofi51, suppose that(-) € C*(0, o) and
that there existé € R such that

e(r)=0(r") when r — oo,
wheree/(-) denotes the derivative ef-).

The above assumptions imply thét o) = O(o**!) for large o and¥’(¢) ~ 1 when
o ~ 0. Recall thaty'(-) is the derivative of)(r) = re(r).

Theorem 4.10. Assume that(-) satisfies Assumptioffg9. For anyp € [1,3) there
existk > 0, 6 € (0,1) and a constant’. > 0 depending only op and the restitution
coefficiente(-) such that, for any > 0

[ Q17 do < O A A + 817y 171y

Remark 4.11. The restrictiorp € [1, 3) is the major difference with respect to the classi-
cal casdP1, Theorem 3.1]The reason is that in the inelastic regime the lack of symmet
does not permit to switch the roles@fand’, therefore, general has to be defined in
the full interval[—1, 1].

Proof. We follow the same lines presented and subsequently used iig]. We
present the argument for convenience. fix [1,3) and let® : R — R* be an evei@>
function with compact supportif+-1, 1 andf1 O(s)ds = 1. In the same way consider
a radialC* function= : R3 — R with support in the balB(0,1) and [, Z(v) dv = 1.
Define the mollification&,, (v) := nZ(nv) andO,,(s) := mO(ms) for m,n > 1. Thus,
bg ==, * (| |xa,) andbs,, = O,, * (ﬁX[_H%J_%]) are smooth moIIifications of the
collision kernel. Here we have defined the set

2
An:{v€R3;|v|€{g,n]} n =1

Consider the smooth collision kernel

Bs,, . (|u],u-0) = ®g, (|u]) bs,, (1 - 0),
and observe that

supp(@sn)g{l<|v|<n+1} and supgbs,,) C { 1+i 1—i}
n

Define naturally

BSRm,n(| | a ) = ¢Sn(|u|) me(a U)’
Bgs,. . (|lul,u-0) : = ®g, (|u]) bs, (u- o) and
BRRm,n(| | a ) = ¢Rn(|u|)me(a‘ U)

Here®p, (|u]) = |u| — s, (Ju|) andbg,, (@-0) = & —bs,, (u- o) are the remainder parts.
Thus, one split®; in four parts using obvious notation,

of = Qgsm + QBSR  + QBRS ot QBRRM
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SinceBs,, ,, (|u|, u-o) fulfills (£.17) one deduces from Corollafy3that there is a constant
C(m,n) such that

lot,,...rn||, < conmifiee £l
for ¢ < p given by B.T9. A simple application of Holder’s inequality yields

/Rs Qb L) P do < Clmun) || fllza L1l L1120 (4.20)

Recall from Corollanfl.8thatC (m, n) depends om andn through the constadt(1, Bg,, ., )
in Theorenf.g. Moreover, according to Remafk, one sees that
0(17Bsm,n7 ) Co(l ¢Sn7bsm) SupFl( )
ocl
whereCy(s, ®, b) is the constant appearing |[@, G.(-) is given by .13, and F; is
of the form f.I7). The intervall = I,,,, is defined in withé =1/m, M =n+1

anda = 1/n
1
I = 1
(\/ 2mn2’n+ )

ThatCy(1, @s,, bs,, ) depends om: andn in a polynomial way follows as irffl]. More-
over, from the properties af. given in Remarki.7 and the fact that (o) is a rational
function in¥’'(p), one deduces from Assumpti@nd and the above expression bthat
there exist, b > 0 such that

C(m,n) = O(m*nb) asm,n — oo. (4.21)
Now, applying Theorer@with k=1andn= —1/p/, we get
| Qs e F 1|+ | @b e D[, < 20lmem) £y 11,
wheresq(m,n) = C_ 1’ pl(BSRmn) +C_i/p pl(BRRmn) foranym,n > 1. In particu-

lar, using the expression of the above constantg fi) (there exists a constadfl1> 0 such
thateg(m,n) < cy(=1/p',p,br,,) =: e(m) for anym,n > 1. Then there exists some
r > 0 such that

g(m) =0(m™") asm — oo. (4.22)
Indeed, sincd < p < 3, one sees fron?E) thaty(—1/p",p,bgr,.) < C||bg,,| L2 for
anyq such thaﬂ < ¢ < 2p'/3. Thus, one can choose a regularizing functibso that the
L4(S?)-norm of b, decays algebraically to zero asgrows. Using the above estimate
withn = —1/p’, we get

[ (@b 55 Qi £ D] 17 0 < Ty I (429
It remains onIy to estimate

! —/ Qs () 7w

One notes that
Dp, (Jv—v]) <On7' (o] + |0, ]?) Yo, v, € R
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for someC > 0. Thus,

| SS C -1 f f + dvd - f L bg u-o)do.
<Cn /SX 3 (U) (U ) (|U‘2 |U |2) vdv /2 p (U) m(u )
Define

I1::/RMRSf(v)f(v*)\v|2dvdv*/g2 71 Ybs,, (@ - ) do, and
= / TSl dvd, / s, (@ 0) do

Observe that;lcan be written as

= [ QPR

where
Fo)=[off(v), W)= f""(v) € L'(R?)
with the collision kernelB,,(|u|,u - o) = bg,, (u - o). Applying Theorenf-3 with n =
k = 0 gives
b < [|QE, . (F N, ¥
< Copo(Bm) [IFl[ Ll fll o 191l o < Copo(Bun) [ f s 1F 1L

whereC ,, o(B,,) is defined by[{.3). Now, with the same notation,

o= [ Qb P do,
R3xR3
therefore, applying Theorefa3 with » = 0 andk = —2 yields

2 < Cop—2(Bm) [l 1F Nz, 191l < Cop—a(Bum) £ 1y 1£1Z0-
Combining the two estimates foy &nd b,

C(m)

m
< ==y 111z

whereC'(m) = Copo(Bm) + Cop—2(Bn). The support obg, (s) lies to a positive
distance, of ordet /m, from s = 1. Then, we use the expressi¢h3) to conclude that

3

C(m) < m 2 asm — oo. (4.24)
Estimates[{.24), ¢¢.20) and gives

/Rs QL (f. ) f7~ dv < Clmyn) || fllza | F1lea I £+

C(m)

m
em)fllep 11T, + = = lFlley 117

Using the polynomial bound§&(Z2]), .22 and fF.29) this leads to the result as ifiJ].
O
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Remark 4.12. Assumptioiff.9 allows to present the explicit dependence of the constants
with respect t@ > 0. This dependence will be crucial in the proof of Haff’s laviection

5. Note that the constaudt, in Theorenff.I)depends on the regularity of the restitution
coefficient away from zero.

Corollary 4.13. Assume that(-) satisfies Assumptidh9. For anyp € [1, 3) there exist
k> 0,0 € (0,1)and aconstant’. > 0 depending only op and the restitution coefficient
e(+) such that, for any > 0

K 1+p6 1-0)
[ etaa g wman < s gl Lol s laly. ol . Va0

The constan€, is provided by Theorerfh. 10

Proof. Fix ¢ > 0, 7 > 0 and setf(v) = g(v){v)". Note that(v')" < (v)" (v,)" for any
v, v, € R3, then, using the weak formulation gF"

| atwagiwran= [ wreto riaes [ orppan
R3 RS -
Conclude with Theorefd. 10, .

The following result applies to the rescaled solutigfis w). Its importance lies in that
the estimate is uniform in the rescaled time

Corollary 4.14. Assume that(-) satisfies Assumptigh.9. For anyr > 0, lete, be
the restitution coefficient defined and letQ;_(f, f) be the associated collision
operator. Assume thdt(¢(7)) is continuous and goes to infinity as— oo. For any
p € [1,3) there exist > 0,0 € (0,1) and K > 0 all independent of such that, for any
0>0

K 0)
/ Q7 (9,9) " H{w)™ dw < K6~ |g|| 3™ Hng1 46 lgl gl . V0 =0.

2417
Proof. From Corollaryfi.13 for anyr > 0 there existg<(7) = Cz, for which the above
inequality holds. It suffices to prove thaf = sup,., K (7) < oo. Recall thatK(r)
depends on through the restitution coefficiemt, more precisely(: depends on the
L> norm of the derivativesD*e.(-), k = 0,1, over some compact interval ¢, co)
bounded away from zero (independent-df Now, for anyr > 0

D*e. (1) = p (1) (D"e (—)
() =Dk
with p(7) = V({(7)). Sincep~!(7) is continuous and goes to zeroagoes toco, one

concludes that all thé> norms of D*¢_(-) remain uniformly bounded with respectto
The same holds foK (7). O

5. GENERALIZED HAFF'S LAW CONTINUED

5.1. Proof of Haff’s law. In this section we prove the second part of Haff’s law es-
tablishing the lower bound of the temperatuel@)). Recall that, from Theorerf.7 it
suffices to provef{.10). As explained in Sectioff this is done using suitable’ estimates
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in the self-similar variables. In this section, the resitin coefficient fulfills Assump-
tionsB.J andf.9 and the collision kernel is that of hard-spheres interastidrecall that
the rescaled functiop(r, w) is solution to the Boltzmann equation in rescaled variables

E1d
Org(T,w) + (1) Ve - (wy(,w)) = Q& (9,9)(T,w)  7>0. (5.1)
The restitution coefficiert, and the time-depending mappig@-) are given by[8.19.

Proposition 5.1. Assume that(-) fulfills Assumptiong.] with v > 0 andf.9. Let f,
satisfying(2.9) with f, € Li N LP(R3) for somel < p < 3. Letg(r, -) be the solution to
the rescaled equatioffc.) with initial datumg(0, w) = fo(w). Then, there existy > 0
andkg > 0 such that

lg()le < Co(l+7)™ V7 >0. (5.2)
Consequently, there exi6t > 0 andx; > 0 such that

o(r) = /Rgg(r o)wldw > Ci(1+7)"  ¥r>0. (5.3)

Proof. The proof relies on Corollarjf.14 Multiply (E.3) by ¢*~! and integrate oveR?
to obtain

LA 45 (1= D) et ot

P dr
:/ Qéﬁ(g,g)g”‘ldw—/ Q (9,9)g" 'dw. (5.4)
R3 R3
From Jensen’s equality, one has
Q (g,9)g" ' dw 2/ 9’ (r,w)|w|dw V7 >0. (5.5)
R3 R3

According to Corollaryt.T4there exist > 0, # € (0,1) and a constank” > 0 that does
not depend omr such that

Q. (9.9) 9" dw < K |g(n) |1 lg(r)IEe ="+ 1lg(7) 113 lg(7 gy, ¥9>0.
R3

From conservation of masg(7)|| = 1, furthermore M, := sup_ ||g(r)||Lé < oo from

(B-I]. Thus, using[.4) and £.9),

d
AN ks g + paslaE, — w66

wherepu(7) = min (1, 3(p — 1)£(7)). Sinceé(r) — 0 asT — oo for v > 0, there exists
70 > 0 such that
3(p—1)

u(r) =3(p — 1)&(r) = po
Choosing = u(7)/(pMs) in (5-8) we get

Ao Dlsr < k¢ sy air)y o < Ol + 14 g™ v > 7

foranyr >
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for some positive constaidt > 0. Integrating the above estimate, we conclude the exis-
tence of some constaft, > 0 such that

£l
lg(T)lIzr < Co(ym +1+7) @ V1 2,

and [-7) readily follows.
Regarding estimaté(3) note that for any? > 0,

O(r) :/I<Rg(7,w)\w|2dw+/ g(1, w)|w|? dw

|lw|>R
> RQ/ g(r,w)dw > R? (1 — / g(7,w)|w| dw) V1 >0,
|lw|>R |lw|<R

From Holder’s inequality,

4\ . 11
/ g(m,w)|w| dw < (—7TR3> |g(7)[[z» with the convention— + — = 1.
<R 3 pop

Therefore, usingd3), there exists a positive constafit> 0 independent of? such that
o(r) > R? (1 _CRM(1+ 7)“0> VR>0, Vr>0

Pick R = R(7) > 0 such thatC' R*/?'(1 + 1) = 1/2, then

1, 1 1 P/
(1238 =3 (20(1 - 7)“0) m20,

which gives .3) with k1 = p’ro/3. O
The generalized Haff’s law is a consequence Thediehand Propositiofs. 1.

Theorem 5.2. Let f, > 0 satisfy the conditions given HZ.8) with f, € Lro(R?) for
somel < py < co. In addition, assume that-) fulfills Assumptiong.1 andff.9. Then,
the solutionf (¢, v) to the associated Boltzmann equati@n}) satisfies the generalized
Haff’s law

1+ T <EQKCA+H) ™, >0 (5.7)
wherec, C' are positive constants depending only«gn and&(0).

Proof. The upper bound i ]) has already been obtained in TheorBi The proof
of the lower bound is a straightforward consequence of Térafir | and Propositiofy.].
Indeed, notice that if, € L'(R?) N LP°(R?) for somel < py < oo, using interpolation,
we may assume without loss of generally that (1, 3). Recall that fory > 0,

E(t) =V 2()O(r(1))

whereV (t) = (1 + t)ﬁ andr(t) is given by B.I9. Since®(-) decays at least alge-
braically {.3), one recognizes that there exists some constant( such that&(t) >
a(1+t)7" with p = 22 with «, being the rate inf3). The result follows from

1+
Theorenf3.7. The proof fory = 0 is identical. O
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Example 5.3. For constant restitution coefficient = 0, we recover the classical Haff’s
law of [[LJ] proved recently if[L9):

c(1+H)2<EKCA+1)E  t=0.

Example 5.4. For viscoelastic hard-spheres given in Exam@lg one hasy = 1/5.
Thus, Theorerf.3 provides the first rigorous justification of the cooling ratenjectured

in [0, 2]

1+ <EQ KCA+0)3,  t>0.

Remark 5.5. Theoremb.2 shows that the decay of the temperature is governed by the
behavior of the restitution coefficientr) for small impact. The cooling of the gases is
slower for larger-.

From the explicit rate of cooling of the temperature, oneutted the algebraic decay
of any moments of the solution tg.{). Under the assumptions of the above Thedfein
thep—momentm,(¢) defined in B.4) satisfies

(1 +1) 5 ERP <my(t) G, ERP < Co(1+1) 5,  t>0. (5.8)

The positive constants,, C,, C,, depend orp, m,(0), £(0) ande(-). The lower bound
is a direct consequence of Jensen'’s inequality &ng) (vhile the upper bound has been
established in Theoref .

5.2. Application: Propagation of Lebesgue norms.We complement Propositida.]

by proving the propagation df”-norms in the rangé < p < 3 for the solutiong(r, w)
satisfying the rescaled equatigs.f). Thus, the method introduced in the elastic case
[B3] and later used ir[9] for constant restitution coefficient is extended to theecafsa
variable restitution coefficient satisfying Assumptidng andfg.9.

Lemma 5.6. Assume that the initiaf, > 0 satisfies the conditions given K§.8) with
fo € LP(R?) for somel < p < oo and letg(r, -) be the solution to the rescaled equation
(B0 with initial datumg(0, w) = fo(w). Then, there exists a constagt> 0 such that

R3
In particular,

14 14
[0 waaw=2 [ prw)s whde =2 ool -
R3 R3 1/p

Proof. The proof is a simple consequence of

>0

Onin = inf/ g(r,w)|w|*dw > 0.
R3
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Indeed, sincefy, € L} the propagation op-moments in the rescaled variables implies
SUPy> Hg(T)HLé < oo. Then, forR > 0 large enough

/ g(T,w)\w|2dw:/ g(T,w)\w|2dw—/ g(T,w)\w|2dw
{lw|<R} R3 {lw|>R}

2 Ouin — — sup [|g(7)|1 2 Omin/2 > 0.
R {r>0} 3

We conclude that,

min

1
g(r,w)|w|dw = = g(7, w)|w|?dw > =:yy > 0.
Lot wlelaws 5 [ gl > Sae <

Using this observation and Jensen’s inequality we obtanesult. OJ

Theorem 5.7. Assume the variable restitution coefficie(W) satisfy AssumptiorfsJand
E9for somepositivey > 0. Assume thaf, > 0 satisfieqP-9) with f; € Lémn) NLH(R?)
for somel < p < 3 andn > 0. Then, the rescaled solutigy{, -) to (E.) with initial
datumg(0, w) = fo(w) satisfies

sup [lg()ll < oe.

720

In particular,
sup (VO £ (O} = sup ()5, < o0
Recall thatV/ (¢) = (1 + ).
Proof. Multiplying equation5.1 by ¢* (7, w) (w)™ and integrating oveR? yields

1 dllg(n)I7s 1
S 3 (1= =) () gl = QGT 9,9)9" " {(w)™ dw—
p K

D dr
/R?» Q7 (9,9)9" (w)™ dw + né(7) /Rg 9" (7, w)w]* (w)™* dw.

Using Lemmd5.6 one has
_ _ 14
9 (9,9)g" " (w)™ dw > fl!g(f)llipwp-
Moreover,C, = sup, |g(7 )||L1 < oo by virtue of the propagatlon of moments in
self-similar variablesH.§). Applylng Corollaryff. T4with § = 72,

p - p
e gy + 7 oz

<K@+ (n- 2 )l >0 69)

for some uniform constarit’. Sincey > 0, the mapping () decreases toward zero, thus
(B9 leads to the result. O
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Remark 5.8. We refer tg[L9, Theorem 1.3for a proof of the case = 0. Furthermore,
additional pointwise estimates allow to extend the abosaltdéop > 3 assuming higher
moments forf,. We refer the reader tf{]] for further similar estimates.

6. HIGH-ENERGY TAILS FOR THE SELFSIMILAR SOLUTION

We finalize this work studying the high-energy tailsfdf, v) of the solution to[(:3}).
For models with variable restitution coefficient the higlergy tail is dynamic since gas
changes its behavior during the cooling process. This ischaith a dynamic rate in the
tail. Here again, we shall deal with the generalized hattesgs collision kernel

Blu,0) = |ulb(@- o)

whereb(-) satisfies [£.6). We argue in the self-similar variables, thus it is coneanito
define the rescaled-moments

my(r) = [ alrw)[wfduw, p>o0

Notice that readily translates into
¢, <m,(7) < C, for72>0. (6.1)

The following Theorem generalizegg, Proposition 3.1] to the case of a variable restitu-
tion coefficient.

Theorem 6.1(L'-exponential tails Theoren). Let B(u,o) = |ulb(u - o) satisfy([Z-8)
withb € L(S?) for someg > 1. Assume that(-) and f, fulfill Assumptiong-J and [Z-8)
respectively. Furthermore, assume that there exists 0 such that

/ fo(v) exp (ro|v]) dv < 0.
RS

Letg(r, w) be the rescaled solution defined {®10). Then, there exists some< r, such
that

sup/ g(7,w)exp (r|w|) dw < oo. (6.2)
720 JR3
Consequently,
sup [ f(t,v)exp (rV(t)|v]) dw < oo. (6.3)
t>0 JR3

Proof. The method of proof is carefully documentedhfff]. We sketch the proof divid-
ing the argument in 5 steps.

Step 1.Note that formally

>k
,
Lot e ol dw =3 Fmato),

for anyr > 0 and anys > 0. Hence, the summability of the integral is described by the
behavior of the functionsms’jc/—f(”. This motivates the introduction of the renormalized
moments

 my(7) : B
2,(T) 1= Tlap £ 0)° with a = 2/s,
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whereI'(-) denotes the Gamma function. We shall prove that the seri@geoges for
somer < ro and withs = 1 (i.e. a = 2). To do so, it is enough to prove that, for some
b < 1and@ > 0 large enough, one has(7) < Q? for anyp > 1 and anyr > 0.

Step 2.Recall that, according to Lemnftaf, the estimates of Propositi§h] are inde-
pendent of the restitution coefficieaf:). In particular, they hold for the time-dependent
collision operatoQ;_ providing bounds which aneniformwith respect ta-. Specifically,

/ Q. (9, 9) (1, w)|w|* dw < —(1 - Kp)Myt1/2(T) + Ky Sp(7), vr 20
R3

wherex, is the constant introduced in Lemraa} and

(2]

S =3 (1) (sl my- i) + i) ()

Step 3.An important simplification, first observed iff][ consists in noticing that the
termS, satisfies

Sp(1) < AT(ap+a/2+2b) Z,(1) for a>1, b>0,
whereA = A(a,b) > 0 does not depend gnand

Zy(7) = 1g}§ax {Zk+1/2( ) Zp—k(T), 21(T) prk+1/2(7)} :

With such an estimate, the rather involved te$pis more tractable.

Step 4.Using the above steps and the evolution problem)(satisfied by the rescaled
solutiong, we check that

%(7) + (1 = kp)myy1)2(7) < Kp D(ap 4+ a/2 + 20) Z,(7) + 2p&§(7)my,(7)

where we used the fact that
/|wWwawﬂﬂwD&ﬂ=—%n%ﬁ)
R3
Using the asymptotic formula

. Tlp+r) o
lim ———=
p=os I'(p + s)
the fact that (7) < 1 andx, ~ 1/p*/? for largep, one concludes that there are constants
¢ >0 (i =1,2)andpy > 1 sufficiently large so that
dz,
dr

We also used that,,/»(7) > m,""/*(7) for anyr > 0 thanks to Jensen’s inequality.

=1,

—2(7) + 1 p P (T) e p PV Zy(T) 4 2p 2(T) VT 20, p 2 po.

Final step. We claim that if we choose = 2 and0 < b < 1/¢’ it is possible to find
@ > 0 large enough so thah,(7) < Q”. Indeed, lep, and() < oo such that

C2 b1/ _ 1 16
oo <, andQ > { max sup z(7), Qo,g,l},
1

C1 2 1<k<po >0
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where ), is a constant such that(0) < @Qf. This constant exists by the exponential
integrability assumption on the initial datum. Moreovence moments of; are uni-
formly propagated, the existence of sditite ) is guaranteed. Arguing by induction and
standard comparison of ODE's, one proves that) := Q7 satisfies fop > p,

dy u /241
o () b ey p () > 0 p T Z,() 4 20 (7). yl0) > 7 (0)

thereforey,(7) > z,(7) for anyp > p,. Since this is trivially true fop < p, we obtain
that

m,(7) <T'2p+b)Q",  Vp>1,7>0.
From Step 1, this is enough to prove the Theorem. O

Example 6.2. For viscoelastic hard-spherds(t) = (1 + t)*/3. Therefore,

/ fo(v) exp (ro|v]) dv < oo =>sup [ f(t,v)exp (r(1+ t)5/3|v|) dv < o0
R3 t>0 JR3

for somer < ry. In particular, using the terminology dfl], f(¢,v) has a (dynamic)
exponential tail of order 1.

APPENDIX A: VISCOELASTIC HARD-SPHERES

In this Appendix we prove that Assumptiofis] are met by the restitution coefficient
e(-) associated to the so-called viscoelastic hard-spheresragd in P7] (see also[LJ,
Chapter 4]). In fact, we prove a more general result for thrddspheres collision kernel

B(u,0) = % VueR? o€ S
Recall that®, was defined inf.]) as

JE
W (z) = %/0 (1—e(2)?) 2% dz, x> 0.

Lemma A. 1. Assume that(-) satisfies Assumptidh] and that the mapping > 0 —
e(r) is decreasing. Then, the associated funciiondefined in(B.J) is strictly increasing
and convex.

Proof. Sincee is decreasing;’(r) < 0 for anyr > 0. Heree'(-) denotes the derivative of
e(-). Define

1 xT

O(x) = —/ (1—€*(2)) 2°dz, x> 0.

T Jo
Note thatW.(-) is convex if and only ifx®,,,.(z) — ®,(z) > 0 for anyx > 0 whered,
and®,, denote the first and second derivativestofespectively. A simple calculation
shows that

1@, (z) — O, (2) = —22°¢ (2)e(x) + % /Om(l —e*(2))2% dz, vV > 0.

Sincee’(x) < 0 ande(+) € (0, 1] one concludes that®,,.(z) — ®,(x) > 0 for anyz > 0.

Similarly, sincee’(-) < 0 the mapping: > 0 — (1 — €?(2))z* is nondecreasing, thus,
®,.(x) > 0foranyz > 0. Thisimplies thaW,(-) is strictly increasing ovef0, +00). O
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For the visco-elastic hard-spheres, as derived?lj, [the restitution coefficient is
solution of the equation

e(r) + art/Se(r)3/s =1 Vr >0 (A.1)

wherea > 0 is a constant depending on the material viscosity. It wasgaton I, p.
1006] that, on the basis oA(T]), AssumptiongZ.] are met. From equatiof\(T)), one
deduces that

lim e(r) =1, ande(r) ~ 1 —ar'/® for r ~0

r—0+
which means that Assumptigh] (1) is met. Furthermore, equatiof.(l]) also implies
thate is continuously decreasing. According to Lemm§A(-) satisfy Assumption8.1.
Moreover, it is easy to deduce frofa.{) that Assumptioff.9is satisfied.

Example A. 1. For monotone decreasing restitution coefficient introadlioe Example
B.3, Assumptiong.] are also met by virtue of the above Lemma. In such a case, diogpr
to (2.2), the cooling of the temperatutgt) is

E(t)=0 ((1 + t)*ﬁ) as t— oo
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