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Experimental study of the bouncing trajectory of a particle along a rotating wall

A.Le Quiniou (1), F.Rioual (1), P. Héritier (1) and Y. Lapusta (2)
(1)Cemagref Clermont-Ferrand (Montoldre sur Allier)

Domaine des Palaquins,
03150, Montoldre, France

(2)Laboratoire LAMI, Institut Français de Mécanique Avancée(IFMA)
Campus des Cézeaux,

BP265, 63175 Aubière, France,

We intend to present a new experimental setup that allows the study of the trajectory of a
solid spherical particle bouncing at a high velocity along a rotating plate. Using different surface
treatments for the plate, we can explore the phase space for the mechanical parameters of the problem
(normal restitution coefficient en and dynamic friction coefficient µ). An accurate statistical analysis
of the trajectory (radial and angular velocities) has been conducted based on an image analysis
procedure. Experiments show a regime of successive bounces, followed by a regime of permanent
contact of the particle along the vane and a transition from a rolling with sliding regime to a rolling
without sliding regime triggered by the friction particle/wall. A simple model using two mechanical
parameters (normal coefficient of restitution en and friction coefficient µ) as proposed recently [A.Le
Quiniou and F.Rioual, EPL 82 34001 (2008)] is sufficient to reproduce quantitatively all the features
of the trajectory. The friction coefficient has to be determined independently using a mechanical
protocol of impact of a single particle on a fixed wall - following [S.F.Foerster, M.Y.Louge, H.Chang,
and K.Allia, Phys.Fluids 6, 1108 (1994)] - in particular, an outcome of this study is that the initial
spin of the particle appears to have no effect on the features of the impact as long as the relative
velocities at the contact are considered.

Introduction

Impacts of particles on boundaries are still the object
of important investigations from material scientists. They
represent indeed the basic ingredients to take into ac-
count for modelling particulate flows along boundaries.
The challenge is to be able to describe these flows in a
simple way, using macroscopic mechanical parameters,
the energy an momentum exchanges between the colli-
ding objects during the impact. Hence the introduction of
a coefficient of restitution in order to describe this energy
exchange. Starting from the analysis of Hertz-Mindlin
and the analytical theory of Maw [1], the Walton model
[2] is classically used in order to describe the features of
the impact. This is a three parameter model :
- two parameters which describe the behaviour of the
center of mass : the normal restitution coefficient en and
the friction coefficient µ,
- and one parameter which represents the tangential mo-
tion at the contact patch produced by the tangential com-
pliance : the tangential restitution coefficient β. Maw [1]
and Johnson [3] have indeed demonstrated the need to
consider tangential elastic compliance over the contact
area. This model has received several criticisms, in par-
ticular for the determination of the tangential coefficient
of restitution. This parameter is supposed to take into
account the tangential compliance. For nearly head-on
impacts, the tangential compliance induces normally a
possible reversal of the tangential component of the re-
lative velocity at contact and this is a typical situation
where the value of this tangential coefficient becomes in-
exact [4]. The effect of the initial spin on the impact has

often been omitted in previous experimental studies. This
might not be insignificant because collisional flows de-
monstrate frequently oblique impacts between particles
and with boundaries which generate some spin. Recently,
a study of the impact of particles with initial spins has
been conducted [5]. The authors argued that it remains
a challenge to model the event of elastic impacts with
initial spins. C.Thornton [6] proposed recently that these
aspects of the rebound kinematics can be normalized as
soon as we use an effective impact angle, defined as the
ratio of the relative tangential to normal surface velocities
of the two impacting bodies. The study of the bouncing
motion of a particle on a static wall has also been studied
in other contexts [7] where the finite number of bounces
results from a trade-off between gravity and visco-elastic
dissipation at the wall. Recently, the impact of a particle
on a rotating plate has been studied experimentally in
the case where the particle falls vertically under its own
weight. Experiments demonstrated the possibility of rol-
ling without sliding for the particle all along the impact
[8].

Here we present a new experimental setup devoted to
the study of the trajectory of spinning and bouncing par-
ticles along a rotating boundary. The particles considered
here are plastic model spheres which are used in air guns
(Polyvinylchloride). This setup is inspired partly by ma-
chines used for spreading fertilizers in which a quanti-
tative prediction of the flow induced the inertial forces
(centrifugal, coriolis) for general granules is not an ob-
vious issue [9]. In the first part of this letter, we present
the experimental setup and the experimental procedure
used for the study of the trajectories. In the second one,
we recall the main features of the model that has been
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proposed recently for a description of the trajectory. The
third part focuses on the experimental caracterisation
of the frictional interaction between a particle and the
boundary and in particular the determination of the me-
chanical parameters involved in the model(restitution co-
efficient en, friction coefficient µ). In the fourth part, we
discuss the features of the trajectory and interpret the
experimental results at the light of the model. We show
in particular that we are able to predict quantitatively
the value of the critical friction coefficient µ? for which
rolling without sliding appears along the trajectory of the
particle.

I. EXPERIMENTAL SETUP

A schematic set-up of the experiment is shown in figure
(Fig. 1).
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Figure 1: Schematic experimental set-up

The particles considered in these experiments are BB
beads of diameter 5.93 ± 0.02, the density is 1.86 ±
0.01(g/cm3) and the mass m is 0.21g. The mechanical
properties of the particles have been determined from
experiments of binary collisions between these particles
[10] and give : en = 0.91, µ = 0.19 and E (Pa) = 2.8 ·109.
In these experiments, the particle is held to a hose by a
vacuum created with a vacuum pump (the solenoid valve
is opened). In order to release the particle, an electronic
device generates a sequence of pulses (not shown in the
picture) in order to trigger the camera and to activate
the solenoid valve which closes the valve and stops the
vacuum. The particle falls without spinning, under gra-
vity, onto the thick rotating plane from a constant mini-
mal height (≈ 5mm.) in order to avoid any height effects
[8]. A digital video camera with spot illumination is used
to record the trajectory of the particle at a resolution of
(1024 ∗ 1024) pixels and a rate of f = 3000 frames per
second. A 1mm wide white band is drawn on the equator
of spherical particles (with a black background) in order
to indicate their orientations and to deduce their angu-
lar velocities. Figure 2 shows a typical sequence of the
trajectory for a model particle along a rotating plate and
Figure 3 shows a typical sequence of its angular velocity

(in the fixed frame of the laboratory). These sequences
of frames are further analysed using image processing
sofware (ImageJ). The measurements of the particle po-
sitions and angles give us informations on the radial and
rotational velocities and indirectly other quantities like
the normal restitution coefficient and the dynamical fric-
tion coefficient.

The random errors on the particle position on the ro-
tating plate are estimated as δx = ±2mm (errors on par-
ticle and plate positions). The random errors on the mo-
del particle angles are δθ = ±5◦. At the end of the plate
(ejected radial position xe=25cm), the random errors on
the radial velocity are an estimated δVx

Vx
= δx

xt+1−xt
= 1%

and on the rotational velocity Rδθ̇
Rθ̇

= δθ
θt+1−θt

= 3%.
Statistics based on fifteen samples have been conduc-
ted for each configuration (angular velocity of the plate
Ω ∈ [500− 1000] rpm, initial radial position x0 ∈ [1− 8]
cm, variation of the plate material). The normality of the
population distribution has been tested by a Q−Q plot.

Sondergaard et al 1990 [11] showed that the normal
restitution coefficient decreases with the ratio of sphere
diameter to plate thickness in agreement with the theory
of Zener [12]. In this study, we use a plate with a sufficient
thickness (5mm.) in order to avoid any reduction of the
restitution coefficient related to this effect. Five different
surface treatments on the plates have been undertaken in
order to modify the characteristics of the interaction and
thus to explore the mechanical phase space (coefficient of
restitution en, friction coefficient µ). (I) A stainless steel
plate painted black (technical painting Julien noir), (II)
A steel plate sand-blasted (sand-blasting), (III) A plate
varnished (Vernish astral wood), (IV) A plate polished
(with emery paper, P80), (V) A plate in steel which has
been rubber coated.

Figure 2: Typical sequence showing the spinning motion of
a spherical particle onto the rotating plate.

Figure 3: Typical sequence showing the angular velocity of
a spherical particle onto the rotating plate.
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II. OVERVIEW OF THE BASIC ASSUMPTIONS
OF THE THEORY FOR THE PARTICLE’S

TRAJECTORY

An analytical treatment of the trajectory of a particle
along the rotating vane carried out recently [13]. The
trajectory of a spherical particle (radius R, mass m and
normal contact stiffness Kn and dissipation parameter
ν) at an initial radial position x0 in the rotating frame
(R′), consists of a succession of bounces followed by a
permanent contact of the particle along the plate (see
Fig. 4). The theoretical description used is based on the
rigid body theory introducing only two mechanical pa-
rameters for the impact : a coefficient of restitution en

and a friction coefficient µ. This model is applicable if
the dimensionless collision time (Nt = Ωtc) and the cen-
trifugal number (Nc = x0Ω

R/tc
) are small compared to one

i.e. the collision is considered as instantaneous and as a
collision on a static plate (tc is the collision time on a
static plate). This is a valid assumption for most rigid
materials. The model predicts in particular the existence
of a critical friction coefficient µ? between the particle
and the plate for which the particle can roll without any
sliding in the sticking phase. This critical friction coeffi-
cient appears to depend only on the normal restitution
coefficient en of the particle and µ? = 1√

35
(≈ 0.169) is a

good approximation according to the theory at least for
high normal restitution coefficients (en > 0.3).
The experimental setup presented here can test precisely
these different issues for the trajectory of a spinning par-
ticle along a rotating boundary.
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Figure 4: Schematic view of the trajectory of a spherical
particle along the rotating plate in the rotating frame.

III. INTERACTION BETWEEN A MOVING
BEAD AND A BOUNDARY

Determining experimentally the mechanical quantities
which are relevant for the characterization of the impact
in the problem is not a simple task and in particular the
value of the friction coefficient (particle/wall).

Firstly, we measured these parameters independantly
based on an experiment of collision of a falling bead on a
static plate : to determine these three constant parame-
ters, we use the model of Foerster et al 1994 [10] which

is a simplification of the model of Maw et al 1981 [1]
in the definition of the impact and rebound angles with
spherical particles. In this setup, the particle falls from
a constant height (h ≈ 25cm) without initial spin under
gravity onto an inclined plate from γ = 0◦ to 80◦ which
corresponds to an impact velocity of Vi =

√
2gh = 2.21

m/s.

Static plate
γ

V
′

x2

V
′

y2
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V
′

y1 V
′
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′
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Figure 5: Schematic impact of a sphere on an oblique static
plate γ. Substripts 1 and 2 refer to initial values and those
after rebound, respectively.

The velocities before and after impact are decompo-
sed into their normal and tangential components at the
impact point (see Fig. 5). The velocity before impact ob-
tained from video analysis is (V ′

x1, V ′
y1, θ̇z1=0) and the

final velocity is (V ′
x2, V ′

y2, θ̇z2). Starting from the rigid
body theory, the absence of initial rotational speed gives
the expression of the rotational speed for a sphere after
impact equal to :

Rθ̇z2 =
5
2
(V ′

x2 − V ′
x1) (1)

The quantity θ̇z2 has been measured directly and also
calculated indirectly using equation 1. We find a reaso-
nable agreement between the two sets of data, see fi-
gure Fig. 6. The fact that the rotational speed calculated
from Eq. 1 is based on the assumption that deforma-
tions are small indicates that the rigid body theory is
still valid. Gorham and Kharaz [14] have also drawn the
same conclusions about collisions with plastic deforma-
tions (aluminium oxide spheres on an aluminium plate).

Following [10] and varying the inclination of the plate,
it is shown that a three parameter model (normal co-
efficient of restitution en, tangential coefficient of resti-
tution β, friction coefficient µ) can capture the features
of the impact. We define the relative translational ve-
locity at the contact patch before and after impact :
gx1,2 ≡ V ′

x1,2 − Rθ̇z1,2. Foerster et al propose a non-
dimensional local angle of contact before and after an
impact :

ψ1,2 =
gx1,2

V ′
y1

(2)
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Figure 6: Rotational speed directly measured and rotational
speed calculated from 1 for model particles on surfaces (I) and
surfaces (II).

Walton’s model implies that slipping and sticking regions
do not coexist in a given impact. The application of this
model leads to a sliding solution of the form :

ψ2 = ψ1 − 7
2
(1 + en)µ (3)

For non-sliding collisions (sticking), the obtained solu-
tion is :

ψ2 = −βψ1 (4)

From the model we can represent the collision diagram
i.e. plot the non-dimensional local angle of contact after
an impact ψ2 as a function of the non-dimensional local
angle of contact before an impact ψ1. From such a plot,
the parameters involved in eqs. (3) and (4) can be used
to determine µ and β, respectively.

The experimental plot of ψ2 as a function of ψ1 is
shown on Fig. 7 for the impact of the plastic particle onto
the five different plates. In each case, the two parameters
µ and β have been determined.

The values of the impact parameters en and µ for the
five different plates are summarised in the Table I.

Table I: Summary of the mechanical parameters for the col-
lision of the model particles with the fixed plate.

Plate material en µ

plate (I) 0.875± 0.02 0.175± 0.005

plate (II) 0.76± 0.06 0.45± 0.01

plate (III) 0.68± 0.06 0.164± 0.005

plate (IV) 0.88± 0.05 0.205± 0.003

plate (V) 0.80± 0.06 0.64± 0.01

The next figure represents Ψ2 as a function of Ψ1 for
both experimental configurations (the static plate and

0 2 4 6
Ψ

1

0

2

4

6

Ψ
2

Static plate (III)
Static plate (I)
Static plate (IV)
Static plate (II)
Static plate (V)

Figure 7: Collision diagram : non-dimensional local angle
of contact after an impact ψ2 as a function of the non-
dimensional local angle of contact before an impact ψ1 for
collisions of model particles onto five different treated static
plates.

the dynamic rotating plate) using plate (I). For the dy-
namical case, we plotted on the same graph the data
for the different impacts (from the second to the fourth
bounce) varying the rotating velocity of the vane from
500 to 800 rpm. This corresponds typically to a relative
impact velocity varying from 1 to 7 m/s.

0,8 1 1,2 1,4 1,6 1,8
Ψ
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-0,6

-0,3

0

0,3

0,6

0,9

1,2

Ψ
2

Impact 1 on rotating plate (I), Φ
i
∈ [-0.2 ; 0.03]

Impact 2 on rotating plate (I), Φ
i
∈ [0.6 ; 1]

Impact 3 on rotating plate (I), Φ
i
∈ [1.3 ; 1.7]

Static plate (I), Φ
i
=0

Figure 8: Collision diagram for the static case (fixed plate)
and the dynamic case (rotating plate)

We reproduce again the two distinct regimes observed
previously and described in [10] : (i) a first sticking re-
gime for low values of Ψ1 and (ii) a second sliding regime
represented by a straight line for higher values of Ψ1.

For the measurements of impact of model particles on
the rotating plate, we observe that the impact angle from
the normal is 0◦ at the first impact, is 51 ± 2◦ at the
second impact, is 64 ± 2◦ at the third impact and is
71 ± 2◦ at the fourth impact for all the experimental
conditions (x0 ∈ [1 − 8]cm, Ω ∈ [500 − 1000]rpm, va-
riation of plate material Table I). The impact angle is
always more oblique than 49◦ from the second impact.
The spin of the particles has also been determined and
following [6] we can define the normalized angular velo-
city as : φi = Rθ·i

Vni
where θ· is the spin of the particle and
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Vni is the relative normal velocity on the wall. The experi-
mental data on the collision diagram have been classified
according to this parameter. This classification corres-
ponds in fact to the order of the impacts of the particle
along the rotating vane. Linear fits of the data have been
done for the different values of φ. For the first impact,
the data are scattered and a linear fit is very rough. In-
deed, the values of the spin are very small for this impact.
For impact 2, we find a good interpolation by a linear
curve y = x − 1, 1 and for impact 3 by a linear curve
y = x − 1, 08. In the static case, the fit is y = x − 1, 1.
For each impact, we note that the impact velocity varies
typically from 2 m/s to 7 m/s. According to a previous
study [8], the coefficient of restitution en for the experi-
mental beads varies from the values 0, 9 to 0, 75 in this
range of impact velocities. However, we checked that this
induces only a discrepancy of 5% on the value of the fric-
tion coefficient using equation 3. We find therefore that
the difference in the data for different values of φ are not
significant.

The rough correspondence between the curves for the
two experimental configurations leads us to make the fol-
lowing comments :
(i) At first, the collisions in the experiment from the se-
cond impact appear to be in the sliding regime whate-
ver the incident angles and the impact velocities on the
plates.

(ii) Secondly the experiments show that the initial spin
of the particles may be taken into account as long as the
formalism of [1, 10] is adopted and doesn’t have a clear
influence on the value of the friction coefficient.

It is also important to note at this stage that a fric-
tion coefficient may be determined in a more traditional
way following the seminal experiments of Coulomb [15].
Measurements of the friction coefficient with our model
particles have been done by following the motion under
gravity of a raft of 9 beads falling along an inclined plate
for two different inclination angles (γ = 35◦ and 40◦).

Experimental friction coefficients measured using 5 dif-
ferent treatments on the plate give the following results :

µI = 0.38±0.02 ; µII = 0.58±0.02 ; µIII = 0.27±0.02 ;
µIV = 0.31± 0.02 ; µV = 0.48± 0.02

This leads to a discrepancy ranging from 20 to 50 %
between both friction measurements. In order to try to
explain this discrepancy, we can notice first that the nor-
mal load applied at the contact is much higher in the col-
lision case that in the sliding case (the difference being
typically equal to the inertial dynamic load m∗ dVy

dt where
Vy is the vertical velocity of the bead colliding the sur-
face). If sliding friction is mainly a shearing of adhesiv
junctions between microscopical asperities at the contact,
then slow sliding friction occurs on a rough contact whe-
reas impact friction may experience more plastic contacts
[16]. Gorham et al(2000) [14] suggested that the derived
value of µ from impact experiments must be interpre-
ted as an effective value which takes into account some
plastic deformation, unlike the measurements on inclined
plates without deformation. This difference in the values

of the friction coefficient might be related to the different
modes of sliding between the materials [17].

IV. BOUNCING TRAJECTORY

The measurements of the characteristic quantities for
each phase of the trajectory have been done using the
experimental setup presented in paragraph I. We consider
also typical values x0=10cm and Ω = 100 rad/s in order
to determine the dimensionless collision time scale Nt

and the centrifugal number Nc ; this gives us the typical
values Nt = 0.005 and Nc = 0.0001.

A. Aerodynamic effects on the trajectory

We checked that the air had no drag effect on the tra-
jectory of our model particles. The typical trajectory of
the particle in the rotating frame consists of a first phase
of bounces with a decreasing height (cf. figure Fig. 4). We
introduce the parametric equations of a bounce numbe-
red (i) without taking into account the air flow i.e. velo-
cities of the particle in the laboratory frame (Vxi and Vyi)
are supposed to be constant throughout the bounce :

x′i(t) = XM cos(ω)− YM sin(ω) (5)
y′i(t) = −XM sin(ω)− YM cos(ω) (6)

We define the position of the plate as a function of the
time t : Ω = Ω(t − ti) + θi with θi and ti the condition
at the beginning of the bounce : the orientation of the
plate with the x − axis and the time. Supposing no air
flow effect, the trajectory of the particle as a function of
time is linear in the laboratory frame :

XM = xi(ti) + Vxi(t− ti)
YM = yi(ti) + Vyi(t− ti)

With the digital video camera, we detected the initial
conditions at the beginning of the bounce : xi(ti), yi(ti),
θi and ti and the positions at each step t throughout the
bounce x′i(t) and y′i(t). Fig. 9 shows the experimental
data y′i(t) as a function of x′i(t). The line is the curve
fitting of the Eqs. 5-6 with the experimental data finding
the best constraint values : Vxi and Vyi.

A maximum 3% error rate between experimental and
fitted velocities Vxi and Vyi is observed (x0 ∈ [1− 8]cm,
Ω ∈ [500−1000]rpm, variation of plate material, Table I).

B. Length of the jumping phase

The random errors on the position of the particle are
estimated as δy′ = ±2mm. We consider that the particle
is in a sticking phase, if the distance with the plate y′i(t)
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Figure 9: Experimental trajectory of a plastic particle onto
the painted plate (x0 = 1.6cm and Ω = 800rpm). The line is
the curve fitting of the Eqs. 5-6 with the experimental data.

is always smaller than R + δy′. Making the hypothesis
that tan(Ωt) ≈ Ωt and the main variation of the radial
velocity occurs throughout the bounces of the particle
(neglecting the variation of the radial velocity during the
impacts), we get the limit radial position of the bouncing
phase equal to xs = x0

1−en
according to [13].

We give a slightly different equation than in [13] as the
first impact is not treated separately. For given mechani-
cal parameters Table I, the figure (Fig. 10) represents the
experimental and theoretical evolution of the limit radial
position of the bouncing phase.
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x 0
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Figure 10: Experimental and theoretical limit radial posi-
tions xs/x0 as a function of 1/(1− en).

A very good agreement is found between the experi-
ments and the theory. The smaller experimental values
come from the cut-off in order to determine the end of
the successive bounces δy′ .

C. Sticking phase

For positions x > xs, the contact between the particle
and the rotating plate becomes permanent. We measured
the sliding velocity defined as Vs = Vx−Rθ̇ for each expe-
rimental conditions (x0 ∈ [1−8]cm, Ω ∈ [500−1000]rpm).

The particle is supposed to be in a rolling without sli-
ding regime if the sliding velocity measurement is smal-
ler than the random errors δVs = δVx + δRθ̇. Figs. 11-
12 represent the sliding velocity along the vane with
the particle onto the painted and roughen steel plate
(x0 = 1.6cm, Ω ∈ [500− 800]rpm).
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Figure 11: Dimensionless sliding velocity along plate (I)
(x0 = 1.6cm).
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Figure 12: Dimensionless sliding velocity along plate (II)
(x0 = 1.6cm).

We observe clearly the appearance of two distinct re-
gimes. The sliding velocity is always greater with plate (I)
(µ = 0.175). With the roughen plate (II) (µ = 0.45), the
sliding velocity is reaching zero. The particle on plate (I)
is supposed to be in a rolling with sliding regime (R+S),
whereas the particle on plate (II) is supposed to be in a
rolling without sliding regime (R− S). The sliding velo-
city depends also on the rotation velocity Ω.

In order to estimate the value of the critical friction
coefficient µ?, Fig. 13 represents the sliding velocity using
five different treated materials at a rotating velocity of
Ω = 700rpm. (δVs/RΩ = 2.5).

For all plate materials, the sticking phase appears at
x′ = x0/(1 − max(en)) ≈ 13cm. We observe that the
sliding velocity decreases with the friction coefficient. The
sliding velocity is only greater than the random errors
with the painted (plate I) and the varnished (plate III)



7

0 20 40 60 80 100
x’ / R

0

5

10

15

Sl
id

in
g 

ve
lo

ci
ty

 V
s / 

(R
 Ω

)

Plate (III)
Plate (I)
Plate(IV)
Plate (II)
Plate (V)

700rpm, x
0
=1.6cm

δV
s
/(RΩ)=2.5

Figure 13: Dimensionless sliding velocity along the different
plate materials (x0 = 1.6cm,Ω = 700rpm)

steel plates. From these data, we can give a frame of the
value for the critical friction coefficient : µI ≤ µ∗exp ≤ µIV

with µI = 0.175±0.005 and µIV = 0.205±0.003. Varying
the velocity of the plate between 500rpm. and 800rpm.,
we notice that the same estimation of the critical friction
coefficient holds in conformity with the theory proposed
recently [13].

We note also that all the combinations of particle and
plate material (Table I) have a fairly high value of nor-
mal restitution coefficient : en ∈ [0.68− 0.88]. Hence the
critical friction coefficient estimated experimentally is in
very good agreement with the theoretical value predicted
for high normal coefficients of restitution (≈ 0.169).

The rotational speed at the limit radial position xs for
a particle in a (R + S) regime is :

Rθ̇s = Rθ̇1 +
5
2
x0Ωµen

1 + en

1− en
(7)

In the same way, with all the particles in a R−S regime,
µ = µ? = 1/

√
35 and Rθ̇s(µ) is a saturated function of

µ. Throughout the first bounce, a small negative rotatio-
nal speed Rθ̇1 is observed, a feature which is not taken
into account in the theory (Rθ̇1 = 5

2x0Ωµ(1 + en) > 0
according to the theory). The existence of an initial an-
gular velocity Rθ̇1 can be explained by an effect of the
tangential compliance since a small radial velocity V ′

x1

is also observed just after the first impact. The first im-
pact angle occurs always at an impact angle of 0◦ from
the normal. In these range of values, the tangential com-
pliance is expected to give rise to specific features for the
impact such as a negative rebound angle [14].

Fig. 14 shows the experimental rotational speed at the
end of the bouncing phase. The dotted line is the curve
fitting of the Eq. 7 with the experimental data finding
the best constraint value : Rθ̇1. A good estimation for
the rotational speed is Rθ̇s = −0.26x0Ω+ 5

2x0Ωµen
1+en

1−en
.
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Figure 14: Experimental and theoretical rotational speed at
the end of the bouncing phase.

Conclusion

We presented in this article new results concerning the
impact of spinning particles along moving boundaries for
different surface properties. We showed experimentally
that the bouncing trajectory consists in a succession of
rebounds of decreasing height followed by a permanent
contact of the particle along the vane. These dynamics
can be reproduced by the simple theory proposed re-
cently [13] in the limit where the centrifugal number and
the non dimensional collision time are small compared to
one. The condition for this matching is that the normal
restitution coefficient and the friction parameter have to
be measured independantly using an experimental device
of impact of a falling bead on a static plate according to
[10]. A consequence of this study is that the effect of
the initial spin of the particle before each impact can be
taken into account by using an apparent impact angle de-
fined by the normal and tangential velocity components
of the particle surface as explained recently [6]. This is
in fact implicit in the formulation of [10] for the study
of the impact. Also, the tangential restitution coefficient
characterizing the tangential compliance doesn’t need to
be taken into account according to our previous theore-
tical treatment [13] : from the second impact onto the
rotating plate, the impact angle is indeed oblique enough
to be accurately described by a theory of frictional im-
pact in agreement with [14]. For values of the friction
coefficient higher than a critical value, we observe that
the sliding velocity of the particle along the vane can-
cels and that the particle reaches a rolling without sli-
ding regime (R − S) in agreement with the theory. The
model is able to predict quantitatively the critical value
of this friction coefficient. Another interesting feature of
the experiments is the observed difference in the values
of the friction coefficients particle/plate measured from
the two different protocols used (impact on a static plate
- Coulomb friction experiment) at a low velocity (1 to
2 m/s). In fact, at the scale of the contact, the appa-
rent friction coefficient may involve surfacic properties of
the materials as well as volumic properties such that its



8

value may depend on the precise stress path applied at
the interface between the two bodies [16]. This may have
some consequences in the determination of the boundary
conditions for frictional collisional granular flows because
particles may not experience the same friction along the
boundary depending on their specific motion (impact or
sliding). A deeper analysis of the difference between these
two quantities at the scale of the contact will be of much
value.

Another possible perpective of this study is to extend
the experiments to other kinds of softer particles and
surfaces. For the last case, new properties for the im-
pact may be expected as the centrifugal number Nc and
the nondimensional collision time Nt might not be small
compared to 1 [13]. The influence of the asphericity of
the bead has also to be considered. We already observed
unexpected bouncing trajectories for angular particles on

some surfaces in the present setup.
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