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ABSTRACT 

DNA hybridization methods have become the most widely used tools in molecular biology to identify organisms and 

evaluate gene expression levels. PCR (Polymerase Chain Reaction)-based methods, fluorescent in situ hybridization 
(FISH) and the recent development of DNA microarrays as a high throughput technology need efficient primers or 
probes design. Evaluation of the metabolic capacities of complex microbial communities found in terrestrial or 

aquatic environments requires new probe design algorithms that reflect the genetic diversity. As only a small part of 
the microbial diversity is known, gene sequences deposited in international databases do not reflect the entire 
diversity. In this context we propose to use oligopeptide sequences for the design of complete set of DNA probes that 
are able to target the entire genetic diversity of genes encoding enzymes. Due to the degenerated genetic code 

backtranslation must be managed efficiently. To our knowledge no software has been developed to propose a full 
backtranslation. This complexity is tractable since we only need to focus on short oligopeptides for DNA probe design. 
We propose new algorithms that perform a high performance oligopeptide backtranslation into all potential nucleic 
sequences. We use different efficient techniques such as memory mapping to perform such a computing. We also 

propose a MPI parallel computing that reduces the whole execution time using data load balancing and network file 
stream distribution on a cluster architecture.  

 
Index Terms-- Oligopeptide, Probe design, Full back translation, Parallel computing,  

I. INTRODUCTION 

The overwhelming majority of life on our planet is microbial, both in terms of phylogenetic 

diversity and sheer number of organisms. Virtually every conceivable environmental niche 

harbours microorganisms capable of growing there. Traditional microbiological methods of 

cultivation recover less than 1% of the total bacterial species, and the cultured portion of 

bacteria is not representative of the total phylogenetic diversity. Considering the extent of 

functional diversity described for microbes and the numerous applications of their secondary 

metabolites, the biotechnological potential hidden among the 99% of the bacteria that are un-

cultured is immense. Deciphering the microbial metabolic pathway capacities in complex 

environments (soils, lakes, oceans…) is essential for the protection of the environment. 

However, conventional biochemical and molecular methods (PCR-based technologies) for 

assessing microbial community structure and activities are labour-intensive. Microarrays are a 

powerful tool for the parallel, high throughput detection and quantification of many nucleic 

acid molecules [3]. Oligonucleotide microarrays are the most widely developed tools for 

microbial diagnostics. However, probe design is not a trivial task and needs particular 

attention [15]. Functional gene arrays (FGAs) contain probes corresponding to genes 

encoding key enzymes involved in various ecological and environmental processes such as 



carbon fixation, nitrification, denitrification, sulphate reduction, methane oxidation, and 

contaminant degradation. Both PCR-amplified DNA fragments and oligonucleotides derived 

from functional genes can be used to manufacture FGAs. In each situation we need to know 

the gene sequences for the probe design. As a large part of microbial diversity is unknown we 

can only use sequences from genes deposited in international databases. To develop an 

explorative aspect for functional microarrays we propose to design probes derived from the 

protein sequences. In this context we are able to determine the probes sets that characterize an 

enzyme or a metabolic pathway of interest. We have developed full backtranslation 

algorithms for oligopeptides able to provide interesting DNAs sequences for probe design in 

the context of functional microarrays. 

II. MATERIALS AND METHODS 

A. Related Works 

 

Parallel computing is often the best solution to optimize bioinformatics algorithms which 

are time and memory consuming [17]. Computer architectures such as computing clusters and 

grids are now appropriate for many bioinformatics applications [9]. The backtranslation 

problem appeared after the protein synthesis mechanism discovery [13] followed by the entire 

genetic code decoding in 1961 by the Nobel Prize laureate M. Nirenberg. Therefore, 

Bioinformatics was incidental to biology advancement and contributed to solving difficult 

problems such as local and global sequences alignment. Backtranslation is most often 

required in larger applications using protein to DNA or RNA passing. Studying phylogeny 

uses genetic code to perform a phylogenetic tree construction based on sequence homology 

detection. Information detained by proteins is useful when constructing optimal multiple 

DNA alignments for phylogenetic analysis [20]. In this case, backtranslation is simply a 

replacement of amino acid by the existing codon in the initial corresponding nucleic 

sequence. Thus, passing from protein to DNA can preserve this phylogenetic information. 



Nevertheless, genomic and transcriptomic databases are used as a source of sequences 

existing in protein alignment, so it is possible to find CDS (CoDing Sequences) [11] by 

launching a BLAST [1] program and then construct the alignment using the ClustalW [6] 

program. Similar tools that use backtranslation to perform an alignment are available [2] [17]. 

Moreover, using backtranslation can be made for direct derived nucleic sequences search 

from a protein sequence. Most of them are based on IUB/IUPAC degenerate nucleotide base 

codes [14], which assume the use of a consensus sequence to represent all possible sequences 

corresponding to the initial protein. Figure 1 shows consensus triplet codons of all amino 

acids using IUB degenerate nucleotide base codes. With this approach, one protein is 

backtranslated to a unique IUB codon that represents all possibilities in only one nucleotide 

triplet. Software that uses IUB codes to reverse translate a protein only uses a replacement of 

their amino acids by corresponding codons. Consequently, to obtain a nucleic sequence from 

input peptide, all we have to do is to combine the known codons in the appropriate order.  

A C  D  E  F G  H I  K L  M N  P Q  R S  T V  W Y  * 

Reverse translation  with degenerate code

GCNTGYGAYGARTTYGGNCAYATHAARMTNATGAAYCCNCARMGNWSNACNGTNTGGTAYTAR
 

Fig. 1. Consensus nucleic sequence of a backtranslated peptide using IUB degenerate nucleotide base codes. This example shows all possible 

reverse translations (20 amino acids plus “STOP” codons given by ‘*’).  

 

Reverse translation can be also used to calculate probable DNA codon usage for an 

organism [12]. It can use genetic algorithm [10] to determine the most probable codon at a 

given position by launching a data mining algorithm on a selected databank. In addition, some 

software uses neural networks data mining to similarly perform the same task [21]. An 

additional method is based on hierarchical clustering data mining to do this 

backtranslation [8]. We note that several methods use particularly data mining algorithms or 

distance matrix to find the most adapted reverse translation of a peptide [16]. The software 



returns the most probable codon for a given species as shown in Figure 2. Similar tools which 

use the most probable codon or user-selected codons to perform such a reverse translation are 

available by web interface [21, 22, 23].  

 
Fig. 2 Nucleic acid sequence determination by backtranslation based on the preferential genetic code usage in E. coli species. (See 

http://cgpdb.ucdavis.edu/database/sms/javascript/index.html for more details).  

 

From the previous works, and to the best of our knowledge no tool is available to 

automatically perform a full backtranslation providing all possible non degenerate DNA 

sequences corresponding to an input oligopeptide. In the next section we present high 

performance parallel algorithms able to use cluster and grid resources to take up this 

challenge. This work is limited to oligopeptide since it is practically impossible to produce all 

the DNA sequences corresponding to a protein, or even to a long peptide. The main reason is 

simply the unfeasibility of storing the results because of space and time constraints. 

 

B. Why do we need a complete backtranslation? 

Our method aims to show all potential DNA sequences that could spark a given 

oligopeptide sequence for the development of functional microarrays used in microbial 

ecology. Our approach supposes that the maximum length of the DNA generated sequences 

does not exceed 24 bases because the target sequences are probes which will serve in biochip 

design such as what we proposed in [15]. Thus, the given peptides used on backtranslation 

process will be about 6 to 8 amino acids. Furthermore, backtranslation is still ambiguous due 

to its memory-time consuming nature mainly caused by the genetic code degeneracy. Two 



approaches are presented here; both use the genetic code degeneracy to construct the 

algorithm. The main difference between the two approaches relies on data manipulation. 

C. The Mathematical Model 

 

We propose a new algorithmic approach to construct backtranslated DNA sequences from a 

protein sequence. Let Γ = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y, *} and 

Σ = {A, C, G, T} be the alphabets for amino acids and nucleotides, respectively. Let  

ϕ : Σ3
 → Γ  be the translation of a DNA sequence according to the genetic code. We denote 

card(ϕ-1
(X)) the number of triplet codons that code for the amino acid ‘X’. It is called the 

degeneracy of the amino acid ‘X’. We named the algorithm PRT for oligoPeptide Reverse 

Translation. This algorithm can be assimilated to a function: 

 PRTn (p): Γn
 → δn(p) × ( )Σ

3 × n
 (1) 

Given an oligopeptide ‘p’ of length ‘n’, the function will return PRTn( )p  DNA sequences; 

PRTn( )p  is the total degeneracy of the input sequence ‘p’; it depends both on the sequence 

and on its length. Therefore, for an oligopeptide X1X2X3...Xn, we have: 

 δn (p) = ∏
i = 1

n
  card 



ϕ

− 1
( )xi  (2) 

Our algorithm uses the PRTn procedure (see equation 1) to compute non degenerated DNA 

sequences.  

D. Algorithm principle 

 

Let p = X1X2X3...Xn be a peptide of ‘n’ amino acids. Let Xi ; 1 < i < n be an amino acid of 

the peptide ‘p’ in position ‘i’ (see figure 3). We denote d(i) the calculated degeneracy from 

the initial position to position ‘i’. 

 d( )i  =  ∏
k = 1

i
  card 



ϕ

− 1
( )xk  (3) 



We denote r(i) the remaining degeneracy in step ‘i’: 

 r ( )i  =  
δn ( )p

d ( )i
 (4) 

We describe in details our algorithm as follows:  

(1) For the i
th

 amino acid, append current codons according to degeneracy variable (see 

below) in the appropriate order (see the following algorithm) 

(2) Save the result in a structure 

(3) Re-compute current degeneracy variables 

(4) Reinitialize counters 

 

Algorithm:  procedure 

Input: peptide of n length 

Output: file of generated oligos 

while i <= n do 

repeat (for each codon of xi)  

d (i)/card (ϕ-1(xi)) times 

   repeat append (codon) r (i) times; 

end repeat 

 end repeat 

 i = i + 1; 

end while 

This algorithm can be transposed using several techniques. We implemented the different 

techniques using the C language capabilities. In this paper we show the most efficient 

strategies we obtained. Additionally, our approach depends neither on the peptide length nor 

on the sequence composition. The latter are computed by the algorithm according to the 

codons table. 



 
Fig. 3. An example to highlight the algorithm operation for backtranslation 

 

E. Computer systems 

 

The computer used for this study is a bi-processor equipped with an Intel
(R)

  Xeon
TM

 at 2.4 

Ghz with 2 Gb of RAM. For sequential tests, we used a single processor. We developed the 

algorithm using the C language with a GNU C compiler (version 3.4.1). 

F. Backtranslation strategies 

 

Two strategies based on the PRTn algorithm are presented here. A comparison between the 

two implementations will give us decisive elements in order to retain the best solution for a 

specific problem. 

1) Dynamic memory allocation 

The first strategy adopted to develop the PRT algorithm was to use a large array pre-

allocated in dynamic memory. We used a pointer data structure to store output data consisting 

of generated backtranslated DNA sequences from the input peptide. Figure 4 shows the 



structure used to save the generated nucleic acid sequences. The computing algorithm is used 

with a dynamic memory allocation strategy in order to have all sequence possibilities. The 

advantage of this strategy is to have access to DNA sequences at any time and the computing 

allows storage of the output in a file.  
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Fig. 4. Dynamic Allocation main storage data structure. This C data structure is used to store all generated probes 

 

Furthermore, the algorithm uses this data structure and the codon table structure. A single 

line of code is required to store data in the structure. The storage of sequences follows the 

data structure presented in figure 4 exactly. 

 

2) File memory mapping 

The second method used to perform backtranslation is based on file memory mapping. 

We launch the algorithm to write the output nucleic sequences in a memory file managed like 

a pointer. In our C code, we use appropriate structures such as start and end mapped file 

pointers. First of all, we create a file formatted according to the output. Then, each codon is 

placed by the algorithm in the appropriate position in the file. The position is computed for 

each amino acid. Using file memory mapping management strategy is particularly interesting 

because in opposition to dynamic memory allocation we save sequences directly in the output 



file and we don’t introduce an intermediate data-structure. Though we rely on a file, we are 

limited by the system RAM as with the dynamic allocation method. Copying results (codons) 

is done nucleotide by nucleotide for each codon. This slows down the execution time, but it 

remains more efficient than the dynamic memory allocation strategy. We copy codons to the 

output oligos file using a file descriptor pointer that moves by finding the appropriate position 

of each codon. The output file is used like a table structure so we can easily manipulate its 

indexes. 

    The method can be used with memory mapping only if we assume that output oligos are 

stored in a file because we made preliminary actions and dedicated variables initialization to 

run this algorithm : we should declare a size, a file status and a file descriptor to be able to use 

memory mapping capabilities. Our algorithm uses different pointers to move along the 

mapped file. 

III. RESULTS 

A. Sequential Performance comparison 

Execution time decreases when we use the memory mapping approach because we write the 

nucleic sequences directly in the output file, as shown in figure 5. We launched the tests on an 

isolated computer to assert that the system overhead and load was the same.  



 
Fig. 5.  Performance of both strategies used for backtranslation (the length of peptide is minimal for each tested degeneracy). For example, if 

we take degeneracy 20155392 it corresponds to RRRRRRRRRK oligopeptide which is the shortest peptide for this degeneracy.  

 

 

In figure 5, the difference in execution time between the two strategies is due to the 

memory allocation performed by the dynamic approach. When the dynamic structure is full 

we print out the results in an output file of oligonucleotides.  To be able to compare the two 

strategies we must have an unlimited memory system; which is not reasonable. Table 1 shows 

execution time of the two backtranslation strategies. We reported the whole execution time 

returned by Linux ‘time’ function. 

TABLE 1. DATA OF PERFORMANCE COMPARISON FOR THE TWO STRATEGIES USED FOR BACKTRANSLATION. IT BELONGS TO FIGURE 5. 



 

As expected, we observe that if the peptide degeneracy increases, the performance 

exponentially decreases. In fact, our algorithm has to handle an exponential complexity, and 

even if the problem is tractable for oligopeptides, it can require a significant amount of disk 

space. . This disk space (RDS : Required Disk Space)  can easily be predicted for a given 

oligopeptide. It depends on (p) and is given by the following equation: 

 RDS =  [ ]δn ( )p ×( )n ×3 + 1 Bytes  (5) 

For an oligopeptide having a degeneracy around 10.10
6
, a single computer (see the 

Computer System section) requires less than 300 Mb of  disk space and less than 30 seconds 

of execution time in the case of memory mapping strategy. In the study described by Tamura 

et al., (1991), the degenerate code used to a find consensus nucleic sequence backtranslated 

from a peptide does not require more than 3 times the size of the input peptide. In our new 

approach, we should save all obtained sequences for only one oligopeptide. In practice, we 

need to work with several thousand of oligopeptides. However, there is no need to keep the 

resulting DNA sequences for all  oligopeptides, they can be processed to design DNA probes 

one by one and peptide by peptide. However,  in order to increase the throughput, parallel 



computing is well-adapted to reduce the complexity of this algorithm. In fact, the 

backtranslation step is time-consuming because we try to backtranslate a large number of 

oligopeptides knowing that the whole execution time increases when we work on long 

oligopeptides. In the next section, we present Parallelization methods for our two algorithm 

variants using the MPI library. The algorithms developed were run on a local cluster 

architecture. 

B. Parallel implementation 

Even id a sequential approach is satisfactory, a parallelization process is interesting to to 

optimise the performances of our algorithms. A local cluster architecture is perfectly adapted 

to this kind of application. In the following section, we describe adaptations of the algorithms 

which optimize the resources of a cluster computing environment. This approach achieve high 

throughput non redundant protein to DNA backtranslation, it reduces the whole execution 

time and the results are dispatched on several disks to avoid disk space overloading. 

C. The computing cluster architecture 

A computing cluster is an homogeneous systolic architecture, which uses the power of 

interconnected machines to perform time consuming tasks. We have used the following 

cluster architecture: a system of 15 PCs (one master with an Intel Xeon, 2.40 GHz bi-

processor; 2GB RAM and 14 worker nodes with the same configuration PCs are running 

under Linux and the networking is assured by a 1 GB/s Ethernet switch. Communications are 

mainly generated by the network file system (NFS). Although there are file systems 

specifically designed for PC clusters (Wang et al., 2002) the NFS was considered to be 

efficient enough for the purpose of this work. The main distributions of Linux include tools 

for controlling a parallel execution on PC clusters [4] [5]. For the application development we 

used the MPI library MPICH, v.1.1.2 with version 2.96 of the MPICC compiler (http://www-

unix.mcs.anl.gov/mpi/). Parallelization strategy 



 

To have an efficient parallelization for the two strategies – dynamic memory allocation and 

file memory mapping – we opted for a load balancing approach and a distribution of output 

files on all used nodes. In fact, each process (assigned to a node) computes a part of the whole 

result for a given peptide and locally save fragment results. Fragments are equally distributed 

on the cluster in order to have maximal performance and storage balancing on each node. MPI 

was used to dispatch data on all nodes and to subdivide computing for each process. Table 2 

shows the execution time of the two parallel strategies 

TABLE 2. PERFORMANCE DATA COMPARISON BETWEEN THE TWO PARALLEL ALGORITHMS.  

 
 

Memory allocation specifically uses system memory but the memory mapping strategy only 

uses CPUs and IOs. Our algorithms construct for each node their own fragment structures by 

the two approaches and then perform locally the appropriate computation for each fragment 

oligos. To have such results, we split output data into 14 structures because we have 14 nodes; 

each structure contains the ordered oligos. For example, the oligo numbered 'n' is stored on 

node number 'x' and the oligo numbered 'n+1' is stored on node number 'x+1'; if x = 14 then 

oligo number n+1 is stored on node number 1 and so on until the last oligo. Moreover, each 

amino acid is processed as in the sequential algorithms. As mentioned in the previous section, 



the execution time for the sequential algorithms increases exponentially when input peptide 

degeneracy exceeds 3.10
6
 oligos; but, with parallel approaches, we obtain the histograms 

shown in figure 6. 

Parallel implementation shows a decrease in the whole execution time compared to 

sequential algorithms for the two approaches.  We can even see a linear increase for the 

dynamic memory allocation up to degeneracy of 6
10

. Dynamic memory allocation is more 

advantageous for small degeneracy peptides (< 6
11

). Memory mapping execution time 

increases faster than dynamic memory allocation because the CPUs are used every time for 

computing codons and file pointer position. The algorithm using memory allocation has been 

parallelized by sharing memory and output data between Cluster nodes. 

 
Fig. 6. Performance of parallel algorithms. The two parallel approaches compared. 

 

1) Performance Balance 

Using a cluster framework to compute oligos generated from a peptide backtranslation by 

parallel programming with MPI shows an improvement of the whole performance. In fact, 



such a distributed system offers multiple resources to compute a large number of oligos 

efficiently. Figure 7 shows that the time gain is enhanced when degeneracy increases if we 

use a parallel backtranslation on a computer cluster. We can observe that the file memory 

mapping approach is more efficient in the case of the sequential algorithms but, in the parallel 

version, we can see a better behaviour of parallel dynamic allocation. Performance declines 

when we try to find long oligos with high degeneracy (50 bases and more). We surpass 

system capacities: CPU, memory, and disk space when we work with oligopeptides of 30 

amino acids and a degeneracy greater than 6
13

. 

 
Fig. 7. Parallel vs. sequential backtranslation programs. The parallel versions of our algorithm shows a liner like curve for degeneracy 

smaller than 4.107. 

 

In addition, Figure 8 evidences the relevance of parallel codes for such work. It shows that 

when we use a cluster architecture algorithm to backtranslate a  6
9
 degeneracy oligopeptide, 

performance increases with the two previously mentioned strategies. In fact, the whole 

execution time decreases when algorithms use more and more nodes. The complexity remains 



exponential, but it can be significantly decreased by the number of computing nodes. 

 
Fig. 8. Cluster computing speedup for the two studied strategies. The speedup is given by the quotient between the sequential execution time 

and the parallel one. 

 

When we work on short oligopeptides we cannot distinguish the difference between parallel 

and sequential algorithms. Indeed, the oligpeptide length has an incidence on the whole 

execution time, as for sequential programs(when the length increases, the performance 

logically decreases). 

IV. CONCLUSION 

This paper introduces a novel approach giving a full backtranslation of oligopeptides and  

brings to light the utility of such a method in enzyme specific oligos design. This approach is 

able to produce all possible non degenerate DNA sequences corresponding to an input 

oligopeptide of reasonable degeneracy. This problem presents an exponential complexity and 

we have presented a new algorithm implemented with the C programming language with two 



different strategies minimising the execution time. In addition, we propose a parallel version 

of the two strategies developed using MPI in a computing cluster environment. The 

parallelization helps in dividing the algorithm complexity which remains however 

exponential. Performance tests indicate that the parallelization has clear advantages because it 

allows the fragmentation of the output oligos file knowing that a full backtranslation need 

significant disk space.  
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