
Twins Vertices in Hypergraphs

Raoul Medina, Caroline Noyer, Olivier Raynaud

To cite this version:

Raoul Medina, Caroline Noyer, Olivier Raynaud. Twins Vertices in Hyper-
graphs. Electronic Notes in Discrete Mathematics, Elsevier, 2006, 27, pp.Pages 87-89.
<10.1016/j.endm.2006.08.069>. <hal-00678051>

HAL Id: hal-00678051

https://hal.archives-ouvertes.fr/hal-00678051

Submitted on 12 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Clermont Université

https://core.ac.uk/display/49294457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00678051

Twins Vertices in Hypergraphs

Raoul Medina1 and Caroline Noyer and
Olivier Raynaud2

Research Report LIMOS/RR-06-07

24 juillet 2006

1medina@isima.fr
2raynaud@isima.fr

Abstract

Twin vertices in graphs correspond to vertices sharing the same neighbor-
hood. We propose an extension to hypergraphs of the concept of twin ver-
tices. For this we give two characterizations of twin vertices in hypergraphs,
a first one in term of clone vertices (the concept of clone has been introduced
in [16]) and a second one in term of committees (introduced in [6]). Finally
we give an algorithm to aknowledge a set as committee and two algorithms
to compute clone-twin vertices classes ans committee-twin vertices classes.

Keywords: Hypergraphs, problem of generation, symmetries, twin vertices

1

1 Introduction

An important research area in computer science focus on the generation
of combinatorics objects from a discrete structure. As example the extraction
of cliques or stables of a graph, maximal antichains or ideals from an order
([15, 18]) and minimal implication base from a closure system ([10]). One
major difficulty of this kind of problems lies in the fact that the size of
the result is often potentially exponential. A known approach is to check
for symmetries in the instances before any computation. These symmetries
allow to represent the instance, as well as the result, in a more compact form.
Whenever two vertices play a symmetrical role in the discrete structure as
well as in the generated combinatorics objects, the generation process can be
done on a reduced instance (by removing symmetrical objects in the discrete
structure). Reconstructing the result of the original instance from the results
obtained with the reduced instance is then easily done by computing the
missing symmetrical objects.

Known forms of symmetries in graphs are, for example, twin vertices (i.e.
vertices with the same neighborhood) or modules (sets of vertices having
same neighborhood outside the module). One can notice that twin vertices
define modules of size two in a graph. These symmetries admit immediate
applications. For instance, computing cliques from a graph could be done
from a graph without any twin vertices. Indeed, twin vertices belong to the
same set of cliques. Definition of modules allows a tree decomposition process
of a graph in different types of modules (parallel or serie nodes). This modular
decomposition allows to apply algorithms adapted to the type of the module.
It also allows to characterize particular classes of graphs : the prime graphs
being graphs with only single vertex modules.

Some symmetries in graphs find natural generalization in hypergraphs.
For instance, the concept of module of a graph has been extended to hyper-
graphs under the term of committee ([4, 6, 7]) or module of an hypergraph
([6, 8]). Note that in this generalization, a module is just a particular case of
committees. In this paper our goal is to propose an extension of the concept of
twin vertices for a couple of vertices of an hypergraph. Such extension should
respect the symmetry in the hypergraph as well as to be of algorithmic inter-
est when confronted to the problem of generating combinatorial objects from
the hypergraph. We will illustrate our proposed extensions on the problem of
generating k-hypercliques of an k-hypergraph. In particular, we will see that
defining twin vertices in hypergraphs using an extension of the neighborhood
relation in graphs does not respect the symmetries in k-hypercliques. Thus,
we will see how to characterize twin vertices in hypergraph with the notion of

2

clone elements in a collection of sets. This concept of clone has been introdu-
ced in [16]. We will show that clone elements also characterize twin vertices in
graphs. We will also use the committee definition of [4, 6, 7] as an alternative
to define twin vertices of hypergraphs. For each proposed definition, we will
give algorithms to detect the corresponding twin vertices in an hypergraph.

This paper is organized as follows. In section 2, we recall definitions of
twin vertices and modules in graphs as well as a characterization of twin
vertices in terms of modules. In the third section we propose two different
generalizations of twin vertices in hypergraph. A first one in term of clone
vertices (clone-twins) and a second in term of committees (committee-twins).
Then we compare properties of each of these characterizations. In the fourth
section we give an algorithm to compute classes of clone-twin vertices of an
hypergraph and an algorithm to check if a given set forms a committee of
an hypergraph. Reader will find some demonstrations of our results in an
appendice.

In this paper we will use the following notation : cursive letters as E or F
will denote families of sets, capital letters as (V, E, F, X...) will denote sets
and small letters as (a, b, ...) will denote elements of a set.

2 Twin vertices in graphs

Definition 1 Let G = (V, E) be a graph and v a vertex of V , we call neigh-
borhood of v and we note V(v) the set of vertices y such that the edge (v, y)
belongs to E. The closed neighborhood, noted V[v], is equal to V(v) ∪ {v}.

Definition 2 Let G = (V, E) be a graph, we say that two vertices a and b
are twin vertices in G if and only if they have the same neighborhood. In
addition, if the edge (a, b) belongs to E, a and b are said true twins (cha-
racterized by V[a] = V[b]), if not they are said false twins (characterized by
V(a) = V(b)). Twin relations between vertices of a graph are equivalence
relation.

One application is to compute classes of twin vertices of a graph before
computing some combinatorics objects on the graph. For example, consider
a and b twin vertices of a graph G and C a clique of G such that a belongs
to C.

– If a and b are true twins, then the set C ∪ {b} is also a clique of G ;
– If a and b are false twins, then the set C \ {a} ∪ {b} is also a clique of

G.

3

For this reason, computing cliques of a graph is often done in four steps :
first compute the class of twin vertices, then reduce the graph G by deleting
from V all vertices but one of each class. In a third step compute the set of
cliques of the new graph. Finally compute the missing symmetrical cliques
using the information about classes of (true or false) twin vertices of G.

Another interest of the twin symmetry is to capture characteristics of
some classes of graphs. Let us focus on the class of distance-hereditary graphs.
Originally defined as graphs in which every induced path is isometric, these
graphs admit many others characterizations. One of them in term of twin
vertices (see [2] for a survey). Thanks to this characterization authors of [12]
give a linear time and space algorithm to compute the covering by complete
bipartite subgraphs for distance-hereditary graphs. This problem being NP-
Hard in the general case (Problem GT18 in [9]). A original demonstration of
this last result is given in [11].

In the following we define modules of a graph and use it to characterize
twin vertices of a given graph.

Definition 3 Let G = (V, E), we say that A ⊆ V is a module of G if and
only if for all couples (x, y) of A2, the sets V(y) \A and V(b) \A are equal.

In other words, vertices of a module have same neighborhood outside the
module.

One can trivially restate the twin vertices definition using modules.

Definition 4 Let G = (V, E) be a graph, then a and b in V are twin vertices
of G if the set {a, b} is a module of G.

It is known that a partition of a graph in disjoint module sets leads to a
tree representation of the graph. Indeed this tree corresponds to the recursive
schema of decomposition of the graph into quotient graphs. This schema is
called modular decomposition of a graph. Linear decomposition algorithms
for directed graphs are proposed in [13] and for undirected graph in [14]. As
the coloring problem, number of NP-Hard optimization problems find nice
solutions if we dispose of a solution for each successive quotient graphs of the
decomposition (see [5]).

3 Generalization to hypergraph

The concept of hypergraph corresponding to a set collection has been
introduced in a natural way in the sixties to generalize a great number of
combinatoric problems defined on graphs.

4

Definition 5 ([3]) An hypergraph H = (V, E) is a couple of sets where the
set V is called a ground set and where E = {E1, E2, ..., Em} a set of subsets
of V respects the following :

1. Ei �= ∅ (i = 1, 2, ..., m) ;

2.
⋃m

i=1 Ei = V ;

Set V corresponds to the vertices of the hypergraph and set E to its hyperedges.
It is clear that a graph corresponds to an hypergraph whose hyperedges are of
size two.

A classical problem is the computation of the k-hyperclique sets of a k-
hypergraph H (denoted HCk(H)). A k-hypergraph is an hypergraph with all
hyperedges having size k. Let us define formally a k-hyperclique.

Definition 6 Let H = (V, E) a k-hypergraph, a subset C of V is a k-hyperclique
if and only if ∀E ⊆ C such that |E| = k then E belongs to E .

It is obvious that if k = 2, then H is a graph and C is a clique.
An idea to solve this classical problem would be to apply the resolution

process described previously for the clique problem. For this we need a twin
relation between vertices of H . This relation would permit to reduce the
size of the initial instance and to build the whole result with simplicity.
Throughout this paper, we will use the k-hyperclique generation problem to
illustrate relevance of our twin vertex definitions on hypergraphs.

Since twin vertices are defined using their neighborhood in graphs, we
first give a ”natural” generalization of the neighborhood of a vertex in hy-
pergraphs :

Definition 7 Let H = (V, E) and x ∈ V , V(x) =
⋃

Ei∈E and x∈Ei
Ei \ x is the

neighborhood of vertex x.

In example given figure 1, with definition 7, we obtain V(a) = {c, d, e} and
V(b) = {c, d, e}. Thus, since vertices a and b have same neighborhood, they
should be considered twin. However a and b do not play a symmetrical role in
the set HC3(H). Indeed, the set {a, c, d, e} is a 3-hyperclique of H and thus
belongs to HC3(H). By symmetry, either {b, c, d, e} or {a, b, c, d, e} should
also belong to HC3(H). That is not the case since hyperedge {b, c, e} does not
belong to H . As a consequence, the twin definition using the neighborhood as
defined in Definition 7 is not interesting since a symmetry in the hypergraph
does not imply a symmetry in the generated objects.

5

a b

c

d

e

Fig. 1 – 3-Hypergraph H with E =
{{a, c, d}, {a, c, e}, {a, d, e}, {c, d, e}, {b, c, d}, {b, d, e}}.

3.1 Clone notion

In the context of collection of sets, authors of [16] have proposed a form
of symmetry called clone elements.

Let X be a set of elements of size n and F a set collection on X. Let x
and y be in X. We denote by ϕx,y : 2X → 2X the mapping which associates
to any subset of X its image by swapping items x and y. More formally for
any subset F of X we have :

ϕx,y(F) =

(F \ {x}) ∪ {y} if y �∈ F and x ∈ F
(F \ {y}) ∪ {x} if x �∈ F and y ∈ F
F otherwise

Definition 8 Let F be a collection of sets defined on X. Let x and y be in
X. We say that x and y are clone in F if and only if for all F in F , we
have ϕx,y(F) in F .

Note that clone relation defines equivalence classes (cf.[16]). Since hyper-
edges can be considered as sets, one possible generalization of the twin notion
to hypergraphs could be :

Definition 9 Let H = (V, E) be an hypergraph and x and y be in V . We say
that x and y are clone-twin in H if and only if x and y are clone in E .

Let us check that this definition could be used for our illustration problem.
In the example given on figure 1, one can easily check that vertices c and
e are clone elements in E . And since HC3(H) is equal to H ∪ {a, c, d, e},
vertices c and e are also clone elements in HC3(H). Note also that a and b
are not clone elements in E and thus they are not clone in HC3(H). Next
proposition shows that the clone-twin definition respects the symmetry in
the hypergraph as well as in the generated k-hypercliques.

6

Proposition 1 Let H = (V, E) be a k-hypergraph and x and y be in V , if x
and y are clone vertices in E then x and y are clone in HCk(H).

Contrary to the twin vertices concept defined on the neighbourhood (see
definition 7) the concept of clone-twin vertices takes into account the struc-
ture of hyperedges. We think that a ”good” definition of twin vertices of an
hypergraph should reflect strong symmetrical properties on hyperedges. That
explains why neighborhood defined twin vertices do not imply a symmetry
in the generated objects.

But then, one can question why, in the particular case of graphs, the twin
relation defined on the neighborhood of vertices works so well. Main reason
is that behind the neighborhood symmetry in graphs lies clone vertices as
shown by the following proposition :

Proposition 2 Let G = (V, E) be a graph and x and y be in V . The following
assertions are equivalent :

– x et y are twin vertices in G
– V (x) = V (y) or V [x] = V [y]
– x and y are clone in E.

3.2 Modules and committees in hypergraphs

Another form of symmetry in hypergraphs, based on structural properties
of hyperedges, has been defined in term of modules (see [6, 8]).

Definition 10 Let H = (V, E) be an hypergraph and M ⊆ V , we say that
M is a module in H if and only if for all A in E such that A∩M �= ∅ and
A ⊆ M we have ∀P ⊆ M such that P �= ∅, (A \ M) ∪ P in E .

See figure 2 for an example of module in an hypergraph.
We generalize Definition 4 of twins in graphs, using the definition of

modules in hypergraphs.

Definition 11 Let H = (V, E) be an hypergraph and x and y be in V , we say
that x and y are module-twin in H if and only if the couple (x, y) makes
up a module in H.

This last proposition constitutes another characterization of twin vertices
in hypergraphs. A lesser restrictive generalization of the module concept in
hypergraphs is given in ([4, 6, 7]) : the committees.

Definition 12 Let H = (V, E) be an hypergraph and C ⊆ V , we say that C
is a committee if and only if for all sets A and B in E such that A∩C �= ∅
and B ∩ C �= ∅, we have (A ∩ C) ∪ (B \ C) in E .

7

���� ��

�
�
�
�

a

c

b

Fig. 2 – Hypergraph H = ({a, b, c}, {{a, b}, {a, c}, {a, b, c}}). The couple
(a, b) is a module. Indeed hyperedge {a, c} intersects the module and sets
{a} ∪ {c}, {b} ∪ {c} and {a, b} ∪ {c} belong to the set of hyperedges of H .

To help the understanding we give in figure 3 an example of such a com-
mittee. One have to note that if two vertices constitute a module then they
constitute a committee.

�
�
�
�

��
��
��
��

�
�
�
�

��
��
��
��

a

c

b

d

Fig. 3 – Hypergraph H = ({a, b, c, d}, {{a, c}, {a, d}, {b, c}, {b, d}}). The
couple (a, b) forms a committee since for hyperedge {a, c} which intersectes
the committee the set {b}∪{c} belongs to E , and for hyperedge {a, d} which
intersect the committee too, the set {b} ∪ {d} belongs to E . (a, b) is not a
module since sets {a, b, c} and {a, b, d} are not hyperedges of H .

Here we propose a new characterization of committee. Let X be a set
of elements, C a subset of X and F a set collection on X. We define a
set collection F−

C corresponding to the list of sets obtained by computing
intersection of each set F from F with the set C. More formally we have :

– F−
C = {F ∩ C | F ∈ F and F �⊆ C and C �⊆ F} ;

As the same manner we define a set collection F+
C corresponding to the

list of sets obtained by computing set difference of each set F from F with
the set C. More formally we have :

– F+
C = {F \ C | F ∈ F and F �⊆ C and C �⊆ F} ;

Proposition 3 Let F be a collection of sets defined on X, and C a subset
of X. We say that C makes up a committee in F if and only if for all F

8

in F−
C and for all F1 and F2 in F+

C with F1 �= F2 we have F ∪ F1 ∈ F and
F ∪ F2 ∈ F .

It seems the concept of committee corresponds to a real kind of symmetry
in the hypergraph set of hyperedges. For this reason this concept leads, in
a natural way, to a second interesting characterization of twin vertices in
hypergraph.

Definition 13 Let H = (V, E) be an hypergraph and x and y be in V , we
say that x and y are committee-twin in H if and only if the couple (x, y)
makes up a committee in H.

Committee keeps similar behaviour for the computation of k-hypercliques
of a k-hypergraph as it is shown by the following proposition :

Proposition 4 Let H = (V, E) be a k-hypergraph and x and y be in V , if
x and y make up a committee in E then x and y make up a committee in
HCk(H).

The following property shows that the binary relation ”makes up a com-
mittee with” between two vertices is also a transitive relation.

Proposition 5 Let H = (V, E) be a hypergraph with vertices x, y and z
in V , if couples (x, y) and (y, z) make up committees then the couple (x, z)
constitutes a committee too.

Thus, as for clone-twins, committee-twins define equivalence classes. Ne-
vertheless, as we will see in the next section, committee and clone vertices
are not equivalent.

3.3 Links between clone-twins and committee-twins

As the clone relation, the binary relation ”makes up a committee with”
infers a partition of an hypergraph vertex set. That means each couple from
a same vertex class consitutes a committee. One has to notice we do not say
that this class form a whole committee. We just say these classes correspond
to equivalence classes of committee-twin vertices. (In the next section we
will use these properties of transitivity to compute twin vertices of a given
hypergraph). So, the two concepts are not so far from each other. Let us see
that clone notion and committee notion are not completely similar.

Let H = (V, E) with V = {a, b, c, d} and E = {{a, c}, {b, c}, {a, b, d}}, a
and b are clone vertices in E but the couple (a, b) does not form a committee.

9

Indeed (a, b) is not a committee of H since sets {a, d}, {b, d} and {a, b, c}
does not belongs to E (cf. figure 4A). On the same manner consider hyper-
graph H = (V, E) with V = {a, b, c} and E = {{a, c}, {a, b, c}}, couple (a, b)
constitutes a committee but vertices a and b are not clone in E since the set
{b, c} does not belongs to E (cf. figure 4B).

����c

�
�
�
�b

�
�
�
�a

��d

A

�
�
�
�

��

��
��
��
��

b

c

a

B

Fig. 4 – A :H = ({a, b, c, d}, {{a, c}, {b, c}, {a, b, d}}), a and b are clone
vertices but the couple (a, b) does not form a committee. B : H =
({a, b, c}, {{a, c}, {a, b, c}}), couple (a, b) constitutes a committee but ver-
tices a and b are not clone.

But if we define simple hypergraph with the following :

Definition 14 ([3]) Let H = (V, E), we say that H is a simple hypergraph
if and only if for all sets E and E′ in E we have E �⊆ E ′.

We have the proposition :

Proposition 6 Let H = (V, E) be a simple hypergraph and x and y be in V .
If the couple (x, y) forms a committee then vertices x and y are clone in E .

Note that the converse in not true. In other words, in a simple hypergraph
committee of size two are a subclass of clone vertices.

In this section we have proposed two characterizations of twin vertices
in an hypergraph. One in term of clone vertices (see definition 9) and the
other in term of committees (see definition 13). Clone vertices had been
characterized by a swapping function (see definition 8). Committees had
been characterized with sets F−

C and F+
C (see proposition 3). Clone binary

relation and committee binary relation between vertices induce a partition of
the vertex set in twin vertex equivalence classes. Finaly we have shown that,
in the general case, clone vertex couples do not correspond to committees.
But in the simple hypergraph case, two vertices making up a committee are
clone (the reciprocity being false).

10

4 Algorithms

This section focus on algorithmic aspects of clone and committee concepts
described previously. In a first time we give the used data structure corres-
ponding to a mapping. In a second time we present an algorithm to compute
clone-twin vertex classes of a given hypergraph. In the third time we give an
algorithm to compute committee-twin vertex classes of the hypergraph.

4.1 Abstract Data Type : Key Mapping

In our context we have to manipulate some discret objects as hypergraphs,
so we need a data structure that able us to store a set collection. For this
we propose to use a Map abstract data type similar to the Map interface of
Java language. This data structure maps keys to values. In our case, the keys
are the sets of the collection. The values mapped by the keys depend on the
algorithm.

This abstract data type supplies the following operators :
– new() operator : creates a Map object and returns an empty map.
– get(E) operator : returns the value associated to the key E if this key

maps a value, or Nil otherwise.
– put(E,value) operator : inserts set E in the map and associates value

to it.
Time complexities of those operators deeply rely on the data structure

used for the implementation of the Map data type. We propose an implemen-
tation which takes advantage of the key type, i.e. sets. To implement the Map
type we propose a lexicographic tree (or tries) where sets are represented by
branches of the tree. A representation of a hypergraph in term of collection
of sets is given figure 5.

Complexities of the put and get operators rely on the chosen implemen-
tation.

Proposition 7 Let F be a collection of sets on a ground set X and F be in
F , if the lexicographic tree is implemented with Lists then :

– The put(F,value) operator as an O(|X|) time complexity ;
– The get(F) operator as an O(|X|) time complexity ;

Access complexity is due to the fact that an element of X appears only once
in a set and that there exists an ordering on X. Cost of a node creation is done
in constant time. See [1] for more information about the trie implementing
and performance aspects.

11

�
�
�
�

��
��
��
��

�� ����

��
��
��
��

��
��
��
��

��
��
��
��

����

��
��
��
��

�
�
�
�

����

��
��
��
��

�
�
�
�

��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
� ���

���
���
���
���
���
���

���
���
���
���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

b

a e

d

c

c

d e

{a,b,c}

{b,c,d,e}

{c,d,e}

{a,d}
{c,d}

c

{e}

e

b

d

Fig. 5 – The lexicographic tree corresponding to an hy-
pergraph H = (V, E) with V = {a, b, c, d, e} and E =
{{a, b, c}, {a, d}, {b, c, d, e}, {c, d}, {c, d, e}, {e}}. We suppose existence
of an ordering on vertices of V . In that case the value corresponding to a key
is a boolean. This boolean is true (circled nodes) if the node corresponds to
an hyperedges and false if the node corresponds to a intermediary node.

4.2 Clone-twin classe computation

We propose here, in a compacter form, the algorithm given in [17]. For
a set collection F on a ground set X, authors introduce the distance notion
between elements of X. By this way they give a new characterization of clone
elements in term of distance between them. In term of hypergraph we obtain
the following characterization.

Definition 15 Let E be a set of hyperedges on V a set of vertices. Let x
and y be in V . We call distance between x and y, denoted by dE(x, y), the
mapping :

V 2 → N

dE(x, y) → |{E ∈ E | ϕx,y(E) �∈ E}|

In other words, the distance between vertices x and y represents the
number of hyperedges E containing x XOR y such its image ϕx,y(E) is not
in E . One can notice this mapping is symmetrical and it is bounded by the
number of hyperedges containing x but y (denoted |Exy|) plus the number of
hyperedges containing y but x (denoted |Exy|). From definition 15 we have
the following porperty.

Proposition 8 ([17])
Let E be a set of hyperedges on V and x and y in V , x and y are clone
vertices in E if and only if dE(x, y) = 0.

12

All the algorithmic process proposed in [17] is supported by the following
proposition. It characterizes a couple (E, E′) from the set E2 such that E =
ϕx,y(E

′).

Proposition 9 Let E be a set of hyperedges defined over V , E and E ′ two
distinct hyperedges of E and (x, y) a couple of vertices of V such that x ∈ E
and y ∈ E ′. Then the following assertions are equivalent :

1. E = ϕx,y(E
′)

2. E ′ = ϕx,y(E)

3. |E| = |E ′| and E \ E ′ = {x} and E ′ \ E = {y}
4. E \ {x} = E′ \ {y}

This proposition states that two hyperedges E and E′ are their respective
images by the swapping function ϕ if and only if they have same size t and
share t− 1 vertices. This property follows directly from the definition of the
ϕ mapping.

From this proposition a process in three steps is described : in a first
step we initialize the distance matrix (cf. algorithme 1). In a second step we
compute the distance for each vertex couple (cf. algorithme 2). In the last
step we deduce from the matrix the clone vertex classes of an hyperedge set
(cf. algorithm 3).

4.2.1 Initializing the distance matrix

We initialize each distance dE(x, y) with its maximal possible value, i.e.
with |Exy| + |Exy|. To do that we intialize all the distances to 0 and then,
for each E ∈ E we increment by 1 the distances dE(x, y), with x ∈ E and
y �∈ E (cf. algorithm 1). This can be done in O(|V | × ||E||). Note that ||E||
corresponds to the sum of the size of each hyperedge of E .

4.2.2 Distance algorithm

This algorithm relies on Property 9. Let consider E, E ′ and E ′′ be hy-
peredges of E such that E = ϕx,y(E

′) and E = ϕx,z(E
′′). Then, according to

Property 9 we have E \ {x} = E ′ \ {y} = E ′′ \ {z}. And thus, E ′ = ϕy,z(E
′′).

Idea of the algorithm is to compute classes of sets Ei of E having |Ei| − 1
common items. Thus, a class C can be represented by the set of common
items and we memorize in a set Union all the extra items xi which are not
common. In the Map structure we use, the set C will be the key while the
set Union will be the value associated to the key.

13

Algorithm 1: InitDistance(E)

Data : A set of hyperedges E defined over V .

Result: The distance matrix dE such that for all x and y in V we
have dE(x, y) = |Exy| + |Exy|.

begin
foreach (x ∈ V) do

foreach (y ∈ V) do
dE(x, y) = 0 ;

end
end
foreach (E ∈ E) do

foreach (x ∈ E) do
foreach (y �∈ E) do

dE(x, y) + + ;
end

end
end
return dE ;

end

Then, for any E ∈ C and for any (x, y) ∈ Union, we know that, according
to Property 9, we have ϕx,y(E) ∈ E and E �= ϕx,y(E). And thus, dE(x, y) has
to be decremented. Note that a set E can belong to at most |E| classes.

The algorithm 2 is quite straightforward using the Map structure. For
all sets E of E we insert each of its |E| subsets of size |E| − 1 in the Map
structure. If the key was already present, we just append the extra item
of E to the set Union and update all the necessary entries in the distance
matrix. Otherwise, a new key E \ {x} is present in the Map structure and
its associated Union value is initialized with {x}.

Proposition 10 ([17])
Let E be a set collection on a ground set V , algorithm 2 computes the distance
matrix dE in O(|V | × ||E||) time complexity in the worst case.

4.2.3 Clone-twin classe algorithm

The Computation of the clone-twin classes from the distance matrix cor-
responds to the last step of the process. First, let us recall that two vertices
x and y are clone if and only if dE(x, y) = 0. Since, the clone relation is an
equivalence relation, it defines a partition of the set V . Principle of algorithm
3 is the following. Let x be a vertex of V which has still not been assigned
to a class. We then search all remaining elements y which distance with x is

14

Algorithm 2: Distance(E)

Data : A set of hyperedges E defined over V .

Result: The distance matrix dE .
begin

dE = InitDistance(E) ;
T = new Map() ;

1 foreach (E ∈ E) do
2 foreach (x ∈ E) do

C = E \ {x}
3 Union = T .get(C)

if Union �= Nil then
4 foreach (y ∈ Union) do

dE(x, y) = dE(x, y) − 2 ; dE(y, x) = dE(y, x) − 2
end
Union = Union ∪{x} ;
T .put(C, Union) ;

else
5 T .put(C, {x})

end
end

end
return dE ;

end

15

null. All those vertices will form a clone class with x and thus are removed
from the list of vertices which are not assigned to a class. The class of x is
then stored in a list L.

Proposition 11 Let E be a set collection on a ground set V , algorithm 3
computes clone-twin classes of E in O(|V |×||E||) time and space complexities
in the worst case.

Algorithm 3: Clone − TwinClasses(E)

Data : A set of hyperedges E defined over V .

Result: The list L of clone classes.
begin

1 dE = Distance(E) ;
L = ∅ ; temp = V ;
while (temp �= ∅) do

2 foreach (x ∈ temp) do
lx = newList() ;
lx = lx ∪ {x} ;
temp = temp \ {x} ;

3 foreach (b ∈ temp) do
if (dE(x, y) = 0) then

lx = lx ∪ {y} ;
temp = temp \ {y} ;

end
end
L = L + lx ;

end
end
return L ;

end

4.3 Committee-twin classe computation

In this subsection we prosose two algorithms. A first one, algorithm 4,
acknowledges a set as committee. From this algorithm we give a second one,
algorithm 5, to compute the committee-twin classes from a given hyperedge
set.

4.3.1 Acknowledge a set as committee algorithm

Principle of algorithm 4 is to insert in a whole map a set of keys corres-
ponding to the set E−

C . To each of these keys E− we associate as value the

16

list of sets E+ such that E− ∪ E+ belongs to E . The algorithm returns true
if and only if the list of sets associated to each key is identical.

Algorithm 4: IsACommittee ?(E ,C)

Data : A set of hyperedges E on a ground set V , a set C ⊆ V .

Result: True if and only if C is a committee.

begin
T = new Map() ;

1 foreach (E ∈ E) do
E− = E ∩ C and E+ = E \ C ;
if [(E+ �= ∅) and (E− �= ∅)] then

collection = T .get(E−);
2 if (E+ �∈ collection) then

collection = collection ∪ E+

end
T .put(E−, collection)

end
end
returnV alue = true ;
collection = T .f irstV alue() ;

3 if (|collection| = 1) then
return false ;

else
4 foreach (E ∈ T) do

if (collection �= T .get(E)) then
returnV alue = False ;

end
end
return returnV alue ;

end
end

Proposition 12 Let E be a set collection on a ground set V , and C ⊆ V ,
algorithme 4 aknowledges set C as committee in O(|V |×|E|) time complexity
in the worst case.

4.3.2 Committee-twin classe algorithm

With the same principle than algorithm 3 the following alogrithm 5 com-
putes committee-twin classes.

17

Algorithm 5: Committee − TwinClasses(E)

Data : A set of hyperedges E defined over V .

Result: The list L of clone classes.
begin

L = ∅ ; temp = V ;
while (temp �= ∅) do

1 foreach (x ∈ temp) do
lx = newList() ;
lx = lx ∪ {x} ;
temp = temp \ {x} ;

2 foreach (b ∈ temp) do
3 if (IsACommittee?(E , {x, y}) then

lx = lx ∪ {y} ;
temp = temp \ {y} ;

end
end
L = L + lx ;

end
end
return L ;

end

Proposition 13 Let E be a set collection on a ground set V , algorithme
5 computes committee-twin classes in O(|V |3 × |E|) time complexity in the
worst case.

In this section we have proposed two algorithms to compute twin vertex
classes for a given hyperedge set. Algorithm 3 which computes clone-twin
classes and algorithm 5 which computes committee-twin classes. Their prin-
ciple is the same. The first one has to test if two vertices are clone by cheking
their distance (cf. algorithm 2), the second one has to test if two given vertices
makes up a committee by using IsACommittee() algorithm (cf. algorithm
4).

5 Conclusion

It is well known (an used) that numerous generation problems on graphs
can be reduced to equivalent problems on graphs without twin vertices. When
dealing with hypergraphs, very few reduction schemas are used. To our know-
ledge, only reduction to simple hypergraphs is widely used. In [16], authors
propose a reduction process based on clone vertices. Main contribution of this

18

paper is to extend the notion of twin vertices to hypergraphs. We are deeply
convinced that the twin vertices definition should rely on symmetries over
hyperedges which are preserved on the generated objects. This implies that
the twin vertex notion is intrinsically depending on the studied generation
problem. This lead to the following very general definition of twin vertices.

Definition 16 Let H = (V, E) be an hypergraph, P a generation problem
over H and Sym a symmetry property. Vertices x and y of H are said to be
Sym-twins if and only if Symx,y(H) and Symx,y(P (H))3 are true.

In this paper, we show that symmetries based on clone vertices and on
committees are consistent with this definition. Moreover, the definition of
twin vertices in the particular case of graphs is simply a clone symmetry in
2-hypergraphs. Note that according to this definition, new symmetries could
be found on graphs and thus lead to new definitions of twin vertices in graphs.

In this paper, we provide two algorithms which computes twin vertex
classes. The first one is based on the clone symmetry and has an O(|V |×||E||)
time complexity. The second relies on committees and has an O(|V |3 × |E|)
time complexity. Note that, in this later case, we based the algorithm on a
committee recognition algorithm (committees might have any size for this
algorithm). A more particular algorithm for the committee-twin vertex class
detection should enhance the time complexity.

We showed that for simple hypergraphs, committee-twin vertices are also
clone-twin vertices (the converse is not true). Thus, when dealing with simple
hypergraphs, using the clone symmetry property is sufficient, more general
and more efficient.

Given a generation problem P on hypergraph H , the overall strategy
should be the following :

– Check if there exists a symmetry property Sym on H and P (H) (ob-
viously, one should first verify if the symmetries based on clone vertices
and committees are verified) ;

– In the affirmative, the next step is to reduce the hypergraph H to H ′

according to some reduction algorithm (which might be specific to the
studied generation problem) ;

– Generate P (H ′) using a classical generation algorithm ;
– Reconstruct the missing object (i.e. P (H) \P (H ′)) using some recons-

truction algorithm (which depends on the reduction algorithm).

3Symx,y(H) means that x and y verify the symmetry property on H . P (H) represents
the collection of objects generated over H using an algorithm wich fulfills the generation
problem P .

19

Note that during the reduction process, several symmetries can be com-
bined (this should be memorized for the reconstruction). In some cases, the
reduction process could lead to hypergraphs with new classes of twin vertices
which where not twin in the original hypergraph. And thus, this reduction
process could be repeated until no more twin vertices are found (for all the
symmetry properties considered).

6 Appendice

Proposition 1 Let H = (V, E) be a k-hypergraph, and x and y in V , if x
and y are clone vertices in E then x and y are clone in HCk(H).

Proof : Let H = (V, E) be a k-hypergraph and x and y clone in E . We
have to show that for all C in HCk(H), ϕx,y(C) belongs to HCk(H). Without
lost of generality let us suppose that x belongs to C and y does not belong to
C (indeed, in other cases C = ϕx,y(C) and then ϕx,y(C) belongs to HCk(H)).
In other words we have to show that ∀E ⊆ ϕx,y(C) = C \ x∪ y, E ∈ E since
ϕx,y(C) must be an hyperclique.

Different cases occur :

1. If y �∈ E then E ⊂ C and thus E ∈ E since C is an hyperclique.

2. If y ∈ E then ϕx,y(E) ⊆ C and thus ϕx,y(E) ∈ E since C is a k-
hyperclique. E = ϕx,y(ϕx,y(C)) belongs to E since x and y are clone in
E .

Thus, if a given set C is an hyperclique then ϕ(C) is also an hyperclique.

Proposition 2 Let G = (V, E) be a graph and x and y be in V . The following
assertions are equivalent :

1. x et y are twin vertices in G

2. V (x) = V (y) or V [x] = V [y]

3. x and y are clone in E.

Proof :
– 1 ⇔ 2 by definition of twin vertices ;
– 1 ⇒ 3 : let us show that if a et b are twin vertices in G then ∀(x, y) ∈ E

then ϕa,b(x, y) belongs to E. Whithout loss of generality let us consider
following cases. If (x, y) = (a, b) (in that case a and b are true twins)
then ϕa,b(a, b) = (a, b) which belongs to E. If x = a and y �= b then
ϕa,b(a, y) = (b, y) which belongs to E since V (x) = V (y). If x �= a and
y �= b then ϕa,b(x, y) = (x, y) (by definition of ϕa,b) which belongs to
E.

20

– 3 ⇒ 2 : let us suppose that x and y are clone in E, then ∀(a, x) ∈ E,
(b, x) belongs to E. That means V (x) = V (y). Two cases occure. If (a, b)
does not belong to E then a and b are false twins. On the contrary, a
and b are true twins and V [x] = V [y].

Proposition 4 Let H = (V, E) be a k-hypergraph, and x and y in V , if x and
y make up a committee in E then x and y make up a committee in HCk(H).

Proof : Class of k-hypergraph is a subclass of simple hypergraph. We
have shown with proposition 6 that two vertices making up a committe in
simple hypergraph are clone vertices.

Proposition 5 Let H = (V, E) be a hypergraph with vertices x, y and z
in V , if couples (x, y) and (y, z) make up committees then the couple (x, z)
constitutes a committee too.

Proof :

Lemma 1 Let H = (V, E) be a hypergraph with items x, y and z in V , if
sets {x, y} and {y, z} make up committees then ∀e ∈ E of the form xp with
p ⊆ V and {z} �∈ p then {z} ∪ p ∈ E).

Proof : Two cases occure :

1. let us supppose {y} �∈ p then p ∪ {y} ∈ E since {x, y} is a committee
and then p ∪ {z} ∈ E since {y, z} is a committee. Thus the set {z} ∪ p
belongs to E .

2. let us suppose {y} ∈ p then p∪{x} = p′∪{x, y} ∈ E implies p′∪{x, z} ∈
E since {y, z} is a committee and then p′ ∪ {y, z} ∈ E since {x, y} is a
committee. Thus p ∪ {z} belongs to E .

Let us suppose that the set {x, z} does not make up a committee then
∃e ∈ E of the form p ∪ {x} such that z �∈ p and p ∪ {z} �∈ E . This is in
contradiction with the previous lemma.

Proposition 6 Let H = (V, E) be a simple hypergraph and x and y be in V .
If the couple (x, y) forms a committee then vertices x and y are clone in E .

Proof : Let H = (V, E) be a simple hypergraph and x and y are not clone
vertices in E . So there exists E in E such that ϕx,y(E) �∈ E . Let us suppose this
set contains x but y, then we have (E\x)∪y �∈ E , and (E\x)∪{x, y} �∈ E since
H is a simple hypergraph (we recall that E belongs to E). So {x, y} could
not be a committee since the set {y} ∩ {x, y} ∪ p \ {x} = p \ {x} ∪ {y} �∈ E .

21

Proposition 10 Let E be a set collection on a ground set V , algorithm 2
computes the distance matrix dE in O(|V | × ||E||) time complexity in the
worst case.

Proof : Correctness of algorithm 2 comes from property 9. Initialization
of the distance matrix is done in O(|V | × ||E||). We suppose that the Map
structure is implemented using a lexicographic tree with Lists. Loops in line
1 and 2 do together ||E|| iterations. In line 3, the retrieval is done in O(|V |)
thanks to the lexicographic tree. The loop in line 4 does at most |V | iterations
and the update of the matrix takes constant time. The insertion of line 5 is
done in O(|V |). Thus, the overall complexity is in O(

∑
E∈E |E| × |V |) =

O(|V | × ||E||).

Proposition 11 Let E be a set collection on a ground set V , algorithm 3
computes clone-twin classes of E in O(|V |×||E||) time and space complexities
in the worst case.

Proof : Correctness of the algorithm 3 comes from property 8. Line 1
is in O(|V | × ||E||). Loops in line 2 and 3 do together |V 2| operations. The
whole process is then in O(|V | × ||E||).

Proposition 12 Let E be a set collection on a ground set V , and C ⊆ V ,
algorithme 4 aknowledge set C as committee in O(|V | × |E|) time complexity
in the worst case.

Proof : Loop in line 1 build a whole map such that the set of keys
corresponds to the set E−

C . To each key is associated a collection of sets. From
property 8 we know that C is a committee if and only if each collection
is identical (the test is made with the loop in line 4). Indeed, in that case,
this collection is equal to E+

C . Moreover to define a committee we need to
have at least two hyperedges which intersect it. For this reason a test is done
in line 3 on the size of the collection. The size of the first loop in line 1
is |E|. By using a map structure to manage the collection all the following
instructions can be done in O(|V |). The loop in line 4 tests if each key is
associated to the same collection. If we suppose that each collection is stored
in a lexicographique tree then the whole process of this test can be done in
O(||E||). Thus algorithm 4 aknowledges set C as committee in O(|V | × |E|)
time complexity in the worst case.

Proposition 13 Let E be a set collection on a ground set V , algorithme
5 computes committee-twin classes in O(|V |3 × |E|) time complexity in the
worst case.

22

Proof : Principle of algorithm 5 is to test if each couple of vertices from
V forms a committee. From property 12 we know this test can be done in
O(|V | × |E|). Thus the whole process is in O(|V |3 × |E|) time complexity in
the worst case.

Références

[1] S. Bachelard, O. Raynaud, and Y. Renaud. Implementing sets collec-
tion with trie : a stepping stone to performances ? Research Report :
L.I.M.O.S. RR-06-06, 2006.

[2] H.J. Bandelt and H.M. Mulder. Distance-hereditary graphs. pages
41 :182–208, 1986.

[3] C. Berge. Hypergraphes. Gauthier-villars, 1987.

[4] L.J. Billera. On the composition and the decomposition of clutters.
B,11 :234–245, 1971.

[5] B. Bollobas. Extremal graph theory. 1978.

[6] M. Chen, M. Habib, and M.C. Maurer. Partitive hypergraphs. 37 :35–50,
1981.

[7] W.H. Cunningham and J. Edmonds. A combinatorial decomposition
theory. 32,3 :734–765, 1980.

[8] A. Ehrenfeucht and R. McConnell. A k-structure generalization of the
theory of 2-structures. 132 :209–227, 1994.

[9] M. R. Garey and D.S. Johnson. Computers and Intractability. W.H.
Freeman and Company, 1979.

[10] A. Gely, R. Medina, L. Nourine, and Y. Renaud. Uncovering and redu-
cing hidden combinatorics in guigues-duquenne covers. In ICFCA’05,
2005.

[11] M. Habib, L. Nourine, O. Raynaud, and E. Thierry. Computational
aspects of the two dimension of partially ordered sets. Theoritical Com-
puter Science, 312(2-3) :401–431, 2004.

[12] J.M. Lanlignel, O. Raynaud, and E. Thierry. Pruning graphs with digital
search trees. application to distance hereditary graphs. In 17th Annual
Symposium on Theoritical Aspects of Computer Science, pages 529–541,
2000.

[13] R.M. McConnell and F. de Montgolfier. Linear-time modular decompo-
sition of directed graphs. pages 189–209, 2005.

23

[14] R.M. McConnell and J.P. Spinrad. Linear-time modular decomposition
and efficient transitive orientation of comparability graphs. In 5th ACM-
SIAM Symposium on Discrete Algorithms, SODA’94, pages 536–545,
1994.

[15] R. Medina and L. Nourine. Algorithme efficace de generation des ideaux
d’un ensemble ordonne.

[16] R. Medina and L. Nourine. Clone items : a pre-processing information
for knowledge discovery. submitted.

[17] R. Medina, C. Noyer, and O. Raynaud. Efficient algorithms for clone
items detection. In CLA’05, pages 70–81, 2005.

[18] L. Nourine and O. Raynaud. A fast algorithm for building lattices.
Information Processing Letters, volume 71 :199–204, 1999.

24

