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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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GEOMETRIC BRAID GROUP ACTION

ON DERIVED CATEGORIES OF COHERENT SHEAVES

SIMON RICHE
WITH A JOINT APPENDIX WITH ROMAN BEZRUKAVNIKOV

Abstract. In this paper we give, for semi-simple groups without factors of
type G2, a geometric construction of a braid group action on DbCoh(g̃) ex-
tending the action constructed by Bezrukavnikov, Mirković and Rumynin in
[BMR2]. It follows that this action extends to characteristic zero, where it also
has some nice representation-theoretic interpretations. The argument uses a
presentation of the affine braid group analogous to the “Bernstein presenta-
tion” of the corresponding Hecke algebra (this presentation was suggested by
Lusztig; it is worked out in the appendix, joint with Roman Bezrukavnikov).
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Introduction

0.1. Let G be a connected, semi-simple, simply-connected algebraic group over
an algebraically closed field k, and let g = Lie(G). In [BMR2], Bezrukavnikov,
Mirković and Rumynin have constructed an action of the extended affine braid
group associated to G on the categoryDbCoh

B
(1)
χ
(g̃(1)), when char(k) is greater than

the Coxeter number h of G (here χ ∈ g∗ is nilpotent, and Bχ is the corresponding
Springer fiber). Their construction relies on deep results relating the modules over
Ug (the enveloping algebra of g), D-modules on the flag variety of G, and coherent
sheaves on g̃(1). In this paper we show that, when G has no factor of type G2, this
action can be defined geometrically, without any reference to representation theory.
In particular, we obtain that the action can also be defined when char(k) ≤ h
(except for char(k) = 2 in the non simply-laced case), including characteristic 0.
We also obtain that similar actions can be defined on various other categories, such
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2 SIMON RICHE

as DbCoh(g̃), DbCoh(Ñ ), DbCohG(g̃) or DbCohG(Ñ ). For k = C, this action is
related to Ginzburg’s interpretation of the equivariant K-theory of the Steinberg
variety, and to Springer representations of the finite Weyl group on the homology
of Springer fibers.

0.2. More precisely, let G be a connected, semi-simple, simply-connected algebraic
group over k, let T be a maximal torus of G, X the character group of T , R the
root system of (G, T ), W its Weyl group, and Φ a basis of R. The extended affine
Weyl group W ′

aff := W ⋉ X has a natural “length function” ℓ, although it is not
a Coxeter group in general (see 1.1). The extended affine braid group B′

aff is by
definition the group with presentation:

Generators: Tw (w ∈W ′
aff);

Relations: TvTw = Tvw if ℓ(vw) = ℓ(v) + ℓ(w).

This definition is similar to the “Iwahori-Matsumoto presentation” of the corre-
sponding Hecke algebra H. If x ∈ X, write x = x1 − x2 with x1, x2 dominant
weights. Then θx := Tx1(Tx2)

−1 depends only on x. If α, β ∈ Φ, we denote by
nα,β the order of sαsβ in W . Our first step, obtained as a joint work with Roman
Bezrukavnikov1 (see the appendix), is a second presentation of B′

aff , which is an
analogue of the “Bernstein presentation” of H. The idea of this presentation is due
to Lusztig (see e.g. [L2]). It is given by:

Generators: Tsα (α ∈ Φ), θx (x ∈ X);
Relations: (1) TsαTsβ · · · = TsβTsα · · · (nα,β elements on each side);

(2) θxθy = θx+y;
(3) Tsαθx = θxTsα if 〈x, α∨〉 = 0;
(4) θx = Tsαθx−αTsα if 〈x, α∨〉 = 1.

Let g = Lie(G). Let B be the Borel subgroup of G containing T such that the
roots of g/b are the positive ones, where b is the Lie algebra of B. Let n be the

nilpotent radical of b. Let Ñ := T ∗(G/B) be the cotangent bundle of G/B, and g̃

be the “extended” cotangent bundle

g̃ := {(X, gB) ∈ g∗ ×G/B | X|g·n = 0}.

Our main result is the construction of a weak2 action of B′
aff on the category

DbCoh(g̃), by convolution. Using the preceding presentation, to construct this
action it is sufficient to define kernels associated to the generators Tsα and θx, and
to verify relations (1) to (4) for these kernels. The kernel associated with Tsα is OSα

for some closed subvariety Sα ⊂ g̃ × g̃ (see paragraph 1.4 for a precise definition),
and the kernel associated with θx is ∆∗Og̃(x) where ∆ : g̃ →֒ g̃× g̃ is the diagonal
embedding. Relations (2), (3) and (4) for these kernels are easy to prove.

The most difficult relations to prove are the “finite braid relations”, i.e. relations
(1). For this proof we have to assume that G has no factor of type G2, and to
perform a case-by-case analysis, depending on whether α and β generate a root
system of type A1 ×A1, A2 or B2 (see sections 2 and 3). Our proof involves the

1After this paper was submitted, Valerio Toledano Laredo pointed out to us that this presen-
tation is also proved in Macdonald’s book [M]. Our proof is different.

2See paragraph 1.3.
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study of Demazure-like “resolutions”3 Z̃(s1,s2,··· ,sn) → Sw. Here w is the element
of W corresponding to the finite braid relation under consideration, Sw is a vector
fibration over the G-orbit closure Xw ⊂ (G/B) × (G/B) associated with w, and

Z̃(s1,s2,··· ,sn) is a vector fibration over the Demazure resolution of Xw associated
with the reduced decomposition w = s1s2 · · · sn.

Finally, we obtain (see theorem 1.4.1) that if G has no factor of type G2, and
char(k) 6= 2 if R is not simply-laced, there exists an action of B′

aff on DbCoh(g̃)
such that

(i) The action of θx is given by the convolution with kernel ∆∗Og̃(x);
(ii) The action of Tsα is given by the convolution with kernel OSα .

We expect this result to hold also when G has a factor of type G2. We plan
to come back to this question in a future publication, possibly following a less
computational approach.

The proof of this result occupies sections 1.2 to 3. In the remaining three sections

we study the compatibility of this action with the inclusion Ñ →֒ g̃, and with some
representation-theoretic constructions.

First, in section 4 we show that one can similarly define an action of B′
aff on

the category DbCoh(Ñ ), such that the following diagram is commutative for any

b ∈ B′
aff , where i : Ñ →֒ g̃ denotes the natural embedding:

DbCoh(Ñ )
i∗ //

b

��

DbCoh(g̃)

b

��

DbCoh(Ñ )
i∗ // DbCoh(g̃).

In section 5 we show that the action of B′
aff on DbCoh(g̃), or rather the simi-

lar action on DbCoh(g̃(1)) (the supscript (1) denotes the Frobenius twist), extends
the action on DbCoh

B
(1)
χ
(g̃(1)) considered in [BMR2]. Hence, as a consequence of

our results in section 4, the action by intertwining functors on DbModfg(λ,χ)(Ug) of

[BMR2] factors through an action on DbModfgχ ((Ug)
λ) (see 5.1 for notations).

Finally, in section 6 we explain the relation between our results for k = C

and some classical constructions. In particular, the action on DbCoh(Ñ ) gives
a categorical framework for Ginzburg’s isomorphism between the equivariant K-
theory of the Steinberg variety and the extended affine Hecke algebra H, and for
Lusztig’s construction of irreducible H-modules over C. Also, the action induced

on the Grothendieck group of DbCoh
B

(1)
χ
(Ñ (1)) gives Springer’s representations of

W on the homology of Bχ.

0.3. To finish this introduction, let us say a few words on the importance of
this braid group action. First, its importance was emphasized in Bezrukavnikov’s
talk at ICM 2006: this action “encodes” the exotic t-structure on DbCoh(g̃) and

DbCoh(Ñ ). In positive characteristic, this t-structure comes from the equivalence
with representations of Ug. It also has an interesting interpretation in character-
istic zero (see [B2] for details). In fact, our construction will be a step in the

3These are not really resolutions of singularities, as the variety Z̃(s1,s2,··· ,sn) is singular. But

we show that they share some properties with resolutions of singularities.



4 SIMON RICHE

proof, by Bezrukavnikov and Mirković, of Lusztig’s conjecture relating irreducible
Ug-modules to elements of the canonical basis in the Borel-Moore homology of a
Springer fiber ([L3], [L4]). Similar actions also appear in Gukov and Witten’s work
on gauge theory and geometric Langlands program (see [GW]), and in Bridgeland’s
study of stability conditions on triangulated categories (see [B2] for details on this
point). Finally, we will use this construction in a forthcoming paper to study a
certain Koszul duality for modular representations of g (see [R]). For this applica-
tion, which was our main motivation, we have to assume that the extended Dynkin
diagram of each simple factor of G has at least two special points; this excludes
factors of type E8, F4 and G2. Hence, with this application in view, the case of
type G2 is not needed.

0.4. Acknowledgements. This work is part of the author’s PhD thesis, under
the joint supervision of Roman Bezrukavnikov and Patrick Polo. The research on
this project was started during a visit to MIT, supported by the École Normale
Supérieure de Paris. The author thanks both institutions for their support and
hospitality. He deeply thanks Roman Bezrukavnikov for his patience and generosity
in explaining his beautiful work and for his useful remarks, and Patrick Polo for
his help and encouragements.

0.5. Notations. Let k be an algebraically closed field. Let R be a root system, W
its Weyl group, and G the corresponding connected, semi-simple, simply-connected
algebraic group over k. Let B be a Borel subgroup, T ⊂ B a maximal torus, U the
unipotent radical of B, B+ the Borel subgroup opposite to B, and U+ its unipotent
radical. Let g, b, t, n, b+, n+ be their respective Lie algebras. Let R+ ⊂ R be the
roots in n+, and Φ the corresponding set of simple roots. If α is a root, we denote
by Uα ⊂ G the corresponding one-parameter subgroup. Let B := G/B be the flag

variety of G, and Ñ := T ∗B its cotangent bundle. Geometrically, we have

Ñ = {(X, gB) ∈ g∗ × B | X|g·b = 0}.

We also introduce the “extended” cotangent bundle

g̃ := {(X, gB) ∈ g∗ × B | X|g·n = 0}.

For each positive root α, we choose isomorphisms of algebraic groups uα : k
∼
→ Uα

and u−α : k
∼
→ U−α such that for all t ∈ T we have

t · uα(x) · t
−1 = uα(α(t)x) and t · u−α(x) · t

−1 = u−α(α(t)
−1x),

and such that these morphisms extend to a morphism of algebraic groups ψα :
SL(2, k) → G such that

ψα

(
1 x
0 1

)
= uα(x), ψα

(
1 0
x 1

)
= u−α(x).

Then we define

nα := ψα

(
0 1
−1 0

)
.

This is an element of NG(T ) representing the reflection sα ∈ W . We also define
eα := d(uα)0(1), e−α := d(u−α)0(1) and hα := [eα, e−α]. Let sl(2, α) be the image
of sl(2, k) under dψα, i.e. the subalgebra with basis {eα, e−α, hα}. One has the
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following well-known formulae for the adjoint action of G on g, that can be checked
in sl(2, k):

(0.5.1)





uα(x) · e−α = e−α + xhα − x2eα;
nαuα(x) · e−α = x2e−α − xhα − eα;

uα(x) · hα = hα − 2xeα.

1. Action of the braid group by convolution

1.1. A Bernstein-type presentation of the braid group. Let us introduce
some notations concerning Weyl groups and braid groups. We denote by Y := ZR
the root lattice of R, and by X its weight lattice. Let Waff := W ⋉Y be the affine
Weyl group, and W ′

aff := W ⋉ X the extended affine Weyl group. We denote by
tx ∈ W ′

aff the translation corresponding to x ∈ X. Let S := {sα, α ∈ Φ} be the
usual generators of W . Let also Saff ⊂Waff be the usual set of generators of Waff ;
that is, Saff contains S together with additional reflections corresponding to the
highest coroot of each irreducible component of R. Then (W,S) and (Waff , Saff)
are Coxeter systems. We denote by ℓ their length function.

Let A0 = {λ ∈ X ⊗Z R | ∀α ∈ R+, 0 < 〈λ, α∨〉 < 1} be the fundamental
alcove. If Ω ⊂ W ′

aff is the stabilizer of A0 for the standard action on X ⊗Z R, we
have W ′

aff
∼= Waff ⋊ Ω. We can use this isomorphism to extend ℓ to W ′

aff , setting
ℓ(ω) = 0 for ω ∈ Ω. Then, for w ∈W and x ∈ X ([IM, prop. 1.23]):

(1.1.1) ℓ(w · tx) =
∑

α∈R+,

wα∈R+

|〈x, α∨〉|+
∑

α∈R+,

wα∈R−

|1 + 〈x, α∨〉|.

Now, let us recall the definition of the braid group associated with a Coxeter
group H , with length ℓH . By definition, the braid group BH is the group with
generators the {Tv, v ∈ H} and relations Tuv = TuTv if ℓH(uv) = ℓH(u) + ℓH(v).
In particular we have the braid group B0 associated with W , and the affine braid
group Baff associated with Waff . The group W ′

aff is not a Coxeter group, but we
have defined a length function ℓ on it. Hence we can use the same recipe to define
the extended affine braid group B′

aff . There are natural inclusions

B0 ⊂ Baff ⊂ B′
aff .

Moreover, there is a natural isomorphism B′
aff

∼= Baff ⋊ Ω.
There is a canonical section C :W ′

aff → B′
aff (which sends Waff into Baff and W

into B0) of the canonical morphism B′
aff → W ′

aff , defined by C(w) := Tw (this is
not a group morphism). From now on we will not use the notation Tw anymore,
except when w = sα ∈ S; moreover, in this case, we will simplify Tsα in Tα. We
denote by nα,β the order of sαsβ in W , for α, β ∈ Φ.

If λ and µ are dominant weights, ℓ(tλtµ) = ℓ(tλ) + ℓ(tµ), see (1.1.1). Hence

(1.1.2) C(tλtµ) = C(tλ)C(tµ).

Let x ∈ X. We write x = x1 − x2 with x1 and x2 dominant weights. Then we set
θx := C(tx1)C(tx2)

−1. This does not depend on the chosen decomposition, due to
formula (1.1.2). In the appendix, joint with Roman Bezrukavnikov, we prove:

Theorem 1.1.3. B′
aff admits a presentation with generators {Tα, α ∈ Φ}∪{θx, x ∈

X} and relations:

(1) TαTβ · · · = TβTα · · · (nα,β elements on each side);
(2) θxθy = θx+y;
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(3) Tαθx = θxTα if 〈x, α∨〉 = 0, i.e. sα(x) = x;
(4) θx = Tαθx−αTα if 〈x, α∨〉 = 1, i.e. sα(x) = x− α.

This theorem is an analogue of the well known result of J. Bernstein concerning
the corresponding Hecke algebra. Relations (1) are called “finite braid relations”
in the sequel.

1.2. Convolution. By a variety we mean a reduced, separated scheme of finite
type over k (in particular, we do not assume it is irreducible). If X is a variety, we
identify the derived category DbCoh(X) with the full subcategory of DbQCoh(X)
whose objects have coherent cohomology sheaves ([SGA6, II.2.2.2.1]; see also [Bo,
VI.2.11] for a sketch of a more elementary proof, following P. Deligne).

If X is a scheme and i : Z →֒ X a closed subscheme, for simplicity we sometimes
write OZ for i∗OZ . We will also sometimes write simply (−⊗X −) for (−⊗OX −),
and similarly for the derived tensor product.

Let X,Y be varieties. We denote by pX : X × Y → X and pY : X × Y → Y the
projections. We define the full subcategory

Db
propCoh(X × Y ) ⊂ DbCoh(X × Y )

as follows: an object ofDbCoh(X×Y ) belongs to Db
propCoh(X×Y ) if its cohomology

sheaves are supported on a closed subscheme Z ⊂ X × Y such that the restrictions
to Z of pX and pY are proper. Any F ∈ Db

propCoh(X × Y ) gives rise to a functor

FF
X→Y :

{
DbCoh(X) → DbCoh(Y )

M 7→ R(pY )∗(F
L

⊗X×Y p∗XM)

(use [H1, II.2.2, II.4.3]). The assignment F 7→ FF
X→Y is functorial.

Let now X , Y and Z be varieties. We define the convolution product

∗ : Db
propCoh(Y × Z)×Db

propCoh(X × Y ) → Db
propCoh(X × Z)

by the formula

G ∗ F := R(pX,Z)∗((pX,Y )
∗F

L

⊗X×Y×Z (pY,Z)
∗G),

where pX,Z , pX,Y , pY,Z are the natural projections from X × Y ×Z. The following
easy result is classical. It can be proved using flat base change ([H1, II.5.12]) and
the projection formula ([H1, II.5.6]).

Lemma 1.2.1. Let F ∈ Db
propCoh(X × Y ), G ∈ Db

propCoh(Y × Z). Then

FG
Y→Z ◦ FF

X→Y
∼= FG∗F

X→Z .

In particular, if X = Y , the product ∗ endows Db
propCoh(X × X) with the

structure of a monoid, with identity ∆∗OX (where ∆ : X → X ×X is the diagonal

embedding). Moreover, F
(−)
X→X is a morphism of monoids from this monoid to the

monoid of triangulated functors from DbCoh(X) to itself.
Assume now that X and Y are non-singular varieties (so that every coherent

sheaf has a finite resolution by locally free sheaves of finite type, see for instance
[H2, ex. III.6.9]), and let f : X → Y be a proper morphism. Let Γf ⊂ X × Y be
the graph of f (a closed subscheme), and let Γ′

f ⊂ Y ×X be the image of Γf under
the “swap” morphism X × Y → Y ×X . Then there exist natural isomorphisms of
functors

Rf∗ ∼= F
OΓf

X→Y and Lf∗ ∼= F
OΓ′

f

Y→X .
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Hence we have Lf∗ ◦Rf∗ ∼= F
OΓ′

f
∗OΓf

X→X , with

OΓ′
f
∗ OΓf

∼= R(pX,X)∗(OΓf×X
L

⊗X×Y×X OX×Γ′
f
).

We also have Id ∼= F∆∗OX

X→X .
We denote by δX ⊂ X × Y ×X the closed subscheme which is the image of X

under x 7→ (x, f(x), x). The following result follows from classical results in the
theory of Fourier-Mukai transforms (see [Ca, 5.1], [KT, 4.2]):

Lemma 1.2.2. The adjunction morphism Lf∗ ◦ Rf∗ → Id is induced by the fol-
lowing morphism in Db

propCoh(X ×X):

R(pX,X)∗(OΓf×X
L

⊗X×Y×X OX×Γ′
f
) → R(pX,X)∗(O(Γf×X)∩(X×Γ′

f )
)

res
−−→ R(pX,X)∗(OδX) ∼= ∆∗OX

where the second morphism is induced by restriction, and the first one by the natural

morphism OΓf×X
L

⊗X×Y×XOX×Γ′
f
→ OΓf×X ⊗X×Y×X OX×Γ′

f
.

We will also need the following lemma:

Lemma 1.2.3. Let F ∈ Db
propCoh(X ×X). Then OΓf

∗ F ∼= R(Id× f)∗(F).

Proof. We denote by pi,j the natural projections from X × X × Y to X × X or
X × Y , and by ∆ : X → X ×X the diagonal embedding. Then we have

OΓf
∗ F = R(p1,3)∗(p

∗
1,2F

L

⊗X×X×Y p∗2,3OΓf
);

p∗2,3OΓf
∼= R(Id× Id× f)∗(Id×∆)∗OX×X .

Now, by the projection formula, OΓf
∗ F is isomorphic to

R(p1,3)∗R(Id× Id× f)∗(Id×∆)∗(L(Id×∆)∗L(Id× Id× f)∗(p1,2)
∗F).

The result follows, since (p1,3) ◦ (Id× Id× f) ◦ (Id×∆) = (Id× f) and (p1,2) ◦ (Id×
Id× f) ◦ (Id×∆) = IdX×X . �

1.3. Action of a group on a category. By an action of a group A on a category
C we mean a weak action, i.e. a group morphism from A to the isomorphism classes
of auto-equivalences of the category C (see [BMR2], [KT]). We will not consider
the problem of the compatibility of the isomorphisms of functors corresponding to
products of elements of A. If C = DbCoh(X) for a variety X , to define such an
action it is sufficient to construct a morphism of monoids from A to the monoid of
isomorphism classes in Db

propCoh(X ×X), endowed with the product ∗.

We will be interested in the case A = B′
aff and X = g̃ or Ñ . Using the pre-

sentation of B′
aff that we have given in 1.1.3, to construct the action we only have

to define the kernels corresponding to the generators Tα and θx, and to show that
they satisfy relations (1) to (4) in Db

propCoh(X ×X), up to isomorphism.

1.4. Construction of kernels. In this paragraph we construct the kernel for the

action of Tα. First, let us introduce some notations. If X
p
→ B is a scheme over

B (resp. if Y
q
→ B × B is a scheme over B × B), and x, y ∈ X, we denote by

OX(x) (resp. OY (x, y)) the line bundle p∗OB(x) (resp. q∗(OB(x) ⊠ OB(y))). If
F ∈ DbCoh(X) (resp. DbCoh(Y )), we denote by F(x) (resp. F(x, y)) the tensor
product F ⊗OX OX(x) (resp. F ⊗OY OY (x, y)). We use similar notations for
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schemes over B × B × B. If X
a
→ Y is a scheme over Y , and if Z ⊂ Y is a locally

closed subscheme, we write X |Z for the inverse image a−1(Z). Similarly, if F is a
sheaf on X , we write F|Z for the restriction of F to X |Z .

Let us fix α ∈ Φ. We denote by Pα the standard (i.e. containing B) parabolic
subgroup of G of type {α} (see e.g. [Sp, 8.4]), pα its Lie algebra, puα the nilpotent
radical of pα, and Pα := G/Pα the corresponding flag variety. We define

g̃α := {(X, gPα) ∈ g∗ × Pα | X|g·pu
α
= 0}.

The projection πα : B → Pα induces a morphism π̃α : g̃ → g̃α.
Let us consider the scheme g̃ ×g̃α

g̃. It is reduced, and it can be described as a
variety induced from B to G. More precisely, define

Rα := {(X, gB) ∈ g∗ × (Pα/B) | X|n+g·n = 0}.

We have a natural isomorphism

G×B Rα
∼= g̃×g̃α

g̃.

To study the variety Rα, we introduce some coordinates. On g∗ we use the
coordinates {eγ , γ ∈ R} ∪ {hβ, β ∈ Φ}, see 0.5. Consider the open covering

Pα/B = (UαB/B) ∪ (nαUαB/B). The morphism uα induces isomorphisms k
∼
→

Uα
∼
→ UαB/B and k

∼
→ nαUα

∼
→ nαUαB/B. We will use the coordinate t on

k. Then Rα|(UαB/B) is the set of (X, t) ∈ g∗ × k such that X vanishes on eγ for

γ ∈ R− and on uα(t)·e−α = e−α+thα−t
2eα (see (0.5.1)). Similarly, Rα|(nαUαB/B)

is the set of (X, t) ∈ g∗ × k such that X vanishes on eγ for γ ∈ R− and on
nαuα(t) · e−α = −eα − thα + t2e−α. These are affine varieties, with respective
coordinate rings

k[Rα|UαB/B]
∼= k[hβ , eγ , t, β ∈ Φ, γ ∈ R+]/(t(hα − teα))

k[Rα|nαUαB/B]
∼= k[hβ , eγ , t, β ∈ Φ, γ ∈ R+]/(eα + thα).

In particular, Rα has two irreducible components: one is

Dα := (g/n)∗ × (B/B) ⊂ g∗ × (Pα/B),

and the other one is Sα, the closure of the complement of Dα in Rα. We have the
geometric description

Sα = {(X, gB) ∈ g∗ × (Pα/B) | X|n+g·n = 0 and X(hα) = 0 if gB = B}.

Hence g̃ ×g̃α
g̃ has two irreducible components: ∆g̃ := G ×B Dα, which is the

diagonal embedding of g̃, and Sα := G×B Sα. Geometrically,

Sα =

{
(X, gB, hB) ∈ g∗ × (B ×Pα B)

∣∣∣∣
X|g·n+h·n = 0
and X(g · hα) = 0 if gB = hB

}
.

This second component is a vector bundle over B ×Pα B, of rank dim(g/n)− 1.

Finally, let us define the closed subscheme S′
α of Ñ × Ñ by setting

S′
α := Sα ∩ (Ñ × Ñ ).

We will see in section 4 that this intersection is a reduced scheme, hence a variety.
S′
α is affine over B ×Pα B, and it is the induced variety of the subvariety S ′

α of
g∗ × (Pα/B) defined by

S
′
α = {(X, gB) ∈ g∗ × (Pα/B) | X|b+g·b = 0}.

The main result of this paper is the following:
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Theorem 1.4.1. Assume G has no factor of type G2, and char(k) 6= 2 if R is not

simply-laced. There exists an action of B′
aff on DbCoh(g̃) (resp. DbCoh(Ñ )) for

which

(i) The action of θx is given by the convolution with kernel ∆∗(Og̃(x)) (resp.
∆∗(OÑ (x))) for x ∈ X, where ∆ is the diagonal embedding.

(ii) The action of Tα is given by the convolution with kernel OSα (resp. OS′
α
)

for α ∈ Φ.

Moreover, the action of (Tα)
−1 is the convolution with kernel OSα(−ρ, ρ − α)

(respectively OS′
α
(−ρ, ρ− α)).

These actions correspond under the functor i∗ : DbCoh(Ñ ) → DbCoh(g̃), where

i : Ñ →֒ g̃ is the closed embedding.

The proof of this result occupies most of the rest of the paper. It is clear that
the kernels ∆∗(Og̃(x)) (respectively ∆∗(OÑ (x))) are invertible, and satisfy relation
(2) of theorem 1.1.3. In paragraph 1.5 we show that the kernels OSα for α ∈ Φ are
also invertible, with inverse OSα(−ρ, ρ−α). Then, in paragraph 1.6 and sections 2
and 3 we show that these kernels satisfy relations (1), (3) and (4) of theorem 1.1.3.
This will prove the assertions concerning the action on DbCoh(g̃). In section 4 we

explain how one can deduce the assertions concerning the action on DbCoh(Ñ ).

1.5. Action of the inverse of the generators. In this paragraph we fix a simple
root α ∈ Φ. The following lemma is very easy, but useful. This result also appears
in [L3, 7.19].

Lemma 1.5.1. Let λ ∈ X, such that 〈λ, α∨〉 = 0. The line bundle OB×PαB(λ,−λ)
is trivial.

Proof. We have OB×PαB(λ,−λ) ∼= OB×PαB(λ, 0) ⊗ OB×PαB(0,−λ). Moreover, if
p : B ×Pα B → Pα denotes the natural morphism, OB×PαB(λ, 0) ∼= p∗OPα(λ) and
OB×PαB(0,−λ) ∼= p∗OPα(−λ) The result follows. �

Let us remark in particular that if 〈λ, α∨〉 = 〈µ, α∨〉 then OB×PαB(λ, µ) ∼=
OB×PαB(µ, λ). We deduce that OB×PαB(−ρ, ρ−α) ∼= OB×PαB(ρ−α,−ρ), and that
OSα(−ρ, ρ− α) ∼= OSα(ρ− α,−ρ), OS′

α
(−ρ, ρ− α) ∼= OS′

α
(ρ− α,−ρ).

We will use several times the following result: any finite collection of points of
B is contained in a B-translate of U+B/B. This follows easily from the fact that
if gi ∈ G (i = 1, . . . , n) then the intersection (

⋂n
i=1 giBU

+) ∩ (BU+) is not empty,
as an intersection of dense open sets.

Proposition 1.5.2. There exist isomorphisms in Db
propCoh(g̃× g̃):

OSα ∗
(
OSα(−ρ, ρ− α)

)
∼= ∆∗Og̃

∼=
(
OSα(−ρ, ρ− α)

)
∗ OSα .

Proof. We have (p1,2)
∗OSα

∼= OSα×g̃ and (p2,3)
∗OSα

∼= Og̃×Sα
. First, let us show

that the tensor product

(1.5.3) OSα×g̃

L

⊗g̃3Og̃×Sα

is concentrated is degree 0. As each of these varieties over B3 is the induced variety
(from B to G) of its restriction to (B/B)×B2, we only have to consider the situation
over (B/B)×B2. By B-equivariance, we can even restrict to (B/B)×(U+B/B)2 ∼=
(U+)2 (see the remark above).
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Let us choose some coordinates on g̃3|(B/B)×(U+B/B)2 . We have isomorphisms

g̃|U+B/B
∼
−→ (b+)∗× (U+B/B) (induced by restriction), and g̃|B/B ∼= (b+)∗. Hence

on the fibers, isomorphic to ((b+)∗)3, we choose coordinates e
(j)
γ , h

(j)
β (γ ∈ R+,

β ∈ Φ, j ∈ {1, 2, 3}) which are copies of the elements of the basis of g defined in

0.5. The multiplication induces an isomorphism U+
(α)×Uα

∼
→ U+, where U+

(α) is the

product of the Uγ for γ ∈ R+ − {α} (this is the unipotent radical of the parabolic
subgroup opposite to Pα). Hence, uα and multiplication induce an isomorphism

U+
(α) × k

∼
→ U+. Using this, we choose coordinates (u(j), t(j)) on U+, considered as

the base of the j-th copy of g̃ (j = 2, 3).
Then (Sα×g̃)|(B/B)×(U+B/B)2 is defined in (g̃)3|(B/B)×(U+B/B)2 by the equations

u(2) = 1, h
(1)
β = h

(2)
β (β ∈ Φ), e

(1)
γ = e

(2)
γ (γ ∈ R+) and h

(1)
α − t(2)e

(1)
α = 0 (see 1.4).

It is clear that these equations form a regular sequence in k[g̃3|(B/B)×(U+B/B)2 ].

Similarly, (g̃ × Sα)|(B/B)×(U+B/B)2 is defined by the equations u(2) = u(3), h
(2)
β =

h
(3)
β (β ∈ Φ), e

(2)
γ = e

(3)
γ (γ ∈ R+) and u(3) · (h

(3)
α − (t(2) + t(3))e

(3)
α ) = 0. Now

the union of these two sequences is again a regular sequence, and defines a reduced
scheme. Hence the derived tensor product (1.5.3) is concentrated in degree 0, and
equals the sheaf of functions on the subvariety Vα := (Sα× g̃)∩ (g̃×Sα) of g̃3. Now
we compute

(1.5.4) R(p1,3)∗(OVα(ρ− α,−ρ, 0)) and R(p1,3)∗(OVα(0,−ρ, ρ− α)).

The following result will be proved later:

Lemma 1.5.5. The variety Vα has two irreducible components: V 1
α , which is the

restriction of Vα to the partial diagonal ∆1,3
B ⊂ B3, and V 2

α , which has the following
geometric description:

V 2
α = {(X, g1B, g2B, g3B) ∈ g∗ × (B ×Pα B ×Pα B) | X|g1·(n+sl(2,α)) = 0}.

Moreover, there exist exact sequences of sheaves

OV 1
α
→֒ OVα(ρ− α,−ρ, 0)։ OV 2

α
(ρ− α,−ρ, 0);

OV 1
α
→֒ OVα(0,−ρ, ρ− α)։ OV 2

α
(0,−ρ, ρ− α).

It follows that to compute the direct images (1.5.4) we only have to compute
R(p1,3)∗(OV 1

α
), R(p1,3)∗(OV 2

α
(ρ − α,−ρ, 0)) and R(p1,3)∗(OV 2

α
(0,−ρ, ρ− α)). But

R(p1,3)∗(OV 2
α
(ρ − α,−ρ, 0)) = R(p1,3)∗(OV 2

α
(0,−ρ, ρ − α)) = 0 because p1,3 is a

locally trivial fibration of fiber P1
k
on V 2

α , and the sheaf on this fiber is OP1(−1).
To conclude, we only have to show that R(p1,3)∗(OV 1

α
) ∼= ∆∗Og̃.

By local triviality we only have to consider the morphism

q1,3 : Vα|(B/B)×(Pα/B)×(B/B) → (g/n)∗.

Then define M := (sl(2, α)/(ke−α))
∗, and choose a vector subspace M ′ ⊂ g/n such

that g/n ∼=M∗⊕M ′. Let E = {(D, x) ∈ P(M)×M | x ∈ D} be the tautological line
bundle on P(M). Then the morphism q1,3 identifies with the product of Id(M ′)∗

and the canonical projection f : E → M . Hence we only have to show that
Rf∗OE

∼= OM . As M is affine we only have to consider the global sections; but the
direct image of OE under the canonical projection to P(M) is

⊕
m≥0 OP(M)(m),

whose global sections are S(M∗).
This completes the proof of proposition 1.5.2, assuming lemma 1.5.5. �
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Proof of lemma 1.5.5. Consider the subvariety Vα of g∗ × (Pα/B)× (Pα/B):

Vα := {(X, gB, hB) ∈ g∗ × (Pα/B)× (Pα/B) | X|n+g·n+h·n = 0,

X(hα) = 0 if gB = B and X(g · hα) = 0 if gB = hB}.

We have an isomorphism Vα ∼= G ×B Vα. On (Pα/B)2 we use the open covering
(Pα/B)2 = (UαB/B)2 ∪ (nαUαB/B)2 ∪ [(UαB/B)× (nαUαB/B)]∪ [(nαUαB/B)×
(UαB/B)]. Each of these open sets is isomorphic to k2, via uα. We use the
coordinates t(1) and t(2) on (Pα/B)2, and {eγ , γ ∈ R, hβ, β ∈ Φ} on g∗. The change
of coordinates on the intersection (UαB/B)∩ (nαUαB/B) is given by t 7→ − 1

t (this
can be checked in SL(2, k)).

The restriction Vα|(UαB/B)2 is defined in g∗ × k2 by the equations eγ = 0 (γ ∈

R−), hα − t(1)eα = 0 and hα − (t(1) + t(2))eα = 0 (see the preceding proof). This
last equation can be replaced by t(2)eα = 0. Similarly, Vα|(nαUαB/B)2 is defined

in g∗ × k2 by the equations eγ = 0 (γ ∈ R−), eα + t(1)hα = 0 and hα = 0. Over

(UαB/B) × (nαUαB/B), the equations are eγ = 0 (γ ∈ R−), hα − t(1)eα = 0
and eα = 0. Finally, Vα|(nαUαB/B)×(UαB/B) is defined by eγ = 0 (γ ∈ R−),

eα + t(1)hα = 0 and t(2)hα = 0. These equations show that Vα has two irreducible
components: V 1

α , which is the restriction of Vα to (Pα/B) × (B/B) ⊂ (Pα/B)2,
and V 2

α , which has the following geometric description:

V
2
α = {(X, gB, hB) ∈ g∗ × (Pα/B)2 | X|n+sl(2,α) = 0}.

The varieties Vα, V 1
α and V 2

α are affine over (UαB/B)2, with respective rings of
functions k[eγ , hβ , t

(i)]/(hα − t(1)eα, t
(2)eα), k[eγ , hβ , t

(i)]/(hα − t(1)eα, t
(2)) and

k[eγ , hβ , t
(i)]/(hα − t(1)eα, eα). Hence the multiplication by eα and the natural

quotient induce an exact sequence of sheaves

OV 1
α
|(UαB/B)2 →֒ OVα |(UαB/B)2 ։ OV 2

α
|(UαB/B)2 .

Multiplication by hα induces a similar sequence on (nαUαB/B)× (UαB/B).
The element eα ∈ k[Vα|(UαB/B)2 ] is sent to 0 when restricted to the open

sets (nαUαB/B)2 or (UαB/B) × (nαUαB/B), and to −t(1)hα when restricted to
(nαUαB/B)×(UαB/B). Hence the preceding exact sequences glue to give an exact
sequence of (non B-equivariant) sheaves

OV 1
α
⊗O(Pα/B)2

O(Pα/B)2(1, 0) →֒ OVα ։ OV 2
α

where we have used the isomorphism Pα/B ∼= P1
k
. Now consider the B-equivariant

structures. The second morphism in this sequence is obviously equivariant. We have
O(Pα/B)2(1, 0) = O(Pα/B)2(ρ, 0), and the first arrow of the exact sequence comes by
definition from a B-equivariant morphism kB(α − ρ)⊗k OV 1

α
(ρ, 0) →֒ OVα . Hence

we obtain the exact sequence of B-equivariant sheaves

kB(α− ρ)⊗k OV 1
α
(ρ, 0) →֒ OVα ։ OV 2

α
.

Inducing from B to G, this gives the first exact sequence of the lemma. To prove
the second one, we observe that we also have an exact sequence

OV 1
α
(α− ρ, 0, ρ− α) →֒ OVα(0,−ρ, ρ− α)։ OV 2

α
(0,−ρ, ρ− α).

As V 1
α is supported on ∆1,3

B ⊂ B3, the first sheaf equals OV 1
α
. �

Remark 1.5.6. In these two results, one can replace ρ by any λ ∈ X such that
〈λ, α∨〉 = 1. This follows either from the proofs, or from lemma 1.5.1.
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1.6. First relations. In this paragraph we show that the kernels of theorem 1.4.1
for the action on DbCoh(g̃) satisfy relations (3) and (4) of the presentation of B′

aff

given by theorem 1.1.3.
Let us consider relation (3). Let α ∈ Φ and x ∈ X be such that 〈x, α∨〉 = 0. We

have to show that OSα commutes with ∆∗Og̃(x). But

OSα ∗ (∆∗Og̃(x)) ∼= OSα(x, 0), (∆∗Og̃(x)) ∗ OSα
∼= OSα(0, x),

and OB×PαB(x, 0) = OB×PαB(0, x) by lemma 1.5.1. Taking the inverse image to
Sα, we obtain the result.

Now, consider relation (4). Let α ∈ Φ and x ∈ X be such that 〈x, α∨〉 = 1. We
have to prove that ∆∗Og̃(x) ∼= OSα ∗ (∆∗Og̃(x − α)) ∗ OSα . Due to proposition
1.5.2, this is equivalent to proving

(∆∗Og̃(x)) ∗ (OSα(−ρ, ρ− α)) ∼= (OSα) ∗ (∆∗Og̃(x− α)).

We have OB×PαB(−ρ, x + ρ − α) ∼= OB×PαB(x − α, 0) by lemma 1.5.1 again. The
result follows, since

(∆∗Og̃(x)) ∗ (OSα(−ρ, ρ− α)) ∼= OSα(−ρ, x+ ρ− α),

(OSα) ∗ (∆∗Og̃(x− α)) ∼= OSα(x− α, 0).

1.7. More notations. In this paragraph we introduce notations concerning Schu-
bert varieties and Demazure resolutions (following [BK]).

If w ∈ W , we denote by Xw the corresponding Schubert variety. This is the
closure of BwB/B in B. Similarly, we denote by Xw the closure of the G-orbit
of (B/B,wB/B) in B × B, called G-Schubert variety. Its points are the couples
of Borel subgroups of G in relative position at most w in the Bruhat order. It
identifies with G×B Xw under the isomorphism G×B B ∼= B × B.

For w = s1 · · · sn a reduced expression in W , let Z(s1, ··· ,sn) be the associated
Demazure resolution of the Schubert variety Xw (as defined in [BK]). Let also
Z(s1, ··· ,sn) be the induction from B to G of this resolution, which is a resolution
of Xw, and let Φ(s1, ··· ,sn) : Z(s1, ··· ,sn) → Xw be the associated morphism. If sj
is the reflection associated with the simple root αj ∈ Φ for any j = 1, . . . , n, and
Pj := G/Pj for Pj the standard parabolic subgroup of G of type {αj}, then we
have an isomorphism Z(s1, ··· ,sn)

∼= B×P1 B×P2 · · ·×Pn B, and Φ(s1, ...,sn) identifies

with the restriction of the projection p1,n+1 : Bn+1 → B2. Let Z̃(s1, ··· ,sn) be the
intersection

(Sα1 × g̃n−1) ∩ (g̃× Sα2 × g̃n−2) ∩ · · · ∩ (g̃n−1 × Sαn),

a subscheme of g̃n+1.

In the next two sections we prove the finite braid relations, first in the case when
the simple roots α and β generate a root system of type A2, and then in the case
when they generate a system of type B2. The much easier case of a root system of
type A1 ×A1 is left to the reader.

2. Finite braid relations for type A2

Let α and β be simple roots generating a root system of type A2, i.e. such that
〈α, β∨〉 = 〈β, α∨〉 = −1. It is well-known (see e.g. [Sp, 8.2.3]) that there exists
c ∈ k× such that

∀x, y ∈ k, (uα(x), uβ(y)) = uα+β(cxy).
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The following formulae for the adjoint action of G on g follow easily:

uα(x) · eβ = eβ + cxeα+β , uα+β(x) · hβ = hβ − xeα+β ,

uα(x) · hβ = hβ + xeα, uα+β(x) · e−β = e−β + (x/c)eα.

We also have [eα, eβ] = ceα+β. The corresponding formulae with α and β inter-
changed are obtained by replacing c by −c. Note finally that hα+β = hsα(β) =
sα(hβ) = hα + hβ .

In this section we prove that

OSα ∗ OSβ
∗ OSα = R(p1,4)∗(OSα×g̃2

L

⊗g̃4Og̃×Sβ×g̃

L

⊗g̃4Og̃2×Sα
)

is invariant under the exchange of α and β (where p1,4 : g̃4 → g̃2 is the natural
projection). In fact we calculate this complex of sheaves explicitly.

2.1. Derived tensor product.

Lemma 2.1.1. There exist isomorphisms

OSα×g̃2

L

⊗g̃4Og̃×Sβ×g̃

L

⊗g̃4Og̃2×Sα
∼= OZ̃(sα,sβ,sα)

;

OSβ×g̃2

L

⊗g̃4Og̃×Sα×g̃

L

⊗g̃4Og̃2×Sβ
∼= OZ̃(sβ,sα,sβ)

.

Moreover, the schemes Z̃(sα,sβ ,sα) and Z̃(sβ ,sα,sβ) are integral, i.e. reduced and
irreducible.

Proof. We write the proof in the first case only, the second one being similar (replace
c by −c). As in the proof of proposition 1.5.2, we only have to study the situation
over (B/B) × (U+B/B)3. Let us choose an order on R+ such that the last three
roots are α + β, β, α (in this order). Let Pα, Pβ , Pα,β be the standard parabolic

subgroups of G associated to {α}, {β} and {α, β}. We denote by U+
(α), U

+
(β), U

+
(α,β)

the product of the Uγ for γ ∈ R+−{α}, γ ∈ R+−{β}, γ ∈ R+−{α, β, α+β} (these
are the unipotent radicals of the parabolic subgroups opposite to Pα, Pβ , Pα,β). We
have an isomorphism U+ ∼=

∏
γ∈R+ Uγ . Via this isomorphism, the restriction to

U+B/B of the projections G/B → G/Pα and G/B → G/Pα,β become the natural
projections U+

(α)×Uα → U+
(α) and U

+
(α,β)×Uα+β×Uβ×Uα → U+

(α,β). The restriction

of the projection G/B → G/Pβ becomes
{
U+
(α,β) × Uα+β × Uβ × Uα → U+

(β)
∼= U+

(α,β) × Uα+β × Uα
(u, uα+β(x), uβ(y), uα(z)) 7→ (u, uα+β(x − cyz), uα(z))

.

As in 1.5.2, as coordinates on g̃4|(B/B)×(U+B/B)3 we use u(j) ∈ U+
(α,β), x

(j), y(j),

z(j) ∈ k on the base, and h
(j)
δ (δ ∈ Φ) and e

(j)
γ (γ ∈ R+) on the fiber of the j-th

copy of g̃ (we do not use the coordinates u(1), x(1), y(1) and z(1) because in the first
copy of g̃ we only consider the fiber over B/B).

In these coordinates, (Sα× g̃2)|(B/B)×(U+B/B)3 ⊂ (g̃4)|(B/B)×(U+B/B)3 is defined
by the equations

(∗) u(2) = 1, x(2) = 0, y(2) = 0, h
(1)
δ = h

(2)
δ , e(1)γ = e(2)γ (δ ∈ Φ, γ ∈ R+)

(2.1.2) and h(1)α − z(2)e(1)α = 0
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Similarly, (g̃× Sβ × g̃)|(B/B)×(U+B/B)3 ⊂ (g̃4)|(B/B)×(U+B/B)3 is defined by the
equations

(∗′)

{
u(3) = u(2), x(2) − cy(2)z(2) = x(3) − cy(3)z(3),

z(2) = z(3), h
(2)
δ = h

(3)
δ , e

(2)
γ = e

(3)
γ

and u(2) · uα+β(x(2) − cy(2)z(2)) · uα(z(2)) · (h
(2)
β − (y(2) + y(3))e

(2)
β ) = 0, i.e.

(2.1.3) u(2) ·
(
h
(2)
β + z(2)e(2)α − (y(2) + y(3))e

(2)
β − (x(2) + cy(3)z(2))e

(2)
α+β

)
= 0.

And finally (g̃2 × Sα)|(B/B)×(U+B/B)3 ⊂ (g̃4)|(B/B)×(U+B/B)3 is defined by

(∗′′) u(3) = u(4), x(3) = x(4), y(3) = y(4), h
(3)
δ = h

(4)
δ , e(3)γ = e(4)γ

and u(3) · uα+β(x(3)) · uβ(y(3)) · (h
(3)
α − (z(3) + z(4))e

(3)
α ) = 0, i.e.

(2.1.4) u(3) ·
(
h(3)α − (z(3) + z(4))e(3)α + y(3)e

(3)
β

+ (−x(3) + cy(3)(z(3) + z(4)))e
(3)
α+β

)
= 0.

In each case, the given equations form a regular sequence in k[g̃4|(B/B)×(U+B/B)3 ].
Let us prove that the union of these equations again forms a regular sequence. First,
equations (∗), (∗′) and (∗′′) allow us to identify all the coordinates in the fibers (we
will thus remove the superscript on them), and to eliminate the coordinates u(j),
x(2), y(2), x(3), z(2), x(4), y(3). Then equations (2.1.2), (2.1.3) allow to eliminate
hα and hβ, while (2.1.4) becomes −z(4)eα + y(4)eβ + cy(4)z(4)eα+β = 0, a non-zero
equation in the remaining variables. Hence the equations indeed form a regular
sequence, and thus the derived tensor product is concentrated in degree 0.

Moreover, the polynomial −z(4)eα + y(4)eβ + cy(4)z(4)eα+β is irreducible (it is

of degree 1 in eα, and not divisible by z(4)). Hence it defines an integral scheme.
Thus the restriction of (Sα × g̃2) ∩ (g̃× Sβ × g̃) ∩ (g̃2 × Sα) to (B/B)× (U+B/B)
is integral. It follows that the restriction of this scheme to any B-translate of
(B/B)× (U+B/B) is also integral. Hence (Sα × g̃2) ∩ (g̃ × Sβ × g̃) ∩ (g̃2 × Sα) is
the union of some integral open sets, each one intersecting each other one. Hence
it is integral. �

2.2. Determination of the image. Now we have to show that

R(p1,4)∗(O(Sα×g̃2)∩(g̃×Sβ×g̃)∩(g̃2×Sα)) = R(p1,4)∗(OZ̃(sα,sβ,sα)
)

is invariant under the exchange of α and β. First, as the intersection we consider
is reduced, we can work with varieties instead of schemes. In this paragraph we

compute the image of Z̃(sα,sβ ,sα) under p1,4, and observe that it is invariant under

the exchange of α and β (though the variety Z̃(sα,sβ ,sα) is of course not). Then we
show (in 2.4) that R(p1,4)∗(OZ̃(sα,sβ,sα)

) is the sheaf of functions on this image.

So, let us consider p1,4(Z̃(sα,sβ ,sα)). It is a closed subvariety of g̃2. Indeed, we
have the following diagram, where all the injections are closed immersions:

Z̃(sα,sβ ,sα)
� � i // g∗ × B4

π

��

� � j
// (g∗)4 × B4

��

g̃4

p1,4

��

? _
σoo

g∗ × B2 � � τ // (g∗)2 × B2 g̃2.? _
ξ

oo
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One has ji(Z̃(sα,sβ ,sα)) ⊆ σ(g̃4), and ξp1,4(Z̃(sα,sβ ,sα)) = τπi(Z̃(sα ,sβ ,sα)). The
morphism π being proper, hence closed, the result follows.

Now we compute explicitly p1,4(Z̃(sα,sβ ,sα)) as a subset of g∗ × B2, using the
geometric description of Sα and Sβ (see 1.4). By G-equivariance, we only have
to calculate this image over the points (B/B,wB/B) for w in the subgroup of
W generated by sα and sβ. Recall that the Demazure resolution Φ(sα,sβ ,sα) is
an isomorphism over the complement of Xsα . Hence if w = sa1α sβs

a2
α with ai ∈

{0, 1} then for X ∈ g∗ the point (X,B/B,wB/B) is in the image if and only if

(X,B/B, sa1α B/B, s
a1
α sβB/B, s

a1
α sβs

a2
α B/B) is in Z̃(sα,sβ ,sα). Using the geometric

description of Sα, one obtains the condition on X in cases (i) to (iv):
(i) Fiber over (B/B, sαsβsαB/B): X|n⊕keα⊕keβ⊕keα+β

= 0.
(ii) Fiber over (B/B, sβsαB/B): X|n⊕khα⊕keβ⊕keα+β

= 0.
(iii) Fiber over (B/B, sαsβB/B): X|n⊕khβ⊕keα⊕keα+β

= 0 (observe that sαsβ ·
hα = hsαsβ(α) = hβ).

(iv) Fiber over (B/B, sβB/B): X|n⊕khα⊕khβ⊕keβ = 0.

(v) Fiber over (B/B, sαB/B): here the fiber of Φ(sα,sβ ,sα) is isomorphic to P1
k
,

with points the (B/B, gB/B, gB/B, sαB/B) for g ∈ Pα. Firstly, if g ∈ sαB, the
condition on X for the point (X,B/B, gB/B, gB/B, sαB/B) to be in the inter-
section is X|n⊕keα⊕k(sα·hα)⊕k(sα·hβ) = 0, i.e. X|n⊕keα⊕khα⊕khβ

= 0. Secondly, if
g /∈ sαB, we can assume g = uα(ǫ) for some ǫ ∈ k. Then the corresponding
condition on X is to vanish on n and on

hα − ǫeα, uα(ǫ) · hβ = hβ + ǫeα and eα.

Hence the condition is the same in the two cases. And finally the condition on X

for (X,B/B, sβB/B) to be in p1,4(Z̃(sα,sβ ,sα)) is

X|n⊕khα⊕khβ⊕keα = 0.

(vi) Fiber over (B/B,B/B): the fiber of Φ(sα,sβ ,sα) over (B/B,B/B) is again

P1
k
, with points the (B/B, gB/B, gB/B,B/B) for g ∈ Pα. Firstly, if g ∈ sαB/B,

the corresponding condition on X is X|n⊕keα⊕khα+β
= 0. Secondly, if g /∈ sαB, then

we can assume g = uα(ǫ) for some ǫ ∈ k. The condition on X is then to vanish
on n, on hα − ǫeα and on uα(ǫ) · hβ = hβ + ǫeα. This is equivalent to vanishing
on n, hα − ǫeα and hα + hβ = hα+β . Finally, the condition on X for the point

(X,B/B,B/B) to be in the image of Z̃(sα,sβ ,sα) under p1,4 is that X|n⊕khα+β
= 0,

and that either X(eα) = 0, or X(hα − ǫeα) = 0 for some ǫ ∈ k. But if X(eα) 6= 0
then X(hα − ǫeα) = 0 for ǫ = X(hα)/X(eα). So the condition on X is only

X|n⊕khα+β
= 0.

These considerations show that p1,4(Z̃(sα,sβ ,sα)) is a closed subvariety of g∗ ×
B × B, invariant under the exchange of α, β (the computations with α and β
interchanged are the same, replacing c by −c). We denote it by S{α,β}.

2.3. Normality of S{α,β}.

Proposition 2.3.1. The variety S{α,β} is integral, normal and Cohen-Macaulay.

Proof.4 First, S{α,β} is integral because it is the image of Z̃(sα,sβ ,sα), which is
integral by lemma 2.1.1.

4This proof is due to Patrick Polo.
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For the other properties, as usual, we only have to consider the situation over
(B/B)× (U+B/B). We keep the notations of the proof of lemma 2.1.1, and define
γ := α + β. Recall the isomorphism U+ ∼= U+

(α,β) × Uγ × Uβ × Uα (see the proof

of lemma 2.1.1). As S{α,β} is supported over B ×G/Pα,β
B, in fact we only have to

consider the situation over (B/B)× (UγUβUαB/B) ∼= Uγ × Uβ × Uα.
Consider a point

u = uγ(xγ)uβ(xβ)uα(xα) ∈ UγUβUα,

with xγxβxα 6= 0 and xγ − cxαxβ 6= 0. It can also by written

uα(x)uβ(y)uα(z)

with xγ = cxy, xβ = y, xα = x + z (here xyz 6= 0). If X ∈ (g/n)∗, and
(X,B/B, uB/B) is in S{α,β}, thenX must vanish on uα(x)·e−α = e−α+xhα−x2eα,
hence on

(2.3.2) hα − xeα.

It must also vanish on uα(x)uβ(y) · e−β, hence on

(2.3.3) hβ + xeα − yeβ − cxyeγ .

Finally, it must vanish on uα(x)uβ(y)uα(z) · e−α, hence on

(x+ z)hα − (x + z)2eα + yzeβ + cyz(x+ z)eα+β.

Substracting (x + z) times equation (2.3.2), and dividing by z, we obtain that X
must vanish on

(2.3.4) (x+ z)eα − yeβ − cy(x+ z)eγ .

The sum of equations (2.3.2) and (2.3.3) becomes

(2.3.5) hα + hβ − xβeβ − xγeγ .

Multiplying (2.3.2) by cxβ = cy gives

(2.3.6) cxβhα − xγeα.

Equation (2.3.4) can be rewritten

(2.3.7) xαeα − xβeβ − cxαxβeγ .

Finally, adding cxα times (2.3.2) and cx times (2.3.4) gives

(2.3.8) cxαhα − xγeβ − cxαxγeγ .

Let us denote byM the closed subscheme of Adim(g/n)+3 defined by equations (2.3.5)
to (2.3.8). Equation (2.3.5) allows to eliminate hβ ; that is, setting e = xα, f = xβ ,
g = xγ , h = chα, i = eα, j = eβ and k = ceγ , we obtain that the coordinate ring of
M is a polynomial ring over A := k[e, f, g, h, i, j, k]/(F,G,H), where





F = fh− gi,
G = ei− fj − efk,
H = eh− gj − egk.

Lemma 2.3.9. A is integral, of dimension 5, Cohen-Macaulay and normal. Its
singular locus is defined by e = f = g = h = i = j = 0.
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Proof. Let us consider j′ := j + ek. A is isomorphic to A′ ⊗ k[k], where

A′ := k[e, f, g, h, i, j′]/(fh− gi, ei− fj′, eh− gj′).

This ring is the algebra of functions on the variety of matrices
(
h i j′

g f e

)

of rank at most 1, which is the cone of the Segre embedding of P1×P2. This variety
is well known to be integral, Cohen-Macaulay and normal, the vertex of the cone
(defined by e = f = g = h = i = j′ = 0) being its unique singularity (see e.g. [BV,
2.8, 2.11]). The lemma follows. �

In particular, M is integral. It contains S{α,β}|(B/B)×(U+B/B) (the equations
are satisfied on a dense open subset of S{α,β}|(B/B)×(U+B/B), hence everywhere),
which has the same dimension. Hence the two varieties coincide.

We deduce that S{α,β} is normal and Cohen-Macaulay. This finishes the proof
of proposition 2.3.1. �

2.4. End of the proof. We denote by Ψ(sα,sβ ,sα) : Z̃(sα,sβ ,sα) → S{α,β} the mor-
phism constructed above (it is the restriction of p1,4), and similarly with α and β
interchanged..

Proposition 2.4.1. We have

R(Ψ(sα,sβ ,sα))∗(OZ̃(sα,sβ,sα)
) ∼= OS{α,β}

,

and similarly with α and β interchanged.

Proof. First we prove that Ri(Ψ(sα,sβ ,sα))∗(OZ̃(sα,sβ,sα)
) = 0 for i ≥ 1. The ar-

gument for this is adapted from [BK, 3.2.1]. Since the fibers of Ψ(sα,sβ ,sα) are

of dimension at most 1, by [H2, III.11.2] we have Ri(Ψ(sα,sβ ,sα))∗ = 0 for i ≥ 2.

Hence we only have to prove the equality R1(Ψ(sα,sβ ,sα))∗(OZ̃(sα,sβ,sα)
) = 0. The

following diagram commutes:

Z̃(sα,sβ ,sα)

Ψ(sα,sβ,sα)

��

� � i // g∗ ×Z(sα,sβ ,sα)

Id×Φ(sα,sβ,sα)

��

S{α,β}
� � j

// g∗ ×Xsαsβsα

where i and j are closed embeddings. Hence we only have to show that R1(Id ×
Φ(sα,sβ ,sα))∗(i∗OZ̃(sα,sβ,sα)

) = 0. We have a surjection

Og∗×Z(sα,sβ,sα)
։ i∗OZ̃(sα,sβ,sα)

.

As R2(Id×Φ(sα,sβ ,sα))∗ = 0 (for the same reason as above), we obtain a surjection

R1(Id× Φ(sα,sβ ,sα))∗(Og∗×Z(sα,sβ,sα)
)։ R1(Id× Φ(sα,sβ ,sα))∗(i∗OZ̃(sα,sβ,sα)

).

By the classical results on Demazure resolutions, the object on the left hand side
is zero. Hence R1(Id× Φ(sα,sβ ,sα))∗(i∗OZ(sα,sβ,sα)

) = 0, as claimed.

Since Ψ(sα,sβ ,sα) is proper and birational (because Φ(sα,sβ ,sα) is), and S{α,β}

is normal (by proposition 2.3.1), one has (Ψ(sα,sβ ,sα))∗(OZ̃(sα,sβ,sα)
) ∼= OS{α,β}

by



18 SIMON RICHE

Zariski’s Main Theorem. This proves the result. The assertion with α and β
interchanged is obtained similarly. �

With this proposition the proof of the finite braid relation for the action on
DbCoh(g̃) (see theorem 1.4.1) when α and β generate a root system of type A2 is
complete.

3. Finite braid relations for type B2

Now we assume that α and β generate a root system of typeB2. To fix notations,
we assume that α is short and β is long. Then 〈α, β∨〉 = −1, 〈β, α∨〉 = −2. There
exist structure constants c, d ∈ k× such that

∀x, y ∈ k, (uα(x), uβ(y)) = uα+β(cxy)u2α+β(dx
2y)

(again, see [Sp, 8.2.3]). Then, also,

∀x, y ∈ k, (uβ(x), uα(y)) = uα+β(−cxy)u2α+β(−dxy
2).

Easy calculations yield the following formulae for the adjoint action of G on g:

uα(x) · eβ = eβ + cxeα+β + dx2e2α+β, uα(x) · hβ = hβ + xeα,

uα(x) · eα+β = eα+β + 2 dcxe2α+β , uβ(x) · hα = hα + 2xeβ,

uβ(x) · eα = eα − cxeα+β , uα+β(x) · hα = hα,

uα+β(x) · eα = eα − 2 dc e2α+β , uα+β(x) · hβ = hβ − xeα+β ,

uα+β(x) · e−α = e−α − 2
cxeβ , u2α+β(x) · hα = hα − 2xe2α+β ,

uα+β(x) · e−β = e−β + 1
cxeα − d

c2 x
2e2α+β ,

u2α+β(x) · e−α = e−α − 2c
d xeα+β .

We also have hα+β = hα + 2hβ, h2α+β = hα + hβ.
In this section we prove the finite braid relation for the simple roots α and β.

The proof is very similar to the one in the previous section. We assume throughout
the section that char(k) 6= 2.

3.1. Derived tensor product.

Lemma 3.1.1. There exist isomorphisms

OSα×g̃3

L

⊗g̃5Og̃×Sβ×g̃2

L

⊗g̃5Og̃2×Sα×g̃

L

⊗g̃5Og̃3×Sβ
∼= OZ̃(sα,sβ,sα,sβ)

;

OSβ×g̃3

L

⊗g̃5Og̃×Sα×g̃2

L

⊗g̃5Og̃2×Sβ×g̃

L

⊗g̃5Og̃3×Sα
∼= OZ̃(sβ,sα,sβ,sα)

.

Moreover, the varieties Z̃(sα,sβ ,sα,sβ) and Z̃(sβ ,sα,sβ ,sα) are integral.

Proof. As for lemma 2.1.1, we prove the result in the first case only, by computation
of equations (the second case can be treated similarly). Let us choose an ordering
of R+ such that the last four roots are 2α + β, α + β, β, α (in this order). Let
U+
(α), U

+
(β), U

+
(α,β) be the product of the Uγ for γ ∈ R+ − {α}, γ ∈ R+ − {β},

γ ∈ R+ − {α, β, α + β, 2α + β}. Under the isomorphism U+ ∼=
∏
γ∈R+ Uγ , the

restriction to U+ of the projections πα : B → Pα, πβ : B → Pβ become the

morphisms U+
(α) × Uα → U+

(α) and
{

U+
(α,β)

× U2α+β × Uα+β × Uβ × Uα → U+
(α,β)

× U2α+β × Uα+β × Uα

(u, u2α+β(x), uα+β(y), uβ(z), uα(t)) 7→ (u, u2α+β(x− dt2z), uα+β(y − czt), uα(t))
.
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As coordinates we will use the u(j), x(j), y(j), z(j) and t(j) on the base (j = 2, . . . , 5),

and e
(j)
γ (γ ∈ R+), h

(j)
δ (δ ∈ Φ) in the fibers (j = 1, . . . , 5).

In these coordinates, (Sα× g̃3)|(B/B)×(U+B/B)4 ⊂ (g̃5)|(B/B)×(U+B/B)4 is defined
by the equations

(∗) u(2) = 1, x(2) = 0, y(2) = 0, z(2) = 0, e(1)γ = e(2)γ , h
(1)
δ = h

(2)
δ

for δ ∈ Φ, γ ∈ R+, and

(3.1.2) h(1)α − t(2)e(1)α = 0.

Similarly, (g̃×Sβ × g̃2)|(B/B)×(U+B/B)4 ⊂ (g̃5)|(B/B)×(U+B/B)4 is defined by the
equations

(∗′)

{
u(2) = u(3), x(2) − d(t(2))2z(2) = x(3) − d(t(3))2z(3), t(2) = t(3),

y(2) − cz(2)t(2) = y(3) − cz(3)t(3), e
(2)
γ = e

(3)
γ , h

(2)
δ = h

(3)
δ ,

and u(2) · u2α+β(x(2) − d(t(2))2z(2)) · uα+β(y(2) − cz(2)t(2)) · uα(t(2)) · (h
(2)
β − (z(2) +

z(3))e
(2)
β ) = 0, i.e.

(3.1.3) u(2) ·
(
h
(2)
β + t(2)e(2)α − (z(2) + z(3))e

(2)
β + (−y(2) − ct(2)z(3))e

(2)
α+β

+ (−2
d

c
y(2)t(2) + d(t(2))2(z(2) − z(3)))e

(2)
2α+β

)
= 0.

Next, (g̃2 × Sα × g̃)|(B/B)×(U+B/B)4 ⊂ (g̃5)|(B/B)×(U+B/B)4 is defined by the
equations

(∗′′)

{
u(3) = u(4), x(3) = x(4), y(3) = y(4),

z(3) = z(4), e
(3)
γ = e

(4)
γ , h

(3)
δ = h

(4)
δ ,

and u(3) · u2α+β(x(3)) · uα+β(y(3)) · uβ(z(3)) · (h
(3)
α − (t(3) + t(4))e

(3)
α ) = 0, i.e.

(3.1.4) u(3) ·
(
h(3)α − (t(3) + t(4))e(3)α + 2z(3)e

(3)
β + cz(3)(t(3) + t(4))e

(3)
α+β

+ (−2x(3) + 2
d

c
y(3)(t(3) + t(4))e2α+β)

)
= 0.

Finally, (g̃3×Sβ)|(B/B)×(U+B/B)4 ⊂ (g̃5)|(B/B)×(U+B/B)4 is defined by the equa-
tions

(∗′′′)

{
u(4) = u(5), x(4) − d(t(4))2z(4) = x(5) − d(t(5))2z(5), t(4) = t(5),

y(4) − cz(4)t(4) = y(5) − cz(5)t(5), e
(4)
γ = e

(5)
γ , h

(4)
δ = h

(5)
δ ,

and u(4) · u2α+β(x
(4) − d(t(4))2z(4)) · uα+β(y

(4) − cz(4)t(4)) · uα(t
(4)) · (h

(4)
β − (z(4) +

z(5))e
(4)
β ) = 0, i.e.

(3.1.5) u(4) ·
(
h
(4)
β + t(4)e(4)α − (z(4) + z(5))e

(4)
β + (−y(4) − ct(4)z(5))e

(4)
α+β

+ (−2
d

c
y(4)t(4) + d(t(4))2(z(4) − z(5)))e

(4)
2α+β

)
= 0.

As in the proof of lemma 2.1.1, we have to show that the union of these equations
forms a regular sequence. The equations (∗) to (∗′′′) allow us to eliminate the
coordinates u(j), x(2), y(2), z(2), x(3), y(3), t(3), x(4), y(4), z(4), x(5), y(5), t(5),
and to identify the coordinates in the fibers, which we will denote by eγ and hδ.
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Then, equations (3.1.2) and (3.1.3) allow to eliminate hα and hβ . With these
simplifications, equations (3.1.4) and (3.1.5) become

(3.1.6) − t(4)eα + 2z(3)eβ + cz(3)(t(2) + t(4))eα+β + 2dz(3)t(2)t(4)e2α+β = 0,

(3.1.7) (t(4) − t(2))eα − z(5)eβ − ct(4)z(5)eα+β

+ d(z(3)(t(2) − t(4))2 − (t(4))2z(5))e2α+β = 0.

Let us denote by P the polynomial of (3.1.6), and by Q the polynomial of (3.1.7).
Then P and Q are irreducible and distinct. Hence they form a regular sequence
in k[z(3), z(5), t(2), t(4), eγ , γ ∈ R+, hδ, δ ∈ Φ − {α, β}]. This proves that the tensor
product we are considering is indeed concentrated in degree 0, and that the ring
k[z(3), z(5), t(2), t(4), eγ , hδ]/(P,Q) is Cohen-Macaulay (see [BH, 2.1.3]). We prove
in the next lemma that this ring is an integral domain. We deduce, as in the case

of A2, that Z̃(sα,sβ ,sα,sβ) is an integral scheme. �

Lemma 3.1.8. k[z(3), z(5), t(2), t(4), eγ , hδ]/(P,Q) is an integral domain.

Proof. First, let us prove that the closed subvariety N of kdim(g/n)+2 defined by
P and Q is irreducible. The restriction of this subvariety to the open set defined
by t(4) 6= 0 is irreducible (indeed, on this open set P gives eα as a polynomial in
the other coordinates and (t(4))−1, and replacing in Q we still obtain an irreducible
polynomial). Similarly for the intersections with the open set defined by z(3) 6= 0,
and with the open set defined by z(5) 6= 0. Now N is isomorphic to the closure of
its intersection with the open set {t(4) 6= 0} ∪ {z(3) 6= 0} ∪ {z(5) 6= 0} (indeed, if
t(4) = z(3) = 0, P is zero, and Q = −t(2)eα − z(5)eβ is an irreducible polynomial,

whose variety of zeros intersect the open set {z(5) 6= 0}). This intersection is
irreducible (it is the union of three irreducible open sets, each one intersecting each
other one). Hence N is irreducible.

Now we have to show that the ring k[z(3), z(5), t(2), t(4), eγ , hδ]/(P,Q) is reduced,
i.e. that it satisfies properties (R0) and (S1) (see [Ma, p. 125]). As we have seen
that it is Cohen-Macaulay, and that the corresponding scheme is irreducible, we
only have to prove that it is regular at some point. But it is clearly regular at the
point defined by t(2) = t(4) = 1, z(3) = 0, z(5) = 1, eα = eβ = eα+β = e2α+β = 0
(consider the partial differentials of P and Q with respect to eα and eβ). �

3.2. Determination of the image. As in 2.2, we have to identify the images of

Z̃(sα,sβ ,sα,sβ) and Z̃(sβ ,sα,sβ ,sα) under p1,5 : g̃5 → g̃2 (these are closed subvarieties of

g̃2), and observe that they coincide. We only indicate the computations for the first
case, the second one being similar. By G-equivariance we only have to compute
the fibers of this image over the points (B/B,wB/B) for w in the subgroup of W
generated by sα and sβ . In this case the Demazure resolution Φ(sα,sβ ,sα,sβ) is an
isomorphism over the complement of Xsαsβ . This gives the condition on X ∈ g∗

for the point (X,B/B,wB/B) to be in p1,5(Z̃(sα,sβ ,sα,sβ)) in cases (i) to (iv).
(i) Fiber over (B/B, sαsβsαsβB/B): X|n⊕keα⊕keβ⊕keα+β⊕ke2α+β

= 0.
(ii) Fiber over (B/B, sαsβsαB/B): X|n⊕keα⊕keα+β⊕ke2α+β⊕khβ

= 0.
(iii) Fiber over (B/B, sβsαsβB/B): X|n⊕keβ⊕keα+β⊕ke2α+β⊕khα

= 0.
(iv) Fiber over (B/B, sβsαB/B): X|n⊕keβ⊕keα+β⊕khα⊕khβ

= 0.
(v) Fiber over (B/B, sαsβB/B): the fiber of Φ(sα,sβ ,sα,sβ) is isomorphic to two

copies of P1
k
with one common point. Its elements are, on the one hand, the
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(B/B, sαB/B, sαgB/B, sαgB/B, sαsβB/B) for g ∈ Pβ and, on the other hand,
the (B/B, gB/B, gB/B, sαB/B, sαsβB/B) for g ∈ Pα. One verifies that the con-
ditions on X corresponding to each of these points are the same, namely

X|n⊕keα⊕ke2α+β⊕khα⊕khβ
= 0.

(vi) Fiber over (B/B, sαB/B): the fiber of the Demazure resolution is formed
by the points (B/B, gB/B, gB/B, sαB/B, sαB/B) for g ∈ Pα and the points
(B/B, sαB/B, sαgB/B, sαgB/B, sαB/B) for g ∈ Pβ . Let us compute the con-
ditions on X corresponding to the each of these points. We begin with the points
(B/B, gB/B, gB/B, sαB/B, sαB/B) for g ∈ Pα. If g ∈ sαB, the condition is to
vanish on n, eα, sα · hβ = hα + hβ and sα · hα = −hα, i.e. X|n⊕keα⊕khα⊕khβ

= 0. If
g = uα(ǫ) for some ǫ ∈ k, then the condition is to vanish on hα − ǫeα, uα(ǫ) · hβ =
hβ + ǫeα, eα and sα · hβ = hα + hβ , i.e. the same condition. Now, let us consider
the points (B/B, sαB/B, sαgB/B, sαgB/B, sαB/B) for g ∈ Pβ . If g ∈ sβB, then
the condition is to vanish on eα, e2α+β and sαsβ · hα = hα+β. If g = uβ(ǫ), the
condition is to vanish on eα, sα · (hβ − ǫeβ) and sαuβ(ǫ) · hα = sα · (hα +2ǫeβ), i.e.
on eα, sα · (hβ − ǫeβ) and sα · (hα + 2hβ) = sα · hα+β = hα+β . As in 2.2 (vi), the
condition on X for the point (X,B/B, sαB/B) to be in the image of p1,5 is finally

X|n⊕keα⊕khα+β
= 0.

(vii) Fiber over (B/B, sβB/B): Similarly, the condition is

X|n⊕keβ⊕kh2α+β
= 0.

(viii) Fiber over (B/B,B/B): the fiber of the Demazure resolution is given on
the one hand by the (B/B, gB/B, gB/B,B/B,B/B) for g ∈ Pα and on the other
hand by the (B/B,B/B, gB/B, gB/B,B/B) for g ∈ Pβ . In the first case, if g ∈ B
then the corresponding condition of X is to vanish on n, hα and hβ . If g /∈ B,
then the condition is to vanish on n, eα, hα and hβ . The situation is similar in the
second case. Hence the condition on X for (X,B/B,B/B) to be in the image is

X|n⊕khα⊕khβ
= 0.

It follows from these computations and the similar ones with α and β inter-

changed (computing p1,5(Z̃(sβ ,sα,sβ ,sα)) instead of p1,5(Z̃(sα,sβ ,sα,sβ)) amounts to
replacing α by β, β by α, α+ β by β + 2α, and β + 2α by α+ β) that the images

under p1,5 of Z̃(sα,sβ ,sα,sβ) and Z̃(sβ ,sα,sβ ,sα) coincide. We let S{α,β} be this image.

3.3. Normality of S{α,β}.

Proposition 3.3.1. The variety S{α,β} is integral and normal.

Proof.5 Let us define γ := α + β, δ := 2α + β. As for type A2, we already know
that S{α,β} is integral, and we only have to consider the situation over (B/B) ×

(UδUγUβUαB/B). In this proof we consider S{α,β} as the image of Z̃(sβ ,sα,sβ ,sα).
Let

u = uδ(xδ)uγ(xγ)uβ(xβ)uα(xα) ∈ UδUγUβUα,

with xαxβxγxδ 6= 0, xγxβ − d
c2x

2
γ 6= 0 and xαxγ −

c
dxδ 6= 0. We have

u = uβ(t)uα(z)uβ(y)uα(x)

5This proof is a simplification of an earlier one due to Patrick Polo.



22 SIMON RICHE

with xα = x + z, xβ = y + t, xγ = cyz, xδ = dyz2 (here xyzt 6= 0). Then if
(X,B/B, uB/B) is in S{α,β}, X must vanish on

(3.3.2) hβ − teβ.

It also vanishes on uβ(t)uα(z) · e−α, hence on hα+2teβ − zeα+ czteγ. Adding two
times (3.3.2), one obtains

(3.3.3) hγ − zeα + czteγ.

Further, X must vanish on uβ(t)uα(z)uβ(y) · e−β, hence on uβ(t)uα(z) · (hβ − yeβ).
Substracting (3.3.2), one obtains

(3.3.4) zeα − (y + t)eβ − cz(y + t)eγ − dyz2eδ.

Finally, X vanishes on uβ(t)uα(z)uβ(y)uα(x)·e−α, hence on uβ(t)uα(z)uβ(y)·(hα−
xeα). Substracting uβ(t) · (hα − zeα), one obtains

(3.3.5) − (x + z)eα + 2yeβ + c((y + t)(x + z) + yz)eγ + 2dyz(x+ z)eδ.

Let us transform our equations (3.3.2) to (3.3.5) to obtain equations in xα, xβ ,
xγ , xδ. Substracting (3.3.5) from two times (3.3.2), one obtains

(3.3.6) 2hβ + xαeα − 2xβeβ − (cxαxβ + xγ)eγ −
2d

c
xαxγeδ.

Similarly, adding (3.3.3) and (3.3.4), one obtains

(3.3.7) hγ − xβeβ − xγeγ − xδeδ.

Then, one verifies that (x+z) times (3.3.4) plus z times (3.3.5), and 2y times (3.3.4)
plus v times (3.3.5) give respectively

(3.3.8) (
2

c
xγ − xαxβ)eβ +

c

d
xδeγ + xαxδeδ,

(3.3.9) (
2

c
xγ − xαxβ)eα + xβ(cxαxβ − xγ)eγ +

2d

c
xγ(xαxβ −

1

c
xγ)eδ.

Finally, xγ times (3.3.4) gives

(3.3.10)
c

d
xδeα − xβxγeβ −

c2

d
xβxδeγ − xγxδeδ.

Equations (3.3.6) and (3.3.7) express hβ , hγ in terms of the other variables. We
denote by E, F and G the polynomials of (3.3.8), (3.3.9) and (3.3.10).

Now we can finish the proof exactly as in the case of A2. In the next lemma we
show that the scheme defined by E, F and G is normal and integral. Moreover it
contains S{α,β}|(B/B)×(U+B/B) as a closed subvariety, and has the same dimension.
Hence the two varieties coincide. �

Lemma 3.3.11. The ring

A := k[xα, xβ , xγ , xδ, eα, eβ, eγ , eδ]/(E,F,G)

is a normal domain.

Proof. Let us forget about the previous notations x, y, z and t. Now we define

x = xα, y = −xβ , z =
2
cxγ − xαxβ , t = −xδ, f = 2

c (
c
deα − c2

d xβeγ − xγeδ), g = eβ,
h = c

deγ + xαeδ, i = eδ. Then we have A ∼= A′[i], where

A′ := k[x, y, z, t, f, g, h]/(zg − th, zf − (z − xy)h, y(z − xy)g − tf).
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Let us first show that the closed subvariety of k7 corresponding to A′, denoted
by M , is irreducible. The restriction of M to the open set {t 6= 0} is defined by the
equations h = zg/t and f = y(z − xy)g/t. Hence it is irreducible. Similarly for the
open sets {z 6= 0} and {f 6= 0}. These open sets intersect each other in M . Hence
the restriction of M to {t 6= 0}∪ {z 6= 0}∪ {f 6= 0} is also irreducible. As M is the
closure of this restriction (indeed, if z = t = 0, the condition (x, y, z, t, f, g, h) ∈ V
does not depend on f), it is irreducible.

Now we show that A is normal (hence also reduced). We will use the following
lemma (see [BV, 16.24]):

Lemma 3.3.12. Let S be a noetherian ring, and y ∈ S which is not a zero divisor.
Assume that S/(y) is reduced and S[y−1] is normal. Then S is normal.

Let us apply the lemma to S = A′ and our element y. It is clear that y is not
nilpotent (it is not zero on M). Since M is irreducible, y is not a zero-divisor. Now
A′/(y) is isomorphic to

k[x, z, t, f, g, h]/I

where I = (zg − th, zf, ft). This ideal is the intersection of the prime ideals (z, t)
and (f, zg − th) of k[x, z, t, f, g, h], hence it is reduced.

Consider the ring A′[y−1]. Using the change of coordinates f ′ = f/(y2) and
x′ = −x+ (z/y), it isomorphic to

(
k[x′, z, t, f ′, g, h]/(zg − th, x′g − f ′t, zf ′ − hx′)

)
[y, y−1].

As in the proof of lemma 2.3.9, this ring is normal. This concludes the proof of
lemma 3.3.11. �

Remark 3.3.13. As in type A2, one can show that S{α,β} is Cohen-Macaulay. As
our proof is long and not needed here, we omit it.

3.4. End of the proof. Now, exactly as in lemma 2.4.1, one proves that

R(Ψ(sα,sβ ,sα,sβ))∗(OZ̃(sα,sβ,sα,sβ)
) = OS{α,β}

,

and similarly with α and β interchanged. This finishes the proof of the finite braid
relations in type B2, hence also of the assertions of theorem 1.4.1 concerning the
action of B′

aff on DbCoh(g̃).

4. Restriction to Ñ

Now we will derive the assertions of theorem 1.4.1 concerning the action of B′
aff

on DbCoh(Ñ ). We keep the notations and assumptions as before.

Let i : Ñ →֒ g̃ denote the closed embedding. For α ∈ Φ, we recall that S′
α :=

Sα ∩ (Ñ × Ñ ), and that Γi denotes the graph of i, a closed subvariety of Ñ × g̃.

First, relations (2), to (4) of theorem 1.1.3 for the action on DbCoh(Ñ ) can be
proved exactly as for the action on DbCoh(g̃) (see 1.6). Now we prove relations (1).

Lemma 4.1. The tensor product OÑ×g̃

L

⊗g̃×g̃OSα is concentrated in degree 0, and

is isomorphic to (i× i)∗OS′
α
.

Proof. As in the proof of proposition 1.5.2, we only have to consider the situation
over (B/B) × (U+B/B) ∼= U+. We use the isomorphism U+ ∼= U+

(α) × Uα, and
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choose coordinates u on U+
(α), t on Uα. On the fiber we use coordinates e

(j)
γ , h

(j)
δ

(j = 1, 2).

Then (Ñ × g̃)|(B/B)×(U+B/B) is defined by the equations h
(1)
δ = 0 (δ ∈ Φ), and

Sα by e
(1)
γ = e

(2)
γ , h

(1)
δ = h

(2)
δ , u = 1 and h

(1)
α − te

(1)
α . The union of these equations

forms a regular sequence, which proves the result. �

Remark 4.2. These computations show that S′
α is reduced. It is not irreducible

(see 6.1 for details).

Corollary 4.3. There exist isomorphisms in Db
propCoh(Ñ × g̃):

OΓi ∗ OS′
α

∼= OSα ∗ OΓi ;

OΓi ∗ OS′
α
(ρ− α,−ρ) ∼= OSα(ρ− α,−ρ) ∗ OΓi .

Proof. We only prove the first isomorphism; the second one can be obtained simi-
larly. It follows from lemma 1.2.3 that OΓi ∗OS′

α
∼= (IdÑ × i)∗OS′

α
. Hence we only

have to prove that OSα ∗ OΓi
∼= (IdÑ × i)∗OS′

α
.

Let pa,b denote the projections from Ñ × g̃ × g̃ to Ñ × g̃ or g̃ × g̃, and ∆ :

Ñ → Ñ × Ñ denote the diagonal embedding. Then by definition OSα ∗ OΓi =

R(p1,3)∗(p
∗
1,2OΓi

L

⊗ p∗2,3OSα). But p
∗
1,2OΓi

∼= (IdÑ × i× Idg̃)∗(∆× Idg̃)∗OÑ×g̃
. The

result follows, using the projection formula and the preceding lemma, which implies
that L(i× Idg̃)

∗OSα
∼= (IdÑ × i)∗OS′

α
. �

Corollary 4.4. The finite braid relations (i.e. relations (1) of theorem 1.1.3) are
satisfied by the kernels OS′

α
(α ∈ Φ).

Proof. First, let us prove an analogue of proposition 1.5.2 for the kernels OS′
α
, i.e.

that we have

(†) OS′
α
∗
(
OS′

α
(ρ− α,−ρ)

)
∼= ∆∗OÑ

∼=
(
OS′

α
(ρ− α,−ρ)

)
∗ OS′

α
.

Multiplying the equality OSα ∗ (OSα(ρ − α,−ρ)) = ∆∗Og̃ with OΓi on the right,
and using lemma 1.2.3 and corollary 4.3, one obtains

(IdÑ × i)∗
(
OS′

α
∗
(
OS′

α
(ρ− α,−ρ)

))
∼= (IdÑ × i)∗(∆∗OÑ ).

It follows that the complex of sheaves OS′
α
∗ (OS′

α
(ρ− α,−ρ)) has its cohomology

concentrated in degree 0, i.e. is isomorphic to a coherent sheaf on Ñ × Ñ . Then,

as (IdÑ × i)∗ : Coh(Ñ × Ñ ) → Coh(Ñ × g̃) has a left inverse (IdÑ × i)∗, we deduce
the first isomorphism in (†). The second one can be proved similarly.

Now, let us prove that the braid relations are satisfied. To fix notations, assume
that α and β are simple roots generating a root system of type A2 (the other cases
can be treated similarly). We have to prove that OS′

α
∗OS′

β
∗OS′

α
∼= OS′

β
∗OS′

α
∗OS′

β
.

By (†), this is equivalent to

OS′
β
(ρ− β,−ρ) ∗ OS′

α
(ρ− α,−ρ) ∗ OS′

β
(ρ− β,−ρ) ∗ OS′

α
∗ OS′

β
∗ OS′

α
∼= ∆∗OÑ .

But we know (see section 2) that

OSβ
(ρ− β,−ρ) ∗ OSα(ρ− α,−ρ) ∗ OSβ

(ρ− β,−ρ) ∗ OSα ∗ OSβ
∗ OSα

∼= ∆∗Og̃.

Hence we can use the same argument as in the first part of this proof. �

Remark 4.5. The restriction of this action to Baff , for R of type A, was also
considered in [KT]. There, it was proved to have some nice properties.
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5. Relation to localization in positive characteristic

In this section we show that the action of B′
aff on DbCoh(g̃) we have constructed

above, or rather the similar action on DbCoh(g̃(1)) (for g̃(1) the Frobenius twist of
g̃, see [BMR, 1.1.1]), extends the action on DbCoh

B
(1)
χ
(g̃(1)) constructed in [BMR2]

using representation theory of Lie algebras and D-modules in positive characteristic
(see below, or [BMR], for the notations).

In 5.1 and 5.4 we assume char(k) > h for h the Coxeter number of G. In 5.2
and 5.3, k is an arbitrary algebraically closed field. We use the same notations as
above. In particular, G has no component of type G2

6.
If X is a scheme and Y ⊂ X is a closed subscheme, one says that a quasi-coherent

sheaf F on X is supported on Y if Fx = 0 for x /∈ Y (see [BMR, 3.1.7]). If F is
coherent, and if IY ⊂ OX is the ideal defining Y , this is equivalent to requiring that
the action of IY on F be locally nilpotent. We let CohY (X) denote the subcategory
of Coh(X) whose objets are supported on Y .

5.1. Review of the results of [BMR] and [BMR2]. In this paragraph we recall
some results of [BMR] and [BMR2] that relate representation theory of Lie algebras

with coherent sheaves on Ñ and g̃ (or parabolic analogs).
Let Z be the center of Ug, the enveloping algebra of g. The subalgebra of G-

invariants, ZHC := (Ug)G is central in Ug. This is the “Harish-Chandra part” of
Z, which is isomorphic to S(t)(W,•), the algebra of W -invariants in the symmetric
algebra of t, for the dot-action. This is an analog of the center of the enveloping
algebra in characteristic 0. The center Z also has another part, the “Frobenius
part” ZFr which is generated, as an algebra, by the elements Xp −X [p] for X ∈ g.
It is isomorphic to S(g(1)), the functions on the Frobenius twist of g∗. Under our
assumption p > h, there is an isomorphism (see e.g. [MR])

ZHC ⊗ZFr∩ZHC ZFr
∼
→ Z.

Hence, a character of Z is given by a compatible pair (λ, χ) ∈ t∗ × g∗(1). Here we
will only consider the case when χ is nilpotent, and λ ∈ t∗ is integral, i.e. in the
image of the natural map X → t∗. If λ ∈ X, we still denote by λ its image in t∗.
We denote the corresponding specializations by

(Ug)λ := (Ug)⊗ZHC kλ, (Ug)χ := (Ug) ⊗ZFr kχ, (Ug)
λ
χ := (Ug)⊗Z k(λ,χ).

Recall the variety g̃α defined in 1.4. For χ ∈ g∗ nilpotent we define Bχ, respectively
Pα,χ, as the inverse image of χ under g̃ → g∗, respectively g̃α → g∗. The variety
Bχ is isomorphic to the Springer fiber associated to χ.

Let Modfg(λ,χ)(Ug) denote the abelian category of finitely generated Ug-modules

on which Z acts with generalized character (λ, χ), and similarly for Modfgχ ((Ug)
λ),

Modfgλ ((Ug)χ), Modfg((Ug)λχ). We have (see [BMR, 5.3.1] for (i), [BMR2, 1.5.1.c,
1.5.2.b] for (ii)):

Theorem 5.1.1. (i) Let χ ∈ g∗ be nilpotent, and λ ∈ X regular. There exist
equivalences

γB(λ,χ) : DbCoh
B

(1)
χ
(g̃(1))

∼
−→ DbModfg(λ,χ)(Ug),

γB,λχ : DbCoh
B

(1)
χ
(Ñ (1))

∼
−→ DbModfgχ ((Ug)

λ).

6This assumption is used only in 5.4.
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(ii) Let again χ ∈ g∗ be nilpotent. Fix α ∈ Φ and let µ ∈ X be on the reflection
hyperplane of sα for the dot-action, but not on any other reflection hyperplane.
There exists an equivalence

γPα

(λ,χ) : DbCoh
P

(1)
α,χ

(g̃
(1)
α ) ∼= DbModfg(µ,χ)(Ug).

Remark 5.1.2. (i) The categories of coherent sheaves we are using here are not
exactly the same as the ones used in [BMR]. More precisely, we have taken
Coh

B
(1)
χ
(g̃(1)) instead of Coh

B
(1)
χ ×{λ}

(g̃(1) ×t∗(1) t∗). But, as remarked in [BMR2,

1.5.3.(c)], the projection g̃(1) ×t∗(1) t∗ → g̃(1) induces an isomorphism between the

formal neighborhoods of B
(1)
χ × {λ} and B

(1)
χ .

(ii) These equivalences depend on choices of splitting bundles. We follow the
conventions of [BMR2, 1.3.5], and denote by MB

(λ,χ) the vector bundle on the

formal neighborhood of B
(1)
χ in g̃(1) which intervenes in the definition of γB(λ,χ). Our

notations for equivalences are consistent with [BMR2, 2.2.5].

The translation functors T µλ : Modfg(λ,χ)(Ug) → Modfg(µ,χ)(Ug) are defined in

[BMR, 6.1]. Recall the natural morphism π̃α : g̃ → g̃α (see 1.4). Then ([BMR2,
2.2.5]):

Proposition 5.1.3. Let λ, µ, α be as in theorem 5.1.1. Assume that µ lies in the
closure of the facet of λ. There exist isomorphisms of functors

T µλ ◦ γB(λ,χ)
∼= γPα

(µ,χ) ◦R(π̃
(1)
α )∗ and T λµ ◦ γPα

(µ,χ)
∼= γB(λ,χ) ◦ L(π̃

(1)
α )∗.

5.2. The reflection functors. Let us fix a simple root α ∈ Φ. In this paragraph

we study the functor L(π̃
(1)
α )∗ ◦ R(π̃

(1)
α )∗. To simplify notations, we forget about

the Frobenius twists; the “twisted versions” of our results can be proved similarly.
In this paragraph and the next one, char(k) is arbitrary.

We are in the situation of lemma 1.2.2, with f being the morphism π̃α. So
L(π̃α)

∗ ◦R(π̃α)∗ is the convolution functor with kernel

R(p13)∗(Og̃×g̃α g̃α×g̃

L

⊗g̃×g̃α×g̃ Og̃×g̃α×g̃α g̃).

The situation is particularly simple here, due to the following result:

Lemma 5.2.1. The derived tensor product Og̃×g̃α g̃α×g̃

L

⊗g̃×g̃α×g̃ Og̃×g̃α×g̃α g̃ is

concentrated in degree 0. It equals the sheaf of functions on the intersection (g̃×g̃α

g̃α × g̃) ∩ (g̃× g̃α ×g̃α
g̃). Moreover, this intersection is reduced.

Proof. This proof is again similar to the proof of proposition 1.5.2. For simplicity,
in this proof we write P for Pα. We can restrict to the situation over (B/B) ×
(U+P/P )× (U+B/B) ∼= U+

(α) ×U+. We use the isomorphisms g̃|U+B/B
∼= (b+)∗ ×

U+ and g̃α|U+P/P
∼= (b+ ⊕ ke−α)

∗ × U+
(α) induced by restriction, and choose as

usual coordinates e
(i)
γ , h

(i)
δ (γ ∈ R+, δ ∈ Φ, i ∈ {1, 2, 3}) and e

(2)
−α in the fibers, u(2)

and u(3) on U+
(α), and t on Uα.

The equations of the first subvariety are e
(1)
γ = e

(2)
γ , h

(1)
δ = h

(2)
δ , e

(2)
−α = 0 and

u(2) = 1. And the equations of the second variety are e
(2)
γ = e

(3)
γ , h

(2)
δ = h

(3)
δ ,

u(2) = u(3) and u(2) · uα(t) · e
(2)
−α = 0, i.e. u(2) · (e

(2)
−α + th

(2)
α − t2e

(2)
α ) = 0.

It is clear that these equations form a regular sequence, and define a reduced
scheme. This proves the lemma. �
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The morphism p1,3 restricts to an isomorphism from the intersection (g̃×g̃α
g̃α×

g̃) ∩ (g̃× g̃α ×g̃α
g̃) to g̃×g̃α

g̃. Hence we obtain, using lemma 1.2.2:

Proposition 5.2.2. There exists an isomorphism of functors

L(π̃α)
∗ ◦R(π̃α)∗ ∼= F

Og̃×
g̃α

g̃

g̃→g̃

for the closed subvariety g̃×g̃α
g̃ ⊂ g̃× g̃.

Moreover, under this isomorphism, the adjunction morphism L(π̃α)
∗ ◦R(π̃α)∗ →

Id is induced by the restriction map Og̃×g̃α g̃ → ∆∗Og̃.

5.3. Intertwining functors. We have seen in 1.4 that g̃ ×g̃α
g̃ = G ×B Rα, and

that the B-variety Rα has two irreducible components, Dα and Sα.

Lemma 5.3.1. There exist exact sequences of B-equivariant quasi-coherent sheaves
on g∗ × Pα/B, where the surjections are restriction maps:

ODα →֒ ORα ։ OSα ;

OSα(−ρ)⊗k kB(ρ− α) →֒ ORα ։ ODα .

Proof. : We use the same notations as in 1.4. In particular, recall the equations of
Rα, Sα, Dα. On UαB/B, we have an exact sequence

k[hδ, eγ , t]/(t) →֒ k[hδ, eγ , t]/(t(hα − teα))։ k[hδ, eγ , t]/(hα − teα)

where the first map is multiplication by (hα−teα). Under the change of coordinates
on (UαB/B)∩ (nαUαB/B) (given by t 7→ − 1

t ), hα− teα is sent to hα+
1
t eα, which

is 0 in k[Rα|(nαUαB/B)−{nαB/B}] ∼= k[hδ, eγ , t
±1]/(eα + thα). Hence we can glue

the preceding exact sequence with the trivial exact sequence 0 →֒ k[hδ, eγ , t]/(eα+
thα)։ k[hδ, eγ , t]/(eα + thα) to obtain an exact sequence of sheaves

ODα →֒ ORα ։ OSα .

This sequence is obviously B-equivariant (the first map is non zero only over B/B,
and hα is B-invariant in our coordinate ring). This gives the first exact sequence
of the lemma.

Similarly we have an exact sequence

k[hδ, eγ , t]/(hα − teα) →֒ k[hδ, eγ , t]/(t(hα − teα))։ k[hδ, eγ , t]/(t)

where the first map is multiplication by t. To glue this exact sequence with the
trivial one on nαUαB/B:

k[hδ, eγ , t]/(eα + thα) →֒ k[hδ, eγ , t]/(eα + thα)։ 0

we have to tensorOSα with the inverse image ofOPα/B(−ρ)
∼= OP1(−1) on Pα/B ∼=

P1
k
. We obtain the exact sequence of quasi-coherent sheaves

OSα(−ρ) →֒ ORα ։ ODα .

To understand the B-equivariant structure of the first morphism, we observe that
to define a morphism OPα/B(−ρ) → OPα/B is equivalent to choosing a vector in
Γ(Pα/B,OPα/B(ρ)). This Pα-module has dimension two, with weights ρ and ρ−α.
The line of weight ρ − α is B-stable: choosing a non-zero vector in this line thus
defines a morphism of B-equivariant sheaves

OSα(−ρ)⊗k kB(ρ− α) → ORα ,

which yields the second exact sequence of the lemma. �
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Inducing these exact sequences from B to G, we obtain

Corollary 5.3.2. There exist exact sequences of quasi-coherent sheaves on g∗ ×
(B ×Pα B), where the surjections are restriction maps:

O∆g̃ →֒ Og̃×g̃α g̃ ։ OSα ;

OSα(ρ− α,−ρ) →֒ Og̃×g̃α g̃ ։ O∆g̃.

Remark 5.3.3. As in 1.5.2, ρ can be replaced by any λ ∈ X with 〈λ, α∨〉 = 1.

5.4. The two actions of the braid group coincide. Assume again that p =
char(k) > h. Let us fix some λ ∈ X in the alcove C0 = {ν ∈ X⊗ R | ∀β ∈ R+, 0 <
〈ν + ρ, β∨〉 < p}, and some χ ∈ g∗ nilpotent. In this paragraph we finally prove
that the “Frobenius twisted version” of the action of B′

aff on DbCoh(g̃) considered

in theorem 1.4.1 extends the action of B′
aff on DbCoh

B
(1)
χ
(g̃(1)) coming from [BMR2,

2.1.6, 2.3.2], via γB(λ,χ). More precisely, for b ∈ B′
aff we denote by

Jb : DbCoh(g̃(1)) → DbCoh(g̃(1)), respectively

Ib(λ,χ) : D
bModfg(λ,χ)(Ug) → DbModfg(λ,χ)(Ug)

the action of b coming from theorem 1.4.1, respectively the action constructed in
[BMR2, 2.1.4]7. The functor Jb restricts to an auto-equivalence of DbCoh

B
(1)
χ
(g̃(1)),

denoted similarly. The main result of this paragraph is the following:

Theorem 5.4.1. For any b ∈ B′
aff there exists an isomorphism of functors from

DbCoh
B

(1)
χ
(g̃(1)) to itself:

Jb ∼= (γB(λ,χ))
−1 ◦ Ib(λ,χ) ◦ γ

B
(λ,χ).

Proof. It is enough to consider the generators Tα (denoted by s̃α in [BMR2]) and
θx, for α ∈ Φ and x ∈ X. First, fix some x ∈ X. It is proven in [BMR2, 2.3.3]
that θx for x ∈ X dominant acts (in the action of [BMR2]) by convolution with
kernel ∆∗Og̃(1)(x). It follows, by construction, that this result is true for any x ∈ X.
Hence the two actions coincide for b = θx.

The case of Tα is more delicate, and will occupy the rest of the proof. We fix
α ∈ Φ. We will construct an isomorphism of functors

(5.4.2) (Iα(λ,χ))
−1 ◦ γB(λ,χ)

∼= γB(λ,χ) ◦ F
O

S
(1)
α

(−ρ,ρ−α)

g̃(1)→g̃(1) .

This is equivalent to the theorem for b = Tα, due to proposition 1.5.2. Let us choose
some µα ∈ X, on the α-wall of C0 (and on no other wall). We define the functor
Rα := T λµα

◦ T µα

λ (see [BMR2, 2.2.7]).

First, let us consider a single object F ∈ DbCohB(1)(g̃(1)). Now we prove that
the images of F under the two functors in (5.4.2) are isomorphic. Later we will
prove that this isomorphism comes from an isomorphism of functors.

Lemma 5.4.3. There exists an isomorphism in DbCoh
B

(1)
χ
(g̃(1)):

(Iα(λ,χ))
−1 ◦ γB(λ,χ)(F) ∼= γB(λ,χ) ◦ F

O
S
(1)
α

(−ρ,ρ−α)

g̃(1)→g̃(1) (F).

7This action depends on the choice of an isomorphism between the “local” extended affine braid
group and B′

aff . We take the isomorphism associated to the choice of the element λ ∈ W ′

aff • λ,

as in [BMR2, 2.1.6].
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Proof of lemma 5.4.3. By definition (see [BMR2, 2.2.4, 2.3.1]), there is an exact
triangle

(5.4.4) (Iα(λ,χ))
−1 ◦ γB(λ,χ)(F) → Rα ◦ γB(λ,χ)(F) → γB(λ,χ)(F),

where the second arrow is induced by adjunction. By propositions 5.1.3 and 5.2.2,

there exists an isomorphism Rα ◦ γB(λ,χ)(F) ∼= γB(λ,χ) ◦ F
O

(g̃×
g̃α

g̃)(1)

g̃(1)→g̃(1) (F), and the

second arrow of triangle (5.4.4) identifies with the morphism

γB(λ,χ) ◦ F
O

(g̃×
g̃α

g)(1)

g̃(1)→g̃(1) (F) → γB(λ,χ)(F)

induced by the restriction map O(g̃×g̃αg)(1) → O∆g̃(1) (recall that the convolution

with kernel O∆g̃(1) is the identity). Now the result follows from the second exact
sequence in corollary 5.3.2, using basic properties of triangulated categories. �

Let q1, q2 : S
(1)
α → g̃(1) be the natural morphisms, induced by the projections

p1, p2 : g̃(1) × g̃(1) → g̃(1). Then, F
O

S
(1)
α

(−ρ,ρ−α)

g̃(1)→g̃(1) is isomorphic to the functor

F 7→ R(q2)∗(L(q1)
∗F ⊗

S
(1)
α

O
S

(1)
α

(−ρ, ρ− α))

(by the projection formula). We denote by X the completion of g̃(1) along the

closed subscheme B
(1)
χ , and by Y the completion of S

(1)
α along the closed subscheme

B
(1)
χ ×

P
(1)
α,χ

B
(1)
χ . Then q1 and q2 induce morphisms of formal schemes q̂1, q̂2 : Y → X .

We denote by ιX : X → g̃(1) and ιY : Y → S
(1)
α the inclusion morphisms (which

are flat). If F is in Coh(g̃(1)), then (ιX )∗F is just the completion of F along B
(1)
χ

(see [EGA I, 10.8.8]), and similarly for Y. Recall the vector bundles MB
(ν,χ) on X

(for ν ∈ X regular) introduced in remark 5.1.2(ii). Then by definition, for F in
DbCoh

B
(1)
χ
(g̃(1)),

γB(ν,χ)(F) ∼= RΓ(MB
(ν,χ) ⊗X (ιX )∗F).

Let us also remark that by [BMR2, 2.2.3(c)] and the choice of vector bundles we
have a functorial isomorphism

(5.4.5) (Iα(λ,χ))
−1 ◦ γB(λ,χ)

∼= γB(sα•λ,χ).

Now let F ∈ DbCoh
B

(1)
χ
(g̃(1)). For simplicity, we write (∗) for the object γB(λ,χ) ◦

F
O

S
(1)
α

(−ρ,ρ−α)

g̃(1)→g̃(1) (F). By definition and [EGA III1, 4.1.5], we have functorial isomor-

phisms

(∗) ∼= RΓ
(
MB

(λ,χ) ⊗X (ιX )∗R(q2)∗(L(q1)
∗F ⊗

S
(1)
α

O
S

(1)
α

(−ρ, ρ− α))
)

∼= RΓ
(
MB

(λ,χ) ⊗X R(q̂2)∗((ιY)
∗L(q1)

∗F ⊗Y OY(−ρ, ρ− α))
)
.

Now, as q1 ◦ ιY = ιX ◦ q̂1, we deduce that

(∗) ∼= RΓ
(
MB

(λ,χ) ⊗X R(q̂2)∗(L(q̂1)
∗(ιX )∗F ⊗Y OY(−ρ, ρ− α))

)
.

By the projection formula applied to q̂2, we have then

(∗) ∼= RΓ ◦R(q̂2)∗
(
(q̂2)

∗MB
(λ,χ) ⊗Y L(q̂1)

∗(ιX )∗F ⊗Y OY(−ρ, ρ− α)
)

∼= RΓ ◦R(q̂1)∗
(
(q̂2)

∗MB
(λ,χ) ⊗Y L(q̂1)

∗(ιX )∗F ⊗Y OY(−ρ, ρ− α)
)
.

Finally, the projection formula applied to q̂1 gives

(∗) ∼= RΓ
(
(ιX )∗F

L

⊗XR(q̂1)∗((q̂2)
∗MB

(λ,χ) ⊗Y OY(−ρ, ρ− α))
)
.(5.4.6)
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It follows from (5.4.5) and (5.4.6) that it is enough, to prove isomorphism (5.4.2),
to construct an isomorphism

R(q̂1)∗
(
(q̂2)

∗MB
(λ,χ) ⊗Y OY(−ρ, ρ− α)

)
∼= MB

(sα•λ,χ)

in the derived category of coherent sheaves on X . Let I be the ideal of definition

of B
(1)
χ in g̃(1). By [EGA I, 10.11.3] and [EGA III1, 3.4.3], it is enough to show that

for all n ≥ 1 we have an isomorphism

(OX /I
n)

L

⊗XR(q̂1)∗
(
(q̂2)

∗MB
(λ,χ) ⊗Y OY(−ρ, ρ− α)

)
∼= (OX /I

n)
L

⊗XMB
(sα•λ,χ).

Using isomorphisms (5.4.5) and (5.4.6), and the fact that RΓ is an equivalence of
categories, this isomorphism follows easily from lemma 5.4.3 applied to OX /In. �

Remark 5.4.7. In [B2], Bezrukavnikov explains the importance of this action of B′
aff

in his plan of proof of Lusztig’s conjecture concerning the representation theory of g.
There, the definition of Sα is different from ours, but of course they are equivalent
(i.e. they define the same subscheme of g̃ × g̃). He also considers the action on

DbCoh(Ñ ) (see [B2, theorem 2.1]), without giving a proof of its existence.

6. Relation to representation theory in characteristic zero

In this section we establish a connection between our constructions in the case
k = C and Ginzburg’s description of the equivariant K-theory of the Steinberg
variety. We also relate them to Springer’s action of the Weyl group on the homology
of a Springer fiber.

As above, we assume G has no component of type G2, and we take k = C.

6.1. Equivariant K-theory of the Steinberg variety. First we need a result

which is analogous to corollary 5.3.2, but for the action on DbCoh(Ñ ). It is valid
over any algebraically closed field k. Consider the variety S′

α. Geometrically, it can
be described as:

S′
α = {(X, g1B, g2B) ∈ g∗ × B × B | X|g1·b+g2·b = 0}.

It has two irreducible components. One is ∆Ñ , the diagonal embedding of Ñ , and
the other one is

Yα := {(X, g1B, g2B) ∈ g∗ × (B ×Pα B) | X|g1·pα
= 0},

which is a vector bundle on B ×Pα B, of rank dim(g/b)− 1.

Lemma 6.1.1. There exist exact sequences of quasi-coherent sheaves, where the
surjections are restriction maps:

O∆Ñ →֒ OS′
α
(ρ− α,−ρ)։ OYα(ρ− α,−ρ);

OYα(ρ− α,−ρ) →֒ OS′
α
։ O∆Ñ .

Proof. The construction of the exact sequences is analogous to that in lemma 5.3.1.
Let us introduce the following subvarieties of g∗ × (Pα/B):

D ′
α := (g/b)∗ × (B/B)

S ′
α := {(X, gB) ∈ g∗ × (Pα/B) | X|b+g·b = 0}

Yα := {(X, gB) ∈ g∗ × (Pα/B) | X|pα
= 0}.

Then we have isomorphisms ∆Ñ ∼= G ×B D ′
α, S

′
α
∼= G ×B S ′

α, Yα
∼= G ×B Yα.

Let us recall the equations of the varieties D ′
α, S ′

α, Yα. We use the affine covering
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(Pα/B) = (UαB/B) ∪ (sαUαB/B), and the isomorphisms induced by uα, respec-
tively by t 7→ nαuα(t): k ∼= UαB/B, k ∼= sαUαB/B. As coordinates on g∗ we use
the basis {eγ , γ ∈ R, hβ, β ∈ Φ} of g. Then we can deduce from the computations
in section 4 the equations defining S ′

α|UαB/B, D ′
α|UαB/B and Yα|UαB/B as closed

suvarieties of g∗ × k. Namely, these three varieties are defined by the equations eγ
(γ ∈ R−), hβ (β ∈ Φ) and, respectively, teα, t, eα. Hence there are exact sequences

k[D ′
α|UαB/B] →֒ k[S ′

α|UαB/B]։ k[Yα|UαB/B],

k[Yα|UαB/B] →֒ k[S ′
α|UαB/B]։ k[D ′

α|UαB/B],

where the first maps are respectively the multiplication by eα and t.
Over sαUαB/B we have D ′

α|sαUαB/B = ∅, S ′
α|sαUαB/B = Yα|sαUαB/B. Under

the change of coordinates t is sent to − 1
t , and eα to 0. Hence there are exact

sequences of quasi-coherent sheaves

OD′
α
→֒ OS ′

α
։ OYα , OYα ⊗OPα/B

OPα/B(−ρ) →֒ OS ′
α
։ OD′

α
.

Concerning the B-equivariant structure, we remark that the second exact se-
quence was constructed just like in 5.3.1. Hence, as there we have an exact sequence
of B-equivariant sheaves

OYα(−ρ)⊗k kB(ρ− α) →֒ OS ′
α
։ OD′

α
.

Inducing from B to G we obtain the second exact sequence of the lemma. Con-
cerning the first exact sequence, its first arrow is given by the multiplication by eα,
which has weight α for the action of B. Hence the B-equivariant exact sequence
reads

OD′
α
⊗k kB(α) →֒ OS ′

α
։ OYα .

Inducing, we obtain O∆Ñ (α, 0) →֒ OS′
α
։ OYα . Now OB×PαB(−ρ, ρ) is trivial on

the diagonal. Hence we also have

O∆Ñ (α − ρ, ρ) →֒ OS′
α
։ OYα .

Tensoring by the inverse image of OB×PαB(ρ − α,−ρ), we obtain the first exact
sequence of the lemma. �

Let us define a C×-action on Ñ , setting

t · (X, gB) := (t−2X, gB).

This action commutes with the natural action of G on Ñ . We denote by

〈1〉 : DbCohG×C
×

(Ñ ) → DbCohG×C
×

(Ñ )

the tensor product with the one-dimensional C×-module given by IdC× , and sim-
ilarly for any variety with a C×-action. Then the exact sequences of lemma 6.1.1
have G× C×-equivariant versions

O∆Ñ 〈2〉 →֒ OS′
α
(ρ− α,−ρ)։ OYα(ρ− α,−ρ);(6.1.2)

OYα(ρ− α,−ρ) →֒ OS′
α
։ O∆Ñ .(6.1.3)

If H is an algebraic group (over C) acting on a variety X , we denote by KH(X)
the H-equivariant K-theory of X . This is by definition the Grothendieck group of
the category CohH(X) of H-equivariant coherent sheaves on X , or of its derived

category DbCohH(X). We refer to [L3, section 6] for generalities on equivariant
K-theory, and to [B1, section 2] and [CG, 5.1] for the main properties of derived
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categories of equivariant coherent sheaves. If F is an object of DbCohH(X), we
denote by [F ] its image in KH(X).

Let N be the variety of nilpotent elements in g∗. We have the Springer resolution

π : Ñ → N . We will be interested in the Steinberg variety

Z := Ñ ×N Ñ ,

and more precisely to the group KG×C×(Z). First, let us describe the ring struc-

ture on this K-group. There is a natural closed embedding j : Z →֒ Ñ 2. Let

pa,b : Ñ 3 → Ñ 2 denote the projection to the a-th and b-th factors (1 ≤ a < b ≤ 3).

If F and G are in DbCohG×C
×

(Z), then R(p1,3)∗(p
∗
1,2(j∗F)

L

⊗Ñ 3 p∗2,3(j∗G)) is only

in DbCohG×C
×

(Ñ 2), but its cohomology is supported on Z. Hence the class

[R(p1,3)∗(p
∗
1,2(j∗F)

L

⊗Ñ 3 p∗2,3(j∗G))] is a well defined element of KG×C×(Z) (see
[B1, 2. Lemma 3(b)], [L3, 6.2]). The ring structure on KG×C×(Z) is then given by
the product:

[F ] · [G] := [R(p1,3)∗(p
∗
1,2(j∗F)

L

⊗Ñ 3 p
∗
2,3(j∗G))].

Note that the unit for this product is [O∆Ñ ].
Let v be an indeterminate, and A := Z[v, v−1]. Let H be the extended affine

Hecke algebra associated to R (over A). Using the Bernstein presentation (see e.g.
[L3, 1.19]) one sees that H is the quotient of A[B′

aff ], the group algebra of B′
aff over

A, by the ideal generated by the relations

(6.1.4) (Tα + v−1)(Tα − v) = 0

for α ∈ Φ. We let A act on KG×C×(Z) by setting v · [F ] := [F〈1〉]. The varieties
Yα and S′

α are G×C×-stable subvarieties of Z, hence define natural classes [OYα ],
[OS′

α
] in KG×C×(Z). If x and y are in X, the line bundle OZ(x, y) (see 1.4 for the

notation) is naturally an object of CohG×C
×

(Z) (with trivial C×-action).
As an easy consequence of our results we obtain:

Proposition 6.1.5. The assignment
{
Tα 7→ −v−1[OYα(−ρ, ρ− α)]− v−1 = −v−1[OS′

α
];

θx 7→ [O∆Ñ (x)]

extends to a morphism of A-algebras H → KG×C×(Z).

Remark 6.1.6. This result is well known (see e.g. [L3, 7.25] or [CG, 7.6.9]), and
this morphism is in fact an isomorphism, as proved in [L3, 8.6] or [CG, 7.6.10].
The construction of this morphism is one of the main steps of the proof of the
isomorphism H ∼= KG×C×(Z) (both for the proof by Ginzburg, see [G2] or [CG],
and for the alternate proof by Lusztig, see [L3]). These previous constructions
are indirect, using an action on a module to prove the fact that the image of the
generators satisfy the relations of H. Using our constructions, one can give a direct
proof of the relations in KG×C×(Z) (using no K-theoretic result). Moreover, this
proof gives a more concrete interpretation of the image of the generators Tα; namely,
this image is a multiple of the class of OS′

α
.

Proof. First, the equality

(6.1.7) − v−1[OYα(−ρ, ρ− α)]− v−1 = −v−1[OS′
α
]
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follows from the exact sequence (6.1.3). We have to check that the elements
−v−1[OS′

α
] for α ∈ Φ and [O∆Ñ (x)] for x ∈ X satisfy relations (1) to (4) of theorem

1.1.3, and the quadratic relations (6.1.4).
Relation (2) is trivial, and relations (1) and (3) follow from the results of section

4. Now the exact sequences of lemma 1.5.5 admit the following C×-equivariant

versions (where the action on g̃ is the natural one, extending the action on Ñ ):

OV 1
α
〈2〉 →֒ OVα(ρ− α,−ρ, 0)։ OV 2

α
(ρ− α,−ρ, 0);

OV 1
α
〈2〉 →֒ OVα(0,−ρ, ρ− α)։ OV 2

α
(0,−ρ, ρ− α).

We deduce as in section 4 that −v−1[OS′
α
] is invertible, and

(6.1.8) (−v−1[OS′
α
])−1 = −v−1[OS′

α
(ρ− α,−ρ)].

Then relation (4) is easy to prove (as in 1.6).
Finally, for the quadratic relations, consider the exact sequence (6.1.2). It yields

(6.1.9) − v−1[OS′
α
(ρ− α,−ρ)] = −v−1[OYα(ρ− α,−ρ)]− v.

Using relations (6.1.7) and (6.1.8), we deduce from (6.1.9) that

(−v−1[OS′
α
])−1 = (−v−1[OS′

α
]) + (v−1 − v).

This is equivalent to relation (6.1.4). �

It follows from these considerations that the natural action of H on KG×C×(Ñ )

(see [CG, 7.6.6]) can be lifted to an action of B′
aff on the category DbCohG×C

×

(Ñ ).

Remark 6.1.10. Let χ ∈ g∗ be nilpotent, and let Bχ be the corresponding Springer
fiber, i.e. the inverse image of χ under g̃ → g∗ (see 5.1; note however that now we
work over C). Let M be a closed subgroup of the stabilizer of χ in G×C×, for the

action defined by (g, z) · χ = z−2g · χ. Then M stabilizes Bχ ⊂ Ñ . Our construc-

tions yield an action of B′
aff on DbCohM (Ñ ), which stabilizes the full subcategory

DbCohMBχ
(Ñ ) of complexes whose cohomology sheaves are supported on Bχ. The

Grothendieck group of the category DbCohMBχ
(Ñ ) identifies with KM (Bχ). The

same considerations as above show that the action of B′
aff induces an action of H

on KM (Bχ). This is the action considered in [L5, 3.4]. In [L5], Lusztig explains the
importance of these modules in the construction of all the irreducible H-modules
over C.

6.2. Springer’s representations of W . Now we consider Springer’s representa-
tions of the finite Weyl group. More precisely we follow Ginzburg’s approach to
this question in [G1] (see [CG, chapter 3] for the same arguments, in the framework
of homology rather than K-theory).

As in 6.1, our constructions yield a Z-algebra morphism

Z[B0] → K(Z),

where K(Z) is the non-equivariant K-theory of the Steinberg variety Z, and B0 is
the finite braid group (see 1.1 for the definition). The exact sequences of lemma
6.1.1 show that for α ∈ Φ the image of (Tα)

2 in K(Z) is 1. Hence the previous
morphism gives a morphism

Z[W ] → K(Z).

Following Ginzburg, we consider K(Z) as the Grothendieck group of the category

CohZ(Ñ × Ñ ), and denote by L(Z) the quotient by the subgroup generated by the
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elements [F ] for F in CohZ(Ñ × Ñ ) such that dim(Supp(F)) < dim(Z). Compos-
ing the previous morphism with the natural quotient K(Z) → L(Z) we obtain a
morphism

(6.2.1) Z[W ] → L(Z).

The following proposition follows directly from our constructions and the defini-
tion of specialization in K-theory as in [CG, 5.3] (use the definition of S′

α as the

intersection Sα ∩ (Ñ × Ñ )).

Proposition 6.2.2. The morphism (6.2.1) coincides with the isomorphism of [G1,

5.3]: Z[W ]
∼
−→ L(Z).

This isomorphism is the main step in Ginzburg’s approach to Springer’s construc-
tion of the representations of W on the top homology of Springer fibers (see [CG,
3.5-6]). Choose a nilpotent χ ∈ g∗, and consider the Springer fiber Bχ (see 6.1). As

noted above, the B′
aff -action on DbCoh(Ñ ) induces an action of B0 on K(Bχ) (this

is the caseM = 1 in remark 6.1.10), which factorizes through the finite Weyl group
W (for the same reason as above). This in turn induces an action of W on L(Bχ),
the quotient of K(Bχ) defined as above for L(Z). By Grothendieck-Riemann-Roch,
we have an isomorphism L(Bχ) ⊗Z Q ∼= Htop(Bχ,Q). Via this isomorphism, the
action of W gives Springer’s action on Htop(Bχ,Q) (by proposition 6.2.2 and [CG,
3.5-6]).

Appendix A. Presentation of B′
aff (joint with Roman Bezrukavnikov)

In this appendix we prove theorem 1.1.3. We understand that this theorem was
known to Lusztig, although he did not publish a proof.

The facts that the elements Tα and θx generate B′
aff , and satisfy the relations

of the theorem, are proved in [L2, 2.7, 2.8]. We denote by B̂ the group with the

given presentation. There exists a (surjective8) morphism ψ : B̂ ։ B′
aff . To prove

the theorem we construct an inverse φ to this morphism. To avoid confusion, in

this appendix we denote by T̂α and θ̂x the images of the generators in B̂. Hence

we have ψ(T̂α) = Tα, ψ(θ̂x) = θx.

Acknowledgement. We thank George Lusztig for suggesting theorem 1.1.3 to
one of us.

A.1. A second “length function”. In this paragraph we introduce a second
“length function” on W ′

aff , denoted L, with values in Z. Recall the notations of
1.1. Let H by the set of reflection hyperplanes of Waff in X ⊗ R, and A be the
set of alcoves. Let C0 be the fundamental chamber, i.e. C0 = {x ∈ X ⊗ R | ∀α ∈
Φ, 〈x, α∨〉 ≥ 0}. If H ∈ H , we denote by E+

H the half space defined by H that

intersects all translates of C0, and by E−
H the other half space. Then, following

Jantzen and Lusztig (see [L1]) we introduce the function d on A 2, defined by

d(A,B) = #{H ∈ H | A ⊂ E−
H and B ⊂ E+

H}

− #{H ∈ H | A ⊂ E+
H and B ⊂ E−

H}.

8We do not use this surjectivity in our proof, but rather re-prove it.
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It is clear from the definition that d(A,B) = −d(B,A). Moreover, d satisfies the
following formula for three alcoves A, B and C (see [L1, 1.4.1]):

(A.1.1) d(A,B) + d(B,C) + d(C,A) = 0.

Now we can define the function L on W ′
aff by setting

L(w) := d(A0, w
−1A0)

(recall that A0 denotes the fundamental alcove). For w ∈ W we have L(w) = −ℓ(w),
and for x ∈ X antidominant we have L(tx) = ℓ(tx). Similarly, if x is dominant we
have L(tx) = −ℓ(tx). Moreover, |L(w)| ≤ ℓ(w) for any w ∈ W ′

aff (for all of this, use
[Hu, 4.5]).

Lemma A.1.2. For any u,w ∈ W ′
aff , we have |L(wu) − L(u)| ≤ ℓ(w). Moreover,

for any w ∈W ′
aff there exists u ∈W ′

aff such that L(wu)− L(u) = −ℓ(w).

Proof. Using formula (A.1.1) we have

L(wu)− L(u) = d(A0, u
−1w−1A0)− d(A0, u

−1A0) = d(u−1A0, u
−1w−1A0).

Hence |L(wu)−L(u)| is at most the number of hyperplanes in H separating u−1A0

and u−1w−1A0, which equals the number of hyperplanes separating A0 and w
−1A0.

This number is precisely ℓ(w−1) = ℓ(w).
Let us now consider the second assertion. Let ξ be a point in A0. Let u ∈W be

such that u−1(w−1(ξ)− ξ) is in w0C0, where w0 is the longest element of W . Then
it is clear that d(u−1A0, u

−1w−1A0) = −ℓ(w). �

A.2. Computations in W ′
aff . In 1.1 we have defined a section C of the morphism

B′
aff → W ′

aff . Now, let us define another section S : W ′
aff → B′

aff by setting
S(wf · tx) := C(wf )θx for wf ∈W and x ∈ X, where we have used the isomorphism
W ′

aff
∼=W ⋉X. We will show that one can recover C from S.

Lemma A.2.1. Let u,w ∈W ′
aff be such that L(wu) = L(u)− ℓ(w). Then we have

S(wu) = C(w)S(u).

Proof. First, let us remark that the hypothesis and the conclusion are invariant by
replacing u by utx for some x ∈ X. Hence we can assume that u ∈ W . We write
w = wf tλ for some λ ∈ X, wf ∈W . Then

L(wu)− L(u) = d(u−1A0, u
−1w−1A0) = d(u−1A0, u

−1(wf )
−1A0 − u−1(λ)).

As u and wf are inW , and as every hyperplaneH between u−1A0 and u
−1w−1A0 is

crossed in the direction E+
H  E−

H we must have the inequality 〈−u−1(λ), α∨〉 ≤ 1
for any α ∈ R+, i.e. 〈u−1(λ), α∨〉 ≥ −1. Moreover, for any α ∈ R+ such that
wfu(α) ∈ R+ we have 〈u−1(λ), α∨〉 ≥ 0. Indeed, in this case u−1(wf )

−1A0 is in
E+
Hα

for Hα the reflection hyperplane of sα. Hence if 〈u−1(λ), α∨〉 were −1 then to

go from u−1A0 to u−1w−1A0 we would have to cross H := {x ∈ X⊗ZR | 〈x, α∨〉 =
1} in the “wrong” direction (i.e. E−

H  E+
H).

Let us write u−1(λ) = µ1−µ2 with µ1 and µ2 dominant weights. We have wu =
(wf )tλu = wfutu−1(λ). Hence wutµ2 = wfutµ1 . As µ1 is dominant and wfu ∈ W ,
ℓ(wfutµ1) = ℓ(wfu) + ℓ(tµ1) (see (1.1.1)). Hence C(wfutµ1) = C(wfu)C(tµ1 ). We
will now prove that, also, ℓ(wutµ2) = ℓ(wu)+ℓ(tµ2). It will follow that C(wutµ2) =
C(wu)C(tµ2 ), and finally that S(wu) = C(wu).
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So, let us prove that ℓ(wutµ2) = ℓ(wu) + ℓ(tµ2). Using formula (1.1.1), we have

ℓ(tµ2) =
∑

α∈R+〈µ2, α
∨〉,

ℓ(wu) =
∑

α∈R+

wfu(α)∈R+

|〈µ1 − µ2, α
∨〉|+

∑
α∈R+,

wfu(α)∈R−

|1 + 〈µ1 − µ2, α
∨〉|,

ℓ(wutµ2) =
∑

α∈R+,

wfu(α)∈R+

〈µ1, α
∨〉+

∑
α∈R+,

wfu(α)∈R−

(1 + 〈µ1, α
∨〉).

We know (see above) that for any α ∈ R+, 〈u−1(λ), α∨〉 ≥ −1, and, for any α ∈ R+

such that wfu(α) ∈ R+, 〈u−1(λ), α∨〉 ≥ 0. The result easily follows.
Finally we have proved that S(wu) = C(wu). By hypothesis |L(wu)| = |L(u)−

ℓ(w)| = ℓ(u)+ℓ(w) (because u is inW ). On the other hand we have the inequalities
|L(wu)| ≤ ℓ(wu) ≤ ℓ(w)+ ℓ(u). We deduce that we must have ℓ(wu) = ℓ(w)+ ℓ(u).
Hence C(wu) = C(w)C(u) = C(w)S(u). This concludes the proof. �

A.3. Computations in B̂. The braid group B0 is well known to have a presen-
tation with generators the Tα (α ∈ Φ) and relations (1) of theorem 1.1.3. Hence

there exists a group morphism σ : B0 → B̂, which sends Tα to T̂α. We define
C′ := σ ◦ C|W :W → B̂. Then we can define the lift

S′ :W ′
aff → B̂

by setting S′(wf tx) := C′(wf )θ̂x for wf ∈ W , x ∈ X. The following diagram is
commutative:

W ′
aff

S

""D
DD

DD
DD

D

S′

~~}}
}}

}}
}}

B̂ ψ
// B′

aff

The next proposition is the key step in our proof of theorem 1.1.3.

Proposition A.3.1. Let w, u1, u2 ∈ W ′
aff such that L(wu1) = L(u1) − ℓ(w) and

L(wu2) = L(u2)− ℓ(w). Then

S′(wu1)(S
′(u1))

−1 = S′(wu2)(S
′(u2))

−1.

Proof. We use induction on ℓ(w). Assume we know the result for v and w, and
that ℓ(vw) = ℓ(v) + ℓ(w). Let u1 and u2 be as in the proposition, for vw instead
of w. For i = 1, 2 we have L(vwui) ≥ L(wui) − ℓ(v) ≥ L(ui) − ℓ(w) − ℓ(v) (by
lemma A.1.2). As the two extreme terms are equal by assumption, we must have
L(vwui) = L(wui) − ℓ(v) and L(wui) = L(ui) − ℓ(w). Applying the result for v,
wu1, wu2 and w, u1, u2 we obtain the result for vw, u1, u2. Hence we only have
to prove the proposition for w of length 0 or 1. We also only have to prove it for
ui ∈ W (use relation (2) and the definition of S′). Without loss of generality we

can assume R is irreducible (B̂ is the product of the subgroups corresponding to
each irreducible component of R).

(i) First, consider the easiest case w = s ∈ S. For i = 1, 2 we have by
definition d(u−1

i A0, u
−1
i sA0) = −1. Hence, if s = sα, u

−1
i (α) ∈ R+. Then

ℓ(sui) = ℓ(ui) + 1 (use the criterion provided by [Hu, 1.6, 1.7]). Hence S′(sui) =
C′(sui) = C′(s)C′(ui) = S′(s)S′(ui). This proves the result in this case.
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(ii) Next, assume w is in Saff −S. Then w = tγsγ for γ the highest short root of
R. We have to show that

S′(wu)(S′(u))−1 := C′(sγu)θ̂−u−1(γ)C
′(u)−1

doesn’t depend on the choice of u ∈W such that d(u−1A0, u
−1sγA0+u

−1(γ)) = −1.
This condition amounts to requiring u−1(γ) ∈ R−. In particular, w0 fits (recall that
w0 denotes the longest element of W ). By descending induction on l(u), we will

show that C′(sγu)θ̂−u−1(γ)C
′(u)−1 = C′(sγw0)θ̂−w0(γ)C

′(w0)
−1 for any u ∈ W

such that u−1(γ) ∈ R−.
Assume u 6= w0. Then choose β ∈ Φ such that ℓ(usβ) = ℓ(u)+1, i.e. u(β) ∈ R+.

Then β 6= −u−1(γ), hence sβu
−1(γ) ∈ R−, so that we can apply the induction

hypothesis to usβ. Moreover,

C′(sγusβ)θ̂−sβu−1(γ)C
′(usβ)

−1 = C′(sγusβ)θ̂−sβu−1(γ)(T̂β)
−1C′(u)−1.

As γ is a short root and a dominant weight, and u(β) is a positive root, 〈γ, u(β)∨〉 =
〈u−1(γ), β∨〉 is 0 or 1. First, assume it is 0. Then sβu

−1(γ) = u−1(γ), and by

relation (3) we have θ̂−u−1(γ)T̂
−1
β = T̂−1

β θ̂−u−1(γ). Moreover, sγu(β) = u(β) ∈ R+,

hence ℓ(sγusβ) = ℓ(sγu)+ 1, and then C′(sγusβ) = C′(sγu)T̂β. This concludes the
proof in this case.

Now assume 〈γ, u(β)∨〉 = 1. Then sβu
−1(γ) = u−1(γ) − β, and by relation (4)

we have θ̂−sβu−1(γ) = T̂β θ̂−u−1(γ)T̂β. Moreover, sγu(β) ∈ R− (as 〈u(β), γ∨〉 > 0),
hence ℓ(sγusβ) = ℓ(sγu)− 1. One concludes as before.

(iii) Finally, consider some w with ℓ(w) = 0. Write w = wf tλ. Using formula
(1.1.1) we have 〈λ, α∨〉 = 0 if wf (α) ∈ R+, and 〈λ, α∨〉 = −1 if wf (α) ∈ R−. There
is no condition on u in this case. Hence we have to prove that S′(wu)(S′(u))−1 =
S′(w) for any u ∈ W . We will prove it by (ascending) induction on ℓ(u). If u 6= Id,
let β ∈ Φ and v ∈ W be such that u = vsβ , with l(v) = l(u)− 1. Then v(β) ∈ R+.

We have S′(wu)(S′(u))−1 = C′(wfvsβ)θ̂sβv−1(λ)(T̂β)
−1C′(v)−1.

First, assume ℓ(wfvsβ) = ℓ(wfv) + 1, i.e. C′(wfvsβ) = C′(wfv)T̂β. Then
wfv(β) ∈ R+. Hence 〈λ, v(β)∨〉 = 0 = 〈v−1(λ), β∨〉. Hence sβv

−1(λ) = v−1(λ),

and relation (3) gives T̂β θ̂v−1(λ) = θ̂v−1(λ)T̂β. Then the result for u follows from the
result for v.

Next, assume ℓ(wfvsβ) = ℓ(wfv) − 1, i.e. C′(wfvsβ) = C′(wfv)(T̂β)
−1. Then

wfv(β) ∈ R−. Hence 〈v−1(λ), β∨〉 = −1. And the result for u follows from the
result for v and relation (4) applied to sβv

−1(λ). �

A.4. End of the proof. We define a group morphism φ : B′
aff → B̂ by setting, for

any w ∈ W ′
aff , φ(C(w)) = S′(wu)(S′(u))−1 for some u ∈ W ′

aff such that L(wu) =
L(u)−ℓ(w) (such a u exists by lemma A.1.2, and this does not depend on the choice
of u, due to proposition A.3.1). We have already proved that these elements satisfy
the relations of the definition of B′

aff in the beginning of the proof of proposition
A.3.1.

Recall that ψ : B̂ → B′
aff denotes the canonical morphism. It follows from lemma

A.2.1 and the diagram at the beginning of paragraph A.3 that ψ ◦ φ = Id. If s ∈ S
then L(s) = −ℓ(s), hence one may take u = 1. Thus φ ◦ ψ(T̂s) = φ(Ts) = T̂s.

Similarly, if x ∈ X is dominant then L(tx) = −ℓ(tx). Hence φ ◦ ψ(θ̂x) = φ(θx) =

φ(C(tx)) = θ̂x. As these elements generate B̂ (use relation (2)), we conclude that
φ ◦ ψ = Id. This concludes the proof of theorem 1.1.3.
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