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Realtime 3D template matching

FrédéricJurieandMichel Dhome
LASMEA - CNRSUMR 6602- UniversitéBlaisePascal- 63177Aubiéreced« - France

Abstract

Oneof the mostpopularmethodso extract usefulinfor-
mationsfrom an image sequenceés the templatematding
appmoad. In this well knownmethodthetracking of a cer
tain featue or target over timeis basedon the comparison
of the contentof eat image with a sampletemplate In
this article, we proposea 3D templatematding algorithm
thatis ableto tradk target correspondingo the projection
of 3D surfaces. With only a few hundred of subtmactions
and multiplications per frame our algorithm provides, in
real time, an estimationof the 3D surfacepose The key-
ideais to computehedifferencebetweerthe currentimage
contentand the visual aspectof the target underthe pre-
dicted spatial attitude This differenceimage is corverted
into correctionson the 3D location parametes.

1 Intr oduction

Three-dimensionabbjecttracking is a major task for nu-
merouscomputervisionapplications.Two majorcategories
of approachesre generallydistinguished. Feature-based
approachesiseslocal featureslike points, line segments,
edges,or regions. With thesetechniquest is possibleto
localize the objectin the currentimageandto predictthe
featurepositionsin subsequennes,accordingto a motion
modeland an uncertaintymodel. Posesearchtechniques
arenaturallylesssensitve to occlusionsasthey arebased
on local correspondenceslf several correspondenceare
missingthe poseis still computable.
Ontheotherhand,global or template-basedpproaches
take the templateasa whole. The strengthof thesemeth-
odslies in their ability to treatcomplex templatesor pat-
ternsthat cannotbe modeledby local features. They are
veryrobustandhave beenextensively used.They have also
beencalledsum-of-squag-difference(SSD)asthey consist
in minimizing the differencebetweena referencaemplate
anda region of theimage. A Lonorm is generallyused
to measurethe error. Historically brute force searchwas
used.But this strateyy is impracticalin the caseof transfor
mationsmorecomplex than2D translationsywhich involve
higherdimensionaparametespacesMore recentmethods
treatthe problemasa nonlinear optimizationproblem,us-
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Figurel: Principleof thedifferencamagebasedapproach.

ing Newtontypeor Levenbeg-Marquardbasedalgorithms.

Darell etal. [4], Brunelli etal. [2] proposeo maximize
a correlationcriterion betweena vector characterizinghe
referencepatternand the image content. The processing
times- significantin this case- canbereducedoy working
in sub-spacesf theinitial imagerepresentationThe main
limitation of theseapproacheis theirlack of resistancevith
regardto occlusions.Black and Jepsor{1] have overcome
this limitation by reconstructinghe occludedparts. They
replacethe quadraticnorm generallyusedto constructthe
approximationof the imagein the eigenspacéy a robust
error norm. This reconstructiorinvolvesthe minimization
of a nonlinearfunction, performedusinga simplegradient
descentscheme. They usedthe sameschemeto find the
parametridransformatioraligningthepatternontheimage.

More recently anew efficientframewnork have beenpro-
posed:thetrackingproblemis posedastheproblemof find-
ing the best(in leastsquaresenseketof parameteralues
describinghemotionanddeformatiorof thetargetthrough
thesequenceln this case parametewariationsarewritten
asalinearfunctionof adifferenceémage(thedifferencebe-
tweenthereferencemageandthecurrentimage).lt isillus-
tratedon Figurel. Thisapproachs very efficientasmotion
canbe easilydeducedrom differenceimage. Cootes,Ed-
wardsandTaylor [3] useit to dynamicallyestimatethe pa-
rameter®f afaceappearancmodel(2D model).Hagerand
Belhumeur{7] includeit in a generafframework for object
tracking,underplanaraffine motions.Only afew worksuse
this approachwith projective transformationg6, 9, 8], be-
causeprojective transformationsre highly non-linearand



becausef thesizeof the parametespace.

This article proposesnefficient solutionto the problem
of SSDtrackingof 3D surfaces.

This article is madeof four sections. In the first one,
the problemof tracking 3D objectsis posedanda mathe-
matical formulationis given. In the secondone, specific
problemsrelatedto 3D geometryareaddressedn the next
section,someexperimentalresultsare given. At last, the
proposedapproachs discussedaind comparedo previous
approaches.

2 3D template matching

2.1 3D view point dependency

Thepresente@pproactbelonggdo thelastly presentedlass
of trackingmethods. We wantto focusthis article on the
major problemoccurringduringthe trackingof 3D objects
obsened underperspectie projection: the view point de-
pendeng. Other subjectslike sensitvity to illumination
have beenwidely treatedandwill notbediscussedhere.

The principle of the proposedechniques basedon two
steps. First, during an off-line stage,an interaction ma-
trix is estimated.This matrix correspondo the first order
approximationof the relationshiplinking differenceimage
andpositionvariation. Sucha linearizationhave beenpro-
posedby sevral authors;the form of this matrix canvary
from anauthorto another Althoughthis matrix is learned
in the neighborhoof onetargetreferenceposition,mary
authorg[7, 6, 9, 8] shawv how it is possibleto extend effi-
ciently its validity. Secondduring the tracking stage,the
differencebetweerthe currentimageandthe predictedone
is computedandmultiplied by theinteractionmatrix to ob-
tain the correctionto be appliedto the target position pa-
rametersn orderto alignit onthecurrentimage.

At our knowledgelLa Casciaet al. [9] arethe only au-
thors using this kind of techniqueto track directly in 3D,
themotion of atridimensionalobject. In their formulation,
they assumehatthe differenceimagemeasuredn oneim-
ageduring the tracking stageis the consequencef a rel-
ative 3D displacementf the target. The differenceimage
inducedby a variationof the 3D localizationparameterss
unfortunatelystronglydependenbn theview point.

This phenomenas illustratedFigure2. The upperpart
shavs animageof a 3D texturedobjectaswell asthe pro-
jection of its modeledges. Three particularpoints of the
front faceof this objectare materializedby squares.The
two imagesbelow show effectsof the samerelative pertur
bation(1 cmin translatiorand5 degreedn rotationbetween
thetexturedobjectandits CAD model)obsenedfrom two
differentpoints of view. We cannotethatthe perspectie
projection of the three materializedpoints do not corre-
spondto the sametexturedpatterns.Consequentlyit is not

Figure2: Differencdmagedependentsn theview point.

possibleto directly usethedifferencemageto trackthe 3D
motionof anobject.

The proposedapproachs basedon the following steps.
Theinteractionmatrix usedto compensatéor local pertur
bationsof the 3D objectlocationarounda referenceposi-
tion is learnedoff-line during a learningstage.During the
trackingstagethedifferenceémage(differencebetweerthe
referencepatternand the displacedone) is computedby
samplingthe currentimageat the points correspondingo
perspectie projectionof the displacedtarget surface. As-
sumingthecurrentdifferentimagehave beermetduringthe
learningstage the interactionmatrix is only usedto com-
pute— in the neighborhoodf the referenceposition—the
3D pointsof the surfacewherethe texturedsignalhasbeen
sampled Knowing asetof correspondencésetweer?D lo-
cations(wherethe currentimagehasbeensampledand3D
points, it is possibleto computethe currentattitudeof the
targetby usinga poseestimationalgorithm. This approach
is valid evenis theview pointis far from the referencepo-
sition.

2.2 Tracking from differences

Let usfirst recallthe principle of trackingfrom differences.
Let! I(x,t) the brightnessvalueatthe locationx = (z,y)
in animageacquiredattime¢. Let R = (x1,X2,...,XN)
the setof N imagelocationswhich definea target region.
I(R,t) = (I(x1,t),I(x2,t),...,I(xn,t)) is a vectorof
the brightnessvaluesof the target region. We refer to

1Bold fontsdenotevectorsandmatrices.



I(R,to) astherefeencetemplate It is thetemplatewhich
is to be tracked; t, is the initial time (¢ = 0). These
points are the projectionsof a set of 3D points RO =
(X1, ... XnN) belongingto anobjectsurface.

The relative motion betweenthe objectandthe camera
induceschangesn the position of the templatein the im-
age.We assumehatthesetransformationganbe perfectly
modeledby aparametrianotionmodel In [8] we have pro-
poseda generalmotion modelallowing ary kind of planar
transformations.In the presentarticle, we will only focus
our attentionon 3D motion viewed underperspectie pro-
jections.

LetX = (X,Y, Z) thecoordinateof a pointin the 3D
object-centeredoordinatesystemandx = (z,y) its pro-
jectionin theimage. The 3D rotation, translationand per
spectve projectioncanbe written with the standarchomo-
geneoudransformformalism:

x = PT(H)R. ()R, ()R, ()X

whereT is the translationaimatrix, R«, Ry, R, the three
elementaryotationsparametrizedy the Euleranglesand
P the perspectie projection matrix dependingon the fo-
cal length and the position of the principal point (inter-
sectionof the optical axis of the cameraand the image
plane). In that case,we assumex and X to be written
with homogeneousoordinates. By writing M(u(t)) =
PT(t)R.(t)R,(t)R,(t) thepreviousequatiorbecomes:

x = M(u(t))X

whereu(t) = (u1(¢), - . ., ue(t)) isthesetof parameters
includedin M, dependingon therelative positionbetween
the objectandthe camera.Thereare6 parameters3 trans-
lational componentsand the 3 Euler angles. We assume
N > 6 andwe alsoassumehat M (u(t)) is differentiable
in u. We call u the motion parameterector At time ¢,
the objectpositionis known and parametrizedy po. The
setof N imagelocationscorrespondingo the 3D pointson
thesurfacetargetareRO andtheir projectionsattime ¢ are
M(u(t))RO. With thesenotations, tracking the objectat
timet” means‘compute” u(t) suchthat

I(M(u(t))RO, t) = I(M(u0) RO, to)-

We notep(t) theestimatiorof thegroundtruthvalueg* (t).
The groundtruth value, at time tq, is supposedo be pp.
The motion parametewectorof the targetsurfaceu(t) can
be estimatedy minimizing thefollowing function:

O(u(®) = TM(u(?))RO, t) — I(M(u0) RO, to) ||

Thisverygeneraformulationof trackinghave beenused
by severalauthordq1, 6, 7, 9]. Neverthelessavery straight-
forward and efficient computationof the actualizationof
u(t) canbe obtainedby writing:

p(t) + At + 7)[I(M(po) RO, to)
—I(M(u(t))RO, t + 7)] (1)

plt+7) =

wherer denotesthe time betweentwo successie im-
ages. We will seelater how the matrix A (¢t + 7) canbe
obtained.If we write

§i(t + 1) = I(M(uo)RO, to) — IM(u(t))RO, t + 7)

and
Spt+7) = p(t +7) — p(t),
equation(1) canbewritten:

ou(t+7) = At + 7)8i(t + 7) (2)

2.3 Hyper-plane approximation

Equation(2) canbeseenrastheequation®of 6 hyperplanes.
In this section timeis suppresseih orderto obtainsimpler
notations.Equation(2) canbe rewritten:

0 = (a11,-.-,a1n,—1)(8ir, ..., 8in,0pm)"
0 = .
0 = ((161,...,aﬁN,—l)((Sil,...,(57:N,6I,L6)T

Under this form, we can clearly obsene that
an,...,a;ny are the coeficients of 6 hyperplanes
thatcanbeestimatedy usingaleastsquareestimation.

To learnthe matrix A, supposehatthe currentposition
o of the region of interestin the first imageis known.
If this positionis perturbedsuchthat ufy = po + 6p, the
templateis moved and the vectordi = I(M(uo)RO) —
I(M(ug)RO) canbe computed. This “perturbation” pro-
cedurds repeatedV, times,with N, > N. At theend,we
have collectedNV, couples(di¥, 5u*). It is thenpossibleto
obtainthematrix A suchy" =" (§u* — A6i¥)? is minimal.
By writing H = (4i!,...diN») andY = (dut,...,6uMP),
A canbeobtainedby computing

A=HTH)'HTY.

Thecomputatiorof matrix A is performedoff-line (dur-
ing atrainingstage).

3 Efficient 3D template matching

Matrix A shouldbe recomputedor ary other position y:

asexplainedFigure 2, in caseof 3D rotation, patternvari-
ationis dependingon the relative position betweenobject
andcameraln thesituationpresentean Figure 3, the pat-
ternis stretchedy therotationwhenviewedfrom position
o andis shrunkfrom position . We are going to seein

thefollowing sectionshow is it possibleto useEquation2
withoutrecomputinghe matrix A.
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Figure4: Geometricaspects

3.1 Geometricaspects

Duringthetracking,thedifferenceji betweerthereference
templateand the obsenred patternis due to the variation
du betweenthe currentestimationof the 3D object posi-
tion p andthereal position u*. The grey level measured
at the position x is not the projectionof the 3D point X
suchx = M(u)X but the projectionof the point X’ with
x = M(p*)X'. ThisisillustratedFigure4. Neverthelessif
X' wereknown, onecouldeasilycomputey* usingalocal-
ization algorithm (seefor example[5]), asa setof 2D/3D
correspondencesgould beknown.

The differenceimagedi obsened duringthe trackingis
dueto arigid motion of the object. Underthe hypothesis
that the learning stageis relevant (it meansthat the cur-
rent differencehave beenlearned),we will show thatit is
easyto computeX’. In the neighborhoof the reference
positionusedduring the learningstage the corresponding
3D motioncanbe estimatedy usingtherelationshipgiven
equation(2) : o = Adi. In thatparticularcasewe have

x = M(po)X = M(po + dp)X'.

ConsequentlyX’ canbeestimatedy computingthein-
tersectionof theline Ox (whereO is the optical centerof
thecamera)with the objectsurfacelocalizedby the param-
etersug + dp.

Whenthe objectis at the positiony the correctiondy =

Figure5: Fourimagestakenfrom avideosequence.

Aéi, which is not directly applicable,allows to compute
the 3D coordinatesof the point X' thatis substitutedfor
thepointX (projectedn x). Thetrackingprocesgherefore
consistdn thefollowing steps

1. computethe differenceimagedi using the predicted
positiong,

2. underthehypothesighatthelearningstages relevant,
computethe attitudevariationdy = Adi whichwould
producethe samedifferenceimagedi in theneighbor
hoodof thereferencenbjectattitudepuy,

3. select3D pointsX on the tamget surfaceandcompute
by ray-tracing,the coordinatef points X’ suchthat
M(p0)X = M(po + 6p) X/,

4. noting that these3D points X' are projectedon the
2D pointsM(u) X, computethe currentobjectloca-
tion p*from this setof 2D/3D correspondences.

It isimportantto notethateachstepof the previousalgo-
rithm canbe efficiently implemented.The first andsecond
onescorrespondonly to few hundredsubtractionsaddi-
tions and multiplications. The third one canbe madeeas-
ily andrapidly by usingthe z-buffer of the computervi-
sualizationhardware. The lastoneis inexpensve if using
an efficient approachas this proposedby Dementhon[5]
(a singlematrix multiplication). In summarythe proposed
approacttanbeimplementedn realtime onastandarger
sonalcomputer(SGI O? in our case).

4 Results

We have performedsereral experimentationsThe onepre-
sentedn this article concernghetrackingof a 3D textured



cube.

The camerahasbeenpreviously calibrated. The cubeis
modeledby 3D pointsbelongingto differentfaces.For the
given examples,the points belongto two faces(the front
andtop ones),which aresupposedo be visible during the
wholesequencelf onewantto track36(° rotations several
interactionmatricesshouldbe learnedand switchedat the
propertime. Thistaskis easybecaus¢he 3D objectattitude
is known.

Resultspresentecon Figure 5 have beenobtainedby
tracking 100 points, randomlydistributed on the two visi-
ble faces.A setof 500 smalldisplacementbave beenper
formedduring the learningstage,in orderto computethe
interactionmatrix.

5 Discussions

Historically bruteforce searchwasusedin templatematch-
ing algorithm. Thisis inefficientandimpracticalfor param-
eterspacesigherthan2D translations.

Several authorshave recentlycarriedout researctcon-
cerningnumericalmethodgo efficientlyminimizetheerror
betweenthe transformedtarget and referenceimages. In
this sectionwe will discussedbouttheworksof Blackand
Jepsorfl], Gleicher[6], La Casciaetal. [9], andHagerand
Belhumeur[T. The comparisorwill be performedin two
directions: the choicefor an optimizationmethodandthe
ability to track 3D motions.

5.1 Optimization method

The ideaof tracking by minimizing the error over all the
pixels within a region of interestcan be seenas an opti-
mizationproblem.Black andJepsorj1l] minimizeanonlin-
earfunction usinga simple Levenbeg-Marquad scheme.
Oneadwantageof addressinghe problemin its generaha-
tureis thepossibilityto minimizecomple functions.Black
andJepsornintroducedn theirformulationnon-linearterms
compensatindor partial occlusions. Registrationand re-
constructiorof occludedpartsareobtainedsimultaneously
However their approachs unfortunatelywery slov andcan
only tolerateonly very smallmovementsf the object.

Anotherway, as proposedn this paper is to linearize
thefunction. In this casetheregistrationis straightforvard.
Two approachesave beenrecentlyproposedn the litera-
ture : Jacobianapproximationand differencedecomposi-
tion.

5.2 Jacobianapproximation

Hageretal. in [7] proposedsimilarapproactandestimate
thematrix A in equation(2) by usingtheinverseof anim-
ageJacobianThisequatiorshovsclearlythatA (¢4 7) can

play the role of a Jacobiarmatrix. If the magnitudeof the
component®f ju andr aresmall,it is possibleto linearize
theproblemby expandingI(u+du, t+7) in aTaylorseries
abouty andt,

L(p+op,t+7) =I(p,t) +0pl, (u, t) + 7L (p, t) + h.o.t.

whereh.o.t. arethe high ordertermsof the expansion
that canbe neglected;I, (i, t) = M(y,t) is the Jacobian
matrixof I with respecto p attimet, andl; isthederivative
of I with respecto ¢.

Matrix A canbededucedrom thepseudo-inerseof M.

We have shawvn in [8] that our linearizationtechnique
(hyperplane approximation)is better than the pseudo-
inverseof the Jacobianmatrix; basically the image Ja-
cobianapproximationapproximateghe function by a line
while the hyperplaneapproximatiorapproximatedt by an
hyperplane. We experimentallyobsened that the corver-
genceareaof our approachs largerthanthe one obtained
by Hagers method(usingJacobiarapproximation).

5.3 Differencedecomposition

The differencedecompositiorhave first beenproposedy
Gleicher[6], and have alsobeenusedfor 3D humanface
trackingby La Casciaet al. [9]. Thebasicideais to de-
composehe differenceimageinto a linear combinationof
differencetemplates Differencetemplatesare obtainedby
samplingthe parametespaceduring a learningstage. For
eachpoint of the parametespace a differencetemplateis
produced. The relation betweenthe parameteariations
andthecoordinatesn thetemplatebasisis thenstraightfor
ward.

This methodofferssimilarity with the eigendecomposi-
tion proposedn [1]. Howeverinsteadof computingan op-
timal basis theinitial templatebasisis directly used.From
ourpointof view, alimitation of thismethodis thattherela-
tion giving the parametewariationscannot belearnedwith
moreexamplethanthe numberof templatesAs it is inter
estingto reduceasfar aspossiblethe numberof templates,
the parametespace-in spiteof its size-is sampledwith a
very smallnumberof samples.La Casciaet al. [9] ague
that only four differencevectorsper motion parameteare
sufficient. In caseof a 3D motion, 24 differencetemplates
are used. We have experimentallyobsened that 24 sam-
plesin a 6-dimensionakpaceare not enoughto insurethe
stability of thetracker.

With the proposecdyperplaneapproximationthe num-
ber of samplesusedto approximatethe relation (2) is not
restricted.

5.4 3D motions

Projectie transformationfiave not beenusedvery oftenin
trackingalgorithmsbecausehesearchspacds muchlarger



approximation

Figure6: Backprojectionapproximation.

andbecausehe transformationsare highly non-linear In
mostcasenly 2D transformationgreconsidered.

From our knowledgelLa Casciaet al. [9] arethe only
authorsusingactually3D motions(Gleicheronly considers
homographianotions). However their formulationassume
thatthe differenceimageobtainedby a givendisplacement
is the same,whatever the 3D position of the objectis. It
is obviously not the case. Their formulationis only valid
if the orientationof the objectis relatively similar to the
orientationusedduring the learningstage becausef this
approximation.We have seenin the previous sectionthat
a back-projectiorof 2D point onthe 3D moved modelwas
necessaryHowever, assuminghe motionis small, a new
assumptiorcanbe done: the positionof X’ (aspreviously
defined)canbeapproximatedy M (du) X, insteadof being
thebackprojectionof x = M (uo)X.

In caseof fronto-parallelanotions(x, y translationsand
z rotations) this approximatioris errorfree. In caseof non
fronto-parallelsmotions(x andy rotations,z translations),
asanerroris introduced,asshavn Figure 6. We have ex-
perimentallyobsened that this approximationonly suited
for very smallanglevariations.

In that case, the actual localization can be esti-
mated straightforvardly by the relation: M(p*) =
M(p)M~ (0p).

We have madean experimentshaowving the limitation of
this approximation A video sequencéave beenprocessed
by themethodproposedn this articleandby the previously
mentionedapproximation(usedby La Casciaetal.). The
sequenceshavs a textured cubewhich is rotated(1° per
image)aroundthe vertical axis. The former methodcan
toleratemorethan50° of perturbatiorrelatively to the ref-
erencepositionwhile thesecondnedivergesafteronly 20°
of rotation.

To take into accountaffine variation of luminancethe
samplingvector is centeredand normalizedbefore com-
parisonwith the referencegemplate. However, somemore
comple techniquesasthoseproposedy Hager[7], canbe
easilyintegratedin the proposedschemeto toleratemore
compleillumination variations.

6 Conclusions

We have presentecn original andefficient 3D trackingal-
gorithm. Experimentatesultspresentedn thatpapershav
ourtechniquegreatlyimprovesthepreviously publishedap-
proaches.

In our opinion, this article makes two contributions.
First, our techniques basedon the linearizationof a func-
tion giving the 3D localizationasa function of a difference
image; we proposeto usean hyperplan model, which is
original and more accuratethan other similar techniques
(like image Jacobian). The secondcontribution concerns
the geometricaspectof the problem. We dealwith actual
3D geometryratherthansupposinghat a parametewraria-
tion givesthe samedifferenceimagewhatever the camera
positionis. We have shown it greatlyimprovesthe stability
of thealgorithm.
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