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Abstract : We introduce a new method for studying the Cauchy problem for
systems of conservation laws in one space dimension. This method is based on
the equivalence of the Cauchy problems in Eulerian and Lagrangian coordinates,
as regards the existence and uniqueness of entropy solutions. The main idea is
to solve the problem in Lagrangian coordinates and determine the transformation
linking the two coordinates. The main contributions are the uniqueness and explicit
entropy solutions. Applications include the Keyfitz-Kranzer system, the Born-Infeld
equations and linear Lagrangian systems which are linear in Lagrangian coordinates.
For these examples, the existence and uniqueness of solutions in L∞ are obtained in
explicit expressions. The linear Lagrangian system contains examples such as the
equations of pressureless gas dynamics, all 2 × 2 linearly degenerate systems and
the augmented Born-Infeld equations. In particular, we deduce the existence and
uniqueness of entropy solutions of the Cauchy problem for the Born-Infeld equations.
An explicit formula of its entropy solution is also provided.
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1. Introduction

Both Eulerian and Lagrangian coordinates are used for the description of the evolution
of one-dimensional flow of a compressible and inviscid gas. The equations of gas dynamics
have a simple form in Lagrangian coordinates and are often treated in those in mathe-
matical analysis instead of in Eulerian coordinates. See for instance [34, 35, 30]. These
two coordinate systems are linked by a nonlinear transformation depending on unknown
variables [15, 24]. The transformation is abbreviated by E-L. It possesses many interesting
properties (see [42, 44]).

For a class of systems of conservation laws, after an E-L transformation we obtain a
system in Lagrangian coordinates. It is easy to see that smooth solutions of the systems in
the two coordinate systems are equivalent. In 1987, Wagner gave a rigorous justification
of the equivalence of entropy solutions in L∞ of the systems in the two coordinate systems
[44]. His result shows that the choice of coordinates is not important and one may work
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with either of them. However, in his work the initial data have not been taken into account
and the equivalence of the Cauchy problem in the two systems has not been investigated.

In this paper, we prove that the Cauchy problems in the two coordinate systems are
still equivalent as regards the existence and uniqueness of entropy solutions in L∞. An
explicit relation between the entropy solutions in the two coordinate systems is exhibited.
These results are given in Theorem 2.1 in the general case. They reveal that when
the transformation is known, the entropy solution in Eulerian coordinates is obtained
explicitly from the entropy solution in Lagrangian coordinates and vice versa. Note that
the E-L transformation is uniquely determined by the entropy solution and its initial data.
Thus, if the system in Lagrangian coordinates has a simple form, it is possible to solve
the Cauchy problem for the original system by determining the transformation.

The E-L transformation is induced by one of the conservation equations. For the
linearly degenerate system, entropy inequalities for all convex entropies become entropy
equalities for all entropies. This provides many choices of conservation laws for making
transformations. This idea is used throughout the applications in Sections 3-6.

The above considerations have some consequences in applications. The first application
concerns the Keyfitz-Kranzer system of two equations for which one characteristic field
is genuinely nonlinear and the other is linearly degenerate [28]. In a very simple way we
establish the existence and uniqueness of entropy solutions for the Cauchy problem. For
such a system with convex flux functions, an explicit formula of the entropy solution is
provided with the help of the Lax formula for scalar conservation law.

The second application concerns linear Lagrangian systems, a class of systems which
are linear in Lagrangian coordinates (see Definition 3.1). For such a hyperbolic system,
we give a precise description of its mathematical structure on the eigenvalues, linear
degeneracy of the characteristic fields, classical Riemann invariants and entropy-entropy
flux pairs. Strictly convex entropies are also constructed. From the explicit entropy
solution of the Cauchy problem for the linear system in Lagrangian coordinates, we deduce
a unique E-L transformation which yields a unique entropy solution of its Cauchy problem
with an explicit expression. This expression is of the form : wi(t, x) = w0

i (αi(t, x)), where
wi is an i-th classical Riemann invariant of the system, w0

i is its initial value and αi is
determined explicitly by the system and the initial data. Therefore, a maximum principle
can be applied to each wi. Furthermore, we show that the entropy solution is weakly
stable in L∞(R+ × R) and satisfies the entropy equalities for all entropy-entropy flux
pairs of the system.

We present three physical examples of linear Lagrangian systems. They are the system
of pressureless gas dynamics, all 2 × 2 linearly degenerate systems and the augmented
Born-Infeld (abbreviated to ABI) equations introduced by Brenier [9]. These systems are
not necessarily strictly hyperbolic. For the system of pressureless gas dynamics which
is not even hyperbolic, the local existence of solutions in L∞ with explicit expressions
is shown under a partial regularity assumption on the initial velocity. The solution is
global if the initial velocity is a non-decreasing function. The 2 × 2 linearly degenerate
system and the ABI equations are two hyperbolic linear Lagrangian systems. Thus our
results can be immediately applied to them. The main application is the existence and
uniqueness of entropy solutions of the Cauchy problem for the Born-Infeld (abbreviated
by BI) system. The later is not a linear Lagrangian system. The results for this system
are obtained from the entropy solution and a further study on the entropy-entropy flux
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pairs of the ABI equations. An explicit formula of the entropy solution of the BI equations
is also given.

Finally, we remark that the equivalence of the two coordinate systems in several space
dimensions is discussed in [16, 17, 45]. See also [20] for a numerical investigation in two
dimensional equations of gas dynamics and the references therein. However, due to the
essential difference between the systems of conservation laws in one dimension and several
dimensions, it is not so obvious to obtain the results of this paper in several dimensions.
A further study on the problem will be given in a forthcoming work.

This paper is organized as follows. In the next section, we consider the change of
variables and establish the equivalence of entropy solutions of the Cauchy problems in the
two coordinate systems. The main result of this section is Theorem 2.1. In Section 3 we
apply Theorem 2.1 to the Keyfitz-Kranzer system. Section 4 is devoted to the study of
the linear Lagrangian system with its first example : pressureless gas dynamics. Sections
5 and 6 contain another two examples of linear Lagrangian systems : the 2 × 2 linearly
degenerate system and the ABI equations. At this stage the BI equations are studied. In
the Appendix, we give the proof of Lemma 6.2 which is a key step to obtain the main
results for the BI equations.

2. Equivalence of entropy solutions in two coordinate systems

2.1. Definitions. Consider the Cauchy problem for a system of conservation laws :

(2.1) ∂tu+ ∂xf(u) = 0, t > 0, x ∈ R,

subject to an initial condition :

(2.2) t = 0 : u = u0(x), x ∈ R.

Here u = (u1, u2, · · ·, un)t, u0 = (u0
1, u

0
2, · · ·, u0

n)t ∈ L∞(R), and f = (f1, f2, · · ·, fn)t is
a smooth function from a domain U ⊂ Rn to Rn. We denote by λ1(u), λ2(u), · · ·, λn(u)
the eigenvalues of the system (2.1), i.e., the eigenvalues of the matrix A(u) = f ′(u) and
by r1(u), r2(u), · · ·, rn(u) the corresponding right eigenvectors. The following notions
are fundamental, see [29] for instance. We say that the system (2.1) is hyperbolic in
U if λ1(u), λ2(u), · · ·, λn(u) are real and A(u) is diagonalizable for all u ∈ U . It is
strictly hyperbolic if λ1(u), λ2(u), · · ·, λn(u) are all distinct. The i-th characteristic λi(u)
is genuinely nonlinear in the sense of P.D.Lax if∇λi(u).ri(u) 6= 0 and is linearly degenerate
if ∇λi(u).ri(u) = 0 for all u ∈ U . If all the characteristics are linearly degenerate, the
system (2.1) is said to be linearly degenerate.

It is known that solutions of the system (2.1) develop singularities in a finite time even
if the initial data are smooth. As a consequence one has to seek global existence of weak
solutions in the sense of distributions. In order to guarantee the uniqueness of weak
solutions an entropy condition is imposed. A function u ∈ L∞loc(R+ ×R) is called entropy
solution if for all entropy-entropy flux pairs (E,F ) with E convex it satisfies

(2.3) ∂tE(u) + ∂xF (u) ≤ 0,

in the sense of distributions.



4 Y.J. Peng

2.2. Equivalence of systems. Let u ∈ L∞(R+×R) be an entropy solution of the system
(2.1) with u1(t, x) ≥ u1 > 0. The variable u1 plays a special role in the study. In physical
models it may stand for the density, energy density etc. Using the first equation in (2.1)
for u1, we may take an E-L transformation from (t, x) to (s, y) :

(2.4) (s, y) = (t, Y (t, x)) and dy = u1dx− f1(u)dt.

This change of variables can also be written as :

s = t and y =

∫ x

X1(t)

u1(t, ξ)dξ with X ′
1(t) =

f1(u(t,X1(t)))

u1(t,X1(t))
.

It is unique if Y (0, x) or X1(0) is given. Then in Lagrangian coordinates (s, y), the system
(2.1) reads (see [44]) :

(2.5)


∂s

( 1

ũ1

)
− ∂y

(f1(ũ)

ũ1

)
= 0,

∂s

( ũi

ũ1

)
+ ∂y

(
fi(ũ)−

f1(ũ)ũi

ũ1

)
= 0 (2 ≤ i ≤ n),

for s > 0 and y ∈ R. Here and in what follows we denote by ũ the variable u in Lagrangian
coordinates, i.e., ũ(s, y) = u(t, x). More generally, for an entropy-entropy flux pair (E,F )
of the system (2.1), let us define

(2.6) Ẽ(v) = E(u)/u1, F̃ (v) = F (u)− f1(u)E(u)/u1,

with

(2.7) v1 =
1

u1

, vi =
ui

u1

(2 ≤ i ≤ n), v = (v1, v2, · · ·, vn)t.

For u1 > 0 the function ϕ : u 7−→ v is a C∞-diffeomorphism with the property ϕ◦ϕ = Id.
From [44] we know that (E,F ) is an entropy-entropy flux pair of (2.1) if and only if (Ẽ, F̃ )
is an entropy-entropy flux pair for (2.5), and E is convex with respect to u if and only if
Ẽ is convex with respect to v. Hence, in Lagrangian coordinates the entropy condition
(2.3) is equivalent to

(2.8) ∂sẼ(ṽ) + ∂yF̃ (ṽ) ≤ 0, Ẽ convex.

For linearly degenerate systems the Rankine-Hugoniot conditions are independent of
the choice of the conservation laws among all entropy-entropy flux pairs. Therefore, it is
expected that the entropy solution satisfies the entropy equality

(2.9) ∂tE(u) + ∂xF (u) = 0

for all entropy-entropy flux pairs (E,F ). This condition is equivalent to

(2.10) ∂sẼ(ṽ) + ∂yF̃ (ṽ) = 0.

Definition 2.1. A function u ∈ L∞loc(R+ × R) is called an entropy solution of the linear
degenerate system (2.1) if (2.9) holds for all entropy-entropy flux pairs (E,F ).

As we will see in Sections 4-6, condition (2.9) is satisfied for L∞ weak solutions of the
linear Lagrangian system and the BI equations. When only a part of the characteristic
fields is linearly degenerate, we require the entropy equality (2.9) for all entropy-entropy
flux pairs corresponding to the linearly degenerate fields. This is the case of the Keyfitz-
Kranzer system (see section 3).
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The E-L transformation possesses many remarkable properties. In particular, if we
denote by λ̃i(ũ) the i-th eigenvalue of the system (2.5), from the second equation in (2.4),
we obtain

dy

dt
= u1

dx

dt
− f1(u),

which gives,

(2.11) λ̃i(u) = u1λi(u)− f1(u).

Moreover, let A(u) = f ′(u). The non-conservative equations ∂tu + A(u)∂xu = 0 are
equivalent to ∂sũ + A(ũ)∂yũ = 0 with A(u) = u1A(u) − f1(u)In. Therefore, A(u) and
A(u) have the same eigenvectors.

In the following proposition are listed the main equivalence properties between the
systems (2.1) and (2.5). The proof can be found in [42, 44].

Proposition 2.1. The E-L transformation preserves the (strict) hyperbolicity, convexity
of entropies with relation (2.6), entropy solutions, and for each i = 1, 2, ···, n, the existence
of an i-th classical Riemann invariant and genuine nonlinearity or linear degeneracy of the
i-th characteristic field of systems. Finally, the relation of the eigenvalues of the systems
(2.1) and (2.5) in the two coordinate systems is given by (2.11).

Remark 2.1. If u1 is a function of (u2, ···, un) and the first equation ∂tu1+∂xf1(u) = 0 in
(2.1) is exact and is derived from the sub-system composed of the n− 1 equations in (2.1)
with variables (u2, · · ·, un), then this sub-system is equivalent to the sub-system without
the first equation in (2.5), in the sense of Proposition 2.1.

2.3. Equivalence of the Cauchy problems. From the definition (2.4) and ũ(s, y) =
u(t, x), we have ũ(t, Y (t, x)) = u(t, x). If we set

(2.12) Y (0, x) = Y0(x)
def
=

∫ x

0

u0
1(ξ)dξ,

then for each given u ∈ L∞(R+×R), (2.4) and (2.12) define a unique E-L transformation.
Note that the choice of Y0 by (2.12) is compatible with (2.4). Obviously, for u0

1(x) ≥ u1 >
0, Y0 is strictly increasing, Lipschitzian and bijective from R to R. So is its inverse function
X0. Similarly, for all t > 0, x 7−→ Y (t, x) is bijective from R to R and (t, x) 7−→ Y (t, x)
is Lipschitzian. Concerning the inverse function of Y (t, ·), we have the following result.

Lemma 2.1. Assume u0 ∈ L∞(R) with u0
1(x) ≥ u1 > 0, a.e. x ∈ R. Let u ∈ L∞(R+×R)

be an entropy solution of (2.1)-(2.2) with u1(t, x) ≥ u1 > 0, a.e. (t, x) ∈ R+ × R. Let
ũ(t, y) = u(t, x) and x = X(t, y) be the unique solution of

(2.13) dx =
1

ũ1

dy +
f1(ũ)

ũ1

dt, X(0, y) = X0(y).

Then X(t, ·) = Y −1(t, ·) for all t ≥ 0.

Proof. Let us just compute, for all t > 0,

dY (t,X(t, y))

dt
=

∂Y (t,X(t, y))

∂t
+
∂Y (t,X(t, y))

∂x
· ∂X(t, y)

∂t

=

(
−f1(ũ) + ũ1 ·

f1(ũ)

ũ1

)
(t,X(t, y)) = 0.
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Since Y (0, X(0, y)) = Y0(X0(y)) = y, we obtain Y (t,X(t, y)) = y for all t ≥ 0. Similarly,
X(t, Y (t, x)) = x. Hence, X(t, ·) = Y −1(t, ·) for all t ≥ 0. �

Taking t = 0 in ũ(t, y) = u(t,X(t, y)) gives ũ(0, y) = u0(X0(y)). Thus by Wagner’s
result [44] which uses the E-L transformation (2.4) in weak formulations of the systems,
we obtain the following equivalence result for the Cauchy problems.

Theorem 2.1. Let the assumptions of Lemma 2.1 hold and (t, x) 7−→ (s, y) be the unique
E-L transformation defined by (2.4) and (2.12). Then ũ(t, y) = u(t,X(t, y)) is an entropy
solution of (2.5) satisfying the initial condition ũ|s=0 = u0(X0), where X0 and X(t, ·) are
the inverse functions of Y0 and Y (t, ·), respectively.

Furthermore, if the entropy solution of the Cauchy problem for the system (2.5) is
unique, then the entropy solution u ∈ L∞(R+ × R) of (2.1)-(2.2) with u1(t, x) ≥ u1 > 0,
a.e. (t, x) ∈ R+ × R is unique.

Proof. The proof of the first part of Theorem 2.1 is clear. It suffices to give the proof of
its second part.

Let u ∈ L∞(R+ × R) be an entropy solution of (2.1)-(2.2) with u1(t, x) ≥ u1 > 0,
a.e. (t, x) ∈ R+ × R and (t, x) 7−→ (t, Yu(t, x)) be the unique E-L transformation with
y = Yu(t, x) being the unique Lipschitzian solution of (2.4) and (2.12). From Lemma 2.1,
the inverse function Xu(t, ·) of Yu(t, ·) is given by (2.13). Then the first part of Theorem
2.1 shows that ũ(t, y) = u(t,Xu(t, y)) is an entropy solution of (2.5) with initial value
ũ0 = u0(X0). From the uniqueness assumption of the Cauchy problem to the system (2.5),
ũ depends only on u0 and f but is independent of u for t > 0. It follows from (2.13) that
Xu is independent of u. So is Yu and we may write Yu = Y . Thus, any entropy solution u
of (2.1)-(2.2) with u1(t, x) ≥ u1 > 0 has the same expression u(t, x) = ũ(t, Y (t, x)). This
proves the uniqueness of entropy solutions to the Cauchy problem (2.1)-(2.2). �

By Lemma 2.1, Theorem 2.1 shows the equivalence on the existence and uniqueness
of entropy solutions for the Cauchy problems in the two coordinate systems. This result
can be immediately applied to the Cauchy problem for the equations of gas dynamics in
Eulerian coordinates :

(2.14)



∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + p) = 0,

∂t

(
ρ
(
e+

1

2
u2

))
+ ∂x

((
ρ
(
e+

1

2
u2

)
+ p

)
u

)
= 0, t > 0, x ∈ R,

t = 0 : (ρ, u, e) = (ρ0, u0, e0)(x), x ∈ R
and in Lagrangian coordinates :

(2.15)



∂sṽ − ∂yũ = 0,

∂sũ+ ∂yp̃(ṽ, ẽ) = 0,

∂s

(
ẽ+

1

2
ũ2

)
+ ∂y(p̃(ṽ, ẽ)ũ) = 0, s > 0, y ∈ R,

s = 0 : (ṽ, ũ, ẽ) = (ṽ0, ũ0, ẽ0)(y), y ∈ R,

through the change of variables (2.4) and (2.12) with u1 = ρ, f1(ρ, u) = ρu, p̃(v, e) =
p(1/v, e) and (ṽ, ũ, ẽ)(s, y) = (1/ρ, u, e)(t, x). In the above equations, ρ > 0, u, e > 0 and
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p = p(ρ, e) are the density, velocity, specific internal energy and pressure, respectively.
Thus, (ρ, u, e) ∈ L∞(R+ × R) with ρ ≥ ρ > 0 is an entropy solution of (2.14) if and
only if (ṽ, ũ, ẽ) is an entropy solution of (2.15) for which the initial data are linked by
(ṽ0, ũ0, ẽ0) = (1/ρ0, u0, e0) ◦ X0 or (ρ0, u0, e0) = (1/ṽ0, ũ0, ẽ0) ◦ Y0. The entropy solution
of (2.14) is unique if and only if that of (2.15) is unique. In particular, the L∞ entropy
solutions of the Cauchy problems for the isentropic gas dynamics equations are equivalent
in Eulerian and Lagrangian coordinate systems.

Notice that the above equivalence result is also valid for systems of conservation laws
with source terms provided that the source term does not appear in the conservation law
for u1 > 0. Hence, Theorem 2.1 can be applied to one-dimensional Navier-Stokes equations
and Shallow Water equations. Further applications are given in the next sections.

3. A Keyfitz-Kranzer model

In mathematical modeling of enhanced oil recovery, the Keyfitz-Kranzer system is often
used [28]. A simplified version of this system reads :

(3.1) ∂tu+ ∂x(uφ(r)) = 0, t > 0, x ∈ R,

subject to an initial condition :

(3.2) t = 0 : u = u0(x), x ∈ R,

where u = (u1, u2)
t, r = |u| =

√
u2

1 + u2
2, and φ : R+ −→ R is a smooth function.

The two eigenvalues of the system are :

(3.3) λ1(u) = (rφ(r))′, λ2(u) = φ(r).

We check easily that the second characteristic field is linearly degenerate. When (rφ(r))′′ ≡
0, i.e., φ(r) = C1/r + C2 for r > 0, with C1, C2 ∈ R, the first characteristic field is also
linearly degenerate. In this case, the problem is solved in Section 5. In what follows,
suppose that (rφ(r))′′ 6= 0 for all r > 0. Then the first characteristic field is genuinely
nonlinear. Let u = rθ with θ = (θ1, θ2)

t ∈ S1, the unit circle. For smooth solutions, the
system (3.1) can be put in diagonal form :{

∂tr + (rφ(r))′∂xr = 0,

∂tθ + φ(r)∂xθ = 0, t > 0, x ∈ R.

Hence, it is hyperbolic but not strictly hyperbolic since it may occur φ(r) = (rφ(r))′,
i.e., φ′(r) = 0 for some r > 0. For the Cauchy problem (3.1)-(3.2) we refer the reader
to [13, 14, 23, 28, 31, 40] and the references therein. When the initial data satisfy u0 ∈
BV (R), the existence of entropy solutions can be proved by using the Glimm scheme [27].
This is partially due to the decoupling of the system which compensates the loss of non
strict hyperbolicity. The entropy solutions in L∞(R) is investigated in [14].

The two families of entropy-entropy flux pairs (Ei(u), Fi(u))1≤i≤2 are

E1(u) = g1(r), F1(u) =

∫
g′1(r)(rφ(r))′dr

and

E2(u) = rg2(θ), F2(u) = rφ(r)g2(θ),
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where g1 and g2 are smooth functions. By checking the Rankine-Hugoniot conditions of
the system, we see that the entropy-entropy flux pairs (E1, F1) and (E2, F2) correspond
to the genuinely nonlinear field λ1(u) and the linearly degenerate field λ2(u), respectively.
Therefore, we require that any entropy solution u of (3.1) satisfies :

(3.4) ∂t(rg2(θ)) + ∂x(rφ(r)g2(θ)) = 0,

in the sense of distributions for any continuous function g2. Let g2(θ) = 1 and g2(θ) =
θi (i = 1, 2). We obtain

(3.5)

{
∂tr + ∂x(rφ(r)) = 0,

∂t(rθ) + ∂x(rφ(r)θ) = 0, t > 0, x ∈ R.

It is clear that (3.1) is not a linear Lagrangian system (see definition 4.1). However, it is
equivalent to (3.5) for weak solutions satisfying (3.4). Since the system (3.5) is decoupled,
we may first solve the scalar conservation law for r then find θ by an E-L transformation.

More precisely, assume u0 ∈ L∞(R) and infx∈R r
0(x) ≥ r > 0 with r0 = |u0|. Let r be

the unique entropy solution of the first equation in (3.5) with initial datum r0. It satisfies
the entropy inequality

(3.6) ∂tg1(r) + ∂x

∫
g′1(r)(rφ(r))′dr ≤ 0, ∀ g1 convex,

in the sense of distributions. From the maximal principle, we know that r ∈ L∞(R+×R)
and r(t, x) ≥ r, a.e., (t, x) ∈ R+×R. Let (t, x) 7−→ (s, y) = (t, Y (t, x)) be the unique E-L
transformation defined by

(3.7) dy = rdx− rφ(r)dt, Y (0, x) = Y0(x)
def
=

∫ x

0

r0(ξ)dξ.

Then

Y (t, x) = Y0(x)−
∫ t

0

(rφ(r))(τ, x)dτ.

In Lagrangian coordinates (s, y), the second equation in (3.5) becomes :

∂sθ̃(s, y) = 0, s > 0, y ∈ R.

From Theorem 2.1 we obtain a unique solution θ with initial datum θ0 = u0/r0, given by

(3.8) θ(t, x) = θ0(X0(Y (t, x))), with X0 = Y −1
0 .

When the function ψ(r) = rφ(r) is strictly convex, Y can be expressed explicitly by using
the conjugated function due to the Lax formula [29] :

(3.9) Y (t, x) = inf
ξ∈R

(
Y0(ξ) + tψ∗(

x− ξ

t
)
)
, ψ∗(y) = sup

η∈R

(
ηy − ψ(η)

)
.

Theorem 3.1. Assume u0 ∈ L∞(R) with infx∈R r
0(x) > 0. Then the Cauchy problem

(3.1)-(3.2) has a unique global entropy solution u = rθ satisfying the entropy equality
(3.4) and entropy inequality (3.6) for all continuous functions g1 and g2 with g1 convex.
Moreover, if the function ψ(r) = rφ(r) is strictly convex for r > 0, this solution is given
explicitly by r = ∂xY and (3.8), where Y is defined in (3.9).
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4. Study of linear Lagrangian systems

4.1. Definition and structure of the system. Let us begin with a definition.

Definition 4.1. A system of conservation laws (2.1) is called a linear Lagrangian one if
it is linear in Lagrangian coordinates (s, y) defined by the E-L transformation (2.4).

As we will see in the next sections, the class of linear Lagrangian systems contains many
interesting examples such as the equations of pressureless gas dynamics, all 2 × 2 linear
degenerate systems of conservation laws and the augmented Born-Infeld equations. By
Proposition 2.1, it is easy to see that if a linear Lagrangian system is hyperbolic then it is
necessarily linearly degenerate and admits a complete set of classical Riemann invariants.
Moreover, since λ̃i is a constant, from (2.11) the multiplicity of each eigenvalue of a linear
Lagrangian system is constant.

Now let us look at the structure of this system. The conservative variables of the system
(2.5) is v = (v1, v2, · · ·, vn)t defined in (2.7). Therefore, the system (2.5) is linear if and
only if there are real constants ãij (1 ≤ i, j ≤ n) such that

−f1(u)

u1

=
n∑

j=1

ã1jvj, fi(u)−
f1(u)ui

u1

=
n∑

j=1

ãijvj (2 ≤ i ≤ n),

which yield

(4.1)


f1(u) = −ã11 −

n∑
j=2

ã1juj,

fi(u) =
1

u1

(
ãi1 + uif1(u) +

n∑
j=2

ãijuj

)
(2 ≤ i ≤ n).

Hence, a linear Lagrangian system is necessarily of the form :

(4.2)


∂tu1 − ∂x

( n∑
j=2

ã1juj

)
= 0,

∂tui + ∂x

[ 1

u1

(
ãi1 + uif1(u) +

n∑
j=2

ãijuj

)]
= 0 (2 ≤ i ≤ n).

It can be written as a linear system in Lagrangian coordinates :

(4.3) ∂sṽ + Ã∂yṽ = 0,

where Ã = (ãij)1≤i,j≤n is a constant matrix. Thus a linear Lagrangian system is completely
determined by a constant matrix. We remark that f1 is an affine function of u and the
system (4.2) can be rewritten in an equivalent form with the variables (u1, v2, · · ·, vn)t :

(4.4)


∂tu1 − ∂x

(
u1

n∑
j=2

ã1jvj

)
= 0,

∂t(u1vi) + ∂x

( ãi1

u1

− ã11vi +
n∑

j=2

(ãij − ã1ju1vi)vj

)
= 0 (2 ≤ i ≤ n).

In what follows we suppose that the linear Lagrangian system (4.2) is hyperbolic. By

Proposition 2.1, the linear system (4.3) is also hyperbolic. Then (l̃1, l̃2, · · ·, l̃n) is a basis
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of Rn with l̃i being an i-th left eigenvector of Ã associated to λ̃i. It follows that wi = l̃iv
is an i-th classical Riemann invariant of (4.2) and satisfies

(4.5) ∂sw̃i + λ̃i∂yw̃i = 0 (1 ≤ i ≤ n).

Therefore, each entropy-entropy flux pair (Ẽ, F̃ ) of the system (4.3) has the form :

(4.6)


Ẽ(v) =

n∑
j=1

gj(wj) =
n∑

j=1

gj(l̃jv),

F̃ (v) =
n∑

j=1

λ̃jgj(wj) =
n∑

j=1

λ̃jgj(l̃jv),

where gj (1 ≤ j ≤ n) are arbitrary continuous functions. From the equivalence relation
(2.6), we obtain an explicit expression of each entropy-entropy flux pair of the linear
Lagrangian system as :

(4.7) (E(u), F (u)) =
n∑

j=1

(u1, λ̃j + f1(u))gj

( 1

u1

l̃j(1, u2, · · ·, un)t
)
.

Moreover, let l̃ij be the i-th component of l̃j, we have

∂2Ẽ(v)

∂vi∂vk

=
n∑

j=1

g′′j (wj)l̃jil̃jk
def
= αg

ik(w), with w = (w1, · · · , wn)t.

Therefore, by the equivalence of the convexity of entropies given in Proposition 2.1, E(u)

defined by (4.7) is convex if and only if the symmetric matrix ∆g(w)
def
= (αg

ik(w))1≤i,k≤n is

positively definite for all w ∈ Rn. In particular, since (l̃1, l̃2, · · ·, l̃n) is linearly independent,

the constant matrix (< l̃i, l̃k >)1≤i,k≤n is positively definite, where < ·, · > denotes the
inner product of Rn. Thus a strictly convex entropy E(u) is constructed by choosing
gj(ξ) = ξ2 for all j = 1, 2, · · ·, n.

We collect the above discussion in the following result.

Proposition 4.1. Suppose that the linear Lagrangian system (4.2) is hyperbolic. Then
it is linearly degenerate, admits a complete set of classical Riemann invariants defined by
wi = l̃i(1, u2, · · ·, un)t/u1 (1 ≤ i ≤ n) and each of its eigenvalues has constant multiplicity,

where (l̃1, l̃2, · · ·, l̃n) is composed of the left eigenvectors of the corresponding linear system
in Lagrangian coordinates. Moreover, each entropy-entropy flux pair (E(u), F (u)) of the
system has an explicit expression (4.7), E(u) is convex if and only if the matrix ∆g(w)
is positively definite for all w ∈ Rn and a strictly convex entropy E(u) is given when
gj(ξ) = ξ2 for all j = 1, 2, · · ·, n.

Finally, we mention that a similar notion was introduced in [19] where a system of
conservation laws is called a Lagrangian system if in Lagrangian coordinates it admits a
strictly convex entropy with zero flux function. The Lagrangian system is an extension
of the equations for gas dynamics. Then the nature of the linear Lagrangian system and
Lagrangian system is different.

4.2. Explicit solutions of the Cauchy problem. Consider the Cauchy problem for the
linear Lagrangian system (4.2) with the initial condition (2.2). Let v0 = (1, u0

2, · · ·, u0
n)t/u0

1

and w = (w1, w2, · · ·, wn)t. By Theorem 2.1 we have

(4.8) s = 0 : w̃i = w0
i (X0(y)) = l̃iv

0(X0(y)), y ∈ R.
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Therefore, the unique solution of the Cauchy problem (4.3) and (4.8) is given by

w̃i(s, y) = w0
i (X0(y − λ̃is)).

It follows from Theorem 2.1 that the Cauchy problem (4.2) and (2.2) admits a unique
entropy solution u. For seeking an explicit expression of u, we denote by r̃i the right eigen-
vector of Ã associated to λ̃i normalized as l̃ir̃j = δij, where δij stands for the Kronecker’s
symbol. Then we may write

(4.9) ṽ(s, y) =
n∑

i=1

(l̃iv
0)(X0(y − λ̃is))r̃i.

Now let us determine the unique function y = Y (t, x) in the E-L transformation. From
(2.4), we have

dx = ṽ1(t, y)dy −
n∑

j=1

ã1j ṽj(t, y)dt,

which defines a unique function x = X(t, y) together with X(0, y) = X0(y). A straight-
forward calculation using the first equation in (4.3) gives

X(t, y) = X0(y)−
∫ t

0

n∑
j=1

ã1j ṽj(τ, y)dτ.

Let r̃ji be the j-th component of r̃i. Since

n∑
j=1

ã1j r̃ji = λ̃ir̃1i,

it follows from (4.9) that

(4.10) X(t, y) = X0(y)−
∫ t

0

n∑
i=1

λ̃ir̃1i(l̃iv
0)(X0(y − λ̃iτ))dτ.

Note that the function in the above integral is given by the initial data. To guarantee
that the function y 7−→ X(t, y) is invertible for all t ≥ 0, we need the conditions v ∈
L∞(R+×R) and v1(t, x) ≥ v1 > 0, or equivalently u ∈ L∞(R+×R) and u1(t, x) ≥ u1 > 0,
a.e. (t, x) ∈ R+ × R. That is why we have made the assumptions

(4.11) u0 ∈ L∞(R), u0
1(x) ≥ u1 > 0, a.e. x ∈ R

and furthermore,

(4.12)
n∑

i=1

(l̃iv
0)(X0(y − λ̃it))r̃1i ≥ v1 > 0, a.e. (t, y) ∈ R+ × R.

It is clear that under the conditions (4.11)-(4.12), the function y 7−→ X(t, y) is invertible
and bi-Lipschitzian from R to R for all t ≥ 0. Therefore, from Lemma 2.1 we obtain
y = Y (t, x) as the inverse function of y 7−→ X(t, y) satisfying Y (0, x) = Y0(x). Finally,
(4.9) gives

(4.13) v(t, x) =
n∑

i=1

(l̃iv
0)(X0(Y (t, x)− λ̃it))r̃i,
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which implies, together with (4.12), that v1(t, x) ≥ v1 > 0, a.e. (t, x) ∈ R+ × R. In
particular,

(4.14) wi(t, x) = w0
i (X0(Y (t, x)− λ̃it)),

which shows that the maximum principle holds for each wi.
On the other hand, the expression w̃i(s, y) = w̃0

i (y − λ̃is) shows that the entropy
equality (2.10) is satisfied for all entropy-entropy flux pairs (Ẽ(v), F̃ (v)) given in (4.6).
This equality is equivalent to (2.9). Thus we obtain the following conclusion.

Theorem 4.1. Let the assumptions (4.11)-(4.12) hold and the linear Lagrangian system
(4.2) be hyperbolic. Then the Cauchy problem (4.2) and (2.2) admits a unique entropy
solution in the sense of Definition 2.1. It is given by the explicit expression (4.13) and
(2.7), where X0 and Y (t, ·) are the inverse functions of Y0 and X(t, ·) for all t ≥ 0 defined
in (2.12) and (4.10), respectively.

Remark 4.1. Formula (4.13) shows that the solution of the Cauchy problem (4.2) and
(2.2) has the same regularity as its initial data. In particular, if u0 ∈ BV (R) then
u(t, ·) ∈ BV (R) for all t ≥ 0; and if u0 ∈ Cm(R) with m ∈ N∗ then X0, Y0 ∈ Cm(R) and
X, Y ∈ Cm(R+ × R). Hence, u ∈ Cm(R+ × R).

Remark 4.2. From (4.10), we have

∂ttX(t, y) =
n∑

i=1

λ̃2
i r̃1il̃i(v

0 ◦X0)
′(y − λ̃it)

and

∂yyX(t, y) =
n∑

i=1

r̃1il̃i(v
0 ◦X0)

′(y − λ̃it).

Hence, when |λ̃i| = λ̃ for all i = 1, 2, · · ·, n, X satisfies a linear wave equation

∂ttX − λ̃2∂yyX = 0.

As we will see in the next section, this situation occurs for all 2 × 2 linearly degenerate
systems of conservation laws.

4.3. Weak stability. Consider a hyperbolic linear Lagrangian system (4.2). Let (u0
ε)ε>0

be a bounded sequence in L∞(R) satisfying (4.11)-(4.12) uniformly with respect to ε. We
denote by (uε)ε>0 the corresponding sequence of entropy solutions of the system (4.2)
with the initial data (u0

ε)ε>0. From (4.11)-(4.12) and the explicit formulas (4.13)-(4.14),
we know that the sequence (uε)ε>0 is bounded in L∞(R+ × R) and there is a constant
u > 0, independent of ε→ 0, such that u1ε(t, x) ≥ u, a.e. (t, x) ∈ R+ × R.

Therefore, up to subsequences, still denoted by (uε)ε>0 and (u0
ε)ε>0, we have

uε −−⇀ u, in L∞(R+ × R) weakly-∗

and

u0
ε −−⇀ u0, in L∞(R) weakly-∗,

with u ∈ L∞(R+ × R) and u0 ∈ L∞(R) satisfying u0
1(x) ≥ u1 > 0 and u1(t, x) ≥ u, a.e.

(t, x) ∈ R+×R. The weak stability of the linear Lagrangian system means that the weak
limit u is a unique entropy solution of (4.2) with initial datum u0.
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Indeed, since f1 is an affine function, we obtain

f1(uε)−−⇀ f1(u), in L∞(R+ × R) weakly- ∗ .
Then applying the div-curl lemma of compensated compactness (see [43]) to the first and
i-th (2 ≤ i ≤ n) equations in (4.2), we obtain, in the sense of distributions,

lim
ε→0

(u1εfi(uε)− uiεf1(uε)) = u1 lim
ε→0

fi(uε)− ui lim
ε→0

f1(uε).

It follows from the definition of fi that

lim
ε→0

(
ãi1 +

n∑
j=2

ãijujε

)
= u1 lim

ε→0
fi(uε)− uif1(u).

Hence, for all 2 ≤ i ≤ n,

lim
ε→0

fi(uε) =
1

u1

(
ãi1 + uif1(u) +

n∑
j=2

ãijuj

)
= fi(u).

This allows to pass to the limits in the weak formulation of the Cauchy problem for uε

and deduce that u is a weak solution of (4.2) and the initial datum of u is just u0.
To prove that the weak limit u is a unique entropy solution of (4.2), it remains to show

that u fulfills the condition (4.12). To this end, we notice that the sequence (Y0ε)ε>0

defined by

Y0ε(x) =

∫ x

0

u0
1ε(ξ) dξ

is bounded in W 1,∞
loc (R). Then up to a subsequence, still denoted by (Y0ε)ε>0, we have

Y0ε −→ Y0 in Lp
loc(R) strongly for any p ≥ 1, where Y0 is given in (2.12). Let φ ∈ C∞0 (R)

and X0ε = Y −1
0ε . Then φ(Y0ε) −→ φ(Y0) in Lp

loc(R) strongly. It follows that∫
R
(v0

ε ◦X0ε)(y)φ(y)dy =

∫
R
v0

ε(x)φ(Y0ε(x))Y
′
0ε(x)dx

=

∫
R
v0

ε(x)u
0
1ε(x)φ(Y0ε(x))dx

=

∫
R
(1, u0

2ε, · · ·, u0
nε)

t(x)φ(Y0ε(x))dx

−−→
∫

R
(1, u0

2, · · ·, u0
n)t(x)φ(Y0(x))dx

=

∫
R
(v0 ◦X0)(y)φ(y)dy,

with v0 = (1, u0
2, · · ·, u0

n)t/u0
1. Here we have used the changes of variables y = Y0ε(x) and

y = Y0(x) in the first and last equalities, respectively. This shows that

v0
ε ◦X0ε −−⇀ v0 ◦X0, in L∞(R) weakly- ∗ .

Since u0
ε satisfies (4.12) uniformly with respect to ε, i.e.,

n∑
i=1

(l̃iv
0
ε)(X0ε(y − λ̃it))r̃1i ≥ v1 > 0, a.e. (t, y) ∈ R+ × R,
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we deduce that u satisfies (4.12). Thus, u is a unique entropy solution of the Cauchy
problem to the linear Lagrangian system (4.2).

Theorem 4.2. The linear Lagrangian system is weakly stable in L∞(R+ × R).

Similar results were obtained by Serre [38] for 2× 2 linearly degenerate systems and by
Brenier [9] for a simplified ABI system. Since these two systems are included in the class
of linear Lagrangian systems, Theorem 4.2 can be viewed as an extension of their results.
However, the entropy equality and uniqueness of entropy solutions were not discussed in
their papers. Finally, we point out that the above weak stability result is obtained in a
very simple way with the help of a good choice of conservation laws to apply the div-curl
lemma among all entropy-entropy flux pairs given in (4.7).

4.4. An example of non-hyperbolic linear Lagrangian systems. Consider the
Cauchy problem for the system of pressureless gas dynamics :

(4.15)

{
∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2) = 0, t > 0, x ∈ R,

with initial conditions :

(4.16) t = 0 : ρ = ρ0(x), u = u0(x), x ∈ R.
Let ρ > 0 and (t, x) 7−→ (s, y) = (t, Y (t, x)) be the E-L transformation defined by

(4.17) dy = ρdx− ρudt, Y (0, x) = Y0(x)
def
=

∫ x

0

ρ0(ξ)dξ.

Then in Lagrangian coordinates (s, y), the system (4.15) becomes :

(4.18)

{
∂sṽ − ∂yũ = 0,

∂sũ = 0, s > 0, y ∈ R.
It is clear that the equations of pressureless gas dynamics are linear Lagrangian system
but not hyperbolic.

The initial conditions (4.16) correspond to :

(4.19) s = 0 : ṽ = ṽ0(y), ũ = ũ0(y), y ∈ R,
where

(ṽ0, ũ0) =
( 1

ρ0
, u0

)
(X0), X0 = Y −1

0 .

We deduce from (4.18)-(4.19) that

ṽ(t, y) = ṽ0(y) + t(ũ0)′(y), ũ(t, y) = ũ0(y).

To guarantee the change of variables (4.17), we assume that

(4.20) ρ0 ∈ L∞(R), u0 ∈ W 1,∞(R) with ρ0(x) ≥ ρ > 0, a.e. x ∈ R.

Then ṽ(t, y) > 0 for small t > 0. It follows that x = X(t, y) satisfies

dx = (ṽ0(y) + t(ũ0)′(y))dy + ũ0(y)dt.

The unique function x = X(t, y) satisfying X(0, y) = X0(y) = Y −1
0 (y) is

X(t, y) = X0(y) + tũ0(y).
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Since X ′
0(y) = ṽ0(y), the function y 7−→ X(t, y) is bijective and bi-Lipschitzian for small

t ≥ 0. From Lemma 2.1, we have Y (t, ·) = X−1(t, ·) for small t ≥ 0. Hence,

(4.21) ρ(t, x) =
ρ0(X0(Y (t, x)))

1 + t(ρ0(u0)′)(X0(Y (t, x)))
, u(t, x) = u0(X0(Y (t, x))).

Proposition 4.2. Under the assumption (4.20), there exists t1 > 0 such that the Cauchy
problem (4.15)-(4.16) admits a unique solution (ρ, u) ∈ L∞((0, t1)×R)∩W 1,∞((0, t1)×R),
defined by (4.21). This solution is global if u0 is a non-decreasing function.

Beyond the interval [0, t1), ρ becomes a measure. For the study of measure-valued
solutions of (4.15), we refer to [6, 7, 8, 22] and the references therein. See also [47] from
a physical point of view.

5. The 2× 2 linearly degenerate system

Consider the Cauchy problem for the 2 × 2 linearly degenerate system. Since the
characteristic fields are both linearly degenerate, the eigenvalues λ1 and λ2 are two classical
Riemann invariants of the system associated to the eigenvalues λ2 and λ1, respectively.
Set z = λ1 and w = λ2, then for smooth solutions all 2 × 2 linearly degenerate systems
can be written in a canonical form :

(5.1)

{
∂tw + z ∂xw = 0,

∂tz + w ∂xz = 0, t > 0, x ∈ R.
It is supplemented by initial conditions :

(5.2) t = 0 : w = w0(x), z = z0(x), x ∈ R.
It is easy to check that each entropy-entropy flux pair (E,F ) of the system (5.1) is of the
form (see [38]) :

(5.3) E(w, z) =
g1(w) + g2(z)

w − z
, F (w, z) =

zg1(w) + wg2(z)

w − z
,

where g1 and g2 are two arbitrary continuous functions.
For w > z and any a > 0, let

(5.4) ρ =
2a

w − z
, u =

w + z

2
.

Then we obtain the equations for Chaplygin gas dynamics [46] :

(5.5)

{
∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu
2 + p(ρ)) = 0,

in which the pressure is given by the state law of Von Kármán-Tsien : p(ρ) = p′ − a2ρ−1,
where p′ > 0 is a constant such that p(ρ) > 0 (see [15], p.10 and [2], p.7).

Comparing the systems (4.4) and (5.5), we see that (5.5) is a linear Lagrangian system
with n = 2, u1 = ρ and u2 = ρu. According to Definition 2.1, (w, z) ∈ L∞(R+ × R) with
w > z is an entropy solution of the Cauchy problem (5.1)-(5.2) if all entropy-entropy flux
pairs (E(w, z), F (w, z)) defined by (5.3) satisfy

(5.6) ∂tE(w, z) + ∂xF (w, z) = 0,
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in the sense of distributions. This makes sense of the system (5.1) for weak solutions.
The system (5.1) was studied by Serre for oscillatory solutions (see [38] or [40], p.110-

113), and by E and Kohn for measure-valued solutions [21]. When the initial data satisfy

(5.7) w0, z0 ∈ L∞(R), inf
x∈R

w0(x) > sup
x∈R

z0(x),

the existence and uniqueness of entropy solutions were established by Chen by using the
compensated compactness and quasidecoupling method [14]. The derivation of explicit
solutions of the Cauchy problem (5.1)-(5.2) was investigated by Serre [39] and by Brenier
[9, 10] in the case of periodic smooth solutions.

Under the conditions in (5.7), the explicit entropy solution in L∞ of the Cauchy problem
was constructed by the author [36] by means of the method presented in Sections 2-4. The
resulting formula is the same as that in [9, 10] but is different from that of [39]. Indeed,
it is a particular case of the linear Lagrangian system for which the second condition in
(5.7) corresponds to (4.12). This condition implies that w(t, x) > z(t, x) and then the
system (5.1) is strictly hyperbolic for almost all (t, x) ∈ R+ × R.

The E-L transformation can be defined explicitly by using the first equation in (5.5)
and (5.4) with a = 1. It is given by (s, y) = (t, Y (t, x)) with

(5.8) dy =
2

w − z
dx− w + z

w − z
dt, Y (0, x) = Y0(x)

def
=

∫ x

0

2d ξ

w0(ξ)− z0(ξ)
.

The corresponding linear system in Lagrangian coordinates (s, y) is

(5.9) ∂sw̃ − ∂yw̃ = 0, ∂sz̃ + ∂yz̃ = 0.

Let X0 = Y −1
0 . Then

w̃(s, y) = w0(X0(y + s)) and z̃(s, y) = z0(X0(y − s)).

Hence, a unique function x = X(t, y) satisfying X(0, y) = X0(y) is given by

(5.10) X(t, y) =
1

2

∫ y+t

0

w0(X0(ξ))d ξ −
1

2

∫ y−t

0

z0(X0(ξ))d ξ.

Obviously, X(t, ·) is bijective and Lipschitzian from R to R for all t ≥ 0. From Lemma
2.1, we have Y (t, ·) = X−1(t, ·). Finally, since the eigenvalues of the linear system (5.9)

are λ̃1 = −1 and λ̃2 = 1. From Remark 4.2, X satisfies the linear wave equation :

∂ttX − ∂yyX = 0.

As an application of Theorem 4.1, we obtain the following result already stated in [36].

Theorem 5.1. Let the conditions in (5.7) hold. Then the Cauchy problem (5.1)-(5.2)
has a unique solution (w, z) ∈ L∞(R+ × R) satisfying the entropy equality (5.6) for all
entropy-entropy flux pairs (E,F ) defined by (5.3). This solution is given by

(5.11) w(t, x) = w0(X0(Y (t, x) + t)), z(t, x) = z0(X0(Y (t, x)− t)), t > 0, x ∈ R.

Remark 5.1. In view of the expressions (5.8) and (5.11), the second condition in (5.7)
can be replaced by the following weak condition :

inf
t>0, y∈IR

(
w0(X0(y + t))− z0(X0((y − t))

)
> 0.

By the expression (5.3) on the entropy-entropy flux pairs, it is easy to see that this weak
condition is necessary and sufficient to define any weak solution.
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Remark 5.2. In the literature there exists an another way to integrate the system (5.1).
Consider the second order nonlinear partial differential equation

(5.12)
(
(∂xΦ)2 + 1

)
∂ttΦ− 2∂tΦ ∂xΦ ∂txΦ +

(
(∂tΦ)2 − 1

)
∂xxΦ = 0, t > 0, x ∈ R

with initial conditions

(5.13) t = 0 : Φ = Φ0(x), ∂tΦ = Φ1(x), x ∈ R.

Under the hyperbolic condition 1 + (∂xΦ)2 − (∂tΦ)2 > 0, Lochak obtained the following
explicit formulas for smooth solutions of (5.12)-(5.13), see [32, 33],

(5.14) t =
1

2

∫ α

β

1 + (Φ′0(λ))2√
1 + (Φ′0(λ))2 − Φ2

1(λ)
dλ,

(5.15) x =
α+ β

2
+

1

2

∫ α

β

Φ′0(λ)Φ1(λ)√
1 + (Φ′0(λ))2 − Φ2

1(λ)
dλ,

(5.16) Φ =
Φ0(α) + Φ1(β)

2
− 1

2

∫ α

β

Φ1(λ)√
1 + (Φ′0(λ))2 − Φ2

1(λ)
dλ.

If we introduce u = ∂tΦ and v = ∂xΦ, then (5.12) can be rewritten as a non conservative
system : {

(v2 + 1)∂tu− 2uv∂xu+ (u2 − 1)∂xv = 0,

∂tv − ∂xu = 0.

This system is equivalent to (5.1) for smooth solutions in which w and z are defined by

w =
1

v2 + 1

(√
1 + v2 − u2 − uv

)
, z = − 1

v2 + 1

(√
1 + v2 − u2 + uv

)
.

It is clear that Lochak formulas (5.14)-(5.16) are different from (5.11).

6. The Born-Infeld equations

6.1. Preliminary. The Born-Infeld system is one of the nonlinear models of Maxwell
equations and related to the Born-Infeld Lagrangian (See Born-Infeld [5], Boillat [2],
Boillat-Ruggeri [4], Brenier [9], Gibbons [25, 26] and Serre [41])

(6.1) L(E,B) = −
√

1 + |B|2 − |E|2− < E,B >2,

where E and B are the electric and magnetic fields in R3, < ·, · > stands for the inner
product and |B| =< B,B >

1
2 is the Euclidean norm. Introducing the electric induction

D = ∂L/∂E, the Poynting vector P and the Born-Infeld energy density h [5, 26, 9]:

(6.2) P = D ×B, h =
√

1 + |B|2 + |D|2 + |D ×B|2,
then the BI equations read :

(6.3)


∂tD +∇×

(−B +D × P

h

)
= 0,

∂tB +∇×
(D +B × P

h

)
= 0,
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with differential constraints

(6.4) ∇ ·D = ∇ ·B = 0.

Remark that in the Born-Infeld model, the electric field E ∈ R3 is given by

E =
∂h(D,B)

∂D
=

1

h
(D +B × P ).

It is well known that the Born-Infeld energy h and Poynting vector P satisfy the
additional conservation laws

(6.5) ∂th+∇ · P = 0,

(6.6) ∂tP +∇ ·
(P ⊗ P −B ⊗B −D ⊗D

h

)
−∇

(1

h

)
= 0,

which mean that h and P are just mathematical entropies of the system (6.3). In [9]
Brenier lifted the BI system of 6 equations (6.2)-(6.4) to the ABI system of 10 equations
(6.3)-(6.6) by considering h, D, B and P as independent variables. He revealed the
hydrodynamic structure of the ABI system similar to that of the Magnetohydrodynamics
equations. An another enlargement of the BI system of 6 equations to 9 equations was
described by Serre [41]. Note that the idea of enlargement of systems was developed by
Qin [37], by Dafermos [17] and by Demoulini-Stuart-Tzavaras [18] for nonlinear elasticity.

For smooth solutions to the BI and ABI systems, the reader is referred to Brenier
[9] and Serre [41] for local existence of smooth solutions by an argument for first order
symmetrizable hyperbolic systems, to Chae-Huh [12] for global existence with small initial
data, and also to [11] for the solutions beyond singularities. In this section, we consider the
entropy solutions for both BI and ABI systems in one-dimensional case. In a simple way
we show that both systems are hyperbolic and linearly degenerate. Therefore, L∞ entropy
solutions of the BI system should satisfy the conservation laws (6.5)-(6.6) according to
Definition 2.1. Moreover, the ABI system is a linear Lagrangian one thus allowing to
apply Theorem 4.1. Although the BI system is not a linear Lagrangian one, the explicit
entropy solutions can still be constructed via the solutions of the ABI system.

As in [9] we denote by x = x1 and consider the problems independent of x2 and x3.
Then B1 and D1 are constants from (6.3)-(6.4). It follows that the BI system (6.3)-(6.4)
and the ABI system (6.3)-(6.6) are reduced to

(6.7)



∂tD2 + ∂x

(B3 +D2P1 −D1P2

h

)
= 0,

∂tD3 + ∂x

(−B2 +D3P1 −D1P3

h

)
= 0,

∂tB2 + ∂x

(−D3 +B2P1 −B1P2

h

)
= 0,

∂tB3 + ∂x

(D2 +B3P1 −B1P3

h

)
= 0,

P = D ×B, h =
√

1 + |B|2 + |D|2 + |D ×B|2,
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(6.8)



∂th+ ∂xP1 = 0,

∂tP1 + ∂x

(P 2
1 − (1 +D2

1 +B2
1)

h

)
= 0,

∂tD2 + ∂x

(B3 +D2P1 −D1P2

h

)
= 0,

∂tD3 + ∂x

(−B2 +D3P1 −D1P3

h

)
= 0,

∂tB2 + ∂x

(−D3 +B2P1 −B1P2

h

)
= 0,

∂tB3 + ∂x

(D2 +B3P1 −B1P3

h

)
= 0,

∂tP2 + ∂x

(P1P2 −D1D2 −B1B2

h

)
= 0,

∂tP3 + ∂x

(P1P3 −D1D3 −B1B3

h

)
= 0,

respectively. Here we have used the notations

B = (B1, B2, B3)
t, D = (D1, D2, D3)

t, P = (P1, P2, P3)
t.

6.2. Entropy solutions of the ABI system. Obviously, the ABI system is decoupled
since the first two equations in (6.8) are nothing but the equations for Chaplygin gas
(5.5). Therefore, we may first solve these equations to get (h, P1), and then determine
the remainder unknowns by a linear system of six equations. This is possible for smooth
solutions. For weak solutions, we will not do so since the linear system for unknown
(D2, D3, B2, B3, P2, P3) contains discontinuous coefficients which makes the problem diffi-
cult to be treated.

Now let us rewrite the system (6.8) by introducing

(6.9) P1 = hv2, D2 = hv3, D3 = hv4, B2 = hv5, B3 = hv6, P2 = hv7, P3 = hv8.

Then the ABI system (6.8) becomes :

(6.10)



∂th+ ∂x(hv2) = 0,

∂t(hv2) + ∂x

(
hv2

2 − a2h−1
)

= 0,

∂t(hv3) + ∂x (hv2v3 −D1v7 + v6) = 0,

∂t(hv4) + ∂x (hv2v4 −D1v8 − v5) = 0,

∂t(hv5) + ∂x (hv2v5 −B1v7 − v4) = 0,

∂t(hv6) + ∂x (hv2v6 −B1v8 + v3) = 0,

∂t(hv7) + ∂x (hv2v7 −D1v3 −B1v5) = 0,

∂t(hv8) + ∂x (hv2v8 −D1v4 −B1v6) = 0,

where a =
√

1 +B2
1 +D2

1 > 0 is a constant. We associate to the system (6.10) the
following initial conditions :

(6.11) t = 0 : h = h0(x), vi = v0
i (x) (2 ≤ i ≤ 8), x ∈ R.
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In view of (4.4), we see that (6.10) is a linear Lagrangian system with n = 8 and u1 = h.
Moreover, let (t, x) 7−→ (s, y) = (t, Y (t, x)) be the change of variables given by

(6.12) dy = hdx− hv2dt, Y (0, x) = Y0(x)
def
=

∫ x

0

h0(ξ)dξ.

Then in Lagrangian coordinates (s, y) the system (6.10) is written as

(6.13) ∂sṽ + Ã∂yṽ = 0,

where v1 = 1/h, v = (v1, v2, · · ·, v8)
t and

(6.14) Ã =



0 −1 0 0 0 0 0 0

−a2 0 0 0 0 0 0 0

0 0 0 0 0 1 −D1 0

0 0 0 0 −1 0 0 −D1

0 0 0 −1 0 0 −B1 0

0 0 1 0 0 0 0 −B1

0 0 −D1 0 −B1 0 0 0

0 0 0 −D1 0 −B1 0 0


.

Notice that Ã is composed of two block matrix Ã = diag(Ã1, Ã2), with Ã1 ∈M2(R) being
obviously diagonalizable and Ã2 ∈ M6(R) being symmetric. Hence, Ã is diagonalizable
and the linear system (6.13) is hyperbolic. Furthermore, a straightforward computation
gives the eigenvalues of Ã :

(6.15) λ̃1 = λ̃2 = λ̃3 = −a, λ̃4 = λ̃5 = 0, λ̃6 = λ̃7 = λ̃8 = a.

Thus applying Proposition 4.1, we obtain

Proposition 6.1. For h > 0 and any given B1, D1 ∈ R, the ABI system (6.10) is a linear
Lagrangian one and hyperbolic. Let u = h(1, v2, · · ·, v8)

t. The eigenvalues λi = λi(u) (1 ≤
i ≤ 8) of the system (6.10) are :

(6.16) λ1 = λ2 = λ3 =
u2 − a

h
, λ4 = λ5 = v2, λ6 = λ7 = λ8 =

u2 + a

h
.

It admits a complete set of classical Riemann invariants wj = l̃jv (1 ≤ j ≤ 8), where l̃j is

the left eigenvector of Ã associated to the eigenvalue λ̃j. Moreover, each entropy-entropy
flux pair (E,F ) of the system is expressed as

(6.17) (E(u), F (u)) = h
8∑

j=1

(1, λj(u))gj

(1

h
l̃j(1, u2, · · ·, u8)

t
)
,

with arbitrary continuous functions gj (1 ≤ j ≤ 8), and a strictly convex entropy E(u) is
given when gj(ξ) = ξ2 for all j = 1, 2, · · ·, 8.

Each eigenvalue of the system (6.10) being multiple, then its linear degeneracy can
alos be obtained from the result in [1]. To solve the Cauchy problem (6.10)-(6.11), we
translate the conditions in (5.7) into

(6.18) h0, v0
i ∈ L∞(R) (2 ≤ i ≤ 8), inf

x∈R

(
v0

2(x) +
a

h0(x)

)
> sup

x∈R

(
v0

2(x)−
a

h0(x)

)
,
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which imply that h(t, x) > 0 for almost all (t, x) ∈ R+ × R. As above, for t ≥ 0, define

(6.19) X0 = Y −1
0 , Y (t, ·) = X−1(t, ·),

with

(6.20) X(t, y) =
1

2

∫ y+t

0

(
v0

2 +
a

h0

)
(X0(ξ))d ξ −

1

2

∫ y−t

0

(
v0

2 −
a

h0

)
(X0(ξ))d ξ.

Then applying Theorems 4.1-4.2, we obtain the following result.

Theorem 6.1. Under the condition (6.18), the Cauchy problem (6.10)-(6.11) admits a
unique solution h, v ∈ L∞(R+ × R) satisfying the entropy equality ∂tE(u) + ∂xF (u) = 0
in the sense of distributions for all entropy-entropy flux pairs defined by (6.17). This
solution is weakly stable in L∞(R+ × R) and is given by

(6.21) vj(t, x) =
8∑

i=1

(l̃iv
0)(X0(Y (t, x)− λ̃it))r̃ji (1 ≤ j ≤ 8),

where r̃i is the right eigenvector of Ã associated to λ̃i such that l̃ir̃j = δij (1 ≤ i, j ≤ 8)
and r̃ji is the j-th component of r̃i.

6.3. Entropy solutions of the BI system. It is clear that (E(u), F (u)) defined in
(6.17) is an entropy-entropy flux pair of the BI system (6.7) when h and v lie in the
4-dimensional sub-manifold (6.2) of R8 (BI manifold following Brenier [9]). By a further
computation, we obtain the following result.

Proposition 6.2. For h > 0 and any given B1, D1 ∈ R, the BI system (6.7) is hyperbolic
and linearly degenerate with the eigenvalues

(6.22) µ1(U) = µ2(U) =
P1 − a

h
, µ3(U) = µ4(U) =

P1 + a

h
,

where U = (B2, B3, D2, D3)
t, P1 and h are given by (6.2). It admits a complete set of

classical Riemann invariants Wi = LiU/h (1 ≤ i ≤ 4) where Li (1 ≤ i ≤ 4) are linearly
independent constant vectors given by

(6.23)

{
L1 = (a, β1, 0,−β3), L2 = (−β1, a, β3, 0),

L3 = (0,−β2, a, β1), L4 = (β2, 0,−β1, a),

with β1 = B1D1, β2 = 1 +B2
1 and β3 = 1 +D2

1. Moreover, each entropy-entropy flux pair
has an explicit expression :

(6.24) (E(U), F (U)) = h

4∑
i=1

(1, µi(U))gi

(1

h
LiU

)
,

where h is defined in (6.2) and gi (1 ≤ i ≤ 4) are arbitrary continuous functions.

Proof. First, replacing P2 and P3 from the expression P = D×B and using the notation
(6.9), we obtain

(6.25) v7 = B1v4 −D1v6, v8 = D1v5 −B1v3.

Then in Lagrangian coordinates (s, y) with

(6.26) s = t, dy = hdx− P1dt, h > 0,
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the BI system (6.7) becomes

(6.27)



∂sṽ3 − ∂y

(
B1D1ṽ4 − (1 +D2

1)ṽ6

)
= 0,

∂sṽ4 + ∂y

(
B1D1ṽ3 − (1 +D2

1)ṽ5

)
= 0,

∂sṽ5 − ∂y

(
(1 +B2

1)ṽ4 −B1D1ṽ6

)
= 0,

∂sṽ6 + ∂y

(
(1 +B2

1)ṽ3 −B1D1ṽ5

)
= 0.

From Remark 2.1, the BI system (6.7) is equivalent to the linear system (6.27) via the
E-L transformation. Now the eigenvalues of (6.27) are

(6.28) µ̃1 = µ̃2 = −a, µ̃3 = µ̃4 = a,

with the corresponding left eigenvectors L1, L2, L3 and L4 given in (6.23). According to
(2.11), the eigenvalues of the BI system (6.7) are given by (6.22). Since the vectors L1,
L2, L3 and L4 are linearly independent, the linear system (6.27) is hyperbolic. It follows
from Proposition 2.1 and Remark 2.1 that the BI system (6.7) is hyperbolic and linearly
degenerate. It admits a complete set of classical Riemann invariants Wi = LiU/h =
Li(v3, v4, v5, v6)

t (1 ≤ i ≤ 4). Similarly to the proof of (6.17), we may check that each
entropy-entropy flux pair of the BI system has the expression (6.24). �

Obviously, all entropy solutions (B,D) of the BI system (6.7) satisfy the ABI system
(6.8). Conversely, if (h,B,D, P ) is a smooth solution of (6.8), with an initial datum in
the BI manifold (6.2), then (B,D) is also a smooth solution of (6.7) (see [3, 41]). This
means that the BI-manifold is invariant for smooth solutions. Here we show that it is still
invariant for the entropy solution. It implies that if the initial data lie in the BI manifold
(6.2), then (B,D) is an entropy solution of (6.7) if and only if (h,B,D, P ) is an entropy
solution of (6.8). Note finally that the BI system is not strictly hyperbolic. For strictly
hyperbolic systems having all linearly degenerate characteristics, we refer to [14] on the
existence of entropy solutions.

Theorem 6.2. Let the condition (6.18) be fulfilled and (h,B,D, P ) ∈ L∞(R+ × R)
be an entropy solution of the ABI system (6.8) with initial data (h0, B0, D0, P 0). If
(h0, B0, D0, P 0) lies in the BI manifold (6.2), then (B,D) is an entropy solution of the
BI system (6.7).

We first show the following lemmas.

Lemma 6.1. For the ABI system (6.8), under the assumptions of Theorem 6.2, we have

(6.29) P2 = B1D3 −D1B3, P3 = D1B2 −B1D2.

Proof. Let e2 = P2 − (B1D3 −D1B3) and e3 = P3 − (D1B2 − B1D2). We want to show
e2 = 0 and e3 = 0.

By the definition (6.9), we have

e2 = hv7 −B1hv4 +D1hv6 and e3 = hv8 −D1hv5 +B1hv3.

Therefore, using the system (6.10) we get

∂te2 + ∂x(v2e2) = 0 and ∂te3 + ∂x(v2e3) = 0.
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In the coordinates (s, y) they are equivalent to

∂s

(
ẽ2

h̃

)
= 0 and ∂s

(
ẽ3

h̃

)
= 0.

Since the initial data (h0, B0, D0, P 0) lie in the BI manifold (6.2), we deduce that e2(0, x) =
e3(0, x) = 0. Hence, ẽ2 = ẽ3 = 0 and then e2 = e3 = 0. �

Lemma 6.2. For the ABI system (6.8), let us introduce

(6.30) E1(u) =
1 + |B|2 + |D|2 + |P |2

h
, F1(u) =

hP1E1(u)− 2a2P1 + 2a2hE2(u)

h2
,

(6.31) E2(u) =
B3D2 −B2D3

h
, F2(u) =

P1E2(u)

h
− P 2

1 + a2 − hE1(u)

2h2
.

If (6.29) holds, then (E1, F1) and (E2, F2) are two entropy-entropy flux pairs of the ABI
system (6.8).

As the proof of Lemma 6.2 involves only elementary calculations, it is postponed to
Appendix.

Proof of Theorem 6.2. Let us denote by

P = D ×B, h =
√

1 + |B|2 + |D|2 + |P |2.
Lemma 6.1 shows that P2 = P 2 and P3 = P 3. Now we prove that h = h and P1 = P 1,
i.e., E1(u) = h and E2(u) = h−1P1. On one hand, since the solution of the ABI system
satisfies the entropy equality for all entropy-entropy flux pairs, Lemma 6.2 together with
the notation h−1P1 = v2 gives

(6.32)


∂tE1 + ∂x

(
v2E1 +

2a2(E2 − v2)

h

)
= 0,

∂tE2 + ∂x

(
v2E2 −

1

2

(
v2

2 +
a2

h2
− E1

h

))
= 0.

On the other hand, from the first two equations in (6.10), we have

(6.33)


∂th+ ∂x(hv2) = 0,

∂tv2 +
1

2
∂x

(
v2

2 −
a2

h2

)
= 0.

Let W = E1−h and Z = 2(E2− v2). Subtracting (6.32) and (6.33) and using h−1E1 =
h−1W + 1, we obtain 

∂tW + ∂x

(
v2W +

a2Z

h

)
= 0,

∂tZ + ∂x

(
v2Z +

W

h

)
= 0.

In Lagrangian coordinates (s, y), this system is equivalent to
∂s

(W̃
h̃

)
+ a2∂y

(Z̃
h̃

)
= 0,

∂s

(Z̃
h̃

)
+ ∂y

(W̃
h̃

)
= 0.
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Since (h0, B0, D0, P 0) lies in the BI manifold (6.2) which implies that W̃ = Z̃ = 0 at
s = 0, we deduce from the uniqueness of solutions to the linear system that W̃ = Z̃ = 0.
Hence, E1(u) = h and E2(u) = v2. This shows that h = h and P1 = P 1. Then (h,B,D, P )
lies in the BI manifold (6.2) and (B,D) is a weak solution of (6.7). Besides, since (h, P1)
satisfies the conservation law ∂th + ∂xP1 = 0, we may use the Lagrangian coordinates
(s, y) defined in (6.26). In these coordinates the BI system is equivalent to the linear
system (6.27) which yields the entropy equality for all entropy-entropy flux pairs (Ẽ, F̃ ).
Therefore, Theorem 2.1 implies that (B,D) satisfies the entropy equality for all entropy-
entropy flux pairs given in (6.24). Thus, (B,D) is an entropy solution of the BI system
(6.7). �

Since the entropy solution (B,D) of the BI system (6.7) satisfies the ABI system (6.8),
from the uniqueness of the entropy solution of the Cauchy problem for the ABI system, we
obtain a result of the uniqueness of the entropy solution to the BI system. Moreover, by
solving the equations of Chaplygin gas dynamics and the linear system (6.27), we obtain
as above an explicit expression of the entropy solution.

Theorem 6.3. Let U0 = (B0
2 , B

0
3 , D

0
2, D

0
3)

t ∈ L∞(R) and (h0, P 0) be defined by the BI
manifold (6.2) satisfying the second condition in (6.18). Then there exists a unique en-
tropy solution U = (B2, B3, D2, D3)

t ∈ L∞(R+ × R) to the system (6.7) with the initial
data U0. The solution is weakly stable in L∞(R+ × R) and is given by the expressions :

(6.34)
U(t, x)

h(t, x)
=

4∑
i=1

(LiU
0

h0

)
(X0(Y (t, x)− µ̃it))Ri,

(6.35) h(t, x) =
2a

w0(X0(Y (t, x) + at))− z0(X0(Y (t, x)− at))
,

where X0, Y , Li and µ̃i are defined by (6.19), (6.20), (6.23) and (6.28), respectively,

z0 = v0
2 −

a

h0
, w0 = v0

2 +
a

h0
, v0

2 =
P 0

1

h0
,

and Ri is defined by LiRj = δij for all i, j = 1, 2, 3, 4.

Remark 6.1. In one space dimension there is an another way to obtain the existence
and uniqueness of entropy solutions of the BI system. Indeed, it suffices to enlarge the
BI system by adding the equations for h and P1 instead of h and P . Then we obtain
a linear Lagrangian system of 6 equations of independent variables h, P1, (B2, B3) and
(D2, D3). We may use this system (which is smaller than the ABI system) to replace the
ABI system. Here the essential thing is that the relations in (6.25) are linear.

Remark 6.2. The Born-Infeld Lagrangian L(E,B) given in (6.1) is well defined if and
only if

∆(E,B) = 1 + |B|2 − |E|2− < E,B >2 ≥ 0,

with

E =
1

h
(D +B × P ), P = D ×B.

Using the definition (6.2) on h,

< B × P,B > = 0, < B, P > = < B,D ×B > = 0
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and the formula
|ξ|2|η|2 = < ξ, η >2 +|ξ × η|2, ∀ ξ, η ∈ R3,

we have
h2∆(E,B) = (1 + |B|2)2 + 2|D ×B|2 − 2 < D,B × P > .

Since
< D,B × P > = < P,D ×B > = |D ×B|2,

we obtain finally
h2∆(E,B) = (1 + |B|2)2 > 0.

Thus, the Born-Infeld Lagrangian L(E,B) is well defined for all B, D ∈ R3 and all h > 0.
In addition, we have

L(E,B) = −1

h
(1 + |B|2).

Appendix : Proof of Lemma 6.2

Step 1 : Equation for (E1(u), F1(u)).

Let v2 = h−1P1. Following Brenier [9], E1 satisfies

∂tE1 + ∂x(v2E1) = 2∂x

(
P1 − hE2 +B1 < B,P > +D1 < D,P >

h2

)
.

Using Lemma 6.1, we get

B1 < B,P > +D1 < D,P >

= B1(B1P1 +B2P2 +B3P3) +D1(D1P1 +D2P2 +D3P3)

= (B2
1 +D2

1)P1 + (B1B2 +D1D2)(B1D3 −B3D1) + (B1B3 +D1D3)(B2D1 −B1D2)

= (B2
1 +D2

1)(P1 − hE2).

Hence,

∂tE1 + ∂x(v2E1) = 2a2∂x

(
P1 − hE2

h2

)
,

namely,
∂tE1(u) + ∂xF1(u) = 0.

Step 2 : Derivation of the equation for V = hE2.

From the system (6.8), we obtain

∂tV = ∂t(B3D2 −B2D3)

= B3∂tD2 +D2∂tB3 −B2∂tD3 −D3∂tB2

= −B3∂x

(
B3 +D2P1 −D1P2

h

)
−D2∂x

(
D2 +B3P1 −B1P3

h

)
+B2∂x

(
−B2 +D3P1 −D1P3

h

)
+D3∂x

(
−D3 +B2P1 −B1P2

h

)
and

∂x(v2V ) = ∂x (v2(B3D2 −B2D3)) .
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Therefore,

∂tV + ∂x(v2V ) = ε1 + ε2,

with

ε1 = B2∂x(v2D3)−B3∂x(v2D2)−D2∂x(v2B3) +D3∂x(v2B2) + ∂x (v2(B3D2 −B2D3)) ,

ε2 = −B2∂x

(
B2

h

)
−B3∂x

(
B3

h

)
−D2∂x

(
D2

h

)
−D3∂x

(
D3

h

)
−B2∂x

(
D1P3

h

)
+B3∂x

(
D1P2

h

)
+D2∂x

(
B1P3

h

)
−D3∂x

(
B1P2

h

)
.

By developing ε1, ε2 and using the definition of E1, we get

ε1 = −V ∂xv2

and

ε2 =
1

2h
∂x(B

2
2 +B2

3 +D2
2 +D2

3 + P 2
2 + P 2

3 )− ∂x

[
1

h

(
B2

2 +B2
3 +D2

2 +D2
3 + P 2

2 + P 2
3

)]
=

1

2h
∂x(hE1 − P 2

1 ) + ∂x

(
a2 + P 2

1

h
− E1

)
.

Hence,

∂tV + ∂x

(
v2V − a2

h

)
= (P1 − V )∂xv2 +

1

2h
∂x(hE1)− ∂xE1.

Step 3 : Equation for (E2(u), F2(u)).

By the definition of V , we obtain

∂t(hE2) + ∂x

(
hv2E2 −

a2

h

)
− h(v2 − E2)∂xv2 =

1

2h
∂x(hE1)− ∂xE1.

Using the first equation in (6.10) and after simplification, we have

∂tE2 + ∂x(v2E2)−
a2

h
∂x

(1

h

)
− v2∂xv2 =

1

2h2
∂x(hE1)−

1

h
∂xE1.

Since
1

2h2
∂x(hE1)−

1

h
∂xE1 = −1

2
∂x(h

−1E1),

we obtain finally

∂tE2(u) + ∂xF2(u) = 0.

This ends the proof of Lemma 6.2.
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