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1. Covariant formulation of Light-front dynamics

For many years the knowledge and description of the structure of elementary particles have
been of great interest in particle physics. Many theoretical frameworksalready exist (QCD sum
rules, lattice QCD, etc.), all of them have their intrinsic theoretical limitations. In order to have
more physical insights into the internal structure of hadrons we have thus still to rely on constituent
quark models. For the pion description these models should be relativistic.

The first requirement to build a relativistic dynamical theory is that it should be invariant under
the ten generators of the Poincaré group. Following this requirement threeforms of dynamics have
been derived by Dirac: the instant form, the point form and the front form. We will concentrate in
this study on the front form, namely on its explicitly covariant form (CLFD) [1]. The orientation
of the light front plane is here characterized by an arbitrary light like four vectorω with ω ·x = cte
andω2 = 0. This approach is a generalization of the standard light-front dynamics (LFD) [2]. The
latter can easily be recovered with a special choice of the light-front orientation,ω = (1,0,0,−1).

The two-body wave functionΦλ
σ1σ2

can be parametrized in terms of various sets of kinematical
variables. Hereλ is the projection of the total angular momentum of the system on thezaxis in the
rest frame andσi is the spin projections of the particlei in the corresponding rest system. In order
to make a close connection to the non-relativistic case, it is convenient to introduce the following
variables [3] defined by

k = L−1(P)k1 = k1−
P√
P2

[

k10−
k1·P√

P2 +P0

]

, (1.1)

n =
L−1(P)ω
|L−1(P)ω | =

√
P2L−1(P)ω

ω·p , (1.2)

whereL−1(P) is the (inverse) Lorentz boost of momentumP. We denote byk1(k2) the mo-
mentum of the constituent antiquark (quark). The momentumk corresponds, in the frame where
k1 + k2 = 0, to the usual relative momentum between the two particles. The unit vectorn corre-
sponds, in this frame, to the spatial direction ofω . The second set of variables we shall also use in
the following is the usual light-front set of coordinates(x,R⊥) which is defined by

x =
ω·k1

ω·p , R1 = k1−xp ,

whereR1 is decomposed into its spatial components parallel and perpendicular to the direction of
the light-front,R1 = (R0,R⊥,R‖). We have by definitionR1·ω = 0, and thusR2

1 = −R2
⊥. In the

reference frame wherep⊥ = 0, R⊥ is identical to the usual transverse momentumk⊥.

2. The pion wave function

The covariance of our approach allows to write down explicitly the generalspin structure of
the two-body bound state. For a pseudoscalar particle of momentump, composed of an antiquark
and a quark of equal massm it takes the form

Φλ=0
σ1σ2

=
1√
2

ūσ2(k2)

(

A1
1
m

+A2
6ω

ω·p

)

γ5 vσ1(k1) , (2.1)
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wherev(k1) and ū(k2) are the usual Dirac spinors, andA1 andA2 are the two scalar components
of the pion wave function. For simplicity, we shall also call wave functions these two spin compo-
nents. They depend on two scalar variables, which we shall choose as(x,R2

⊥). The representation
of this wave function in terms of the variablesk andn is given by

Φ0
σ1σ2

=
1√
2

wt
σ2

(

g1 +
iσ·[n×k]

k
g2

)

wσ1 , (2.2)

wherewi are Pauli spinors andg1,2 are the two scalar components of the pion wave function in this
representation. One can easily expressA1,2 in terms ofg1,2. We get

g1 =
2εk

m
A1 +

m
εk

A2 ,g2 = − k
εk

A2 . (2.3)

We would like to stress that the decomposition (2.1) is a very general one fora spin zero
particle composed of two spin 1/2 constituents. In the non-relativistic limit,n ≡ n

c → 0 and the
componentg1(k2,k.n) only survives and depends on a single scalar variablek2. In our phenomeno-
logical analysis, we shall therefore start from a non-relativistic component,g0

1, given by a simple
parametrization. We shall use in the following either a gaussian wave functiongiven by

g0
1(k

2) = α exp(−β k2) , (2.4)

or a power-law wave function written as

g0
1(k

2) =
α

(1+β k2)2 , (2.5)

whereα andβ are two parameters to be determined from experimental data and the condition of
normalization. The latter writes [3]

1 = ∑
σ1σ2

∫

dD Φλ
σ1σ2

Φλ⋆
σ1σ2

, (2.6)

wheredD is an invariant phase space element which can take the following forms, depending on
the kinematical variables which are used

dD =
1

(2π)3

d3k1

(1−x)2εk1

=
1

(2π)3

d3k
2εk

=
1

(2π)3

d2R⊥dx
2x(1−x)

. (2.7)

It is necessary to correct the nonrelativistic component in some way in order to incorporate in
a full relativistic framework the high momentum tail given by the one-gluon exchange mechanism.
We shall achieve this using perturbation theory, starting from the zeroth order wave functiong0

1.
The (eigenvalue) equation we start from to calculate the bound state wave function is repre-

sented schematically in Fig. (1). This equation writes, in the case of spin 1/2 particles [3]

ū(k2)Γ2v(k1) =
∫

d3k1

2εk1(2π)3

dτ ′

τ ′− iε
δ (k′22 −m2)Θ(ω·k′2)

×ū(k2)
[

γµ(6k′2 +m)Γ′
2(m− 6k′1)γν

]

Kµνv(k1) . (2.8)

It is written in terms of the two-body vertex functionΓ2 defined by [4]

ūσ2(k2)Γ2vσ1(k1) ≡ (s−M2
π)Φ0

σ1σ2
, (2.9)

3
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Figure 1: Calculation of radiative corrections to the two-body wave function.

with s=
R2
⊥+m2

x +
R2
⊥+m2

(1−x) . The mass of the pion is denoted byMπ .

The kernel,Kµν , including the appropriate color factor, can be written asKµν = −gµν 4
3g2K

in the Feynman gauge, whereK is the usual one-gluon exchange kernel. The quark gluon coupling
constant is denoted byg, with g2 = 4παs. In order to incorporate the correct short range properties
of the quark-antiquark interaction from asymptotic freedom, we shall consider in the following a
running coupling constantαs(K2), whereK2 is the off-shell momentum squared of the gluon. It is
given byK2 = 1/K . We choose a simple parametrization which gives, in the largeK2 limit, the
known behavior given by perturbative QCD. We take

αs(K
2) =

α0
s

1+
11− 2

3nf

4π α0
s Log

[

|K2|+Λ2
QCD

Λ2
QCD

] . (2.10)

At small K2, it is given by the parameterα0
s which should be of the order of 1. We choosenf = 2

andΛQCD = 220 MeV.
In order to calculate the relativistic corrections we proceed as follows. Wesubstitute the

nonrelativistic components to the r.h.s. of (2.8) They are calculated from (2.4) or (2.5) by means
of (2.3) withg1 = g0

1 andg2 = g0
2 = 0. Then we solve (2.8) and obtain the relativistic components

δA1,2 substituted to the l.h.s. The total components are then given by

A1,2 = A0
1,2 +δA1,2.

3. Physical observables

The aim of our work is to get an overall good description of the following pion observables:
pion decay constant, electromagnetic and transition form factors and charge radius.

3.1 Decay constant

The pseudoscalar decay amplitude is given by the diagram in Fig. (2). Using the diagrammatic

Figure 2: Decay amplitude of the pion.

4



P
o
S
(
L
C
2
0
1
0
)
0
6
4

Pion observables within the covariant formulation of Light-front dynamics Natalia Tsirova

rules of CLFD [3], we can calculate the decay constantfπ from the graph indicated in Fig. (2). One
gets in terms of the functionsA, including color factors,

fπ =
2
√

6
(2π)3

∫

d2R⊥dx
2x(1−x)

[A1 +2x(1−x)A2] . (3.1)

The pion decay constant is divergent like Log LogR2
⊥/Λ2

QCD. This divergence is extremely
soft. To get the physical contribution, we just subtract the minimal contribution arising when the
integral on|R⊥| is cut-off toΛC.

3.2 Electromagnetic form factor

This physical observable is very powerful in order to constrain the phenomenological structure
of the wave function both in the low and high momentum scales. In the impulse approximation,
the electromagnetic form factor is shown in Fig. (3).

Figure 3: Pion electromagnetic form factor in the impulse approximation. A similar contribution where the
photon couples to the antiquark is not shown for simplicity.

By using the diagrammatic rules of CLFD, we can write down the electromagnetic amplitude
corresponding to Fig. (3) where the photon interacts with the quark. Assuming it is pointlike, one
obtains:

Fγq
π (Q2) =

eq

(2π)3

∫

d2R⊥dx
2x(1−x)

[

m2 +R2
⊥−xR⊥·∆

x(1−x)m2 A1A′
1 +2(A1A′

2 +A′
1A2)+4x(1−x)A2A′

2

]

.(3.2)

If we define the four momentum transferq by q = (q0,∆,q‖), with ∆·ω = 0 andq‖ parallel to
ω , we haveQ2 = −q2 ≡ ∆2, and thusR′

⊥ = R⊥− x∆. The contribution from the coupling of the
photon to the antiquark can be deduced from (3.2) by the interchangex ⇐⇒ (1−x), R⊥ ⇐⇒ −R⊥
and an overall change of sign. One thus obtains the full contribution to the electromagnetic form
factor of the pion

Fπ(Q2) = Fγq
π (Q2)+Fγq̄

π (Q2) . (3.3)

Note that this form factor, in the impulse approximation, is completely finite since it does not
correspond to any radiative corrections at theγq vertex. The charge radius of the pion,〈r2

π〉1/2, can
be extracted fromFπ(Q2) according to

〈r2
π〉 = −6

d
dQ2Fπ(Q2)

∣

∣

∣

Q2=0
. (3.4)
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3.3 Transition form factor

For the transition form factor in the impulse approximation, the first relevant diagram, where
the virtual photon couples to the quark, is indicated in Fig. (4). The secondcontribution involving

Figure 4: Pion transition form factor in the impulse approximation. Asimilar contribution where the virtual
photon couples to the antiquark is not shown for simplicity.

the coupling of the virtual photon to the antiquark can be calculated similarly. The total amplitude
for the transition form factor reads

Fπγ(Q
2) =

4
√

3(e2
u−e2

d)

(2π)3

∫

d2R⊥dx
2x(1−x)

x

m2 +R2
⊥−2R⊥·∆+x2Q2

(3.5)

×
[

A1 +2x(1−x)A2−
R⊥·∆
Q2 (1−x)A2

]

.

The transition form factor of the pion is completely finite thanks to the extra dependence on
the transverse momentum as compared to the decay constant (3.1).

4. Numerical results

Our phenomenological analysis has three independent parameters. Thefirst one,β , gives the
typical size of the non-relativistic wave function we start from in (2.4,2.5).The second parameter
is the quark (or antiquark) constituent massm. The third one is the strong coupling constant in
the low momentum region given byα0

s in (2.10). The values of these parameters are indicated in
Table 1, for the two types of non-relativistic wave functions used in this study.

β m α0
s

Gauss w.f. 3.5 250 MeV 1.3
Power-law w.f. 3.72 250 MeV 0.35

Table 1: Parameter sets of the calculation.

These three parameters are fixed to get an overall good description of the pion decay constant,
charge radius, electromagnetic and transition form factors. Our predictions for the pion decay
constant and charge radius are in excellent agreement with the experimental data: fπ=131 MeV,
〈r2

π〉1/2=0.67 MeV for both wave functions.
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The pion electromagnetic and transition from factors are shown in Figs. (5-6) for the two
types of wave functions used in this study. Given the large experimental errors at large momentum
transfer, we do not attempt in this study to get a best fit to all the data, but just to show that an
overall agreement of all the available data is possible within our framework.

Figure 5: Pion electromagnetic form factor calculated with two typesof wave function. The solid (dashed)
line corresponds to the power-law (gaussian) wave functionin the non-relativistic limit. The experimental
data are from [5, 6, 7, 8, 9, 10, 11, 12].

The pion electromagnetic form factor is shown in Fig. (5) together with the world wide exper-
imental data. Given the experimental errors which are large above 3 GeV2, both parametrization
(gaussian or power-law) give a rather good account of the data, in thewhole kinematical domain
available.

Figure 6: Pion transition form factor calculated with two types of wave function. The solid (dashed) line
corresponds to the power-law (gaussian) wave function in the non-relativistic limit. The experimental data
are from [13, 14, 15].

The corresponding results for the pion transition form factor are shownin Fig. (6). Both
parametrizations are also in good agreement with the experimental data. At very high momentum
transfer however, forQ2 > 15 GeV2, our results underestimate slightly the experimental data. There

7
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is no way to adjust our parameters to get a better agreement for the transitionform factor without
spoiling the good agreement we get for the electromagnteic form factor. Weshould however wait
for more precise experimental data before drawing any definite conclusions.

5. Summary

We have investigated in this study the full relativistic structure of the pion in the framework of
the constituent quark model. Our wave function is constructed starting froma purely phenomeno-
logical wave function in the non relativistic limit. Dynamical relativistic corrections are included
by a one gluon exchange process. This latter generates the necessaryrelativistic high momentum
components in the pion wave function.

From this full structure of the pion wave function, we have been able to have an overall very
good agreement with all experimental data available, both in the low and high momentum domain.
It is necessary to confirm the recent Babar data for the pion transition form factor at very high
momentum transfer (till aboutQ2 ≃ 40 GeV2), with more precise data.

This analysis shows also the real flexibility of CLFD in describing few body systems in rela-
tivistic nuclear and particle physics. Its application to more fundamental calculations starting from
first principles is also under way [16].
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