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Representation formulae for the fractional
Brownian motion

Jean Picard

Abstract We discuss the relationships between some classical ssgeg®ns of the
fractional Brownian motion, as a stochastic integral wébprect to a standard Brow-
nian motion, or as a series of functions with independens&ian coefficients. The
basic notions of fractional calculus which are needed ferdfudy are introduced.
As an application, we also prove some properties of the Camabtartin space of
the fractional Brownian motion, and compare its law with the of some of its
variants. Several of the results which are given here ar@ewt our aim is to pro-
vide a unified treatment of some previous literature, andve glternative proofs
and additional results; we also try to be as self-contaisgubasible.

1 Introduction

Consider a fractional Brownian motigB{';t € R) with Hurst parameter @ H < 1.
These processes appeared in 1940 in [24], and they geeetladiccasdd = 1/2
which is the standard Brownian motion. A huge literature liesesn devoted to them
since the late 60’s. They are often used to model systemsvingogGaussian noise,
but which are not correctly explained with a standard Br@mninotion. Our aim
here is to give a few basic results about them, and in paati¢alexplain how all of
them can be deduced from a standard Brownian motion.

The proces8" is a centred Gaussian process which has stationary inctsmen
and isH-self-similar; these two conditions can be written as

B, —Bp =B, By ~A"B (1)
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2 Jean Picard

for to € R andA > 0, where the notatio#} ~ Z? means that the two processes
have the same finite dimensional distributions. We can dettoen (1) thaB", and

B have the same variance, that this variance is proportiongl’t', and that the
covariance kernel d8" must be of the form

Clst) = E[BYBY] = ZE[(B)7+ (B')° — (B - BY)?

2
= JE[EY2+ (B (8]
=2 (18P 12— -5 2)

for a positive parametgy = E[(B')?] (we always assume thats 0). The process
B has a continuous modification (we always choose this motitg and its law
is characterised by the two parametgrandH; however, the important parameter
is H, andp is easily modified by multiplyingg"™ by a constant. In this article, it will
be convenient to suppoge= p(H) given in (51); this choice corresponds to the
representation @™ given in (6). We also consider the restrictionBd to intervals
of Rsuch afR,,R_ or[0,1].

Notice that the fractional Brownian motion also exists fbe= 1 and satisfies
BL = tBi; this is however a very particular process which is excluftech our
study (with our choice op(H) we havep(1) = ).

The standard Brownian motioff = Btl/2 is the process correspondinghb=
1/2 andp = p(1/2) = 1. It is often useful to represel®! for 0< H < 1 as a
linear functional ofW; this means that one looks for a keri@l (t,s) such that the
Wiener-Itd integral

B = [ K(t.sjaws )

is aH-fractional Brownian motion. More generally, considerihg family(B"; 0 <
H < 1) defined by (3), we would like to fin&>" so that

B = KO (t, 9B, @

In this case however, we have to give a sense to the intehmproces®’ is a
Gaussian process but is not a semimartingald f6r1/2, so we cannot consider Itd
integration. In order to solve this issue, we approxinBtavith smooth functions
for which the Lebesgue-Stieltjes integral can be defined tlaen verify that we can
pass to the limit in an adequate functional space in wiithives almost surely.
Alternatively, it is also possible to use integration bytpar

The case wher& " is a \Volterra kernelK>H (t,s) = 0 if s> t) is of particular
interest; in this case, the completed filtrationsBbf and of the increments @&’
satisfy.% (B") ¢ % (dB’), with the notation

F(X)=0(Xss<t), F(dX)=0(Xs—Xsu<s<t). (5)
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Notice that when the time interval &, , then.% (dB’) = .%;(B’) (becaus@&} = 0),
but this is false fot < 0 when the time interval R or R _. When%; (B) = % (BY),
we say that the representation (4) is canonical; actuatyextend here a terminol-
ogy, introduced by [25] (see [16]), which classically déses representations with
respect to processes with independent increments (so lierepresentation (3));
such a canonical representation is in some sense unique.

Another purpose of this article is to comp&®@ with two other families of pro-
cesses with similar properties and which are easier to bandlome situations:

e The so-called Riemann-Liouville processes Rn (they are also sometimes
called type Il fractional Brownian motions, see [27]), areddced from the
standard Brownian motion by applying Riemann-Liouvilladtional operators,
whereas, as we shall recall it, the genuine fractional Biawmotion requires a
weighted fractional operator.

e We shall also consider here some processes defined by mean§airier-
Wiener series on a finite time interval; they are easy to teimdtourier analysis,
whereas the Fourier coefficients of the genuine fractiomaivBian motion do
not satisfy good independence properties.

We shall prove that the Cameron-Martin spaces of all thesegsises are equivalent,
and we shall compare their laws; more precisely, it is knowwmf[10, 15, 16] that
two Gaussian measures are either equivalent, or mutualbukir, and we shall
decide between these two possibilities.

Let us now describe the contents of this article. Notatiordsdefinitions which
are used throughout the article are given in Section 2; we g@ilee in this section
a short review of fractional calculus, in particular Riemdriouville operators and
some of their modifications which are important for our stuahg introduce some
functional spaces of Holder continuous functions; muchewesults can be found
in [35]. In Section 3, we give some resuts concerning the timaersion { — 1/t)
of Gaussian self-similar processes.

We enter the main topic in Section 4. Our first aim is to exptheerelationship
between two classical representationd80fwith respect toV, namely the repre-
sentation of [26],

B 1 H-1/2 H-1/2
B = m/ﬁ((t*%r —(—9)% )dV\é (6)

onR (with the notatioru’} =u! 1(u>0}), and the canonical representationion ob-
tained in [30, 29], see also [8, 32] (this is a representatiagpe (3) for a Volterra
kernelkH and such thatv andB" generate the same filtration). Let us explain the
idea by means of which this relationship can be obtainedigrcanonical represen-
tation onR ;, we wantB!' to depend on past valu®, s < t, or equivalently, we
want the infinitesimal incremertB" to depend on past incremert#, s < t. In

(6), values ofB[H for t > 0 involve values of\; for all —c0 < s<'t, so this is not
convenient for a study oR . However, we can reverse the tinte-{ —t) and use
the backward representation
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B 1 TR H-1/2
BtHiil'(HJrl/z)/o (SH 12 _(s—t)} )dV\é

onR,. Now the value oB!" involves the whole path &V on R, , but we can no-
tice that the infinitesimal incremedBtH only involves future incrementbi, s> t.
ThusdB™ (1/t) depends on past incremeni®/(1/s), s < t. We can then conclude

by applying the invariance of fractional Brownian motionstime inversion which

has been proved in Section 3. This argument is justified ihj2using the gener-
alised processet8 /dt, but we shall avoid the explicit use of these processes here.
This technique can be used to work out a general relatioreshiype (4) between

B" andB’ for any 0< J,H < 1, see Theorem 4.3 (such a relation was obtained by
(20)).

Application of time inversion techniques also enables udaduce in Theorem
4.14 a canonical representation Bn, and to obtain in Theorem 4.20 some non
canonical representations Bf' with respect to itself, extending the classical case
H = 1/2; these representations are also considered by [21].

Representations of type (3) or (4) can be applied to degmniptf the Cameron-
Martin spaces#; of the fractional Brownian motiorB"; these spaces are Hilbert
spaces which characterise the laws of centred Gaussiaegsex(see Appendix C).
The space’ ; is the classical space of absolutely continuous functiosiech that
h(0) = 0 and the derivativ®'h is square integrable, and (3) implies tbéf; is the
space of functions of the form

1 -1/ -1/
th/R((tfs)ﬂ V2 (-9 V) f(9ds

for square integrable functiorfs

Sections 5 and 6 are devoted to the comparisd@tlofvith two processes. One of
them is self-similar but has only asymptotically statigniacrements in large time,
and the other one has stationary increments, but is only pisfically self-similar
in small time.

In Section 5, we consider dR, the so-called Riemann-Liouville process defined
forH > 0 by t

1 _ qH-1/2
X = rH +1/2)/o (t=9) v

This process i$l-self-similar but does not have stationary incrementstreon to
BM, the paramete can be larger than 1. The Cameron-Martin spageof X" is
the space of functions

t
th/o (t—9)H-12f(s)ds

for square integrable functiorfs We explain in Theorem 5.4 a result of [35], see
[8], stating thats#; and.7%; are equivalent for & H < 1 (they are the same set
with equivalent norms). We also compare the pattB'bandX", and in particular

study the equivalence or mutual singularity of the laws ekthprocesses (Theorem
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5.8); it appears that these two processes can be discriifgt looking at their
behaviour in small (or large) time. As an application, weoastimate the mutual
information of increments d8" on disjoint time intervals (more results of this type
can be found in [31]).

Another classical representation of the fractional Bramnmotion onR is its
spectral representation which can be written in the form

B = \/LI__[/OHo s 1/2-H ((cos(st) —1)dW + sin(st)d\Agz), (7)

whereW! andW?, t > 0, are two independent standard Brownian motions; it is
indeed not difficult to check that the right-hand side is Géarg centredH-self-
similar with stationary increments, and(rtis the constant for which this process
has the same variance as (6) (see Appendix B). If now we azeested irB" on

a bounded interval, sa@, 1], we look for its Fourier coefficients. Thus the aim
of Section 6 is to study the relationship betweih on [0,1] and some series of
trigonometric functions with independent Gaussian caeffits. More precisely, the
standard Brownian motion can be defined@r] by series such as

cog2nmt) —1
s2nmt) + &,

sin(2nmt)
W= Got + V2 H;(En 2nm 2nm )’ (8)
B cof(2n+ 1)) —1 _,sin((2n+1)mt)
Wf\/én;(fn (2n+1)m +én (2n+1)m )’ )
or
B sin((n+1/2)mt)
W = ﬁﬂ;in—(n+ L (10)

where &, &/ are independent standard Gaussian variables. The formig1ag
Karhunen-Logve expansion; it provides the orthonormsisb@2 sin((n+ 1/2) )
of L?(]0,1]), such that the expansion W on this basis consists of independent
terms; it is a consequence of (9) which can be writter{-eh/2,1/2], and of the
property

W~ V2W o = W — Wy .

It is not possible to write ofD, 1] the analogues of these formulae B, H # 1/2,
but it is possible (Theorem 6.1) to wrig¥ on[0,1] as

BY —af&ot+ ¥ ((cos(nnt) —1)&+ sin(rmt)Er’,) (11)

n>1

with 5 (al!)2 < . This result was proved in [18] whe < 1/2, and the case
H > 1/2 was studied in [17] with an approximation method. Formdld)(is not
completely analogous to (8), (9) or (10); contrary to thegmasions ofV, theo-
algebra generated B8 in (11) is strictly smaller than the-algebra of the sequence
(&n, &) in other words, the right hand side of (11) involves an ektfarmation not
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contained inB", and this is a drawback for some questions. This is why we @efin
for H > 0 a process

1
+&),

B = g+ V3 Y (52220

sin(2rmt) )
& (Zn-n)H+l/2

(Zm)H+1/2

which is a direct generalisation of (8), and a similar prs&Hs which generalises
(9). It appears that for & H < 1, these processes have local properties similar to
B, and we can prove that their Cameron-Martin spaces areaguivo.; (The-
orem 6.9). As an application, we obtain Riesz base#®f and show that functions
of 74, can be characterised ¢® 1] by means of their Fourier coefficients. We then
study the equivalence or mutual singularity of the lawB'bfandB™, B" (Theorem
6.13). We also discuss the extension of (10) which has begpoped in [11]. In
Theorem 6.17, we recover a result of [4, 37] which solves thlewing question:
if we observe a path of a process, can we say whether it is affaational Brow-
nian motionB?, or whether this proces®’ has been corrupted by an independent
fractional Brownian motion of different indeA?

Technical results which are required in our study are givethée three appen-
dices:

e a lemma about some continuous endomorphisms of the staritamkeron-
Martin space (Appendix A);

¢ the computation of the variance of fractional Brownian ran$ (Appendix B);

e results about the equivalence and mutual singularity oflafvGaussian pro-
cesses, and about their relative entropies, with in pdatical short review of
Cameron-Martin spaces (Appendix C).

Notice that many aspects concerning the fractional BrowmiationB" are not
considered in this work. Concerning the representatidris, possible to expand
B" on a wavelet basis; we do not consider this question to whésieral works
have been devoted, see for instance [28]. We also do not stodipastic differen-
tial equations driven bB" (which can be solved by means of the theory of rough
paths, see [6]), or the simulation of fractional Browniathga On the other hand,
fractional Brownian motions have applications in many stifie fields, and we do
not describe any of them.

2 Fractional calculus

Let us first give some notations. All random variables andgsses are supposed
to be defined on a probability spa¢@,.%,P) and the expectation is denoted by
E; processes are always supposed to be measurable fungtiofisw) — = (w),
wheret is in a subset oR endowed with its Boretr-algebra; ther-algebra gener-
ated by= is denoted byo (=), and for the filtrations we use the notation (5). The
derivative of ordemn of f is denoted byD"f; the function is said to be smooth if
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it is C*. The functionf; is said to be dominated b if |f;| < Cf,. The notation
Un < vy means thaty /uy, is between two positive constants. We say that two Hilbert
spaces” and.7#’ are equivalent (and write# ~ #”) if they are the same set and

x (12)

for some positiveC; andC,; this means that the two spaces are continuously em-
bedded into each other. We often use the classical funétioefined onC\ Z_,
and in particular the properfy(z+ 1) =zl (2).

We now describe the functional spaces, fractional integrmad derivatives which
are used in this work; see [35] for a much more complete stddienfractional
calculus. These functional spaces are weighted Holdeespahich are convenient
for the study of the fractional Brownian motion. The resalts certainly not stated
in their full generality, but are adapted to our future needs

Cafh|

< [N < Colh|

2.1 Functional spaces

The main property which is involved in our study is the H@ldentinuity, but func-
tions will often exhibit a different behaviour near time Qdafior large times. More
precisely, on the time intervat’, let HF-¥:% for 0 < B < 1 andy, & real, be the
Banach space of real functiofissuch that

[f(t)] [f(t) - f(9)]
f =su su 13
Ils.vs t PiBtrs - s<tp(t — )P supcy ur° 12)
is finite, with the notation

Thus functions of this space are locally Holder continuasits index 8, and pa-
rametersy andd make more precise the behaviour at 0 and at infinitg.Hy > 0,
the functionf can be extended by continuity at 0 b§0) =limgf =0. If y >0 and
o > 0 and if we consider functiont such that ling f = 0, then the second term of
(13) dominates the first one (letecrease to 0).

Remark 2.1Define

f(t)—f
11505 = supf O =IOl o0 g comit negl.
va! (2”) y,c‘S(t _ S)B

Then this semi-norm is equivalent to the second term in (@3)articular, ify > 0
andd >0, then|.||g.y.5 and||.|\;3‘y6 are equivalent on the space of functidnsuch

thatlimp f = 0. Itis indeed easy to see thhﬂblw is dominated by the second term
of (13). For the inverse estimation, notice that upper bedad| f (t) — f(s)| can be
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obtained by adding the incrementsfafn the dyadic interval@", 2"1] intersecting
[s,t]. More precisely, if #1 <s< 2k < 2" <t < 2™ then

n-1
et
O =10 < I1Mllpy5, sup (2)"°(3 27+ @ -9 +(t-2)
SR
<C|lfll5.5 sup o (2”[g — 2Bkt 2”)3)
s<u<t

<3C|flly,5 supurd(t—s)?
T s<u<t

because® — 28 < (2" — 2K)B < (t —g)P.

In particular, one can deduce from Remark 2.1 At is continuously em-
bedded intdHP—€Y+&9+€ for 0 < £ < B.

Theorem 2.2.The map(fy, fo) — f1f2 is continuous fromHP 1% x HA 2% into
HBBHn+Ye.B+01+0

Proof. This is a bilinear map, so it is sufficient to prove that thegmaf a bounded
subset is bounded. i, and f, are bounded in their respective Holder spaces, it is
easy to deduce thdt (t) f2(t) is dominated by?ft%+¥%2:%+% On the other hand,
following Remark 2.1, we verify that for'2< s <t < 2?1,

[f1(t) f2(t) — fa(8) f2(9)| < [fu(9)] | F2(t) — fa(8)| + [ f2(t) || Fu(t) — ()]
< C(Sﬁsvl,al(zn)méz(t —5)f 1 thred ()l - S)rs)
<c@)P @)%t -s)P.
The theorem is therefore proved. a

Let us define
HB*V — Hﬁayﬂo, HB — Hﬁaoao

These spaces can be used for functions defined on a finiteriieral [0, T], since
in this case the paramet@is unimportant. For functions defined &1 , we say that
f is in HA Y2 if t — f(—t) is in it, and for functions defined on a general interval
of R, we assume that the restrictionsRg andR* are inHP¥?. Fory = 0, the
regularity at time 0 is similar to other times, so spat#s’9 are invariant by the
time shiftsf — f(.+t9) — f(to). If we consider a time interval of typ&, +«), then
the parametey can be omitted and we denote the spac&lBy°.

We use the notations

HB- Y0+ — m HB*&V,CHZS’ HB—Y — m HB*&V7 HF = m HB-€. (15)

>0 >0 >0

They are Fréchet spaces.
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Example 2.3If B" is aH-fractional Brownian motion on the time intenal 1], the
probability of the evenfB" € HP} is 1 if B < H (this follows from the Kolmogorov
continuity theorem). In particulaB" lives almost surely iffi"~. We shall see in

Remark 3.2 that this implies that on the time interRal, the proces8" lives in
HH*,0,0‘F.

The parameterg andd can be modified by means of some multiplication oper-
ators. More precisely, oR?, define

o) =t7(t), 19092 (t) =t (1+1t)%2 91 f(t). (16)

Theorem 2.4.The operator1 %192 maps continuouslii?-¥-9 into HP Y+91.0+02 |n

particular, on the time interval0, 1], the operator7% maps continuousi§i? ¥ into
HBYy+a .

Proof. The quantity|t® — s%|(t —s)~AtF~ is bounded for 2< s <t < 2"1, and
the bound does not depend pifuse the scaling). Thus it follows from Remark 2.1
that the function — t% is in HP-@~B.a~B_The same property implies thit+t)% —
(1+9)” is dominated by1+1t)?~#(t —s)# (with the same assumptions sandt),
and we can deduce thats (1+1)% is in HF:~.@~B (the coefficient- is due to the
fact that the function tends to 1 at 0). We deduce from The@g@that the function
t91(1+1)% % js in HPF-91-P.92-B_The operatof] 192 is the multiplication by this
function, and the result follows by again applying Theoreth 2 a

It is then possible to deduce a density result for the spatés>) (the result
is false with3 instead of3—). Fractional polynomials are linear combinations of
monomialg?, a € R, and these monomials areliff¥ on (0,1] if a > B +y.
Theorem 2.5.Let0< B < 1.
e On(0,1], fractional polynomials (belonging t&#—Y) are dense irHF .
e OnR?, smooth functions with compact support are dend@fn-v-o+,
Proof. Let us consider separately the two statements.

Study on(0,1]. The problem can be reduced to the cgse 0 with Theorem 2.4,
and functionsf of HP~ are continuous on the closed intery@/1] with f(0) = 0.

If fisinHP—¢ (for € small), it can be approximated by classical polynomfalby
means of the Stone-Weierstrass theorem; more preciselg,éhoose the Bernstein
approximation& f (3 Y11y, <) forindependent uniformly distributed variables

Uj in [0,1], thenf, is bounded ifIP—¢ and converges uniformly tb. Thus

[ fa(t) — fa(s) — f (1) + f(9)]
< C(|fn(t) — fo(s)|(B—28)/(B=8) | (t) — f(s)|(3*25)/(3*5))
sup| fn () — f ()| =%

< C/(t— )P sup|fa(u) — f(u)[*/F~*). 17)
u
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These inequalities can also be written ¢ 0 to estimate f(t) — f(t)], so f,
converges td in HF 2,

Study onR*.. The technique is similar. By means 6f°-:%2, we can reduce the
study to the casg =0 and—283 < 6 < —f. Let f be inHF—09+ and let us fix a
smalle > 0; thenf is in HF~&0.9+2¢- in particular, it tends to 0 at 0 and at infinity.
A standard procedure enables to approximate it uniformlgropoth functions,
with compact support, such théi is bounded ifHP—£:0.9+2¢; to this end, we first
multiply f by the functiong, supported by[2~"-1 2"*1], taking the value 1 on
[27", 2", and which is affine ori2~"~1,2=" and on[2",2"*1]; then we take the
convolution off g, with 2"2 ((2"*2t) for a smooth functiony supported by—1, 1]
and with integral 1. By proceeding as in (17), we can see that

[1alt) — fa(8) — 1(1) + £(9)
< C(t i S)B72£ sup (u0,6+28) (B—2¢)/(B—¢) SUp| fn(U) _ f(u)|£/(87£)
u

o s<u<t

so f, converges tdf in HP—26.0.0+4¢ pecausd d +2¢)(B — 2¢) /(B —€) < 6+ 4¢
for € small enough. O

2.2 Riemann-Liouville operators

An important tool for the stochastic calculus of fractioabwnian motions is
the fractional calculus obtained from the study of Riemaiville operatord ¢.
These operators can be defined for any real irméand even for complex indices),
but we will mainly focus on the cade| < 1.

2.2.1 Operators with finite horizon

The fractional integral operatot§, (Riemann-Liouville operators) are defined for
T €Randa >0 by

a 1 t a-1 a 1 i a-1
210 = g /T =9 (9ds 1L F0) = s /t (s—t)%Lf(s)ds
(18)
respectively fort > t andt < 1. These integrals are well defined for instance if
f is locally bounded or{t,+) or (—c0, T), and is integrable near. If f is inte-
grable, they are defined almost everywhere, lghds a continuous endomorphism
of LY([r,T]) or LY([T, 1]). These operators satisfy the semigroup property

az a1 _ jo1+az
ltle =t (19)



Representation formulae for the fractional Brownian motio 11

which can be proved from the relation between Beta and Garanwibns recalled
in (95). If a is an integer, we get iterated integrals; in particular,f is + the
primitive of f taking value O at. Notice that relations (18) can also be written as

10 = gy [ =95 21 - 10)ds+ o1, )
19 f(t) = %/tr(st)al(f(s)f(t))ds+%f(t). .
If f is Lipschitz with f(7) = 0, an integration by parts shows that
Iﬁf(t)ﬁ/:(ts)“df(s), |$f(t)r(Til)/tr(st)adf(s).
(21)

For a = 0, the operator$?, are by definition the identity (this is coherent with
(21)). The study of the operator§, can be reduced to the study k§f, since the
other cases can be deduced by means of an affine change of time.

Example 2.6The value ofl§, on fractional polynomials can be obtained from

tP ) ta+h

'g+(r(ﬁ+1) r(a+pB+1) (22)
which is valid for3 > —1.

Riemann-Liouville operators can also be defined for negatkponents, and are
called fractional derivatives. Here we restrict ourselves 1 < a < 0, and in this
case the derivative of ordera is defined by

12 f =Dhiof, 1% f=-DUl9f (23)

if 11191 is absolutely continuous, for the differentiation operddd. The relation
(22) is easily extended to negatige(with result O ifa + 3 + 1 = 0). Fractional
derivatives operate on smooth functions, and we have thanfimig result.

Theorem 2.7.Suppose that f is smooth and integrable(6ri]. Then, for anya >
—1, 1§, f is well defined, is smooth @@, 1], and

DU, f ()]
t/2
<Cq (tH/ I£(5)|ds+t% sup| |+t sup|DLf| + o+ sup|D2f|)
0 t/24] t/24) t/24]
(24)
If D1 is integrable andimo f =0, then D', f = 1§, D*f.

Proof. First suppose& > 0. Then, fort > u > 0, we can write (18) in the form
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g f(t) = I'(a)*l(/ou(tfs)"*lf(s)der /Otius"*lf(tfs)ds). (25)

This expression is smooth, and
U
DUEF() = (o) (e~ D) [ (t-9° 2H(9ds
Jo

. (26)
+/O SN (- s)ds+ (t - )T H(y).

In particular, by lettings =t /2, we obtain (24) without thB?f term. Moreover, if
D'f is integrable and limf = 0, we see by writing

(t—u)® 1 (u) = —(a— 1)/( 97 2f(s ds+/ 991D f(s)ds
that
Dhig, / $-1p1f(t — s)ds+ / 991D (3)ds)
—I0+D1f(

(apply (25) withf replaced byD*f). Let us now consider the casel < a < 0; we
use the definition (23) of the fractional derivative, and amtizular deduce thag/, f
is again smooth. Moreover, from (26),

DU, f(t) = DA (t)
u
=r(a+1)(a(a- 1)/ (t—9)92f(9)ds+ (t — )DL (u)

0

t—u

- S"D?f(t —s)ds+ a(t—u)"*lf(u)).
0
We deduce (24) by letting again=1t/2. If limo f = 0 andD*f is integrable, then
DU§, f =DA 1t =DUS D =18, D'

from the definition (23) and the property far+ 1 which has already been proved.
O

For —1 < a < 0, a study of (20) shows thaf, f is defined as soon af is
Holder continuous with index greater tharor, and that (20) again holds true. fif
is Lipschitz andf (1) = 0, then we can write

12, f = DU f = DU, D f = DULIHOD f = 11D

where we have used (19) in the third equality, so (21) agaldshiwue. Thus re-
lations (20) and (21) can be used for amy> —1 (a # 0 for (20)). By using the
multiplication operator§1“ defined in (16), we can deduce from (20) a formula for
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weighted fractional operators; ffis smooth with compact support&r; , then

NG Ve =18, F(t) + %/Ot(t —9T (3 -1)f(9ds (@)

fora > —-1,a #0.
Here are some results abdgt related to the functional spaces of Subsection
2.1. They can easily be translated into propertiel§'of see also [35, 32].

Theorem 2.8.Consider the time intervdD, 1] and lety > —1.

e If Bandf+a arein(0,1), then the operatorg, maps continuousl§?Y into
HB+aY,

e The composition rulegflgt = 1572 holds onHP- provided, B + a1 and
B+oa1+azarein(0,1).

Proof. Let us prove the first statement. Létbe inHEY. The propertyl, f(t) =
O(ta*+B+Y) can be deduced from (20) and (22). By applying Remark 2.3, thén
sufficient to compardeg+f at timess andt for 2" < s<t < 2" n < 0. Consider
the timev = (3s—t)/2, so that 271 < s/2 < v < s < 2", By again applying (20),
we have

|3+f(t)flé’+f(5) taflst()ai;(s)+AV;t_(_a'A)“45 f(slz(a;(t) /Ov(tfu)afldu
e 0o w0 - fe)au

with
A = /W(Wf w1 (f(u) — f(w))du=O((V +w)(w—v)**P).

We deduce that

(ta_sa)f(s) Av,t_Av,si f(S)* f(t)

r(a+1) rla) @+ (t-v)*
1

+ m _/(;V((t — u)afl —(s— u)a—l) (f(u) - f(s))du.

16, f(t) — 15, f(s) = 8)
28

The second and third terms are easily shown to be dominat@e/fty- s)°*F. The
first term is dominated by

sup u"Ht —g)PHV < c2V(t —5)9FP.

s<u<t

The last term is dominated by
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/OV((S— Wt~ (t—u)? ) (s—u)f (U +¢)du

<(1-a)(t-s) /Ov(s— W P2 +¢)du

s/2
<C(t—s) (Z”V(s— v)‘”B*lnL/ (s—u)aP-2(u + sV)du)
0
S Clzny(t o S)0+B

becauses— v = (t —s)/2 and the integral of0,s/2] is proportional tes® *A+Y-1 <
c2n@+B+y=1) < c2(t — 5)9+A-1. Thus the continuity of§, is proved. For the
composition rule, it is easily verified for monomialét) = t# (apply (22)), and is
then extended by density to the spa&@ ¥ from Theorem 2.5. By applying this
property to a slightly larger value @, it appears that the composition rule actually
holds onHAY. O

Notice that fractional monomiat§ are eigenfunctions off ~“1§, andl§, 1~
when they are in the domains of definitions of these operasorsvhenk is large
enough. This implies that these operators commute on drzaitpolynomials. This
property is then extended to other functions by densityartigular,

a2 q—01—Qa2)01 __ q—ay 01+02 q—az
g2 lot =M ogtazn oz, (29)

see (10.6) in [35].

2.2.2 Operators with infinite horizon

The operators? are defined by letting — o in |%,_. However, we will be more
interested in the modified operators

10 =196(0) - 121(0) = fim (1%.f(t)~1%1(0))

when the limit exists. Foar > 0, we can write
~ 1
o _ Qa1 qa-1
17f(t) = I'(a)/((t )T (=91 ) f(s)ds

B 1 . . (30)
a a— -
|7f(t):m/((3—t)+ —SaJr )f(S)dS

where we use the notatiar = u* 1;u-0y- These integrals are well definedfift)

is dominated by(1+ [t|)® for & < 1— a (there are also cases where the integrals
are only semi-convergent). In particular, the fractiomaegrals are generally not
defined for large values af, as it was the case fdf, . We are going to studyf on

the functional space&P %9,
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Remark 2.9The operatol ¢ is a normalisation of¢ in the sense that it can be
defined in more cases thaff. For instance, foor > 0, if we comparg? f andl@ f
onR* for f(s) = <%, we see that the former one is defineddor —a, whereas the
latter one is defined fod < 1—a.

Let us now consider the casel < a < 0; we can letr tend to infinity in (20)
and obtain

210 = g7 [ (=999 - 1) = (<92 (f(9 - 1(0) ) ds.

a).

1) = g7 [ (=097 (1(9 - 10) (19~ 10) )as

(a

(31)

This expression is defined %2 providedB +a >0andB+a +d < 1.

Leta > —1. Suppose that is Lipschitz and has compact support, so that O
on(—oo, 7], respectivelyt,+). Thenl ¥ f =19_f on[1,+), respectively—e, 1],
sol2f(t) is equal tol 2, f(t) — 19, f(0), which can be expressed by means of (21).
Thus

260 = gy / (=92~ (-99)df(s),

L (32)
Ta _ _ (e_ t\O
10 = frgrg | (8- (-0,
By applying Theorem 2.7, we see thatfifis smooth with compact support, then
19 f is smooth and

DY f =DUYf = 19D, (33)

Remark 2.10lf f =0 onR, and if we look forl? f onR*, we see whem < 0
that f(0) and f(t) disappear in (31), so (30) can be usedRin for both positive

and negativer, andl @ f is C* onR* .

Theorem 2.11.Consider the operatorgﬁ and 1@ on the respective time intervals
(—o0,T] for T >0, and[T, +0) for T < 0. Let > 0.

e The operatoi? maps continuousl§® -9 into HF 299 providedp, B + a and
B+a+darein(0,1).

e The composition rulé?2[* = [7292 holds onHP-%% providedp, B + a1, B+
o1+ ax, B+a;+dandB+ar+ax+darein(0,1).

Proof. It is of course sufficient to studNyj‘,’. We prove separately the two statements.

Continuity ofrﬂ. We want to study the continuity on the time interyaleo, T]; by
means of a time shift, let us consider the time interfvado, —1], and let us prove
thatif f is in HP9, then the function lira, — (19, f(t) — 19, f(—1)) isin HA+a-9,
From Remark 2.1, it is sufficient to estimate the incremeffitthis function on
intervals[s,t] C [-2"1, 2" for n > 0. Consider the proof of Theorem 2.8 where
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Ig, is replaced by, and let us estimat!, f(t) — 17, f(s) for T — —o0. We can
write a formula similar to (28). The first term involvés— 1)9 — (s— 1) which
tends to 0 ag — —oo, S0 this first term vanishes. The second and third terms are
dealt with similarly to Theorem 2.8; the only differencelist the weight 2 now

becomes . The last term is an integral da-,v) and is dominated by

(tfs)ﬁvw(sf u)**+B=2|u|%du= (tfs)/+m uB=2(u—s)°du

(t-s)/2
400
<(t—s) /(F L (ua+B+672+ ua+B72|S|6)du

< C(t o S) ((t B S)a+ﬁ+5fl+ (t - S)G+Bfl|s|6)
< 2C(t—9)9"P|s)°.
Composition rulelf f is 0 before some timey, thenlZ* f(t) = 172 (t) — 171 (0)
fort < 1pAt. Thus

TETE () = fim (1727726 172T201(0))

with
~ t—1)% t—1)%
PO =110 - e =1 - Lo Do)

from Theorem 2.8. Thus

—T1)%2 (1)
i\szi\ilf(t):i\glJrGZf(t)i lim (t T) ( T)

ay __Ja1t+a2
R e MU R Ch

The case of general functions is then deduced from the geofsfunctions with
compact support ifif? %9+ (Theorem 2.5); the proof oHF:%9 is obtained as in
Theorem 2.8 by increasingand decreasing slightly. a

In particular, we deduce from Theorem 2.11 tiaiis a homeomorphism from
HA—00+ ontoH(@+P)—00+ if B anda + B are in(0,1), andI;? is its inverse map.

2.2.3 Operators for periodic functions
Consider a bounded 1-periodic functibnLet|a| < 1; if a < 0, suppose moreover
that f is in HP for somep > —a. Thenl{ f is well defined and is given by (30) or

(31); moreover, this function is also 1-periodic, and is @irae 0O; this follows from

1T ft+1) =174 f(1)

so that
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D) 17 F(0) = (g ) 1. 10) + (1f_y) (0~ 17 £(0).

By letting T — —oo0, one easily checks that the second part tends to@ Bo+1)=

191 (t).
The following example explains the actionr@f on trigonometric functions.

Example 2.12L et us computd?ﬁ on the family of complex functiong (t) =€ — 1
forr > 0. Suppose & o < 1. The formula

I'(a):/ "~ le~Sds= u"/ sleUsds
0 0

is valid foru > 0 and can be extended to complex numbers with positive retl pa
One can also write it fon = Fir, r > 0, and we obtain

/OwsafleiirstZeiia”/zr*a['(o{) (34)

where the integral is only semi-convergent. Thus we obtaéndiassical formula
(see Section 7 of [35])

_ 1t _
aqrt _ o\a-—14rs
17e" = Fla) ./7m(t s)? *e®ds
_ gt /oosa—le—irsds: p—ag-iam/2dn
r(a)Jo

We deduce thaE?(p( — r~ %7192 and this relation is extended to negative
since the operators of exponentsand—a are the inverse of each other (Theorem
2.11). In particular,

19(1—cogrt)) =r ¢ (cos(a 1m/2) — cogrt — an/Z))

N (35)
[¥sin(rt) =r=—¢ (sin(or /2) + sin(rt — an/Z)).

Remark 2.13We can similarly study® which multiplies@ by r—2€?™2; conse-

quently, the two-sided operatd +17)/(2cogam/2)) multiplies @ by r=9.

Let us now define two modification andl? of 12 which will be useful for the
study of the fractional Brownian motion df, 1]. Consider a bounded functioin
defined on the time intervD, 1] and such thaf(0) = 0. If a < 0, suppose again
that f is in HP for someB > —a. Letg(t) be the 1-periodic function coinciding on
[0,1] with f(t) —t f(1). We now define 010, 1]

19F(t) =t f(1) +19(t). (36)

ThusIAj”r satisfies the formulae (35) for= 2nrt, and we decide arbitrarily thﬁft =
t. On the other hand, létbe the function with 1-antiperiodic increments, so that



18 Jean Picard
h(1+t) —h(1+4s)= —h(t) +h(s),
and coinciding withf on [0, 1]. We define
T9 () =19h(t). (37)

Thenl? satisfies (35) for = (2n+ 1)1

It is clear thatl%2[Tt = 171792 is satisfied orHf as soon ag, B + a1 and
B+ a1+ ay are in(0,1), and the same property is valid fﬁi (apply Theorem
2.11). Actually, these composition rules can be used tonelxtiee two operators to
arbitrarily large values ofr. Moreover,IAj”r andl_i are homeomorphisms froifi?

ontoHP*? if B andB + a are in(0,1), and their inverse maps arg® andl_“.

2.3 Some other operators

Let us describe the other operators which are used in thik.Wére multiplication
operatorf19, a € R, has already been defined in (16)Rh, and let us complement
it with

~ t t
n“f(t):lgmanlf(t):/o s"df(s):t"f(t)fa/os"*lf(s)ds (38)

for f smooth with compact support. In the last form, we seefftfat can be defined
as soon at”~1f(t) is integrable on any0, T], so onHA Y- if a + B+ y > 0.
On the other hand, let us define fmre R the time inversion operatoiig andT}
onR?% by
To f(t) =t29F(1/t) (39)

and

t ~00
TLF(t) = 13, Ta_1DH(t) = 7/0 29-2p1f(1/s)ds— *./m s 294 1(s)
— {29 (1/t) — 2a /'°° s 201 (5)ds (40)
Jan

and the last form can be usedi??~1f(t) is integrable on anfT, ), so in partic-
ular onHAY-0 if 2a > B + 6. Actually, the form ofT, and a comparison of (40) and
(38) show that

To =N To=Tol 2%,  T.=M%T, (41)

Notice thatT, andT} are involutions, so that

TaTLF(t) = f(t) — 20120 /ms’z"*lf(s)ds (42)
Jt
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and d
T T F(t) = 2929 (1) Za/f > 43)

are the inverse transformation of each other.
Theorem 2.14.Let0 < B < 1and consider the time interval?,_ .

e The operatof79 maps continuousB?-¥-? into HF-Y+2-0+ if B+ y+ a > 0and
B+ 3+ a > 0. It satisfies the composition rul@?2[7% = [791+92 on HA V- if
B+y+a1>0andB+y+ai+az>0.

e The operator § maps continuousH?-¥:9 into HP-—0+2(a—B).—y+2a-p) |f
moreover2a > 3+ & and2a > 3+ y, the operator T satisfies the same prop-
erty.

Proof. We prove separately the two parts.

Study off7. The continuity orHP-¥:? is proved by noticing

~ t
A1) < A7 (0)]+C | ¢ Perds< Crehr?,
0

A t
At A1) < 1710 - 1] v [ u -ty
S

< |n%f(t)—N%f(s)|+C'(t—s)P supuu¥?,
s<u<t
and by applying Theorem 2.4. The composition rule is eviflrgmooth functions
(use the first equality of (38)), and can be extended by de(tkie parameted is
unimportant since we only need the functions on boundedititeevals).

Study of § and T;. If f isinHPY9, thenf(1/t) is dominated by Pt=%~Y, and if
2n S SSt S 2n+l’

(1/t) - f(1/9)| <C supu >Y(1/s—1/t)P <C'(2") O Vs Pt Pt —s)P
s<u<t

< (") 5By _g)B,
soTof :t s f(1/t) is in HPF:~28~0-2B=Y The continuity ofT, and T} is then a
consequence of (41) and of the continuity®®® and/72°. O

Remark 2.15We deduce in particular from Theorem 2.14 thgiandT,, are home-
omorphisms fromH? %%+ into itself for 0< a < 1. We also deduce thai T,
respectivelyT T, is a continuous endomorphism &4 when 2r > 8 + y and
2a > B+ 9, respectively whei8 + y > 0 and3 + 6 > 0; when the four conditions
are satisfied, they are the inverse of each other. The fo#fif1 2% of T, Ta can be
used on a bounded time intery8l T], and in this case we only ne@d+ y > 0.
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The time inversion operatdg enables to write the relationship betwdénand
Ig, onR%. If a > 0 and if f is a smooth function with compact supportir| , we
deduce from the change of variabkes> 1/sthat

19§ (1/t) = /1; (s~ %)ailf(s)ds: /Ot (} ~ 1)"’1f(1/s)d?S

s t

so that
Tol®To =118, n—*-2. (44)

3 Time inversion for self-similar processes

We give here time inversion properties which are valid foy Bhself-similar cen-
tred Gaussian proce$s;;t > 0), and not only for the fractional Brownian motion.
Such a process must have a covariance kernel of the form

C(st) ='t"p(s/t) (45)

wherep(u) = p(1/u) and|p(u)| < p(1). It then follows immediately by comparing
the covariance kernels thatTi is the time inversion operator defined in (39), then
one has the equality in laly = ~ =. Notice that this holds even whét is not
positive.

Remark 3.1The Lamperti transform (see for instance [5])
(Z);t>0) — (e M=(d); teR) (46)

mapsH-self-similar processes; into stationary processeg. ThenTy= ~ = is
equivalent to the proper®._; ~ Z; which is valid for stationary Gaussian processes
(invariance by time reversal).

Remark 3.2We havely B ~ B" and can deduce properties®}t on[1, +) from
its properties orf0, 1]. For instanceB" lives in H"~ on [0, 1], and we can check
from Theorem 2.14 thafy sends this space df,1] into the spacél™ -0+ on
[1,+); thusB" lives inH" 0%+ onR, (notation (15)).

We now prove another time inversion property whén>- 0 (we do not assume
H < 1). Assume provisionally that the paths®fare absolutely continuous; then its
derivativeD!= is (H — 1)-self-similar, soTy_1D'= ~ D= and

/= 1 1= 1 1= =
T2 =13, Tu_sD!=~ 1, DIZ = =~

In the general case (whénis not absolutely continuous), the same property can be
proved with the theory of generalised processes (as sa#®iit we here avoid this
theory.
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Theorem 3.3.ForH >0, let (%; t > 0) be a H-self-similar centred Gaussian pro-
cess, and consider the time inversion operatersiid ;. Then one has the equal-
itiesinlaw T, = ~Ty= ~ =.

Proof. As it has already been said in the beginning of this Subseclip= ~ = is
obtained by comparing the covariance kernels. Sidg H-self-similar, the norm
of = in L1(Q) is proportional ta", so the variablgy’ ||t 2" ~1dtis in L1(Q) for
anyT > 0, and is therefore almost surely finite. TH{s= is well defined. Moreover,
T4 =T, TuTi= ~ T, Tu =, so let us compare the covariance kernelsoénd
T, Tw= = 121 11-2H = given by (43). We have from (45) that

E [ET ./O‘stdﬂ —TH /OS§**1p(s/T)ds= TH /(;S/T u"p(u)du.

Thus

[ =5 =)

T S/t 00
=/ tZH*l/O uH’lp(u)dudt:%/O (T/\S)ZHUH’lp(u)du

:i(TZH./(;S/Tqulp(u)dqusz”/ u*“flp(u)du)

2H ST
1 ST TS,
= m(TZH/O uft lp(u)dquSZH/O utt 1p(u)du)

(we usedo(1/u) = p(u) in the last equality). We deduce from these two equations

that
E[(ET—ZH/O 5?) (ES—ZH/O ES%S)} ~E[ZrZ]

since the other terms cancel one anothef/st, = has the same covariance kernel
as=. O

Remark 3.4Theorem 3.3 can be applied to the fractional Brownian moBSn
Moreover, the relationB" ~ TyB" ~ T/,B" can be extended t&* by defining

Thf) =t f@/), Tif =713, Th 1D onR%.

SinceB" also has stationary increments, we can deduce how the laheajen-
eralised procesB!B" is transformed under the time transformatians (at -+
b)/(ct+d), see [29].

The law of theH-self-similar process is therefore invariant by the transfor-
mationsTy T}, and T/, Ty = 112" 11—2" given by (42) and (43). We now introduce a
generalisatiofy | of T/, T, which was also studied in [21].

Theorem 3.5.0n the time intervaR , for H > 0 and L > 0, the operator
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TuL =Nty = At gt (47)

is a continuous endomorphismI&f-¥-% when0 < B < 1, and + yand + & are
greater than H—L; in particular, it is a continuous endomorphism &t —00+ jf
0< H < 1. Itis defined on a function f as soon &s'f—1f(t) is integrable on any
[0,T], and it satisfies

TuL F(t) = F(t)— 2Lt L /: f(s)&H1ds (48)

If = is a H-self-similar centred Gaussian process, than ¥ has the same law as

Proof. The continuity property offy can be deduced from Theorem 2.14 and
Remark 2.15. The representation (48) follows easily froB) ¢hd the second form
of Ty in (47). Let = be a centred Gaussidt-self-similar process; then tHe'-
norm of =; is proportional tot", so [y t~"-1|5|dt is integrable and therefore
almost surely finite for any > 0. We deduce thali; | = is well defined; we have

TTnt-Hz~pt-H=

because1-~H = is L-self-similar. By applying/1"— to both sides we obtain
THyLE ~ =, O

Remark 3.6In the non centred case, we hae= ~ = andT|,= ~ Ty = ~ —=.

We will resume our study ofy | for self-similar processes in Subsection 4.4.

4 Representations of fractional Brownian motions

Starting from the classical representation of fractionavilian motions ofR de-

scribed in Subsection 4.1, we study canonical represengatnR (Subsection
4.2) andR_ (Subsection 4.3). In Subsection 4.4, we also consider theanonical
representations dR; introduced in Theorem 3.5.

4.1 A representation on R

For 0< H < 1, the basic representation of a fractional Brownian moBBris

B = [ (-9 (-9 ) awg (@9

for a positive parameter, see [26]. It is not difficult to check that the integral of the
right-hand side is Gaussian, centred, with stationaryeimants, ané-self-similar.
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ThusB! is a fractional Brownian motion; its covariance is given Y, @nd the
variancep of B is proportional tok?; the precise relationship betwepnand k
is given in Theorem B.1. Subsequently, we will consider ttaetional Brownian
motion corresponding to

K=k(H)=1/(H+1/2), (50)

so that (following (96))
p=pt)= 22 o) pajz-1 (51)

In particular,BY/2 = W is the standard Brownian motion. This choicerofs due
to the following result, where we use the modified Riemanoulzille operators of
Subsection 2.2.2.

Theorem 4.1.The family of processe®"; 0 < H < 1) defined by49) with (50)
can be written as
B ="V, (52)

More generally,
BH =1H-Jp’ (53)

forany0< J,H < 1.

Proof. The formula (52) would hold true from (32) W were Lipschitz with com-
pact support; the operatd?ffl/2 is continuous orH/2-09+ (Theorem 2.11) in
whichW lives, and Lipschitz functions with compact support aresgein this space
(Theorem 2.5); moreover, integration by parts shows thasthchastic integral in
the right-hand side of (49) can also be computed by apprdxigng/ with smooth

functions with compact support, so (52) holds almost suiiddgn (53) follows from
the composition rules for Riemann-Liouville operators¢dhem 2.11). O

We deduce in particular from (53) that (52) can be revergée-(B'/2), and
w =1Y2HpH,

Thus the increments & andB" generate the same completed filtration, namely
Z:(dB7) = .2 (dW) (with notation (5)).

Remark 4.2Relation (53) can be written by means of (38) £ J) or (31) H < J).
It can be written more informally as

e iy [ (oo

where the integral is obtained by approximati®y by Lipschitz functions with
compact support, and passing to the limit.
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Relations (52) or (53) can be restricted to the time inteRzaj in order to know
B" onRR_, we only needV onR_, and vice-versa. On the other hand, they cannot
be used o ; in order to knowB" onR ., we have to knowV on the whole real
line R. If we want a representation dR., we can reverse the timé {> —t) for
all the processes, so that the operatqrare replaced by_. We obtain orR, the
backward representation

~00

B{*l‘“”ﬁ/\/(t)ﬁ/o (2 (-0 W )aw,  (59)

However, in this formula, if we want to knoB" at a single time, we needW
on the whole half-linéR , ; next subsection is devoted to a representation formula
where we only neeW/ on [0, t].

4.2 Canonical representation on R .

We shall here explain the derivation of the canonical regmesgion of fractional
Brownian motions ok ;. which was found by [30, 29], and the general relationship
betweerB’ andB" which was given in [20]. More precisely, we want the various
processe¢B™;0 < H < 1) to be deduced from one another, so that all of them
generate the same filtration.

As explained in the introduction, we start from the relat@h = MYy of
(54) and apply the time inversidn- 1/t on the incrementdW anddB'; this time
inversion is made by means of the operafq’rfg andT/, defined in (39) (they are

involutions), which preserve respectively the laws\b&ndBH (Theorem 3.3). Thus
BM o (T4 Y21 )W,

It appears that this is the canonical representati®Y'ofe now make more explicit
this calculation, and generalise it to the comparisoB'dfandB’ for anyJ andH;
starting fromB" = 1" ~JB?, we can show similarly that

B" ~ (T417 7)) B’ (55)

Theorem 4.3.0n the time intervaR ;, the family of fractional Brownian motions
B", 0 < H < 1, can be defined jointly so thatB= Géf B’ for

Géf _ ﬁHJrJflI(})-Ij;J,'—IVlfoJ (56)

(see Section 2 for the definitions ¢f land ﬁ"). This family of operators satis-
fies the composition rule @LGgf = Gg;t, and all the processes Bgenerate the
same completed filtration. Moreover, the operattéﬁbmaps continuouslgY %0+

(where paths of Blive) intoH" %0+ and can be defined by the following relation;
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if we define

U

goJ’H(u):(HfJ)/ (vH“*lfl)(vfl)H*Jfldij u—DHI (57
J1

for0<J,H <1landu> 1, and if

Q09 = rrrrr e ()¢ 8)
then .
Gt (1) = /0 KM (t,9)df(s) (59)

for f Lipschitz with compact support R . Moreover, B! is given by the & integral

B = ./t Kg/2" (t, 5)dW (60)

0
for W = BY/2,

Proof. Let us divide the proof into four steps.
Step 1: Definition of the familieséfé| and B'. Following (55), we define

Gof' =T4M Ty, BT =gy Mw (61)

)

so thaB" is aH-fractional Brownian motion. The continuity G‘éf from HY—0.0+

into H—09+ is then a consequence of Theorems 2.11 and 2.14; it indeed fol
lows from these two theorems th@f and T, are continuous endomorphisms of

respectivelyl? %%+ andHH 09+ and that™ is continuous fronH? %%+ into
HH—00+ Moreover

HLA~JH _ +~L-Hy/ 4/ TH-I7/ _ v/TL-HTH-J7/ _ +/7L-Jd4/ _ ~JL
Gor Goy =T " TRTRI I Ty =TI Ty =T =Ty = Gy
and consequently

GyH'B’ = GGy w = 62w = BH.

The equality between filtrations &' also follows from this relation.

Step 2: Proof of(56). First assuméd > J, and let us work on smooth functions
with compact support iiR* . We deduce from (44) and the relations= 1297y =
Tol 29 that
TH 1|H7JT\] 1= n2H72T0|H7JT0n272J — n2H72nlfH+JI(l)ﬁfJ,—lflfHJrJ,—IZfZJ
-1l - - +

— nH+J71|g+7J”17H7J. (62)
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On the other handT, has been defined asl3, T,_1D?, and1® = I3,19D* from
(33), so the definition (61) can be written as

G = (18, Tw-1DYH) (141" DY) (13, Ty_1DY)
=13, Ty_1I"Ty_1D?
:|é'+I_IH+J 1I(|J-|+ JI—,:L H-— JD:L (63)
_ |&+HH+J71|SL:JD1|&+”17H7‘]Dl
— (|é‘+nH+J71D1)||0_|+7‘](|6'+I717H7JD1)
_ ﬁH+Jfl|(I)-IJ:JﬁlfH7J

(we used (62) in the third equality and Theorem 2.7 in the fiftlke). The equality
can be extended to the functional spatk 00+, sinceGgf is continuous on this
space, and the right-hand side is continuouBldn on any interval0, T]. Moreover,

inverting this relation provide&"', so that this expression Gf)f also holds when
H<J.

0+

Step 3: Proof of(59). For smooth functiong with compact support iiR* , (27)
yields

I—IH+J71|6-I—J,71—H7J f (t)
1
— 159 (t) + ﬁ/o ((?)“” - 1) (t—9" I 1f(s)ds

so (63) implies

Géff(t) :I&Jf(t)Jrﬁ/ot (/O‘V((\_S/)lHJ_l)(V_S)HJldf(S))dV
ﬁf;(ts)“df(s)
+ﬁf; ( /:((éf”J—1)<V—S>““dv)df<s>.

This expression can be written as (59) for a keﬂﬁ&f, and a scaling argument
shows that!" is of the form (58) forg™* (u) = I (H — J+ 1)Ky (u,1). Then
(57) follows from a simple verification.

Step 4: Proof 0f60). By means of an integration by parts, we write (59)Jer 1/2
andH # 1/2 in the form

1/2H ¢ f
S

) /Kl/ZHtsds+/ KY/2M (t,5) (D (5) — £(t) /t)ds
N

r—FAr—F/-\

- /Kl/ZHtsds /Ot(f(S)—tS (1)) 05,2 (1, 5)ds  (64)
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On the other hand,
(@) (U) = (H=J)(u— DIttt

so that

JH 1 HOW A1 o Hd-1/ b\ HR
An asymptotic study of (57) shows thgf/2" (u) is O((u—1)"-%2) asu | 1
andO(u—1v 1) asu 1 ; thus dsKéJ/rz’H (t,s) is O((t —s)"~%/2) ass1t, and is
O(s H-1/2y ¢H-3/2) ass | 0. An approximation by smooth functions shows that
(64) is still valid forw, and a stochastic integration by parts leads to (60). O

Remark 4.4t is also possible to write a representatidi = G%E B’ on the time

interval [T, +o), associated to the kernb" (t,s) = K37 (t — T,s—T). In [22], it
is proved that letting tend to—o, we recover at the limit (49).

Remark 4.51f H > J, we have
U
<pJ’H (uy=(H-=-J) / vH“*l(v— 1)H*J*1dv
J1

If H < J, this integral diverges ang’" (u) is its principal value. This function, and
therefore the kerne(gf (t,s) can also be written by means of the Gauss hypergeo-
metric function, see [8, 20].

Remark 4.61f H +J = 1, then (56) is simply written a§,"" = 1/i-?. Thus the
relation betweel™ andB' " is particularly simple (as it has already been noticed
in [20]), but we have no intuitive explanation of this fact.

Remark 4.7The expression (56) deéf is close to the representation given in [32]
for J=1/2. We define

JH _ (H-J[1-J-HRJ _ 1 t _ o\H-J1-J-H
ZH — 18R Bm*ﬁﬁ?ﬁﬂéa HIst-I-HgR)

which is an Itd integral in the casle= 1/2, and the fractional Brownian motidst!
is given by .
H _ AH+I-15JH "~ H+I-1 I H
—f Z’t:/§ dz2
B} 0= Z
which can be defined by integration by parts.
Remark 4.8In the casel = 1/2, let us compare our result with the decomposition

of [8]. We look for a decomposition (ﬁé/f’H which would be valid on the classical

Cameron-Martin space?] /, = I&JFL2 of W. To this end, we start from (63)

1/2H 1 qH-1/2)H-1/251/2-HH1
S / loy. 11 /21D
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which is valid for smooth functions. Whet > 1/2, this formula is valid o7 /»
for any finite time intervalO, T] because these five operators satisfy the continuity
properties

%/ZHLZ%LléLl%LléLm

(use the fact thalig, is a continuous endomorphism bf for a > 0). However, it

does not make sense ¢#f , for H < 1/2 becaus H;l/z is in this case a fractional

derivative, and is not defined for non continuous functidrisis let us look for an
alternative definition of the operat@é/f’H; in order to solve this question, we apply
the property (29) of Riemann-Liouville operators and get

1/2H 2) —2| —1/2,H-1/2 2_
Gy = 18 (17 YA A /2
_ |§E (I-,l/sz Iéf’H ,-IZHfl) nY/2-Hpt

_ |gH /2-H |3/27H H-1/2pt
= o+ +
which makes sense o#f}, if H < 1/2. This is the expression of [8].

Remark 4.9A consequence of (60) is that we can write the conditional ¢dw
(B';t > 9) given(BI;0 <t < S). This is the prediction problem, see also [13, 29].

Remark 4.10Theorem 4.3 can also be proved by using the time inversioraepe
tors Ty rather thanT},. If we start again from (54) and consider the process with
independent increments

Wi [fevan,
0

then it appears thaBl! depends on future values ®f; consequentlyTyB" (t)
depends on past valuesfVH. On the other handlyB" ~ B" andTyVvH ~VH
from Theorem 3.3, so we obtain an adapted representat® with respect to/H,

and therefore with respect W. One can verify that this is the same representation
as Theorem 4.3; however, the composition rule for the oper@éf is less direct
with this approach.

Let us give another application of Theorem 4.3. The pro@shas stationary
increments, so a natural question is to know whether it cawiitteen asBff =
A — Al for a stationary centred Gaussian proo&$sand to findA™. This is clearly
not possible on an infinite time interval, since the variaot®&" is unbounded.
However, let us check that this is possible in an explicit wa finite time interval,
and that moreover we do not have to increasectragebra oB™. Since we are on
a bounded time intervdD, T], the stationarity means théf],; 0 <t <T —U)
and(A'; 0<t < T —U) have the same law for anyQU < T.

Theorem 4.11.Let T > 0. There exists a stationary centred Gaussian process
(Af'; 0<t < T) such that 8 = A" — A}l is a H-fractional Brownian motion on
[0,T], and B! and A generate the same-algebra.



Representation formulae for the fractional Brownian motio 29

Proof. ConsideB" = Gg/>HW. We look for a variable\; such thai = B + Al
is stationary; this will hold when

E[ATAY] = & (2 + 4 — ft— ) + B [BY A + E[BE AY] + E[(AS)?]
is a function ot — s, so when

E[BIAS] = —pt? /2.

By applying the operatdﬁgf/z, this condition is shown to be equivalent to
P ~H,1/2,9H p 2H H+1/2
EWAH] = -£& =-t r(H+1/2)tH+Y
[\MAO} 2GO+ t 2H+1/2 ( + / )t

by using the formulae (63) and (22) for comput'@@f/z, and forp given by (51).
Thus we can choose

h_ [Td H _ TH71/2
Aof/o dtIE[V\&AO]dV\lf pHI'(H+1/2)/Ot dw.
O

In particular we havaaé\é/2 = —W /2. Of course we can add #' any indepen-
dent variable; this increases tlmealgebra, but this explains the mutual compati-
bility of the variablesAfl whenT increases. More generally, the technique used in
the proof enables to write any varialAeof the Gaussian space Bf', knowing the
covariance&[AB].

Remark 4.12We can also try to writé8" on [0,T] as the increments of a process
which would be stationary oR. We shall address this question in Remark 6.4.

Remark 4.13Another classical stationary process related to the Brawniotion
is the Ornstein-Uhlenbeck process; actually there are fff@rent fractional exten-
sions of this process, see [5].

4.3 Canonical representation on R _

In the representation (6), we hav&(dB") = .%; (dW) (with notation (5)). However,
whent < 0, the filtration.%; (dB") is strictly included intaZ;(B™). We now give
a representation @™ on the time intervaR _ for which .% (B") = . (dW); one
can then deduce a canonical representatiodBbfsee Remark 4.15 below). In the
particular casH = 1/2 of a standard Brownian motion, we recover the classical
representation of the Brownian bridge.

We wantBl*, t < 0, to depend on past incrementswf by applying the time
reversal — —t, this is equivalent to wantinBl", t > 0, to depend on future incre-
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ments ofW. The starting point is the operat® T, of (42) which can be written in
the form

TaT, F(t) = —2HtH /tms’ZH’l(f(s) —f(t))ds

ThusTy T, f(t) depends on future increments bfand the equality in lavB ~
Ty T,B" enables to writeB" as a process depending on future increments of
anotherH-fractional Brownian motion. On the other hand, in the repreaation

BH ~ Y2y of (54), future increments @' depend on future increments\of.

Thus, inB" ~ Ty T,Qfﬁfl/zw, the value oBtH depends on future increments\Wf
and this answers our question. The same method can be useWwiplaced by
BY.

Theorem 4.14.Let B’ be a J-fractional Brownian motion dR_; consider the func-
tion @*H of (57). OnR*, the operator

t
GMtt) = /700 K2 (t,9)d f(9)
for f smooth with compact support, with
K (t,9) =M (H-J3+1) 2 (s/t)(-)? (=97,  s<t<O,

can be extended to a continuous operator fidifT-%%+ into HH 00+, andB™ =
G2HB’ is a H-fractional Brownian motion of . Moreover,% (BH) = .%; (dB’)
(with notation(5)).

Proof. We transform the question dR_ into a question ofiR, by means of the
time reversal — —t. Following the discussion before the theorem, we introduce
R? the operator

Gt = THT,_'||T|7‘].

It follows from Theorems 2.11 and 2.14 tf@at"™ maps continuousl§?—%°+ into
HH—0.0+: moreoveB*H = G*"BY is aH-fractional Brownian motion. If we com-
pareG™™ with G given in (61), we see that

G =TuG3HT.
For f smooth with compact support " ,
G / K3 (t,9) 2D (1/9)ds= / K (t.1/9s Pdf(s)
J1/t

SO
G (1) =t /t Kot (1/t,1/5)s 2d f(s) / KX (t,9)df(s)

with
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K2 (t,9) = tHs 2kgH (1/t,1/9) = I (H - 3+ 1)t (s/t)tPHs M
(apply (58)). We still have to check that
o(BM; s>t) =0(BI-B); s>u>t)

fort > 0. The inclusion of the left-hand side in the right-hand smleows from the
discussion before the theorem. For the inverse inclusioticathat8’H = cHpl
can be reversed and

B = M1 B,

Thus future increments & depend on future increments & Ty B, which de-
pend on future values & from (43). |

Remark 4.15The theorem involves? (dB’) which is strictly smaller thar# (BY),
so the representation is not really canonicalfory however, % (dB’) is also the
filtration generated by (for instance) the increments ofpfueess

0= [ 9 PaR = () P2 [ (92 Bl

and "
8" = [ kM es(-97ay. (65)

The processy’ tends to 0 at-o, S0
F(BM) = 7A(dB’) = A(dY’) = A(Y)

and (65) is therefore a canonical representatiofRon(notice thatY/2 has inde-
pendent increments).

Remark 4.16By applying Theorem 4.14 with= 1/2, we can predict oR_ future
values oB" knowing previous values; this prediction must take intocant the fact
Bg = 0; this can be viewed as a bridge; actually fbe=J = 1/2, we recover the

classical Brownian bridge. More precisefy/2%/2 = 1, sok /2Y2(t s) = |t| /|s| on
R_; thusW = BY/2 andW = B/21/2 gre Brownian motions oR_, and satisfy
_ t _ W,
W, — |t|/ s ldwg, W = —|T|tdt+dW.
Notice in the same vein th&{!' 1 ~BY_, on[0,T] for T > 0, so the study ofi-T, 0]

is related to the time reversal Bf! on [0, T]; some general results for this problem
were obtained in [7].
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4.4 Some non canonical representations

Let us come back to genetidtself-similar centred Gaussian procesSgd > 0. In
Theorem 3.5, we have proved the equality in law

t
ST =) = thLtH*L/ d-H-1=gs
0

for L > 0. When= =W is a standard Brownian motion so thét= 1/2, this is the
classical Lévy family of non canonical representationg\bWith respect to itself.
We now verify that this property of non canonical represgomaholds in many
cases, in the sense th& (Ty =) is strictly included in% (=) fort > 0O (it is of
course sufficient to consider the case 1). In the following theorem we need some
notions about Cameron-Martin spaces and Wiener integredsd short introduction
in Appendix C.1).

Theorem 4.17.Let= = (5;; 0<t < 1) be the restriction td0, 1] of a H-self-similar
centred Gaussian process forHO. Let 7 be a separable Fchet space of paths

in which = lives, and let’# be its Cameron-Martin space. Suppose that the function
Y(t) =ttt isin 27, and denote by=, ) ,» its Wiener integral. Then

0(Z)=0(ML3)Vo((Z.¢)wr)
where the twar-algebras of the right-hand side are independent.

Proof. The operatofTy operates onsZ’, and it is easy to check that functions
proportional toy constitute the kernel fy L. On the other hand, for artyin ¢,
h # 0, we can write the decomposition

h

_ h
= (E W (5 E M )

where the two terms are independent: this is because indepeea and orthogonal-
ity are equivalent in Gaussian spaces, and

— = = h /
E{<:,h>/ﬂ<: - <:7h>-ffm’ h >/z”:| =0

for anyl in 27 (apply (99)). Thus

THL= =(Z,h)» 2 Lh + process independent Gt , h) ,»

andTy = is independent of=, h) ,» if and only if h is in the kernel ofTy |, so if

and only ifhis proportional tay. Thus the Gaussian space®fwhich is generated

by (Z,h),», h e 57, is the orthogonal sum of the Gaussian space generated by
Th L= and of the variables proportional {&, /) ,». We deduce the theorem. O
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Notice that on the other hand, the transformaflgn becomes injective on the
whole time intervalRy, so (=) and o(Ty =) coincide; actually, the theorem
cannot be used oR, becausay is ho more inJZ; this can be viewed from the
fact that= lives in the space of functions such that ~H-1~¢{(t) is integrable on
[1,00) (for € > 0), so7 is included in this space, wheregisdoes not belong to it
fore <L.

In the case wheré& is the standard Brownian motiof, we obtain the well
known property

FW) = Fi(Ty W)V o (T 2W(D)). (66)
Let us prove that this property enables to write Theorem #h Bnother form when

= has a canonical representation with respet¥tsee also [21].

Theorem 4.18.Consider the standard Brownian motion W Bn, and let
t
S = (AW)(t) = /O K (t,5)dW

be given by a kernel K satisfying Kt,As) = AH-1/2Kt, s) for anyA > 0 and some
H > 0. Suppose that# (=) = % (W) (the representation is canonical). Thénis
a H-self-similar process, and we have

T2 =AT o W, FA(Z)=F(TurZ) Vo (MY2W()) (67)

where the twar-algebras of the right side are independent.

Proof. The scaling condition oK implies that= is H-self-similar. It can be
viewed for instance as a random variable in the space of itumef such that
te-1-H.—e-H-1{(t) is integrable orR* . On the other hand, notice that

Ty = nH-Y2pY2-LR2 -L-1/2q12-H ,-IHfl/le/ZLnl/sz (68)

from (47), and consider the linear functiondl/2>~HA mappingW to the 1/2-

self-similar proces§1%/2-"=. The monomialsys(t) =t#, B > 1/2, generate the
Cameron-Martin space?7 ,, of W; we deduce from the scaling condition that they

are eigenfunctions dfi/2-HA and ofT; |, so the commutativity relation
MY2RAT 1 = Ty MY 1A (69)

holds on fractional polynomials, and therefore.#fj > and on the paths oV (a
linear functional of/ which is zero on the Cameron-Martin space must be zero on
W). We deduce from (68) and (69) that

Tl = = M1 Y21 Y2 H AW = TR -Y20Y 2 HAT 5 W = ATy o W

and the first part of (67) is proved. We have moreover assutmatdZ: (AW) =
Zt(W); this can be applied to the Brownian motidpy, | W so 7 (ATy o W) =
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%(Tl/z’LW). Thus, by applying (66),

Fi(Z) = F(W) = F(Tyo W) v a(M-H2W(t))
= Fi(ATy2. Z)V o (M-"Y2W(1)) = F(Tu Z) Vo (T YA (L))

so the second part of (67) is also proved. O

Remark 4.19Another proof of the second part of (67) is to use directly drieen
4.17; we verify that orf0, 1]

-2 (1) = (W, Q) oty = (= AQ)

for (t) = t~"1/2/(L 4 1/2), andAg is proportional to the functiony(t) = t~*H
from the scaling condition.

Theorem 4.20.Consider onR_. the family of fractional Brownian motions/B=
Gl/2 MW, so that B = Gy HBJ Then, for any L> 0, the process B- = Ty B is
a H-fractional Brownian motion satisfying the relation'8 = Gy B>-. Moreover,
foranyt, _

2 (BY) = #(BM) vo(M-Y2Aw()), (70)
and the twao-algebras of the right-hand side are independent.
Proof. This is a direct application of Theorem 4.18 with= Gl/2H
of (67) implies that

The first part

B = Gy 2Ty 2 W,

and the relatlonshlg) betwe@®It andB"'! follows from the composition rule satis-
fied by the familyGy, O
5 Riemann-Liouville processes
In this section we compare the fractional Brownian mot®hwith the process
— N2y,
o+
5.1 Comparison of processes

The processes

X 8N = g [ (-9 7)
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defined oriR ;. are often called Riemann-Liouville processes. Notice these pro-
cesses can be defined for ady> 0. When O< H < 1, these processes have paths
in H"~ on bounded time intervals from Theorem 2.8, and can be viesegbod
approximations of fractional Brownian motioB§ for large times, as it is explained
in the following result.

Theorem 5.1.For 0 < H < 1, we can realise jointly the two procesge€’,B™) on
R, so that X! —B" is C* onR*.. Moreover, for T>0, S>0and1 < p < o,

SUP‘(Xat*XS)*(BgH*BEHH <CpS'IT (72)
o<t<T p

(where||.||, denotes the B(Q)-norm for the probability space).

Proof. Let (B'; t > 0) be defined byB" = "' /A for a standard Brownian mo-
tion (W; t € R). The proces$V can be decomposed into the two independent pro-
cessedVf" =W andW~ = W.; for t > 0, and consequently, the proce®s is
decomposed int8" = X" 4+ YH where

H-1/2

XH =T 2w ) =152

+
0+ w

is a Riemann-Liouville process, ad! = Iffl/z(w 1R7) can be written by means
of Remark 2.10; more precisely!! = IZil/ZW*, where

19f(t) = %/Om((tﬂ)“ls“l) f(s)ds (73)

We deduce from this representation tvat is C* onR*, so the first statement is
proved. On the other hand, it follows from the scaling prop#rat its derivative is
(H — 1)-self-similar, and is therefore of ordét—! in LP(Q); thus the left hand side
of (72) is bounded by

S+T S+T
| [ 1o au| <cp [ witdu< st
JS p S

a

Remark 5.2Inequality (72) says that the proce¥8™ = X, — X& is close to a
fractional Brownian motion whe8is large; it actually provides an upper bound for
the Wasserstein distance between the laws of these twogseseA result about the
total variation distance will be given later (Theorem 5.8).

Instead of using the representationBdf = |~:|71/2W onR, we can consider the
coupling based on the canonical representatioBbbn R, . It appears that in this
casexH — B is notC® but is still differentiable. In particular, we can deducatth

the estimation (72) also holds for the coupling of Theore® 5.



36 Jean Picard
Theorem 5.3.Consider orR ;. the family B! = Gé/f’HW and the family X defined
by (71). Then X! — B" is differentiable orR* .

Proof. For f smooth with compact support % , Theorem 2.7 and the expression

(63) for Gy shows thaG, ! f andIfi~?f are smooth, and

DG~ 18%) = (MM o

We therefore deduce from (27) that

¢ @)t
1 t b HA-1 H-J-1n1
- / ()11 ) (- 9R 1D (s)ds
f(t) )O(i A NN H—J-1/n1
:Tu(t)+F(H—J)/(3 <(§) 1)(t 9" (D (s) — f(t)/t)ds
:@U(t) F(Hl_J) /Otas[((g)”“l 1)('[ s)HJl}(f(S)—fo(t))ds

proportional ta" 7. This equality can be extended to any functioof H”~, so in
particular toW in the case) = 1/2; we deduce the differentiability announced in
the theorem. O

5.2 The Riemann-Liouville Cameron-Martin space

Cameron-Martin spaces are Hilbert spaces which charsetére law of centred
Gaussian variables, so in particular of centred Gaussiacegses, see Appendix
C.1. The Cameron-Martin space#; of H-fractional Brownian motions are de-
duced from each other by means of the transforms of Theorelray 4.3, so that

Sy =TI3() =T 30h), =Gyl () =T ()

respectively ofR andR ., ; the space ; is the classical space of absolutely contin-
uous functiond such thah(0) = 0 andD*his in L2. Similarly, the Cameron-Martin
space of the Riemann-Liouville proces8 onR_ is

H-1/2 H+1/2
A =\ =182,

In particular, if f is a smooth function of® . such thatf (0) = 0, then, on the time
interval [0, T],
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_ IRn1;1/2-H
|f|,%,1’. = ‘D o} f‘LZ

T 1/2 T 1/2
gC(sup|D1f|(/ (tl/z’H)zdt) / +sup|D2f|(/ (t3/2’H)2dt) / >

0 JO
g(Y(TlfHsuMleL%TZ*HSUMDZH) (74)

from Theorem 2.7.

We now explain the proof of a result mentioned in [8] (Theoi2#) and taken
from [35]. We use the equivalence of Hilbert spaceg ¢ ) defined in (12). A
probabilistic interpretation of this equivalence is giveppendix C.1, see (100).

Theorem 5.4.For 0 < H < 1, the spaces#, and.77; are equivalent ofR ..

Proof. The proof is divided into the two inclusions; for the seconé owve are going
to use an analytical result proved in Appendix A. We can ofrselomit the case
H=1/2.

Proof of 74, C #,. We have seen in the proof of Theorem 5.1 tREtcan be writ-
ten as the sum of the Riemann-Liouville proc¥$sand of an independent process
YH. If we denote by%’pA the Cameron-Martin space ¥f', then this decomposition
implies (see (101)) that

%:%aﬁXMhM%ﬂﬂml

2 2 \1/2,

et |h2|%A) ;h= h1+h2}-
(75)

In particular. 72} C % with [h| 4, < |h[ .

Proof of 54y C 4. It is sufficient from (75) to prove thaﬁi’ﬁA is continuously

embedded inta’]. Let h be inHY2; then|h(t)| < |h|12v/t, and we can deduce

from (73) thatlzfl/zh is C” onR*, and that the derivative of ordkiis dominated

by |h|g12t™ K. Theorem 2.7 enables to deduce thdt= Iéf*lefl/zh is also

smooth, and we have from (24) tiatAh(t) is dominated byh|y;1/2/+/t. Moreover,
the scaling condition (93) is satisfied, so we deduce fromofdra A.2 thatA is

a continuous endomorphism 6#7 . By composing Withlétl/z, we obtain that
H-1/2 . :
I1x /2q S dominated byg| . ,, SO

: H-1/2
|h|}4|A :Inf{lg%/z; hZIA / g} ZC|hﬁ(f_/|

a

Remark 5.5Let us give another interpretation of Theorem 5.4. By conmggRR and
R, the fractional Brownian motion oR. can be obtained as a restriction of the
fractional Brownian motion ofiR. This property can be extended to the Cameron-
Martin spaces, and applying (101), we deduce ##atR ;) consists of the restric-
tions toR; of functions ofs#; (R), and
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|h

S (Ry) = inf{lg ARy 9= honR+},

SO |h| 4, r,) < IN1R, |4 w) for hdefined oriR .. On the other hand,

_ 11/2-H _ |(/2-H
|h|,%”,4 = ’|o+ Hp(Ry) — ’(|0+ h)1g, H/2(R)
_ |"H-1/2,,,1/2—H _
= “+— (Oo+ h)1R+>L%ﬁ(R)‘7‘h1R+L%ﬁ(RV

Thus|hl 4w, ) < [hlz and.#] is continuously embedded is#f; (R ). The in-
verse inclusion means that

’th+

Aaw) =C inf{|g|ffﬁ(R); g=h onR+},

for h defined orR ., and this is equivalent to

|91, |in.|(R) < Clalmm)
for g defined onR; thus this means that— glg, is a continuous endomorphism
of 4 (R). This is a known analytical result, see also Lemma 1 in [31].

Remark 5.6Consider orR, the even and odd parg'* = (B! +B",)/2 of B".
These two processes are independent (this is easily vebfiedmputing the co-
variance), and3" g, = BH+ 4+ B"~, so their Cameron-Martin space#y,.. are
continuously embedded int#?; (R ). On the other hand

|h

i ) = 50 £0(~1) on, }

< 2|hlg, | @ = 20l < Clhlg e,

ﬁﬁizﬂnf{m

by means of the result of Remark 5.5, so the three spaes and 7, (R..) are
equivalent.

Remark 5.7Notice that the endomorphism of Remark 5.5 maps the funéiiorto

the functionh(t.); by applying the invariance by time reversal, we deducettiet
operator mapping(t) toh(1— (1—t).) is also continuous, so by composing these
two operators, we see that the operator maphihgto the function

0 ift<o,
he(t)=< h(t) ifo<t<i, (76)
h(1) ift>1,

is a continuous endomorphism g#7;. On the other hand, we have

|h

s4([0.1]) = inf{|g A (r); 9=honl0, 1]}_

Thush — h* is continuous fromy# ([0, 1)) into 27, (R).
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5.3 Equivalence and mutual singularity of laws

In Theorem 5.4, we have proved that the Cameron-Martin spatB" and x"
are equivalent. It is known that the laws of two centred Gamnsgrocesses are ei-
ther equivalent, or mutually singular, see Appendix C; thaiealence of Cameron-
Martin spaces is necessary for the equivalence of the lautsisbof course not
sufficient (compare for instance a standard Brownian mafpwith 2W{). In sub-
sequent results, the equivalence or mutual singularityawklof processes should
be understood by considering these processes as variaitiegaues in the space
of continuous functions.

Theorem 5.8.Let0 < H < 1. For any S> 0, the laws of  and X" = x&,, — x&
are equivalent on any time intervéd, T]; more precisely, the relative entropies of
B" and XSH with respect to each other are dominated 'S as St «, and
therefore tend to O; in particular, the total variation distce between the laws of
XSH and B is dominated by '$-1. In the case S= 0, the two laws are mutually
singular as soon as H-: 1/2.

Proof. Let us consider separately the caSes 0 andS= 0.

Equivalence for S- 0. Consider the coupling and notations of Theorem 5.1, so that
the proces8! = X" + Y™ is written as the sum of two independent processes.
This implies thatBS" = XSH 4 YSH whereBSH andYSH are defined similarly

to XSH, Theorem 5.4 states that the Cameron-Martin spaces-ofind B™ are
equivalent; this implies that the Cameron-Martin spac¥ 9 is equivalent to the
Cameron-Martin space @S" which is .74, and is therefore also equivalent to
I = Ig'fl/ZLZ(RJr); thus it contains smooth functions taking value 0 at 0. Bat th
perturbationYSH is smooth, so the equivalence of the lawsBst! and XSH fol-

lows from the Cameron-Martin theorem for an independeritipeation. Moreover,
(103) yields an estimation of the relative entropies

1
max(.7 (B, x3H), .7 (xSH B")) < §E|YSH|§fH <CE[YS"Z,

2
<Cr E(sup|D1Y3H | + sup|D2YSH |)
[0,T] [0,T]

from (74). The derivativ®*Y;H is O(t"~¥) in L2(Q) from the scaling property, so
T
suplD*"| = suplD™¥4!,| < DM+ | ID2g jdt = O(s™ )
0

asS1 «. The second derivative is even smaller (of or88r2). Thus the relative
entropies are dominated I8/ —2. In particular, the total variation distance is esti-
mated from Pinsker’s inequality (102).

Mutual singularity for S= 0. This is a consequence of Theorem C.13; the two pro-
cesses are self-similar, the initiatalgebraZy, (B) is almost surely trivial (Re-



40 Jean Picard

mark C.11), so it is sufficient to prove that they do not havesame law. But this
is evident sinc&" can be written as the sum ¥f' and of an independent process
YH which is not identically zero. O

Remark 5.9In the case&s= 0, Theorem C.9 provides a criterion to decide whether
a process has the law oB" or X". The variances of these two processes differ
(they can be computed from the calculation of Appendix B)wsocan decide be-
tween them by looking at the small time behaviourfb‘s*szl(Es)zds Actually,

by applying the invariance by time inversion, we can als&labthe behaviour in

large time.

For the following result, we recall that the mutual inforiatof two variables(;
andX; is defined as the entropy €X3, X;) relative to two independent copiesXf
andX,. We want to estimate the dependence between the increnfdéitsom some
interval[S,S+ T], S> 0, and its increments before time 0, and in particular prove
that the two processes are asymptotically independent ®hejeo. This result and
other estimates were proved in [31] with a more analyticathmé; an asymptotic
independence result is also given in [33].

Theorem 5.10.Let H # 1/2. The joint law of the two processéBtSH =B, -
BY; 0<t<T)and(B; t <0) is equivalent to the product of laws as soon as
S> 0, and the Shannon mutual information i$887~2) as St «. If S= 0, the joint
law and the product of laws are mutually singular.

Proof. We consider separately the two cases.

Equivalence for S- 0. Let (W; t € R) and(W;; t € R) be two standard Brownian
motions such that; =W for t > 0 and(W;; t < 0) is independent dfV. We then
consider the two fractional Brownian motioBS = "' */2w andAH =YY/,
With the notation of Theorem 5.1, they can be writterfonasB” = X" +Y" and

AH = XxH Y™ sonH = BH + Y7 —YH: by looking at the increments after tings

we haveASH = BSH + Y3 _ySH_conditionally on.Z(W,W) = Zo(BH, AH),

the proces?sH —YSH becomes a deterministic process which is almost surely in
4y (see the proof of Theorem 5.8), so the conditional laws of

B, 0<t<T; B, t<0) and (A", 0<t<T;BI t<0)

are equivalent. We deduce that the unconditional laws @@ eduivalent. More-
over, the two processes of the right side are independetitA\&h ~ BSH, so the
equivalence of laws stated in the theorem is proved. On ther dtand, the relative
entropies of

B, 0<t<T; B, t<0; A" t<0)

and
AT 0<t<T; BN t<0AM, t<0)

with respect to each other are equal to
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1. gSH sH2 SH|2 H-2
§E|Y -y ‘Jﬁ-q <2EJY ‘fﬁ-l =0(s™7?)

(proceed as in Theorem 5.8). If we project on the two first congmts, we deduce
that the mutual information that we are looking for is snaifen this quantity.

Mutual singularity for S= 0. If we compare the law ofBl",B",; 0 <t < T) with the
law of two independent copies of the fractional Brownianimmtwe have two self-
similar Gaussian processes with different laws, so the @msmutually singular
from Theorem C.13. O

Remark 5.11As an application, we can compaBg with its odd and even parts.
Let B andB’ be two independent copies Bf'. Let S> 0. From Theorem 5.10, we
have on0, T] the equivalence of laws

(BE, —BY) + (B"g  —B"g) ~ (Bs;t —Bs) = (B s — B g) ~ v2(BY,, — BY)
~ \/EBIH

Thus the law of the increments (8" +-B",) /v/2 on[S, S+ T] have a law equivalent
to the law ofB". ForS= 0, the Cameron-Martin spaces are equivalent (Remark 5.6),
but the laws can be proved to be mutually singular from Thmadtel3.

6 Series expansions

Let us try to writeB" on [0, 1] as some series of type
By = > ha(t)én
n

whereh,, are deterministic functions ardg are independent standard Gaussian vari-
ables. Such expansions have been described in the staredatd e 1/2 by [19],
and actually, an expansion valid for the standard Browniation W can be trans-

ported toB" by means of the operatﬂ’éf’H, see [12].

If we look more precisely for a trigonometric expansion, \ae apply [9] where
the functionsh, are trigonometric functions, the coefficients of which askated
to some Bessel function dependingldnHowever, we are here more interested in
trigonometric functions which do not dependidn

6.1 A trigonometric series

Suppose that we are interested in the Fourier seri@@tf0 <t < 1). The problem
is that the Fourier coefficients are not independent, sihtsegroperty is already
known to be false foH = 1/2. What is known forH = 1/2 is thatW can be



42 Jean Picard

represented by means of (8), (9) or (10) for independentiataiGaussian variables
(&n, &L n>1); the series convergeslif(Q), uniformly int, and one easily deduces
the Fourier series oV from (8). Similar representations cannot hold [6rnl] for
the fractional Brownian motion as soontds# 1/2, but it appears that one can find
a representation mixing (8) and (9),

Bl ~afi&t+ ¥ af ((cos(nnt) — )&+ sin(nnt)z;,) 77)

n>1

on [0,1]. This question has been studied in [18] and [17] respegtielthe cases
H < 1/2 andH > 1/2. The sign ofa}! is of course irrelevant so we will choose
al! > 0. We follow a general technique for finding series exparsimnGaussian
processes from series expansions of their covariance lkelve are going to find
all the possiblel! for which (77) holds; it appears thaff, n > 1, is unique as soon
asall has been chosen in some set of possible values.

Theorem 6.1.1t is possible to find a sequende; n > 0), al! > 0, such that

5 (al!)? < o and (77) holds on[0, 1] for independent standard Gaussian variables
(&0, &n,&H;n > 1). The convergence of the series holds uniformly in t, almaosiy

If H < 1/2, we have to choosglan an interval[0,a(H)], a(H) > 0, and & is then
uniquely determined; if H> 1/2 there is only one choice for the sequence. More-
over, except in the case H 1/2, we must havea=# 0 for all large enough n. If

H £ 1/2, then(77)cannot hold or{0, T] for T > 1.

Proof. We divide the proof into two parts.

Step 1: Study of0,1]. It is clear that the convergence of the series in (77) holds
for t fixed (almost surely and ib?(Q)); the uniform convergence comes from the
Itd-Nisio theorem [19]. We have to verify that the right lesideZ has the same
covariance kernel &' for a good choice ofal). We have

E[ZsZ] = (afl )2st+ z ( (cogmt) — 1) (cogrms) — 1) +sin(nnt)sin(nns))
n>1
)?st+ Y (af) (cos(nn t—s ))—cos(nnt)—cos(nns)Jrl)
n>1

= (fu(t)+ fu(s) — fu(t—9))/2

with

f (1) = (a§)?2+2 Y (ah)?(1 - cosrm)). (78)

n>1

If we compare this expression with (2), it appears thatifcoincides on—1,1]
with gy (t) = p [t|?, thenBH ~ Z on [0, 1]; conversely, iB" ~ Z, then they have the
same variance, sty = gy on[0,1] and therefore ofi-1, 1] (the two functions are
even). Thus finding an expansion (77) [@1] is equivalent to finding coefficients
all so thatfy = gy on[—1,1]. For any choice o&f, one has ori—1, 1] the Fourier
decomposition
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#1 — (af)*? =by 2y bf cogrmt).

n>1

plt

Thus the possible expansions correspond to the possibleershofa'g such that
bl >0 forn> 1 andy b < oo; then

pItH — (@)%2 =2 S bH (1 cogmt))

n>1

and we take!! = \/b{ for n> 1. We have

b /tZHcos(rmt )dt+ (af /tzcos(rmt
- /t2H Lsin(rmt)dt /tsm (rmt)d
:—%p/; tZH*Z(l—cos(nnt))dt
+ %P(l— (=17 + 27(120:132(_1)”- (79)

Let us firstassumi < 1/2; then the first term is positive, and the sum of the second
and third terms is nonnegative as soom{ésg v2pH. Moreover

-1/n 1 1/n 00
cnz/ t?Hdt < / t?H2(1 - cogrmt))dt gan/ tHdt+2 [ 212t
JO JO 0

1/n
(80)
so this integral is of order~2" (actually a more precise estimate will be proved in
Theorem 6.6), and we hatg = n~1-2"_ Itis then not difficult to deduce that there
exists a maximah(H) > /2pH such that if we choosa}] in [0,a(H)], thenb}! >0
for anyn; the valuea(H) is attained when one of the coefficies becomes 0. It
follows frombl{ < n=1=2" thaty b}l < . Let us now assumid = 1/2; the property

bl > 0 holds forag* € [0,a(1/2)] = [0,1], andby'* = O(n~2). Finally, if H > 1/2,
by = %P/Ol'EZH’ZCOS(nnt)dtJr 2(6‘5'):2%(*1)” (81)
__2H(&H ;:rzéz"' - Z)p./o‘ltZH*?’sin(nnt)dt—i- mg);%(—l)n
_ 2H(2H - 1)(54:4— 2)(2H _3)p/01t2H*4(1— cog(rmt))dt
RV gy AP 20

The integral of the last equality is studied like (80), anafi®rdern3-2", so the
first term of this last equality is positive and of order'~2". The second term
is nonnegative and smaller. If we chocgg # /pH, then the third term has an
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alternating sign and is the dominant term,kbis not always positive. Thus we
must choose} = \/pH, andbf! > 0 for anyn; we again havel! < n~1-2" so that
5 b < ®. Moreover, in the two casé$ < 1/2 andH > 1/2, we havel] <n=H-1/2,
soal # 0 for all large enough.

Step 2: Study on larger intervalSuppose now that (77) holds ¢& T] for some
T > 1. Then, as in previous step, we should hfyé&) = gx (t) = p|t|* on[-T,T].
But f (t) — (a}!)?t? is even and 2-periodic, so

(1) — (@)2(L 1) = f (1+1) — (@)A1 +1)2

Thus

p(L—)?" —(af)(1—1)* = p(1+1)*" — (af (1 +1)°
for |t| < min(T — 1,1). By differentiating twice, it appears that this relatiorfatse
if H=£1/2. O

Remark 6.2ForH = 1/2, we can choosa%/2 in [0,1], and the expansion (77) is an
interpolation between the decompositions containingaetgely only odd terms

(aé/2 = 0) and only even terma&/2 = 1), which are respectively (9) and (8).

Remark 6.3Suppose thatl < 1/2 withall = 0; the formula (77) defines a Gaussian
process on the tord&/27Z with covariance kernel

E[BI'BY] = £(3(0,0% +8(0,97" - 5(s 1)) (82)
for the distance on the torus. This is the fractional Brownian motion of [18] i
dexed by the torus. Fdi > 1/2, we cannot takef] = 0; this is related to the fact
proved in [18], that the fractional Brownian motion on theut®does not exist; when
indeed such a process exists, we deduce from (82) that

E[B'(BY,\ —BY)] = p((1—t)* — 1) ~ —2pHt

ast | 0 (use the facd(1+t,0) = 1—t on the torus), whereas this covariance should
be dominated by?" .

Remark 6.4WhenH < 1/2 andall = 0, we can writeB!" on [0,1] asA — Ay for

the stationary proce#_SH = y alf (cogmmt) &, + sin(rmt)&}). In the caseH = 1/2,

it generates the sanme-algebra a8'/2, and this process coincides with the process
A2 of Theorem 4.11. However, a comparison of the variancessiftb processes
show that they are generally different whidn< 1/2.

Remark 6.5Since the two sides of (77) have stationary increments, weeglace
the time intervalg0, 1] and|[0, T] of Theorem 6.1 by other intervals of length 1 and
T containing 0.

We now study the asymptotic behaviour of the coefficiefftef Theorem 6.1.
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Theorem 6.6.The expansion of Theorem 6.1 can be written wifh=a.,/pH. In
this case, g > 0for any n and

ay = (rm) Y214 o(n??)) (83)
for n large.

Proof. The only part which has still to be proved is (83). This willdacomplished
through an asymptotic analysis of the integrals in (79) 81J.(ForH = 1/2 we
haveal! = (rm)~! so this is trivial. IfH < 1/2, we have

(1- 2H)/01t2H*2(1— cogrmt))dt
—(1- 2H)/O°0t2H*2(1fcos(nnt))dtf 14(1— 2H)/lmt2""2cos(nnt)dt
— (1— 2H)(rm)t-2H /OthH*Z(lf cost)dt — 1
+(172H)(7Tn)1*2H/;t2H*2costdt
= (rm)-2H /()‘ootZHflsintdt —140(n7?) (84)
where we have used in the last equality
‘/I:IZH*ZCOS dt‘ =(2—2H) /T:IZH’e’sintdt‘

m(k+1)
=(2—2H) Z/ tZH’3sintdt‘
k>n LS

n(n+1)
< (2—2H) / 2 3sintdt| = O™ 2)  (85)

m

(this is an alternating series). By applying (34), we dedhe¢
1
(1— 2H)/ t21=2(1— cogrmt))dt = (rm)* =21 (2H) sin(H) — 1+ O(n2),
0
so (79) withafl = \/pH implies

bt = p(rm) 1" (2H + 1) sin(iH) + O(n~4). (86)

Similarly, if H > 1/2, then (85) again holds true and

1 00
/ t?H=2cog mt)dt = (nn)1*2H/ t?1-2cogt dt+O(n?)
0 0

= ()21 (2H — 1) sin(riH ) + O(n~?)
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and we deduce from (81) that we again have (86). By using aicelofp givenin
(51), we obtain in both cases

ol (Z2H)r(2H +1)
n mHT2n2H+1

_ (m)72H71(1+ O(n2H73))

cogriH)sin(rH) (1+ O(n?—3))

from (95). We deduce (83) by taking the square root. a

Remark 6.7Considering the expansion (77) fag' = /pH, replacingB" by the
process

BY' = céot+ 3 (rm) ™ Y2((cogmmt) — 1) &+ sin(rmt) &)

n>1

for ¢ > 0 is equivalent to multiplyingéy by c/a'g and (&,,¢&)) by some(1+
O(n?=3)) which remains strictly positive. We can compare the laws hefse
two sequences of independent Gaussian variables by me&d&kofani’s criterion
(Theorem C.4), and it appears that the laws of these two seqaere equivalent
(3 n*1-6 < ). Thus the laws oB" andB" are equivalent of0, 1]. This implies
that the law of 2"BY is equivalent ori0,1/2] to the law ofB}'; actually, we will
prove in Theorem 6.13 that these two laws are equivaleif,dr for anyT < 1.

6.2 Approximate expansions

We now consider the processes

cog2nmt)—1 _, sin(2nrt)
B = &t + /2 n;(fn (2nm)H+1/2 +¢n (2nn>H+1/2)’ &)
—H co(2n+L)mt)—1 _, sin((2n+1)mt)
B =2 (o G gz n s

on [0, 1]. Notice thatBY/2 ~ BY? ~ W from (8) and (9). On the other hand, it fol-
lows from Theorem 6.1 thaB" » BH andB" » B for H # 1/2 (because one
should have! # 0 in the expansion (77) &" for all large enoughm), but we are
going to check that these two processes have a local behaiioilar toB". The
advantage with respect to the exact expansion (77) is teagg¢fuence of random
coefficients and the process will generate the sanagebra. Then we will apply
these approximations to some properties of the CameronirMspaces#; (Sub-
section 6.3), and to some equivalence of laws (Subsectin Bs it was the case
for Riemann-Liouville processeé\,H andB" are not only defined for & H < 1,
but also for anyH > 0.
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Let us compar&" andB" with B for 0 < H < 1. We use the operatot8 and
I_i defined in (36) and (37). By projecting on the Gaussian spgenerated by,
andé; and by applying (35), we can write

cog2mt+ (H —1/2)rt/2) — cog(H —1/2)11/2)
" 21m

n>1

+E,§Sin(2rmt+ (H-1/2)r1/2) —sin((H — 1/2)77/2))'

2m
(88)

The two expressions (8) and (88) are related to each othepjplyiag a rotation

on the vectorgén, &), soIAi/ZfHﬁH andW have the same law. A similar property

holds forl_i/szEH, and we can therefore write
B zq:*‘]/B\‘], B" zTTiJEJ, BY2~BY? ~w. (89)

We can give an extension of Theorem 5.1.

Theorem 6.8.1t is possible to realise jointly the processe’s, B¢, B andB" so
that the differences'B— X", B — BH andB" — B are C* on (0, 1]; moreover, the
derivatives of order k of these differences arg¢©¥) in L>(Q) ast] 0.

Proof. We consider the coupling™ = It ~/2w, xH = 1/ /2w, B = 172w

andB" = Iﬂfl/zw for the sam&V onR. The smoothness & — X" is proved in

Theorem 5.1, and the estimation of the derivatives followsIscaling argument.
On the other hand, 184! be equal té?s —Wit on [0, 1], extend it taR by periodicity,
and definaM? = WY, for t > 0. Then, with the notation (73),

BH = wat + 152w —wat) + 15 A2
:XtH +Wl(t—r(H +3/2)711H+1/2)+|Z*1/2V\42

The smoothness d8" — X" follows; the proces®\? is dominated in_2(Q) by
min(y/t,1), so we deduce from (73) that

[DE 22|, <€ [ (t+9t 32 B ds= Ctt X
0

for k> 1. The study oB" is similar; letw3 be the procesg#/ on [0, 1] extended to
R so that the increments are 1-antiperiodic, and\ét=W3;; thenB' is equal to
XH 1 1#7YAn4; the end of the proof is identical. O
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6.3 Application to the Cameron-Martin space

Let ./ and 77y be the Cameron-Martin spaces®t andB" on the time interval
[0,1]. It follows from (89) that’7] , = %1/2 = M2, and i = IAE’J%?] as well
asPu =T, 77;.

Theorem 6.9.ForO0< H < 1, the spaces%%’ﬂ, 'y and .4, are equivalentoffo, 1].

Proof. We compare successivebﬁ‘ﬂ and.7y with 24, (]0,1]), and use the prop-
erties of this last space described in Remark 5.7.

Proof of%’ﬂ ~ Jf . We know that;“/fﬂ = fﬂfl/zg%”l/z, so it is sufficient to establish

thatlﬁﬂfl/2 is a homeomorphism from#; »([0, 1]) onto 7% ([0,1]). To this end,

we are going to prove thzﬂf*J is continuous fromy#3([0,1]) into 74 ([0, 1]) for
0 < J,H < 1. Consider a functiom of .723(]0,1]), considerhy(t) = h(t) — h(1)t,
and extend it by periodicity. Thehgy is generally not insZ3(R), but the oper-
ator h — hy = hol(_y 4 is continuous froms3([0,1]) into JZ3(IR). Moreover,
the operatoth +— hy = hol(_., _3j is continuous froms3([0,1]) into the space
L*((—o0,—1]) of bounded functions supported by, —1]. On the other hand, it is
known thaty = 1"9.%5 onR, andI'~ also maps continuously” ((—, —1])
into the space of smooth functions @ 1], and therefore inte’#;([0,1]). Thus
h 1 =hg = 1" Ihy + 1Hh, is continuous from#4([0,1]) into 44 ([0,1)). If
we add the operatdr— (h(1)t) which is also continuous, we can conclude.

Proof of 77 ~ .54 In this case, we lehg be the functiorh on [0,1], extended
to R so that the increments are 1-antiperiodic. We then considerhol_, 1 and
h2 = hol(_e, 2. The proofis then similar, except that we do not have the tgjt
in this case. a

Remark 6.10ln view of (7), a functionh is in the space’f; (R) if its derivative
Dth (in distribution sense iH < 1/2) is in the homogeneous Sobolev space of
orderH — 1/2 (see for instance [31]); similarly, it follows from (87)&hh is in

A, is Dh is in the Sobolev space of order— 1/2 of the torusR/Z. Thus the

equivalence%/’ﬂ ~ 4 of Theorem 6.9 means that the Sobolev space on the torus
is equivalent to the restriction ti®, 1] of the Sobolev space dR. This classical
result is true because we deal with Sobolev spaces of orderlif2,1/2).

Remark 6.11We have from Theorems 5.4 and 6.9 thdl ~ 54 ~ Sy ~ Ay

forany O< H < 1. Notice however that the comparison for instanc@f and.sz,
cannot be extended to the cdse> 1; in this case indeed, functions g#}; satisfy

D!h(0) = 0, contrary to functions b4,
Let us now give an immediate corollary of Theorem 6.9.

Theorem 6.12.The sets of functions df, 1
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t, n " Y2(1-cog2nmt)), n""Y2sin(2nmt),

and
n " Y2(1—cog(2n+1mt)), nH"Y2sin((2n+1)m),

form two Riesz bases gff;. A function h is in77; is and only if it has the Fourier

expansion
h(t) —h(L)t = Z)an cog2mt) + % Busin(2rmt)
n> n>1
with
anHH(angBg) < o,

6.4 Equivalence and mutual singularity of laws

We now compare the laws &, BH andB™ viewed as variables with values in the
space of continuous functions.

Theorem 6.13.Let H # 1/2. The laws of the processBE, B" and B are equiva-
lent on the time intervdD, T] if T < 1, and are mutually singular if = 1.

Proof. We compare the laws & andB". The study oB" is similar.

Proof of the equivalence fd¥y < T < 1. The increments of both processes are sta-
tionary, so let us study the equivalencept' = BY,, — BY andB?" =BY,, — BY

on [0, T] for S= 1—T. From Theorem 6.8, we can coup¥ andB" so that the
difference is smooth oi* . ConsequentlyBSH — BSH is smooth on0, T], so it
lives in 7#;. Moreover, we have proved in Theorem 6.9 that the CameroriiMa
spaces oB" andB" are equivalent, so the same is true for the Cameron-Martin
spaces oBSH andBSH. The equivalence of laws then follows from Theorem C.5.

Proof of the mutual singularity for E 1. Consider8" onR. Our aim is to prove
that the laws of the two processes

(BtHaBT - BTft) and (/B?a/B\'f - /B\Tft) = (/B?a_@jt) = (@;t - /B\ﬁvéﬁ)
are mutually singular on the time inteni@, 1/4]. The law of the first process is
equivalentto a couplé3tH’l, BtH’Z) of two independent fractional Brownian motions
(see Theorem 5.10), anfy (B™1, B"2) is almost surely trivial. On the other hand,
from the first part of this proof, the law of the second prodessquivalent to the
law of (B4 — BI*,B'). We therefore obtain two self-similar processes which do no
have the same law, so we deduce from Theorem C.13 that theal@ausiutually
singular. a

Remark 6.14lt follows from Remark 6.7 that the law & is equivalent orf0, 1] to
the law of(BH +B" )/v/2, whereB" andB" are independent. We have now proved
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that this law is equivalent separately to the law&dfandB” , but only on[0, T] for
T<1.

Theorem 6.15.Let T > 0. The distance in total variation between the laws of the
processegs "BH; 0<t<T)and(BI'; 0<t<T)is O(e"") ase | 0. The process
B" satisfies the same property.

Proof. As in Theorem 6.13, let us compare the law&8%2" andBY/2H on[0,£T]
for0< € <1/(2T). It follows from Theorem C.5 that the entrop¥ of the former
process relative to the latter one satisfies

N < CE| Bl/Z,H . Bl/Z,H |2;ﬁ_|([0‘£'|'])
More precisely it is stated in Theorem C.5 that the consfantolved in this dom-
ination property depends only on the constants involvech@ibjections of the
Cameron-Martin spaces &/2H andBY2" on [0,£T] into each other; but if we
choose a constant which is valid fBF' andB" the time interval0,1] (Theorem
6.9), then it is also valid foBY2H and BY/2H on [0,1/2], and therefore on the
subintervalg0,eT], 0 < € < 1/(2T), so we can chooge not depending oi. Thus

B1/2H 1/2H|2 _ 2—2H
J <CE[BY2H —BY2H, ¢ = 0> ™)

0,eT])
from (74). The convergence in total variation and the spdexvergence are de-
duced from (102). The proof f@" is similar. O

Remark 6.16We can say that the proces@% andB" are asymptotically frac-

tional Brownian motions near time 0. The procesE'és@H andB" have stationary
increments, so the same local property holds at any time.

As an application, we recover a result of [4], see also [2,f87nore general
results. Notice that the equivalence stated in the follgwireorem may hold even
when the paths d8}' are not inJz3.

Theorem 6.17.Let B} and B} be two independent fractional Brownian motions
with indices J< H, and let T> 0. Then the laws ofB] + A BY; A > 0) are pairwise
equivalentorf0, T] if H > J+ 1/4. Otherwise, they are pairwise mutually singular.

Proof. It is sufficient to prove the result far = 1.

Equivalence for H-J > 1/4. Let us prove that the laws &) andB] + ABY, are
equivalent. From Theorems 6.1 and 6.6, the pro@s&an be written as (77) for
independent standard Gaussian variabfgsé/) and coefficientsy) such thasy # 0
for anyn. The procesB} can be written similarly with coefficient! and variables
(Nn,N})- ThusB] + ABY is the image by some functional of the sequence

Ur)]\ = afql(Ena Er/]) +A af‘;‘ (r’n, nll'l)v
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and it is sufficient to prove that the lawsdf andU? are equivalent This can be
done by means of Kakutani's criterion (Theorem C.4) with= 2anda? =

(8)2+A%(aff)?. But
A%(an)?
3 ) se g

n>1 n>1

from Theorem 6.6.

Mutual singularity for0 < H —J < 1/4. Let us use the coupling
BJ _ Géiz"]wl, B'; _ F:*l/zvvz, XK IO+ l/zvvz é\lz( _ fi*l/zvvz

(0 < K < 1), for independenityy on R, andW, on R. By applying the operator
GYY/2 we can write

0+
G2 (Bl+A BH) (90)
—W; +AGy?B
“W A ((GJ 1/2 |1/2 J)Bz n I1/2 J(B|2-| _xH +X1/2+H -J /\1/2+H7J)
A Bl/2+H -3
Let us now prove that the process inside the big parenthiesss 777 ,. We have
checked in the proof of Theorem 5.3 tlf X 1/2 éf J)f is differentiable orR’.

for any f in HY~, so in particular forf = B?, the scaling property then enables to

prove that the derivative i©(t"—7-1/2), so (Géﬁ/z - |§f*)5§ is in 4 /5. Simi-

1/2 J(BQ —XH) is also smooth, and we deduce from

1/24H-J zl/2+H-J
-B;

larly, BY — x5! is smooth, sd,

the same scaling property that itisddf /. Finally X; is also in
7/ from Theorem 6.8. Thus we deduce that the process of (90}l from

Wi+A Bl/zJrH J by means of a perturbation which lives.i# ,, and is independent

of Wi, so the two laws are equivalent. It is then sufficient to pribva the laws of

W + A 81/2+H I for A1 # A2 are mutually singular. But these two processes can
be expanded on the basts1 — cog2mmt), sin(2rmt)); the coefficients are indepen-
dent with positive variance; the variance of the coeffidem 1— cog2mmt) and
sin(2mmt) is equal to 22rm)~2 4 2A2(2rm)~2H-3+1)_ As in the first step, we can
apply Kakutani’s criterion (Theorem C.4) and notice that

(A —AP)(2rm) 203D 2
n§l<(2nn)*2+)\12(2nn)*2<”*3+1)) -

so that the two laws are mutually singular. O
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Remark 6.18ForH > JandA > 0, the procesB’ + A B exhibits different scaling
properties in finite and large time. It is locally asymptatig J-self-similar, whereas
it is asymptoticallyH-self-similar in large time.

Another application is the comparison wih' of a fractional analogue of the
Karhunen-Loéve process (10) proposed in [11].

Theorem 6.19.Consider the process

sin((n+1/2)nt)
(n+1/2)mH172

=V2 Z)En

for independent standard Gaussian variabfgs Then the laws of gt — LH and
B are equivalent orf0, T — § for 0 < S< T < 1. On the other hand, these laws
are mutually singularif SS0or T = 1.

Proof. We deduce from Theorem 6.13 that the Iawﬁm andEH/Z are equivalent

on [0,2T] for T < 1, and therefore ofi-T,T] (the two processes have stationary
increments). ThuéB! —B",) //2, which has the same law ad-2/2(BH_ — B"

(2~ Bly)2),
has a law equivalent 00, T] to the law of

+1/2)mt
2H 1/2(8[/278 t/2) 2H+l %En% LP,

so we have the equivalence of laws
L' ~ (B! ~B")/v2 (91)

on [0, T]. Moreover, we deduce from Remark 5.11 that the incrementiseofight
hand side of (91) of§, T] are equivalent to the increments&$t, and this proves the
first statement of the theorem. For the c&se 0, we have also noticed in Remark
5.11 that the laws of the right hand side of (91) an@dfare mutually singular. For
the casd = 1, we have to check that the lawsldt — L' , and ofB" are mutually
singular on0,1— S]. We have

H  =H —H —H
Ly — L5 =212 (By2—Bpt)2— BZ1/2+Bj_1)2)
IR T — —H
=2M"12(2B} ), — By 1,2~ Biiye)2)

_1/2/sH =H
~ 21 l/Z(Bft/zjL Bt/Z) ~ (B' +B™)/Vv2
where we have used the fact that the incremen®® ofire 1-antiperiodic and sta-

tionary. But the law of this process is mutually singulartvitie law ofB"™ by again
applying Remark 5.11. a
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Appendix

We now explain some technical results which were used throutthis article.

A An analytical lemma

The basic result of this appendix is the following classieaima, see Theorem 1.5
of [35].

Theorem A.1.Consider a kernel Ig,s) onR, x R, such that
K(At,As) =K(t,s)/A (92)

for A >0, and

® [K(1,9)|
/O Tds<oo

Then K: f — [K(.,s)f(s)ds defines a continuous endomorphism?f L

Proof. For f nonnegative, let us study

E(f):/:(/OW|K(t,s)|f(s)ds)2dt:/Om(/om|K(1,s)|f(ts)ds)2dt
:///|K(1,s)||K(1,u)|f(ts)f(tu)dsdudt

from the scaling property (92) written &t,s) = K(1,s/t)/t. We have

/f(ts)f(tu)dt <|If|I%./ V50

K(1,9)|
0 <t <

If now f is a real square integrable function, thieM(t ) is well defined for almost
anyt, and

SO

/ K (t)%dt < E(|f]) <C||]|%.
0

Theorem A.2.0n the time intervaR ., let
A: (h(t); t >0) — (Ah(t); t > 0)

be a linear operator defined dfi%/? (the space of /2-Holder continuous functions
taking the value 0 at 0) such that A)) = 0. We suppose that
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A(hy) = (Ah), for hy (t) = h(At). (93)

We also suppose that Ah is differentiableRinand that h— DAN(1) is continuous
onHY2. Then A is a continuous endomorphism of the standard Carrdaotin
spaces,, = 1§, L2.

Proof. On 4 5, the linear formh — D'Ah(1) takes the fornD*Ah(1) = (a,h).», ,
for someain 75, so

D*AN(t) = DY (Ah)(1) = TDMAR(1) =

7/Dl s) D h(ts)ds— /K

K(t,s) = Da(s/t) /t.

ThenK satisfies the scaling condition (92), and

%<ahuzl/z ¢ [pras i (sds
s)D*

for

/L}f"dss sup{ (a,h).1,,,; he iz, [DH(s)| < 1/V5)
< sup{DlAh(l); h(0) = 0, |h(t) — h(s)| < 2 t—s} <

sinceh — D!Ah(1) is continuous orHi%/2. Thus we can apply Theorem A.1 and
deduce thab*Ald, is a continuous endomorphismiot, or, equivalently, thag is
a continuous endomorphism &#7 . O

B Variance of fractional Brownian motions

We prove here a result stated in Subsection 4.1, more phetiss if B is given
by the representation (49) with given by (50). then the variangeof B! satisfies
(51). We also prove that the varianceB[f given by the spectral representation (7)
is the same.

Theorem B.1.The variance of B defined by49)is given by

3/2—H
_ 28

o B(2—2H,H+1/2) (94)

for the Beta function
B(a,B) /t“l t)f~ldt, a>0pB>0.

Proof. Fort > 0, by decomposing the right-hand side of (49) into integoalf), t]
and onR_, we obtain
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2H
E[(BI)2] = k2( 55 + 0(0))
with . 5
(p(t):/o ((ter)H’l/foH*l/z) dx.

We can differentiate twice this integral and get

d0)=@H-1)

m((t +x)2H"2 (1 +X)H73/2XH71/2)dX’
0

¢'(t)=(2H-1)(2H-2) /:(t +x)?H3dx
~(2H-1)(H-3/2) /:(t 1 x)H-5/2¢H-1/2x

=—(2H-1t*" 2 (2H - 1)(H - 3/2)t2H*2/lwa*5/2(y— 1H-Y2dy

1,1_z\H-1/2
— —(2H— 1t 2 (2H - 1)(H - 3/2)t2H*2/ (_1 . Z) "4z
o\ Z
by means of the changes of variabes t(y— 1) andy = 1/z Thus
@'(t)=(2H - 1)t2H’2(—1+ (3/2— H)B(2—2H,H+1/2)).

We integrate twice this formula, and singét) and ¢/ (t) are respectively propor-
tional tot?! andt?~1, we obtain (94) by writing¢?(¢p(1) +1/(2H)). 0

By applying properties of Beta and Gamma functions

B(a,B) =T (a) (B)/T (a+PB),

M(z4+1) =1zl (2), ()l (1-2z) = n/sin(nz), (95)

wherel™ is defined orC \ Z_, we can write equivalent forms which are used in the
literature,

 ,3/2-HT(2-2H)F(H+1/2)
=K r(5/2—H)

o, 1 F(2—2H)F (H+1/2)
“H@2-A) T ra2-H)

- KZ%F(ZJH)F(H +1/2)?
= —2K2$:|-|)I'(—2H)I_(H +1/2)2 (96)

where, except in the first line, we have to assurhe: 1/2. Thus if we choose
k = k(H) =T (H+1/2)~! as this is done in this article, thenis given by (51).
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If now we consider the spectral representation (7), then

E[(BY)?] = 7_]:[/0008—172H ((cossf 1)2+sinzs)ds

_ 2 [ 1o R T A T

= 7T/o s (1—coss)ds= T[H/o s “sinsds

by integration by parts. I < 1/2, an application of (34) shows that this variance is
again given by (51); iH > 1/2, the same property can be proved by using another
integration by parts, and the case= 1/2 can be deduced from the continuity of
the variance with respect té.

Remark B.2The variance of the spectral decomposition can also beretaas
follows. The procesB" given by (7) can be written as the real part of

BtH,(C _ %T /.+oo Sfol/Z(eist B 1) (d\/\é1+ idWsz)
JO

1
T V2m

The isometry property of the Fourier transform lohenables to check th&'/2C
has the same law &% +iW?2, so in particulaB!/ is a standard Brownian motion.
Following Theorem 4.1, the general cdde# 1/2 is obtained by applyinii:*l/2
to BY/2C (use (34)).

e i €1 .
[ 182 HE = (g + i),

C Equivalence of laws of Gaussian processes

Our aim is to compare the laws of two centred Gaussian presesisis known
from [10, 15, 16] that their laws are either equivalent, ottuailly singular (actually
this is also true in the non centred case), and we want to edativeen these two
possibilities. In Subsection C.1, after a brief review dfriite dimensional Gaus-
sian variables, we explain how the Cameron-Martin spacegmroducing kernel
Hilbert space) can be used to study this question. In padatiowe prove a sufficient
condition for the equivalence. Then, in Subsection C.2, escdbe a more compu-
tational method which can be used for self-similar processelecide between the
equivalence and mutual singularity.

C.1 Cameron-Martin spaces

A Gaussian process can be viewed as a Gaussian vaviataking its values in an
infinite-dimensional vector spad#, but the choice o# is not unique; in order to
facilitate the study oWV, it is better for#” to have a good topological structure. This
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is with this purpose that the notion of abstract Wiener spazintroduced by [14];
in this framework;# is a separable Banach space. However, more general topolog-
ical vector spaces can also be considered, see for instahtédre, we assume that
# is a separable Fréchet space and wé/étbe its topological dual. The spa@é
is endowed with its Boretr-algebra, which coincides with the cylindricatalgebra
generated by the maps— 4(w), £ € #*. A % -valued variabl&V is said to be cen-
tred Gaussian if(W) is centred Gaussian for arfye #*; the closed subspace of
L?(Q) generated by the variabléé\) is the Gaussian space 8. The Fernique
theorem (see Theorem 2.8.5 in [3]) states that is a measurable seminorm #fi
(which may take infinite values) and|W| is almost surely finite, then exp|W|?)
is integrable for small enough positive

Forhin %, define

D o () B
|h|%/—sup{”£(w>”2, tew } (97)

with the usual convention/@ = 0. Thens#’ = {h; |h| ,» < «} is a separable Hilbert
space which is continuously embedded#n and which is called the Cameron-
Martin space ofV; it is dense in# if the topological support of the law &Y is 7.

It can be identified to its dual, and the adjoint of the inabusi: 5 — # is a map
i*: W™ — 2 with dense image such that

(*(0), ) e = £(h), (" (02),i*(£2)) o = E[€2(W)L2(W)]. (98)

Consequently, the map— ¢(W) can be extended to an isometry betwe#hand
the Gaussian space W, that we denote byW, h) ,» (thoughW does not live in
H); thust(W) = (W,i*(¢)) ,» and

E[(W,h) 2 (W, 1) ] = (h,h) . (99)
The variablgW, h) ,~ is called the Wiener integral &f

Example C.1When considering real continuous Gaussian processespdoe’s
can be taken to be the space of real-valued continuous éunsctiith the topology
of uniform convergence on compact subsets. The most knoaimpbe is the stan-
dard Brownian motion; its Cameron-Martin spa#4 , is the space of absolutely

continuous functionk such thah(0) = 0 andD*hiis in L2.

Remark C.2Let # be the space of real-valued continuous functions. The ¢oord
nate mapg:(w) = w(t) are in#™* and the linear subspace generated by the vari-
ablest; (W) =W is dense in the Gaussian spac&\gfequivalently, the space” is
generated by the elemerit$/;). On the other hand, we deduce from (98) that

() - s Ls(i*()) = (I* (6s),* () = EIMEW].

Thus, if we denote b€(s,t) = E[WsW | the covariance kernel, theff is the closure
of the linear span of the functiom¥¢;) = C(t,.) for the inner product
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<C(Sa )7C(t7 ))37) = C(Sat)

This relation is called the reproducing property, a#dis the reproducing kernel
Hilbert space ofC(.,.). This technique can also be used for non continuous pro-
cesses, see for instance [36].

Remark C.3Another viewpoint for the Wiener integrals whah= (W) is a contin-
uous Gaussian process is to consider the intedr&(s)dW for deterministic func-
tions f. This integral is easily defined whehis an elementary (or step) process,
and we can extend by continuity this definition to more gelrfarections. With this
method, we obtain variables which are in the Gaussian spadé but we do not
necessarily obtain the whole space, see the case of thsfralcBrownian motion
B" whenH > 1/2in [34].

LetW; andW, be two centred Gaussian variables with values in the santespa
W , with Cameron-Martin space#i and.”#. It follows from (97) that’# is con-
tinuously embedded g if and only if

lecwn)]l, < Cllecve)l, (100)

foranyl e ™.

Let #* and #? be separable Fréchet spacesWetbe a# -valued centred
Gaussian variable with Cameron-Martin spa#é!, and letA: #1 — #? be a
measurable linear transformation which is defined on a mebkilinear subspace
of #1 supporting the law ofV. ThenAW is a centred Gaussian variable Afis
injective on.#*, then the Cameron-Martin space A is 7> = A(#1). This
explains how the Cameron-Martin spag#; of the fractional Brownian motion

B" can be deduced from¥7,; one applies the transformatioﬁféfl/2 (Theorem

4.1) orGéf’H (Theorem 4.3). On the other handAifis non injective, one still has

#? = A(s#") and the norm is now given by
[ha| 2 = inf{lhll_}fl; Alhy) = hz}. (101)

In particular|Ah| ;5 < [h[ 4. If A=0onJ7, thenAW = 0.

We now consider the absolute continuity of Gaussian measwith respect
to one another. This notion can be studied by means of thé&veslantropy, or
Kullback-Leibler divergence, defined for probability meessy; and i, by

I (Mo, Hy) = /'n(dﬂz/dﬂl)duz

if U is absolutely continuous with respecttg, and by+o otherwise. This quantity
is related to the total variation @f, — L3 by the Pinsker inequality

( / |duz — Olull)2 < 2.7 (K2, pia)- (102)
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The Cameron-Martin theorem enables to characterise elsnoér?” amongst
elements of#". More preciselyh is in 27 if and only if the law ofW + h is abso-
lutely continuous with respect to the law\&f. Moreover, in this case, the density is
exp((W,h) » —|h%,/2). Thus

(W 1) =I (') =13, /2

whenpu andy’ are the laws ofV andwW + h.

The transformatiolV — W + h of the Cameron-Martin space can be generalised
to randomh. If we add tow an independent proceXstaking its values inZ, it is
easily seen by working conditionally otthat the laws oW andW + X are again
equivalent. Moreover, the law @¥V + X, X) is absolutely continuous with respect
to the law of(W, X), with a density equal to eXw, X) ,» — [X|%,/2), and relative
entropies of the two variables with respect to each otheequal to%E|X|_2}f. By
projecting on the first component, it follows from the Jenssequality that the
relative entropy cannot increase, so

max(& (', 1), 7 (1, 1) < E[X[3,/2 (103)

whenp andy’ are the laws ofV andW + X.

WhenW = (W,) andW = (Wp) are two sequences consisting of independent
centred Gaussian variables with positive variances, thertjuivalence or mutual
singularity of their laws can be decided by means of Kaktgamiterion [23]. This
criterion is actually intended to general non Gaussiaratdes; when specialised to
the Gaussian case, it leads to the following result.

Theorem C.4.Let W= (W,) andW = (W) be two sequences of independent cen-
tred Gaussian variables with varianceg > 0 anda? > 0. Then the laws of W and
W are equivalent if and only if

-
o5 2
Z(U—g— ) <. (104)
Returning to general Gaussian variables, we now give a mirfficondition for
the equivalence &V andW + X whereW andX are not required to be independent.
This result has been used in the proof of Theorem 6.13; it easelduced from the
proof of [10], but we explain its proof for completeness.

Theorem C.5.Let (W, X) be a centred Gaussian variable with values#x .7#,
where? is a separable Rechet space, and” is the Cameron-Martin space of W;
thus W+ X is a Gaussian variable taking its valuesi#i; let #”' be its Cameron-
Martin space.

e The space#”’ is continuously embedded it .

e If moreover.s# is continuously embedded i#”’ (so thats# ~ #'), then the
laws of W and WA X are equivalent. Moreover, the entropy of the law of\X
relative to the law of W is bounded byIEID(@f, where C depends only on the
norms of the injections of# and > into each other.
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Proof. We have to compare the Iaws ofW); ¢ € #™) and( (W+X),Le //*)
Since|X| » /L,,
has an exponential moment and i |s in particular integrablés) = (i*(¢),X) » is
square integrable. Thus

1w +X)J; < [|ew)ll, +C[i*(€)

< CHYew)],
and the inclusio?’ c 7 follows from (100). Let us now suppos¥ ~ J#’, so
that, by again applying (100),

Cu|eoW) |, < [|6W +X) ||, < Ca £ (105)

W)l

for positiveC; andC,. Let us first compare the laws of the familiggwW + X); ¢ €
w) and(¢(W); ¢ € wy) for a finite-dimensional subspa@g* of #*. We have

#5 = {tew; aw)],=0} = {te w; ew+x)],=0)

and it is sufficient to consider the case whigtg N %5 = {0}. Then|¢| = [[¢(W)]|,
and|(|' = ||¢(W + X)||,, define two Euclidean structures a#i*, and it is possible
to find a basis(¢n; 1 < n < N) which is orthonormal for the former norm, and
orthogonal for the latter norm. We have to compare the lawsind py, of Uy =
(n(W);1 < n < N) andUy = ({a(W+ X);1 < n < N). The vectordJy andUy
consist of independent centred Gaussian variables; merddy has variance 1,
and it follows from (105) that),, has a variancerr% satisfyingCy < ar% < C,. We
deduce that

P4

N
c](“l’\laIJN) =

g2-1-Ing?) <C
( n n zl

NI

n=1

But
1/2
— 1= 2E[ta(W) £a(X)] +E[(ta(X))?] < C(E[(tn(X))?]) (106)

(we deduce fronv,? < G, that the variances df,(X) are uniformly bounded), and

=z
P4

S (Hisbin) <C 3 B[ (0(X))°] =€ 5 B[(1"(tn). X)5 | < CEIXP

becausé* (/) is from (98) an orthonormal sequence#i. Thus the entropy of the
law of (E(W+X) ey relative to(¢(W); £ € #7°) is bounded by an expression
CE|X|2, which does not depend on the choice of the finite-dimensismaspace
w7+ This implies that the law i?” of W + X is absolutely continuous with respect
to the law ofW, and that the corresponding relative entropy is also bodibgehis
expression. a
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Remark C.6The condition about the equivalence of Cameron-Martinepaannot
be dropped in Theorem C.5, see the counterexample of therBavmotionW =

(W) andX; = —tW;.
Remark C.71f W andX are independent, then

2 2 2
lew -+ 3|5 = [lew) |5+ (|02 > [l

so# C A is automatically satisfied. Moreover the estimation (186@jriproved
and we havdE(X,hnﬁf instead of its square root. This explains why the laws of
W andW + X can be equivalent even wheéhdoes not take its values i#¢’; when

W and X consist of sequences of independent variables (and asgwagain that
A ~ H"), this improvement leads to the condition (104).

Remark C.8More generally, for the comparison of two centred Gaussiaasures

u andu’ on a separable Fréchet sp&e a necessary condition for the equivalence
of u and !’ is the equivalence of the Cameron-Martin spag€sand.’#”. If this
condition holds, there exists a homeomorph@mf .7 onto itself such that

(h1,h2) 1 = (h1,Qhp) 4.

Thenu andy’ are equivalent if and only i — | is a Hilbert-Schmidt operator.

C.2 Covariance of self-similar processes

Consider a square integraltteself-similar process fof > 0; we now explain that
if it satisfies a 0-1 law in small time, then its covariancerigcan be estimated by
means of its behaviour in small time; this is a simple coneaga of the Birkhoff
ergodic theorem.

Theorem C.9.Let(=;; t > 0) be a H-self-similar continuous process, and suppose
that its filtration % (=) is such that%p.. (=) is almost surely trivial. Define

B=t)=€e"Z(e"), —w<r< o

Then for any measurable functional f on the space of contisymaths such that
f(Z) isintegrable,

lim —/ £(6,=)dr — E[f ()] (107)
Too T
almost surely. In particular, i€ = (Z1,...,=") is square integrable,

=i :j —us—VS
El5= Ho|logt|/ sZH+1 (108)
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Proof. One hast 6, = 6, so(6) is a family of shifts. Moreover, thél-self-
similarity of the proces< is equivalent to the shift invariance of its law. Events
which are(6; )-invariant are in%o, (=) which is almost surely trivial, so the ergodic
theorem enables to deduce (107). Then (108) is obtainedkiygtd (=) = EJJEJ
and by applying the change of variable- log(1/s) in the integral. O

Remark C.10By using the Lamperti transform defined in (46), the fan{ify) is
reduced to the time translation on stationary processes.

Remark C.11In the centred Gaussian case, the law is characterised motaei-
ance kernel, so Theorem C.9 implies that the whole la& cfin be deduced from
its small time behaviour. The result can be applied to foaeti Brownian motions

of index 0< H < 1; by applying the canonical representation of Section 4, ltas
indeed%o, (B"') = %o, (W) and thiso-algebra is well-known to be almost surely
trivial (Blumenthal 0-1 law). A simple counterexample i®tfractional Brownian
motion of indexH = 1; this process (which was always excluded from our study of
BM) is given byB! =t B, for a Gaussian variabBy; the assumption abou#y. (=)

and the conclusion of the theorem do not hold.

Remark C.12In the Gaussian case, (108) is a simple way to prove thatwhefid
can be deduced from its small time behaviour. There are hexather techniques,
such as Corollary 3.1 of [1] about the law of iterated lodamit

Theorem C.13.Let = and Y be two centred continuous H-self-similar Gaussian
processes o[, 1], such that%y, (=) is almost surely trivial. Then the two processes
either have the same law, or have mutually singular laws.

Proof. Gaussian measures are either equivalent, or mutually Isingo suppose
that the laws oE andY are equivalent. The proceSssatisfies (108), so

S / s
[Zu=v] H0|Iogt| SZH+1

Moreover, the right hand side is boundedLif{Q) for any p, so we can take the
expectation in the limit, and it follows from the self-si@uilty of Y that

E[=\=)]= Vsd =EX%].

Uy Ho | Iogt| SZH+1

Thus= andY have the same law. O

A counterexample of this property is again the fractiona\&mian motion with
indexH = 1. Processes corresponding to different variapcesE[(B;)?] > 0 have
equivalent but different laws.
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