
Ranking and selecting association rules based on

dominance relationship

Slim Bouker

To cite this version:

Slim Bouker. Ranking and selecting association rules based on dominance relationship. 2012.
<hal-00677853>

HAL Id: hal-00677853

https://hal.archives-ouvertes.fr/hal-00677853

Submitted on 24 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Ranking and selecting association rules based on
dominance relationship

Slim Bouker and Rabie Saidi and Sadok Ben Yahia and Engelbert Mephu Nguifo 1

Abstract. The huge number of association rules represent the main

obstacle that a decision maker faces. In order to bypass this obstacle,

an efficient selection of rules must be performed. Since selection is

necessarily based on evaluation, many interestingness measures have

been proposed. However, the abundance of these measures caused

a new problem which is the heterogeneity of the evaluation results

and this created confusion to the decision. In this scope, we propose

a novel approach to discover interesting association rules without

favouring or excluding any measure by adopting the notion of dom-

inance between rules. Our approach bypasses the problem of mea-

sure heterogeneity and find a compromise between their evaluations

and also bypasses another non-trivial problem which is the threshold

value specification.

1 INTRODUCTION

Mining association rules is one of the core tasks in data mining re-

search. Since its first formalization in [1], the research on association

rules has become very popular among the data mining researchers, as

it provides an opportunity to extract relevant and valuable relation-

ship between attributes in transaction databases.

At present, association rules are widely used in the decision

making related to various areas such as telecommunication net-

works, market and risk management, inventory control etc, where

the databases are generally large [13]. However, it is well known that

data mining algorithms produce huge numbers of rules [8]. Hence,

the decision maker is unable to determine the most interesting ones

and consequently unable to make decisions. In order to face this ob-

stacle, an efficient evaluation of rules has become a need rather than

being a rational choice. Several works have been devoted to study

the interestingness of association rules [6], [7], [17], [19]. As a con-

sequence, a panoply of statistical measures, obeying different seman-

tics, have been proposed. Although these measures allow evaluating

rules from various sights, yet their abundance (≈ 60) has yielded an-

other problem for the decision maker. Indeed, the outputs of evalua-

tions vary from a measure to another and may even be contradictory

since the measures evaluate differently the rules under consideration.

That is why, it is common that a given rule be considered relevant

according to a measure and irrelevant according to another.

The problem caused by the abundance of measures has led to a

trend of works that focuss on proposing approaches to assist the

user(i.e., the decision maker) in selecting the measures qualified to

be the most adequate to the decision scope. These approaches can

be classified into two main categories namely the expert-based ap-
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proaches and the property-based approaches. In the first category,

different studies have compared the ranking of rules by human ex-

perts to the ranking of rules by various measures. Then, they sug-

gested choosing the measure that produces the ranking which most

resembles the expert one [15], [18]. These studies were based on

specific datasets and experts. Thus, their results cannot be taken as

general conclusions. Moreover, in a real problem, it is not always

possible to get rule ranking by experts. As for the second category, to

reduce the number of measures, many properties have been reported

in [4]. Geng and Hamilton surveyed the interestingness of measures

and summarized nine properties to address that issue. Using proper-

ties facilitates a general and practical way to automatically identify

interesting measures. This trend has been enriched by different other

works [2], [5], [11], [12] with an extensive number of properties.

Nevertheless, these properties are not standards [10]. Hence, they do

not guarantee selecting only one best measure. Indeed, a wide range

of UCI2 datasets were also used to study the impact of different prop-

erties. The results show no single measure can be introduced as an

obvious winner [5]. Then, in the case of selecting many measures, the

problem related to the variety of outputs, mentioned above, persists.

In other words, the user cannot proceed towards a unique selection of

rules. Whatever one measure is selected or more, nothing guarantees

that they are the ”best” ones and some better suited measures may be

excluded for the simple reason that the used properties do not take

into account the specificity of decision context.

Our contribution lies within this scope. In this paper, we propose

a novel approach to discover interesting association rules without fa-

voring or excluding any mesure among the used measures. For this

purpose, we integrate into the rule selection process, the skyline op-

erator [3] whose fundamental principle relies on the notion of dom-

inance. Skyline operator is used to resolve mathematical and eco-

nomics problems such as maximum vectors [9], Pareto set [14] and

multi-objective optimization [16]. In our work, the skyline operator

comprises the rules that are supposed to be the most interesting ones

while taking into account several measures. The dominance relation-

ship which is the corner stone of the skyline operator is applied on

rules and can be presented as follows: a rule r is said dominated by

another rule r′, if for all used measures, r is less relevant than r′.

The former rule (i.e., r) is discarded from the result, not because it is

not relevant for one of the mesure but because it is not interesting ac-

cording to the combination of all measures. Our approach bypasses

the problem of measure selection by finding a compromise between

the different outputs and also bypasses another nontrivial problem

which is the threshold value specification.

The remainder of this paper is organized as follows. Section 2

gives a brief definitions related to association rules and introduce
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the dominance relationship. We propose and detail our approach of

rule selection in section 3. An extension of our approach to enable

rule ranking is presented in section 4. Concluding points and some

prospectives make the body of section 5.

2 ASSOCIATION RULES AND DOMINANCE
RELATIONSHIP

In this section we first recall basic definitions related to association

rules. Then, we present these rules as numeric vectors within the

same dimension after having been evaluated by a set of measures.

This vector format, allows us to benefit from the concept of domi-

nance and adapt it to our scope as described in section 2.2.

2.1 Association rules

Let I be a set of literal called items, an itemset corresponds to a non

null subset of I. These itemsets are gathered together in the set L
: L = 2I\∅. In a transactional dataset, each transaction contains an

itemset of L. Table 1(a) presents a transactional dataset D where 10

transactions denoted by t1, . . . , t10 are described by 4 items denoted

by a, b, c, d. The support of an itemset X, denoted supp(X), is the

number of transactions containing X . The negative support supp(X)

is the number of transactions that do not contain X .

An association rule r is a relation between itemsets of the form r:

X→Y where X and Y are itemsets, and X∩Y =∅. Itemsets X and

Y are called, respectively, premise and conclusion of r. The support

of r is equal to the number of transactions containing both X and Y ,

supp(r)= supp(X∪Y). We notice that interesting measures for asso-

ciation rules are usually defined using support counts as presented in

Table 1(b).

a b c d

t1 × ×
t2 ×
t3 × ×
t4 ×
t5 × ×
t6 × ×
t7 ×
t8 ×
t9 × ×
t10 × ×

(a) A transaction data setD

Rule Freq Conf Pearl

r1: a→d 0.20 0.67 0.02
r2: b→c 0.10 0.50 0.00
r3: b→d 0.10 0.50 0.02
r4: c→d 0.20 0.40 0.10
r5: d→a 0.20 0.33 0.02
r6: d→c 0.20 0.33 0.10
r7: c→b 0.10 0.20 0.01
r8: d→b 0.10 0.17 0.02

(b) A table rlation Ω(R,M)

Name Definition Domain

Frequency
supp(X∪Y )

|D|
[0, 1]

Confidance
supp(X∪Y )

supp(X)
[0, 1]

Pearl
supp(X)

|D|
× |

supp(X∪Y )
supp(X)

−
supp(Y )

|D|
| [0, 1]

(c) Some measures of M

Table 1. Example of a dataset transaction and measures.

2.2 Dominance relationship

After mining association rules from transactional dataset D (e.g.,

Table1(a)), a set R of rules is obtained (e.g., Table1(b) first column).

Rules of R are evaluated by a set M of measures (e.g., Table1(c))

to form a relational table Ω (e.g., Table1(b)). Formally, Ω = (R,M)

with the set M = {m1, . . ., mk} of measures as attributes and the set

R = {r1, . . ., rn} of rules as objects. We note by r[m] the value of

the measure m for the rule r, r ∈ R and m ∈ M. Since the evalua-

tion of rules varies from a measure to another, using several measures

could lead to different outputs (relevant rules with respect to a mea-

sure). For example, r1, and r2 are the best two rules according to

the evaluation of the Confidence measure whereas it is not the case

according to the evaluation of Pearl measure which favors r4 and

r6. This difference of evaluation is confusing for any process of rule

selection or ranking. Other examples can be found in Table1(b).

Based on the above formulation of Ω, we can utilize the notion

of dominance between rules to address their ranking as well as the

selection of relevant ones. Before, formulating the dominance rela-

tionship between rules we need to define it at the level of measure

values. To do that, we define value dominance as follows:

Definition 1 (Value Dominance) Given two values of a measure m

corresponding to two rules r and r′, we say that r[m] dominates

r′[m], noted by r[m] º r′[m], iff r[m] is preferred to r′[m]. If

r[m] º r′[m] and r[m] 6= r′[m] then we say that r[m] strictly

dominates r′[m], we note r[m] ≻ r′[m].

Remark. The preference between two values differs from a measure

to another.

Example. Given v and v′ two values and m, m′ ∈M two measures,

such that the best values in the domain of m and the domain of

m′ are respectively 0 and 1. For instance, if v = 0.3 and v′ = 0.8,

then v strictly dominates v′ with respect to m, whereas v′ strictly

dominates v with respect to m′.

To make the dominance relationship scale to the level of rules, we

give the following definition:

Definition 2 (Rule Dominance) Given two rules r, r′ ∈R, the dom-

inance relationship according to the set of measures M is defined as

follows:

- r dominates r′, noted r º r′, iff r[m] º r′[m], ∀ m ∈M.

- If r º r′ and r′ º r, i.e., r[m] = r′[m], ∀ m ∈ M then r and r′

are said equivalent, we note r ≡ r′.

- If r º r′ and ∃ m ∈M such that r[m] ≻ r[m] , then r′ is strictly

dominated by r and we note r ≻ r′.

It is easy to verify that strict dominance relationship is:

- irreflexive: r 6≻ r, i.e, r ≻ r is false for each m ∈M,

- transitive: ∀ r, r′ and r′′ ∈ R, if r º r′ and r′ º r′′ then r º r′′.

Example. Given the relation table Ω in Table1(b), the rule r3

strictly dominates r2 because r3[Freq] º r2[Freq], r3[Conf ] º
r2[Conf ] and r3[Pearl] ≻ r2[Pearl].

When a rule r dominates another rule r′ with respect to M, this

means that r is equivalent or better than r′ for all measures. Indeed,

the values of r dominate those of r′ for all measures. The dominance

relationship allows comparing two rules with respect to all measures

at the same time. Hence, it can be used to bypass the problem of dif-

ference of evaluations. The rules which are dominated by others (at

least one) according to M are not relevant and must be eliminated.

The skyline operator for association rules formalizes this intuition.



Definition 3 (Skyline operator) The skyline of Ω over M, denoted

by SkyM (Ω), is the set of rules from Ω defined as follows:

SkyM (Ω) = { r∈ R | 6 ∃ r′ ∈ R, r′ ≻ r}

In other words, the skyline of Ω is the set of undominated rules

of R according to M. For instance, from the relation table Ω in

Table1(b), SkyM (Ω) = {r1, r4} because there is no rule in R which

dominates r1 or r4.

3 DISCOVERING UNDOMINATED RULES

In this section, we describe our approach to discover the undomi-

nated rules. In the next subsection, we introduce the necessary for-

malization that helps with the generation of the undominated rules.

Based on this formalization, we propose SKYRULE, the algorithm

meant to concretize the skyline operator.

3.1 Formalization

To discover the undominated rules, a naı̈ve approach consists in com-

paring each rule with all other ones. However, association rules are

often present in huge number which make it very costly to perform

pairwise comparisons. In the following, we show how to remedy this

problem. First, we define the reference rule.

Definition 4 (Reference Rule) A reference rule r⊥ is a fictitious

rule that dominates all the rules of R. Formally: ∀ r ∈ R, r⊥ºr.

Example. From the relational table Ω in Table1, we can consider r⊥

as the fictitious rule such that for each measure m ∈ M, r⊥[m] is

the maximum value appearing in the active domain of m, then r⊥ =
〈0.2, 0.67, 0.10〉. Hence, there is no rule in R that dominates r⊥.

In practice, measures are heterogenous and defined within differ-

ent domains. For our purpose, M must be normalized into M̂ within

one interval [p,q]. In other words, each measure m ∈ M must be

normalized into m̂ ∈ M̂ within [p,q]. The normalization of a given

measure m is performed depending on its domain and the statisti-

cal distribution of its active domain. We recall that the active domain

of a measure m is the set of its values in Ω. The normalization is a

statistical problem that we are not dealing with. Obviously, The nor-

malization of a measure do not modify the domination relationship

between two given values.

Definition 5 (Degree of similarity) Given two rules r, r′ ∈ R, the

degree of similarity between r and r′ with respect to M̂ is defined as

follows:

DegSim(r, r′) =

∑k

i=1 | r[m̂i] − r′[m̂i] |

k

with | x − y | is the absolute value of (x − y), x and y ∈ [p,q].

Example. Let’s consider our running example using the relation

table Ω in Table1(b). Since all measures are defined within the same

domain [0,1], we can compute, without normalization, the degree

of similarity between each rule and the reference rule given in the

previous example. DegSim(r⊥,r1) = 0.02, DegSim(r⊥,r2)

= 0.12, DegSim(r⊥,r3) = 0.11, DegSim(r⊥,r4) = 0.09,

DegSim(r⊥,r5) = 0.14, DegSim(r⊥,r6) = 0.11, DegSim(r⊥,r7)

= 0.22, DegSim(r⊥,r8) = 0.23.

After giving the necessary definitions (reference rule and degree of

similarity), the following lemma gives a remedy to the issue evoked

in the beginning of section 3.1. Indeed, it offers a rapid solution rather

than pairwise comparisons; to find undominated rules.

Lemma 1 Let r ∈ R be a rule having the minimal degree of simi-

larity with r⊥, then r ∈ SkyM (Ω).

Proof 1 Let r ∈R be a rule having the minimal degree of similarity

with r⊥ and we suppose that r 6∈ SkyM (Ω), then there exist a rule

r′ ∈R that strictly dominates r, which means that ∀ m ∈M, r′[m]

º r[m] and ∃ m′ ∈ M, r′[m′] ≻ r[m′]. Hence, DegSim(r⊥,r′)

< DegSim(r⊥,r) which is absurd since r has the minimal degree of

similarity with r⊥ .

After identifying an undominant rule r, the rules dominated by

r must be identified by comparing them to r. Naı̈vely, r must be

compared to all rules in R, yet we show in the following that we can

reduce the set of rules to be compared with r into a subset of R.

Definition 6 (undominated space) Let r be an undominated rule.

If there exists a rule r′ which is not dominated by r such that r 6≡
r′, then there exists at least a measure m ∈ M such that r′[m] ≻
r[m]. Since there exist k measures in M, then there are k sets such

that each one of them may contain rules not dominated by r. For

each measure mi ∈ M, i=1...k, the corresponding set sr
i of rules

not dominated by r is defined as follows:

sr
i = { r′ ∈ R | r ⊁ r′ and r′[mi] ≻ r [mi]}

These k sets compose the undominated space of r, noted Sr={sr
i },

i=1...k.

Example. From our toy example presented in Table1, for the undom-

inated rule r1, s
r1

1 = ∅, s
r1

2 = ∅ and s
r1

3 = {r4, r6}. s
r1

1 and s
r1

2 are

empty because there is no rule r ∈ R such that r[m1] ≻ r1[m1] or

r[m2] ≻ r1[m2]. However, s
r1

3 contain r4 and r6 because r4[m3]

≻ r1[m3] and r6[m3] ≻ r1[m3]. Following a similar reasoning, for

the undominated rule r4, s
r4

1 = ∅, s
r4

2 = {r1, r2, r3} and s
r4

3 = ∅.

Lemma 2 Let r,r′ ∈ R be two undominated rules and sr ∈ Sr . If

r′ 6∈ sr then ∀ r′′ ∈ sr , r′ 6≻r′′.

Proof 2 Given r, r′ ∈R two undominated rules and sr ∈ Sr corre-

sponding to a measure m ∈M. If r′ 6∈ sr , then r′[m] ⊁ r[m] which

means r[m] º r′[m] (1). Moreover, since r′′ ∈ sr then r′′[m] ≻
r[m] (2). According to the dominance transitivity, (1) and (2) mean

r′′[m] ≻ r′[m]. Hence, r′ 6≻r′′.

Lemma 3 Let be r, r′ ∈ R and sr ∈ Sr such that r is an undomi-

nated rule and r′ ∈ sr . If r′ has the minimal degree of similarity with

r⊥ among the rules in sr , then r′ ∈ SkyM (Ω).

Proof 3 Given r, r′ ∈ R and sr ∈ Sr such that r′ ∈ sr and r′

has the minimal degree of similarity with r⊥ among the rules in sr .

Suppose that r′ 6∈ SkyM (Ω), that means there exists a rule r′′ ∈
R such that r′′≻r′. According to lemma 2, r′′ must be in sr since

any rule not belonging to sr cannot dominate r′. Moreover ∀ m ∈
M, r′′[m] º r′[m] and ∃ m′ ∈ M, r′′[m′] ≻ r′[m′]. Hence,

DegSim(r⊥,r′′) < DegSim(r⊥,r′) which is absurd since r′ has

the minimal degree of similarity with r⊥ in sr .



3.2 SKYRULE Algorithm

Based on the formalization, we proposed the SKYRULE algorithm

allowing to discover undominated rules. In SKYRULE algorithm we

use the following variables for accumulating data during the execu-

tion of the algorithm:

- The variable Sky: is a variable initialized to empty set and it is

used to contain the undominated rules.

- The variable C: is a variable containing the set of all current can-

didate rules to be qualified as undominated; it is initialized to R.

- The variable E : is a variable containing all current set covering the

undominated space of all undominated rules; it is initialized to R
because initially, all rules are considered undominated.

Algorithm 1: SKYRULE

Input: Ω = (R, M)

Output: SkyM (Ω): set of undominanted rules of Ω.

begin1

Sky ← ∅2

C ←R3

E ← {R}4

while C 6= ∅ do5

r∗ ← r ∈ C having min(DegSim(r,r⊥))6

C ← C\{r∗}7

for i=1 to k do8

sr∗

i ← ∅9

Sky ← Sky ∪ {r∗}10

foreach e ∈ E such that r∗ ∈ s do11

foreach r ∈ e do12

if r∗ ≻ r then13

C ← C\{r}14

else15

for i=1 to k do16

if r[mi] ≻ r∗[mi] then17

sr∗

i ← sr∗

i ∪{r}18

E ← E\{e}19

E ← E ∪ {sr∗

1 , . . . , sr∗

k }20

return Sky21

end22

Informally, the algorithm works as follows:

- If the set of candidate rules C is empty, then the algorithm termi-

nates and all undominated rules are in Sky.

- Otherwise, each rule r in C might be an undominated rule. If r

has the minimal degree of similarity with the reference rule r⊥

then, r is an undominated rule and it is added to Sky (i.e., r is

no longer candidate and it is deleted from C). After that, only the

undominated space containing r is explored as follows: for each

rule r′ in this undominated space r′ is compared with r, then we

have two cases:

1. if r′ is dominated by r, then r is no longer candidate and it is

deleted from C.

2. otherwise, r′ is not dominated by r, i.e., r′ is still a candidate

rule and it is added to the undominated subspace of r according

to definition 6.

Then, the undominated space containing r is deleted from E and

the undominated space of r is added to E . This process is repeated

until there is no more candidate left.

4 RANKING ASSOCIATION RULES

The SKYRULE algorithm allows identifying the undominated rules

which are supposed to be the most relevant ones. However, this out-

put might not answer a personalized user query. Indeed, the user of-

ten need a specified number of relevant rules which may be more or

less than what SKYRULE generates. In the first case i.e., the user asks

for a subset of the undominated rules, a selection is required among

the SKYRULE output. Since, SKYRULE generate only relevant rules,

the most relevant among them must be returned to the user. This se-

lection cannot be performed unless a ranking has be done within the

undominated rules. In the second case i.e., the user asks for a set of

relevant rules larger than the set of undominated rules, the rules that

must be added to the SKYRULE output are necessarily a part from

the set of dominated rules. The composition of this part requires a

selection among all the dominated rules. This selection cannot be

performed unless a ranking has be done within the dominated rules.

Hence, a ranking process must be performed on the whole set of

rules.

In this section, we present our second contribution: we show that

we can perform a comprehensive ranking using SKYRULE. For this

purpose, we give the two following objective conditions:

1. Any dominated rule cannot be better ranked than an undominated

one.

2. Two undominated rules must be ranked based on degree of simi-

larity with a reference rule.

4.1 Succession relationship

In this section, we introduce the notion of succession relationship.

This notion is based on the dominance relationship. First, we define

it at the level of rules. Then we define it at the level of rule sets.

The two definitions are essentiel to state Lemma 4. That lemma puts

the corner stone of our approach that uses the skyline operator to

establish a ranking process. This process is described by RANKRULE

(see algorithm 2).

Definition 7 (Successor rule) Let two rules r, r′ ∈ R, we say r

succeed r′, noted by r ⊳ r′ iff r′ ≻ r and ∄ r′′ such that r′ ≻ r′′ ≻
r.

Example. Consider the relation table Ω in Table1(b), r6 ⊳ r4 but r5

⋪ r4 since r4 ≻ r6 ≻ r5.

Definition 8 (Succession Operator) Let E be a set of rules such that

E ⊆ R . The successeur set of E in R with respect to M is defined

as follows: SuccM(E,R) = { r ∈ R \ E | ∃ r′ ∈ E, r ⊳ r′ ∧ ∄ r′′

∈ E, (r′′ ≻ r ∧ r ⋪ r′′)}

Example. Let’s consider our running example using the relation table

Ω in Table1(b) and suppose E = {r1, r4}, r1 ≻ r3 ≻ r2, r1 ≻ r5 ≻
r7, r5 ≻ r8 and r4 ≻ r6 ≻ r5 then SuccM(E,R) = {r3, r6}. Notice

that, although r5 ⊳ r1, r5 6∈ SuccM(E,R) because r5 ⋪ r4.

Lemma 4 Given a set of rules E, one has the following relation:

SuccM(SkyM (E),E) = SkyM (E\SkyM (E ))



Proof 4 Let E be a set of rules:

1. First we show that SuccM(SkyM (E),E) ⊆
SkyM (E\SkyM (E)):

Given r ∈ SuccM(SkyM (E),E) then r ∈ E\SkyM (E). For all r′

∈ SkyM (E), we have two cases :

- If r′ ≻ r, then r ✁ r′ which means ∄ r′′ ∈ E\SkyM (E) such that

r′ ≻ r′′ ≻ r.

- If r′ ⊁ r, then ∄ r′′ in E\SkyM (E) such that r′ ≻ r′′ and r′′ ≻ r

Thus r cannot be dominated by any rule in E\SkyM (E) i.e., r ∈
SkyM (E\SkyM (E)).

2. Second we show that SuccM(SkyM (E),E) ⊇
SkyM (E\SkyM (E )):

Given r ∈ SkyM (E\SkyM (E )) then ∄ r′ ∈ E\SkyM (E) such

that r′ ≻ r (a). Moreover, as r ∈ E\SkyM (E) then ∃ r′′ ∈
SkyM (E) such that r′′ ≻ r (b). Thus (a) and (b) mean that r ✁ r′′

(c).

Furthermore, we suppose that ∃ r′ ∈ SkyM (E) such that r1 ≻
r and r ⋪ r1, then ∃ r2 ∈ E\SkyM (E) such that r1 ≻ r2 ≻ r

which is absurd (see (a)). Thus, ∄ r2 ∈ E\SkyM (E) such that

r1 ≻ r2 ≻ r (d). Hence, according to (c) and (d), r belongs to

SuccM(SkyM (E),E).

Algorithm 2: RANKRULE

Input: Ω = (R, M)

Output: Ordered sets of ordered rules

begin1

p ← 02

while R 6= ∅ do3

p ← p + 14

Ep ← SKYRULE(Ω)5

R← R\Ep6

Ω ← (R, M)7

return (E1, . . ., Ep)8

end9

Example. In this example, we apply RANKRULE on Ω of Table 1.

Since r1 and r4 are undominant rules then E1 = {r1, r4}. Now we

ignore r1 and r4, the rules which are not dominated are r3 and r6. In

fact, r3 is dominated by only r1 and r6 is dominated by only r1, then

E2 = {r3, r6}. Now we ignore also r3 and r6, the rules which are

not dominated are r2 and r5. In fact, r2 is dominated by r3 and r5

is dominated by only r6, then E3 = {r2, r5}. Finally, E4 = {r7, r8}.

This example is illustrated by Figure 4.1. The arrow indicates the

process direction starting from the undominated rules. E1 contains

the top ranked rules which are them selves ranked within E1 from

left to right based on DegSim: r1 is better ranked than r4.

4.2 Duality

RANKRULE performs ranking by starting from the set of the most

relevant rules (i.e., the undominated rules) and uses it to identify

the next ranked set (i.e., the successor). Meanwhile, another dual

perspective remains possible. It relies on starting from the set of

the less relevant rules (i.e., rules that do not dominate other rules)

and using them to identify the previous ranked rule set that we

called predecessor set. We do not give a formalization of this dual

Figure 1. The output of RANKRULE applied on Ω.

perspective, yet we explain how it works by the following illustrative

example.

Example. We consider Ω of Table 1. First we identify the set of

rules which do not dominate any other rules. These rules are r2, r7

and r8 then E4 = {r2, r7, r8}. Now ignore these rules. The rules

which do not dominate any other rules are r3 and r5. In fact, r3 dom-

inates only r2 and r5 dominates only r7 and r8, then E1 = {r3, r5}.

Now we ignore also r3 and r5, The rules which do not dominate any

other rules are r1 and r6 since they dominate r3 and r5 respectively,

then E2 = {r1, r6}. Finally, E1 = {r4}.

Figure 2. The dual RANKRULE applied on Ω.

5 CONCLUSION

In this paper we proposed an approach that addresses the problem of

rule selection and ranking. This approach is not hindered by the abun-

dance of measures which is the issue of several works. These works

have been devoted to measure selection in order to find one best mea-

sure, whereas the real issue lies in selecting and ranking rules to help

with decision making. We proposed two algorithms SKYRULE and

RANKRULE to perform these two tasks based on the dominance re-

lationship. When using our algorithms, the user does not have to



worry neither about the heterogeneity of measures nor about spec-

ifying thresholds. As future works, we plan to formalize the dual of

RANKRULE and to find the relationship between them that allows to

obtain the output of one of them from the output of the other. Another

importante prospective is to study the impact of any change within

the relational table Ω, such as the insertion of new measures of new

rules, on the ranking or the selection.
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