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Example of supersonic solutions to a steady state
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Abstract. We give an example of supersonic solutions to a one-dimensional steady
state Euler-Poisson system arising in the modeling of plasmas and semiconductors.
The existence of the supersonic solutions which correspond to large current density is
proved by Schauder’s fixed point theorem. We show also the uniqueness of solutions
in the supersonic region.
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1 Introduction

The Euler-Poisson system plays an important role in the mathematical modeling and nu-
merical simulation for plasmas and semiconductors [2, 7, 8]. In the steady state isentropic
case the existence and uniqueness of smooth solutions are obtained in the subsonic region
for a one-dimensional flow [3] or potential flows [4]. See also [1] for the subsonic solutions
to a one-dimensional non-isentropic model. In [5, 6], the stationary transonic solutions are
studied by an artificial viscosity approximation. The existence of the transonic solutions
is proved by passing to the limit in the approximate Euler-Poisson system as the viscosity
coefficient goes to zero. However, the existence of the purely supersonic solutions has not
been discussed yet.

In this paper, we give an example of the supersonic solutions in a one-dimensional

steady state Euler-Poisson system :
0.7 =0, (1.1)

00 (£ 4 p(w) =06 i/ (12
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—Opep = b—n. (1.3)

Equation (1.1) implies that j is a constant. Here, n, j and ¢ are the electron density,
the current density and the electric potential, respectively. The parameter 7 > 0 stands
for the momentum relaxation time depending on n and j in general. For simplicity, we
assume that 7 is a constant. The given function b = b(z) is the doping profile for the
semiconductors. The pressure function p = p(n) is assumed to be smooth and strictly
increasing for n > 0. As in [3], we consider equations (1.1)-(1.3) in the interval (0,1)
subject to the following Dirichlet boundary conditions :

n(0) =ng, n(l) =ny, ¢0)= ¢y, O(1)= ¢, (1.4)

where ng > 0, n; > 0 and ¢g, ¢; € IR are given data. If n > 0 is a smooth function, after
eliminating ¢ in (1.2)-(1.3), we obtain a Dirichlet problem for n :

1 1 1
0, Fy(m) ~ 20 (m> gl =) =0 m(0.1) (1.5)
n(0) = ng, n(l) =ny, (1.6)
where . hn) )
n) . n
Fyn) = g5+ g~ with h(n) = /1 b yy dy.
Once n is solved, from (1.2) ¢ is given explicitly by :
8(r) = b0+ J2(Fy () = o)) + [ sy (17)

Then ¢, is linked with j by the following relation

b

¢1 = ¢o + j~(Fj(n1) — Fj(no)) + o mn(y)

dy. (1.8)

It is easy to see that (n,¢) with n > 0 is a smooth solution of (1.2)-(1.4) if and only if
(n, @) is a smooth solution of (1.5)-(1.7). Therefore, we may first solve n to the Dirichlet
problem (1.5)-(1.6) and then determine ¢ by (1.7).

Now the equation (1.5) is elliptic if and only if F/(n) # 0. Since p is strictly increasing,
there is a unique n.(j) such that F(n.(j)) = 0, or equivalently

: 1]
P'(ne(y)) = -
D= 56)
Here the quantities ¢ = /p/(n) and j/n stand for the speed of sound and the electron

velocity, respectively. If n — n?p/(n) is strictly increasing, we obtain the following
alternative :

subsonic flow <= F'(n) > 0 <= n > n.(j) = (1.5) is elliptic, (1.9)
2



supersonic flow <= F'(n) < 0 <= n < n.(j) = (1.5) is elliptic. (1.10)

Note that the linear term n/5% in (1.5) has not a good sign. Nevertheless, it is small as
j is large and then can be controlled by the L?(0, 1) norm of d,n by Poincaré’s inequality.
Similar argument holds for the term 0,(1/j7n). This is the main feature of the problem
to yield the existence and uniqueness of solutions.

2 Existence of solutions

Assume b € L>°(0,1). In view of (1.9), the subsonic solutions to (1.2)-(1.4) correspond
to the small value of j. They have been considered in [3]. We study here the supersonic
solutions which correspond to the case (1.10). To this end, let M; and Ms be any two
constants satisfying

0 < My < min(ng,ny), max(ng,n;) < M. (2.1)

Choosing j such that n.(j) > M, then (1.10) and (2.1) imply that the boundary data ng
and n; are in the supersonic region. Since the maximum principle can not be applied to
(1.5) in the supersonic region, the solutions of (1.5)-(1.6) may not be supersonic flow. To
seek for a supersonic solution, we define a smooth and strictly decreasing function Fj on
IR" such that

Fi(4+00) =0, Fj(n)= F;(n) for alln < M,.

Then we study the following problem instead of (1.5)-(1.6) :

—@JXm—;@(;)+;yn—m:o in (0,1), (2.2)
n(0) = ng, n(l) =n. (2.3)

Our strategy is to prove the existence of a smooth solution n to (2.2)-(2.3) such that
0 < n < M,. Then n is a supersonic solution of (1.5)-(1.6) by the definition of F}.

Since Fj is smooth and strictly decreasing from IR* to IR*, we may make a change
of variable v = Fj(n) for n > 0. Let G, be the inverse of £}, which is also smooth and
strictly decreasing from IR* to IR*. Then the problem (2.2)-(2.3) is equivalent to

1 1 1 .
—@w—j@<dmm>+ﬁ«mw—m:o in (0,1), (2.4)

v(0) = vo; = Fj(no), v(l)=wv1; = Fj(ni). (2.5)

To study the problem (2.4)-(2.5), we will apply Schauder’s fixed point theorem. For
this purpose, let’s define a closed convex set

S ={v e C(0,1]); F5(Ms) <v < F;(M)},



and a map T by v = T'(0) for o € S, where v solves the linear problem :

v+ leaj@)axv + jz,aj(x, 5)=0 in(0,1), (2.6)

v(0) = wvpj, v(l) = vy, (2.7)

with ,
G(o) 1

a(o) = = = ;
’ Gilo)  G3(o)Fj(G(0))
We observe that ¢ € S implies that

B(a,0) = Gj(o) = b(z).

Fi(Msy) < o < F;(M).
From Fj(0) = Fj(o) for 0 < My, we have
M1 S Gj(O') S MQ.

Therefore, from the definition of £}, there is a j; > 0 depending only on M; and M, such
that a; and ; are two bounded functions with bounds depending on M; and M, but
independent of j and o for any j € IR satisfying [j| > ji.

For v € H'(0,1) and z € H(0,1), let

1 1 1 /1
a(v,z) = /0 (@v@xz + ﬁaﬂo)z@w) dz, l(z) = _ﬁ/o Bj(x,0)zdx.

It is clear that {(+) is linear and continuous on H}(0, 1), and a(-, -) is bilinear and continuous
on H}(0,1) x H}(0,1). Moreover, by Poincaré’s inequality,

a(z,z) = /01 <(8xz)2 + ;aj(a)zamz> dx

1
||ax2||%2(o,1) - W”aj ||L°°(0,1)||Z||L2(0,1)||8wz||L2(0,1)

v

&
> (1= Slaslimon ) Reslison, ¥ H0.1)
where C > 0 is the constant in Poincaré’s inequality. Then there exists a jo > % lej ] zos (0,0
depending only on M; and M, such that

1 . .
a(z,z) > §||8$2H%2(0,1), V|j| > jo, ¥V 2 € Hy(0,1). (2.8)

Therefore, a(-,-) is coercive. By Lax-Milgram’s theorem, there exists a unique solution
v € H'(0,1) to the variational problem a(v,z) = I(z), Vz € H(0,1) and (2.7). This
shows that the map T is well defined.

We prove now that 7'(.S) is a compact set of C([0, 1]). Indeed, let 7; = (1 —x)vg; +xvy;.
Then v — v; € H}(0,1). From the continuity of {(-) and a(-,-), the coercivity estimate
(2.8) and

a(v —7;,v—71;) = l(v—7;) — a(vj,v —T;),
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it is easy to obtain

201 201

10:(v = 05) 22001y < =718l o= 0,1) i o RO [e] PRTGRIR (2.9)
Recall that «; and 3; are bounded independent of 0. We conclude from Poincaré’s
inequality and the compact imbedding from H'(0,1) into C([0, 1]) that T'(S) is a compact
set of C([0,1]). Moreover, there are constants Cy > 0 and j3 > j» which depend only on
M; and M, such that
_ & G
[o(z) —v;(2)] < TR il = js, YV €10,1].
Since
Fj(max(no,nl)) < @j(x) < E(min(noanl))7 Ve [07 1]7

it follows that

C C G

F;(max(ng,ny)) — |72| < v(z) < Fj(min(ng,ny)) + |72|, Vil > g3, Yael0,1].
The function n — Fj(n) being strictly decreasing for n < Ms, from (2.1) there is a
J4 > 73 depending only on M; and M, such that

F1J<M2) < U(l’) < FJ(M1)> v ’]’ > j4> Ve [0’ 1}' (2'1())

Hence, v € S and then T is a self map from S to S. Finally, the continuity of T" follows
from a standard argument. More precisely, for 01,09 € S, we can prove that there is a
constant C'5 > 0 depending only on M; and M, such that

C
(1 - m3> [T(00) = Tlox)leqo < |- or = oaloony

Thus, T is continuous for |j| > j5 = max(js, C3/7). We conclude from Schauder’s fixed
point theorem the existence of a solution v € H'(0,1) NS of v = T'(v).

This shows the existence of a solution v € H*(0,1) NS to the problem (2.4)-(2.5), and
then the existence of a solution n = G;(v) € H'(0,1) to the problem (2.2)-(2.3). Since
v = Fj(n) = Fj(n) for n < M,, from (2.10) we obtain

M, <n(z) <My, VIj|>7Js, Vael01] (2.11)

Therefore, n € H'(0,1) is a supersonic solution to the problem (1.5)-(1.6). Thus, we have
proved

Theorem 1 Let ng > 0 and ny > 0. Let My, My be two constants satisfying (2.1)
and b € L*>(0,1). Then there exists a jo > 0 depending only on My and My such that
for any current density j satisfying |j| > je, the problem (1.2)-(1.4) admits a solution
(n,¢) € HY(0,1) x H*(0,1). This solution is located in the supersonic region and satisfies
(2.11).



3 Uniqueness of solutions

There doesn’t exist a general result on the uniqueness of solutions when the boundary data
are located in the supersonic region. Indeed, for large j the formation of shocks cannot
be avoided and the transonic solutions should be investigated. We refer to [5, 6] for the
analysis of the transonic solutions. Here we give a uniqueness result in the supersonic
region for large 5. This result can be stated as follows.

Theorem 2 Let M, and M, be two constants with 0 < M, < M. Let (n™,¢M) and
(n®, @) be two supersonic solutions of (1.2)-(1.8) in H'(0,1) x H*(0,1) with M, <
nW n® < M,. Then there exists a Ju > 0 depending only on M, and My such that for
any current density j € IR satisfying |j| > ju, we have (n™M, pV) = (n2) ¢(?).

Proof. In view of (1.7), it suffices to show that n®") = n®. Let w = n® —n(). By
subtracting the equation (1.5) satisfied by n® and n® we obtain :

D (A, ()0) + leax(B(x)w) + j12w —0 in(0,1), (3.1)
where
__[P95wm @) 1)
Aj(x) = — ; %(n (a:)+s(n () —n (x)))ds,
1 1 1 .
SO =Tmm s mOD:
From
: 1 Wn)
F](n) _ﬁ j2 )

it is easy to check that there are constants C)y > 0 and js > 0 which depend only on M;
and My such that
AJ(x) >Cy, ¥ |j’ > Je, V€ [07 1]

Multiplying (3.1) by A;w € H}(0,1) and integrating over (0,1) give :

/01 [02(A4,; (m)w)]Q dr = /01 <_;B(x)w8x(Aj (x)w) + leAj (%)w2> dr.

It follows from Poincaré’s inequality that :

”aﬂc(Ajw)”L?(O,l) < a M2|j| + ]*2 ”aI(Ajw)”L?(O,l)'
This shows that A;w = 0 and then w = 0 provided that |j| > j; for some large j; > 0
depending only on M; and M,.
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