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Abstract

The Mobile Oil Recovery (MOR) unit is a truck designed to pump marginal
oil wells in a petrol field. The MOR optimization Problem (MORP) consists
in optimizing both the oil extraction and the travel costs. In this article,
we describe several formulations for the MORP using a single vehicle and
we propose two formulations to the case where several vehicles are used.
We strengthen the proposed formulations by taking advantage of the MORP
characteristics, by improving the number of subtour elimination constraints
and by using cuts. Computational results are presented for instances close
to the reality and optimality is proved for instances with up to 200 nodes.

Keywords: Vehicle routing problem, prize-collecting, selective traveling
salesman, multiobjective.

Résumé

Les unités mobiles de pompage sont des camions munis d’un système d’ex-
traction de pétrole. Ils sont utilisés pour les puits ayant une production mar-
ginale. Le problème d’optimisation des unités mobiles de pompage consiste
à maximiser la quantité totale de pétrole extrait en définissant des tournées
quotidiennes tout en minimisant le temps total de parcours. Dans ce travail,
nous décrivons plusieurs formulations pour ce problème avec un véhicule
unique et nous proposons deux formulations pour le problème avec une flotte
de véhicules. Les formulations sont renforcées par l’introduction d’inégalités
valides, mais aussi par l’utilisation des caractéristiques du problème pour
réduire la quantité de contraintes d’élimination de sous-cycles. Des résultats
numériques sont présentés pour des instances proches de la réalité. L’opti-
malité est prouvée pour des instances avec 200 sommets.

Mots clés : Tournées de véhicules, prize-collecting, problème du voyageur
de commerce sélectif, multiobjectif.
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1 Introduction

Much effort has been made to increase the oil production in Brazil though
the use of new technologies. As a consequence, the Brazilian oil production
has met the country’s need in 2006 and the country is globally self sufficient.
The Rio Grande do Norte basin has been exploited for the last 30 years and
about 98% of the oil wells are pumped using artificial lift systems. One such
system is the Mobile Oil Recovery (MOR) unit.

The MOR unit is an artificial lift system which is used to exploit wells
whose production is marginal. It consists of a truck (vehicle unit) equipped
with an apparatus, see Figure 1. Considering a working day, the unit starts
its tour at the depot, then it pumps several wells before returning to the
depot. At each well, the driver spends some time to connect the unit to the
well, to pump the oil and to disconnect the equipment. Whenever the unit’s
tank is full, an auxiliary vehicle is used to transfer the oil from the MOR unit
to its own tank and to carry it back to the depot. Thus, the MOR unit does
not need to stop its operations and its capacity can be considered unlimited.

Figure 1: An example of a MOR vehicle.

Typically, the level of oil within a well is not static: it raises over the time
until its stabilization level is reached [4]. This happens when the pressure
between the wells and the rock formation is stabilized. We consider here the
oil level is static for all wells. It is computed by performing a statistic analysis
of its history (last time it was pumped versus estimated production). The
volume extracted from the wells is usually composed of a mixture of long-
chain hydrocarbons (petroleo) and basic sediments and water (bsw). Thus,
the “oil” production of a well referred in this work takes into account the oil
volume and its quality, which depends on its bsw factor.

The MOR optimization Problem (MORP) is a multiobjective problem
which consists in finding a set of wells to be pumped in a working day to max-
imize the oil extraction and to minimize the travel time. The two objectives
are opposite, one pushing to increase profit and the other to reduce costs.
With one MOR unit, the problem is close to the Selective Traveling Sales-
man Problem [15] which is also called Orienteering Problem, see e.g. [11], or
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Maximum Collection Problem [13]. With a fleet of vehicles, the problem be-
comes a Vehicle Routing Problem (VRP) close to the Prize-Collecting VRP
[5]. For further investigation on routing problems, readers are referred to the
following works: the state of the art on exact and approximated methods for
the VRP and its variants are found in [23] and an overview covering about
500 papers on classical routing problems are found in [16]. For multiobjective
solutions strategies on routing problems, see [7, 9, 14].

A mathematical formulation for the MORP is proposed in [22] for a sin-
gle MOR unit. A two-step optimization is performed: the oil extraction is
maximized in the first phase. The second phase aims at minimizing both the
travel and the operation time such that the oil extraction is not smaller than
the value obtained in the first phase. Heuristics applications of the MORP
are presented in [1, 22].

In this work, we propose several formulations for the MORP with a sin-
gle vehicle and for a fleet of vehicles. Our contributions for the MORP with
a single vehicle are: (i) remove redundant constraints, (ii) simplify the flow
conservation constraints, (iii) test different strategies to eliminate invalid sub-
tours, and (iv) strengthen the subtour elimination constraints. When a fleet
of vehicles are used two formulations are proposed. The proposed formu-
lations are strengthened by taking advantage of the MORP characteristics,
by reducing the number of subtour elimination constraints, by introducing
generalized bounds, and by adding cuts. Instances with up to 200 nodes,
simulating practical situations, are solved. Moreover, it is shown that a for-
mulation with a weaker linear relaxation can be very useful in practice, since
it proves optimality for real size instances faster than the multiflow formula-
tion. The first ever results for the MORP with several vehicles are presented
in this work.

The work is organized as follows: the problem is defined in Section 2.
Formulations for one unit are presented in Section 3. Sections 4.1 and 4.2
are devoted to the MORP with several units. Computational results are
shown in Section 5 and final remarks are made in Section 6.

2 The MORP problem

The geographical data (roads, wells and depot) are modeled as an undirected
graph G = (N, E). G is preprocessed to build a complete digraph G′ = (V, A)
where V is the set of wells and the depot v0. Let dij be the shortest distance
from i to j, ∀(i, j) ∈ A, and let s be the MOR unit average speed. Thus, for
every arc of G′, the travel time tij is computed as tij = dij/s.

The process of dynamically filled wells was studied in [4]. Let H i be the
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static level for well i and let us assume that well i is filled with a factor τ i.
Wells are filled until the static level is reached, according to Equation (1),
where hi(t) is the oil level within well i at instant t. The bigger τ i, the slower
well i is filled. We consider that wells can be exploited any time even if the
static level is not reached and that the MOR units can visit a well only one
time a day as in the previously works [6, 19, 21]. In fact, the proposed for-
mulations do not deal with dynamically filled wells. A production estimation
based on the well history is calculated each day for each well and this value
is used instead. Thus, the oil level is considered static.

hi(t) = H i · (1 − e−t/τ i

) ∀i ∈ V (1)

Let t′i be the total operation time at well i (time to connect the MOR
unit, to pump, and to disconnect the unit). Denote by pi = υi · (1 − bswi)
the oil production of well i (its prize), where bswi is the amount of basic
sediments and water, and when υi is the estimated volume to be extracted.
Let P and T be respectively the total oil production and the total time of a
MOR unit in a working day. Moreover, T is the maximal time a MOR unit
can work in a day.

Given K, the total number of MOR units, the MORP consists in defin-
ing one circuit τ = {v0, vσ1, vσ2, ..., vσk, v0} for each MOR unit, where σ is
the position of wells in the circuit to be exploited in a day, such that P is
maximized and T is minimized. The time limit T ≤ T has to be satisfied.

As mentioned before, the MORP with a single vehicle is close to two
classical problems, the selective traveling salesman problem (STSP) and the
prize collecting traveling salesman problem (PCTSP). In the STSP, a prize
is associated to each node visited. The problem consists in defining a circuit
(the tour starts and ends at a fixed node, e.g., the depot) such that the total
prize is maximized (this corresponds to the oil production for the MORP),
and such that the tour does not exceed a given length (this corresponds to
the working time in the MORP) [15]. The main difference between MORP
and STSP is that the MORP also requires to minimize. Furthermore, in
the MORP there are also an operation time associated to each node visited.
In PCTSP, a prize is given for each visited node and a penality is paid for
each unvisited node. A minimum level prize must be reached in a tour. The
objective is to define a tour such that the travel cost and the penalities are
minimized [5]. The differences between the PCTSP and the MORP are:
instead of paying a penality for each unvisited node, a penality (operation
time) is paid for each visited node in the MORP. The objective function for
the MORP has opposite goals: the primary objective pushes to collect prizes
(the oil production) and the secondary aims at reducing costs. The MORP
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with several vehicles is close to a generalization of the PCTSP with a fleet
of vehicles, denoted here of the prize-collecting VRP (PCVRP).

3 Formulations using a single vehicle

As far as we know, only one formulation has been proposed in the literature
to the MORP [2, 3]. In this formulation, one vehicle is considered and the
optimization is done in two phases: first, compute the maximal amount of
oil (prize) that can be extracted in a working day and second, compute the
shortest route to extract this amount. We propose a formulation for the
MORP with a single vehicle based on the formulation proposed in [22]. The
main differences rely on: we have removed the constraints ensuring the MOR
unit returns to the depot since (constraints 5 and 6 guarantee the return to
the depot). The flow conservation constraints were simplified. We have also
tested several subtour elimination strategies. In [22], only the Gavish and
Graves strategy to eliminate subtour was used. Moreover, an upper bound
on the number of wells that can be exploited in a working day is defined.
This bound is used to strengthen the proposed formulation.

Let fij ∈ {0, 1} be the decision variable on the choice of arc (i, j) and let
xi be the binary variables which specify if well i is exploited or not. The first
optimization phase for the MORP is given as follows:

max P =
∑

i∈V \{v0}

pi · xi s.t. (2)

∑

i∈V \{v0}

t′i · xi +
∑

(i,j)∈A

tij · fij ≤ T (3)

∑

j:(j,i)∈A

fji −
∑

j:(i,j)∈A

fij = 0 ∀i ∈ V \{v0} (4)

∑

j:(j,i)∈A

fji = xi ∀i ∈ V \{v0} (5)

∑

j∈V

f0j = 1 (6)

(subtour eliminations constraints) (7)

xi ∈ {0, 1} ∀i ∈ V (8)

5



fij ∈ {0, 1} ∀(i, j) ∈ A (9)

The objective function (2) aims at minimizing the oil extraction. In-
equality (3) limits the working time (travel and operation time) to T . The
flow conservation constraints are (4) and (5). Restriction (6) guarantees the
tour starts at the depot. Variables xi and fij are respectively defined in
Constraints (8) and (9). We discuss in Section 3.1 the use of several sub-
tour elimination constraints: those of Miller and Tucker and Zemlin (MTZ)
[10, 18], and those of Gavish and Graves using either aggregated (GGA) or
disaggregated flow (GGD) [12]. GGA constraints are used in [22].

The objective of the second optimization phase is to minimize the working
time (10) subject to Constraints (4)–(9) and (11). Constraint (11) restricts
the total production to be equal to the total optimal prize P ∗ obtained in
the first phase.

min T =
∑

i∈V \{v0}

t′i · xi +
∑

(i,j)∈A

tij · fij s.t. (10)

∑

i∈V \{v0}

pi · xi = P ∗ (11)

Constraints (4)–(9).

3.1 Subtour eliminations constraints

A subtour is defined by any ordered subset of vertices. For the MORP, only
subtours starting and ending at the depot v0 are valid. Subtour constraints
have been evaluated in the literature for the TSP problem, see e.g. [24].
MTZ, GGA and GGD subtour elimination constraints for the MORP, and
some improvements are described below.

An upper bound on the number M of wells that can be exploited in a
working day can be computed. Considering the working time of the MOR
unit, a simple procedure consists in computing M by sorting the wells in
increasing order of operation time t′i [22]. Thus, M is such that:

M∑

i=1

t′i ≤ T ≤

M+1∑

i=1

t′i. (12)

We propose to strengthen the value of M by taking also into account the
travel time using the following argument: to arrive at a node, the vehicle has
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to use an arc. Thus, the minimum travel time to arrive at each node can be
considered as follows:

M∑

i=1

t′i + {min
j∈V

tji} ≤ T ≤

M+1∑

i=1

t′i + {min
j∈V

tji} (13)

Another argument can be used to strengthen even more M . Since the
vehicle must return to the depot, the minimum travel time to arrive at the
depot can also be considered. Then, M is such that:

M∑

i=1

t′i + {min
j∈V

tji} ≤ T − {min
j∈V

tj0} ≤

M+1∑

i=1

t′i + {min
j∈V

tji} (14)

3.1.1 Lifted Miller, Tucker and Zemlin Constraints.

The Miller, Tucker and Zemlin constraints define a topological order to elim-
inate invalid subtours. However, for the MORP, the depot appears twice (at
the beginning and at the end). Thus, one can duplicate the depot and work
on a support graph. We consider instead the depot only at the beginning
of the topological design. This can be done since the flow structure defined
by variables fij and xi, and Constraints (4)–(6) guarantees the return to the
depot.

The corresponding MTZ constraints for the MORP is given in Equations
(15)–(16). Variable ui states the order well i appears in the solution, thus
defining a topological order.

ui − uj + |V | · fij ≤ |V | − 1 ∀(i, j) ∈ A, j 6= {v0} (15)

0 ≤ ui ≤ |V | − 1 ∀i ∈ V (16)

There are O(|V |2) of such MTZ constraints, which can be strengthened
by using M as computed in 14, instead of |V |.

ui − uj + M · fij ≤ M − 1 ∀(i, j) ∈ A, j 6= {v0} (17)

0 ≤ ui ≤ M ∀i ∈ V (18)

These constraints can be lifted even more using the same ideas as Desrochers
and Laporte [10]. The idea of lifting consists in adding a valid non-negative
term αjifji to the Inequalities (17)
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ui − uj + M · fij + αji · fji ≤ M − 1 ∀(i, j) ∈ A, j 6= {v0} (19)

The larger the value of αji, the stronger the reduction in the original
solution space. If fji = 0, then αji may take any value. Suppose now fji = 1.
Then, the MOR unit exploits well j 6= v0 before well i, ui = uj + 1. Thus,
fji = 1 implies fij = 0, otherwise there is a subtour (i, j). By substitution,
we obtain αji ≤ M − 2. The larger αji, the stronger is the lift. Thus,
αji = M − 2. A lifted version of Constraints (17) is given in Inequalities
(20).

ui − uj + M · fij + (M − 2) · fji ≤ M − 1 ∀(i, j) ∈ A, j 6= v0 (20)

3.1.2 Gavish and Graves Constraints.

The Gavish and Graves [12] approach removes invalid subtours by building
a network flow. A flow is sent to the nodes of the tour. Each node consumes
one unit. In disaggregated flow, a specific flow is sent from the source to each
node [8, 17]. Otherwise, if the flow is not specified, it is an aggregated flow.

Let yij be the flow variable on arc (i, j). Thus, GGA constraints for
the MORP are given in Equations (21)–(23). Constraints (21) are the flow
conservation constraints. Inequalities (22) state a flow uses the arc (i, j) if it
is selected. These constraints are strengthened by using M . In this strategy,
there are O(|V |2) constraints and variables.

∑

j:(j,i)∈A

yji −
∑

j:(i,j)∈A

yij = xi ∀i ∈ V \{v0} (21)

yij ≤ M · fij ∀(i, j) ∈ A, (22)

yij ≥ 0 ∀(i, j) ∈ A (23)

The GGD version is given in Constraints (24)–(27). Let yl
ij be the variable

specifying if flow for node l traverses arc (i, j) or not. Constraints (24) are
the flow conservation constraints. Equations (25) state that a flow unit is
sent from the source to each node l. Restrictions (26) specify that flow for
node l traverses arc (i, j) if and only if it is used.

∑

j:(i,j)∈A

yl
ij −

∑

j:(j,i)∈A

yl
ji = 0 ∀l ∈ V \{v0}, ∀i ∈ V \{v0, l} (24)
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∑

j:(0,j)∈A

yl
0j = xl ∀l ∈ V \{v0} (25)

yl
ij ≤ fij ∀l ∈ V \{v0}, ∀(i, j) ∈ A (26)

yl
ij ≥ 0 ∀l ∈ V \{v0}, ∀(i, j) ∈ A (27)

This strategy implies O(|V |3) of such constraints and variables and it
produces better linear relaxation than using the aggregated flow (21)–(23).
However, we show in the computational experiments that under some condi-
tions, the aggregated flow strategy can produce a better linear relaxation as
Constraints (22) are stronger with a lifted value for M .

4 Formulations using several vehicles

In this section, we present two formulations for the MORP using several MOR
units. The first one is a three-indexed formulation. The second formulation
is more compact. Both formulations are designed for the two optimization
phases as presented in Section 3.

4.1 A three-indexed formulation using several vehicles

In the three-indexed formulation, we specify explicitly which MOR unit ex-
ploits each well. Thus, new variables are defined as follows: let xk

i be a
decision variable that specifies if well i is exploited by the vehicle k or not.
Variables fk

ij ∈ {0, 1} state if vehicle k exploits well j after well i or not.
P (K) is the total profit collected using the K MOR units. All other terms
are defined in Section 3. The three-indexed formulation is as follows:

max P (K) =
∑

i∈V \{v0}

pi ·
K∑

k=1

xk
i s.t. (28)

∑

i∈V \{v0}

t′i · x
k
i +

∑

(i,j)∈A

tij · f
k
ij ≤ T ∀k = 1, ..., K (29)

∑

j:(j,i)∈A

fk
ji −

∑

j:(i,j)∈A

fk
ij = 0 ∀k = 1, ..., K, ∀i ∈ V \{v0, k} (30)

∑

j:(0,j)∈A

fk
0j ≤ 1 ∀k = 1, ..., K (31)
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∑

j:(j,i)∈A

fk
ji = xk

i ∀k = 1, ..., K, ∀i ∈ V \{v0} (32)

K∑

k=1

xk
i ≤ 1 ∀i ∈ V \{v0} (33)

∑

j:(j,i)∈A

yji −
∑

j:(i,j)∈A

yij =
K∑

k=1

xk
i ∀i ∈ V \{v0} (34)

yij ≤ M ·
K∑

k=1

fk
ij ∀(i, j) ∈ A, j 6= v0 (35)

yij ≥ 0 ∀(i, j) ∈ A (36)

xk
i ∈ {0, 1} ∀k = 1, ..., K, ∀i ∈ V \{v0} (37)

fk
ij ∈ {0, 1} ∀k = 1, ..., K, ∀(i, j) ∈ A (38)

Restrictions (29) limit the units work in a day. The flow conservation
constraints are defined in (30) and (31). Constraints (32) ensure that unit k
pass though an arc (i, j) only if it exploits well i. Inequalities (33) specify that
at most one unit visits well i. Constraints (34) and (35) are the GGA subtour
elimination constraints. Constraints (36)–(38) are the variables definition.
This formulation contains O(|V 3|) variables and constraints and can be seen
as a generalization of formulation (2)–(9) to several vehicles. The GGA
constraints are chosen according to the computational results for one vehicle
(Section 5). Obviously, other strategies could be used as well.

4.1.1 Valid inequalities for the three-indexed formulation

In the previous model, any vehicle can be assigned to any route in the solu-
tion. Thus, the number of feasible solutions are multiplied by up to K (ways
to assign K vehicles to the K routes). This can dramatically slow down
the effectiveness of the model. Figure 2 illustrates the symmetry problem.
Figure 2 (a) and (b) have the same tours, but in Figure 2 (a) vehicle k1

does the tour {v0, v3, v6, v7, v1, v0} and in the Figure 2 (b), it is done by the
vehicle k2. The same applies to the second tour. Thus, the idea is to use
valid inequalities to avoid these situations.

To remove the symmetry, so-called symmetry-breaking constraints can be
defined. A first way is to specify that the first vehicle does the tour with the
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Figure 2: An example of symmetry between two solutions.

highest oil production, the second one does the tour with the second highest
oil production, and so on. This is done through Inequalities (39).

∑

i6=v0

pix
k
i ≥

∑

i6=v0

pix
k+1
i ∀k = 1, ..., K − 1 (39)

Another way to remove symmetry consists in applying a lexicographical
order on the routes: given two circuits τ1 and τ2, τ1 < τ2 if the first node
visited in τ1 has a lower identifier than the first node visited in τ2. Con-
straints (40) define such a lexicographical order.

∑

i6=v0

i · xk
0i ≤

∑

i6=v0

i · xk+1
0i ∀k = 1, ..., K − 1 (40)

The lexicographical order can be defined another way as in Constraints (41).
The sum of the first n′ variables on the outgoing arcs is greater in the first
circuits.

n′∑

i=1

xk
0i ≥

n′∑

i=1

xk+1
0i ∀k = 1, ..., K − 1, ∀n′ < n (41)

Finally, the last way to remove symmetry is to use Constraints (42).
Vehicle k goes to node i only if vehicle k−1 goes to at least one of the nodes
1, ..., i−1). Consequently, all variables xk

i such that k > i can be set to zero.

xk
i ≤

i−1∑

j=1

xk−1
j ∀i = 1, ..., n, ∀k = 2, ..., min{K, i} (42)
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4.2 A two-indexed formulation using several vehicles

In the two-indexed formulation, we do not explicitly define which unit ex-
ploits well i since the MOR units have the same characteristics (homogeneous
fleet). A similar idea was previously used in the literature, for example, in
[20]. Instead of explicitly assigning a MOR unit k to a subset of wells, a
restriction is set on the date (time) well i is exploited using a unit, whatever
it is.

We consider the variables fij and xi as defined in the Section 3 for the
single vehicle formulation. Additionally, variables di specify the date (time)
well i is visited by a MOR unit in a working day.

max P =
∑

i∈V \{v0}

pi · xi s.t. (43)

∑

j:(j,i)∈A

fji −
∑

j:(i,j)∈A

fij = 0 ∀i ∈ V \{v0} (44)

∑

j:(j,i)∈A

fji = xi ∀i ∈ V \{v0} (45)

∑

j∈V

f0j = K (46)

di−dj +(T +t′i+tij)·fij +(T −t′j−tji)·fji ≤ T ∀(i, j) ∈ A, i, j 6= v0 (47)

di ≥ t0i · f0i +
∑

j 6=v0

(t0j + t′j + tji) · fji ∀i ∈ V \{v0} (48)

di ≤ T − (t′i + ti0) · fi0 −
∑

j 6=v0

(t′i + tij + t′j + tj0) · fij ∀i ∈ V \{v0} (49)

xi ∈ {0, 1} ∀i ∈ V (50)

fij ∈ {0, 1} ∀(i, j) ∈ A (51)

di ≥ 0 ∀i ∈ V \{v0} (52)

The flow conservation is given in Constraints (44). Restrictions (45)
ensure arc (j, i) is used if well i is exploited. Equations (46) state all the

12



K MOR units are used. Constraints (47) link the time node j is visited,
to the time node i is visited, and to the selection of arc (i, j). This is an
adaptation of the lifted MTZ constraints (see Section 3.1). Inequalities (48)
and (49) define generalized lower and upper bounds on the time node i is
visited. Inequalities (48) link the time node i is visited to variables fji. At
most one of the arcs entering node i is used. Thus, di is at least equal to the
minimal time required to arrive at node i, either by going from v0 to i or by
going from j to i. The same idea applies to the Inequalities (49). Variables
xk

i , fk
ij and di are defined respectively by Constraints (50) to (52). The two-

indexed formulation has O(|V |2) variables and constraints. MTZ is used
since the time constraints definition is straightforward and the formulation
has still O(|V |2) variables.

5 Computational results

The computational experiments were carried out on an Intel Core 2 Duo with
2.66 GHz clock and 4Gb of RAM memory, using CPLEX 11 under default pa-
rameters. Instances were generated using a geographical information system
to simulate real situations. Comparison among the proposed formulations
are measured in terms of time to prove optimality and of linear relaxation.

In the Tables 1 and 2, each line corresponds to an instance. For each
instance, the working day length (L) in minutes, the number of wells (|V |)
and its optimal production (P∗) are given. For each formulation, the linear
relaxation value (RL∗), the time (T ) spent by the unit in the optimal solution,
the time (time(s)) required to prove optimality in seconds (rounded up),
and the number of nodes (nodes) explored in the branch-and-bound tree
are presented. The symbol (−) means the solver did not prove optimality
because it ran out of memory. When the optimal solution is unknown, the
best integer solution found so far is identified by “(≥ value)”.

Table 1 summarizes the results for the formulations for one vehicle using
the MTZ, GGA or GGD subtour elimination constraints. From the com-
putational results, GGA proves optimality faster than MTZ and GGD for
9 instances. MTZ proves optimality faster than GGA and GGD for 7 in-
stances. In spite of having the worst linear relaxation, MTZ is able to prove
optimality for instances with up to 200 nodes. GGD consumes a lot of time
even if it produces good linear relaxation. An interesting result on the linear
relaxation is found for L = 480 and |V | = 20: the GGA linear relaxation
is better than the linear relaxation of GGD. This happens here because the
value of M is equal to the optimal amount of wells exploited in a day.

We performed an experiment to illustrate the evolution of the GGA lin-
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ear relaxation values when M varies. We compare it with the GGD linear
relaxation values. Results are presented for the instance with |V | = 20 wells
in Figure 3. The x and y axis represent respectively the values of M , and the
oil production. For this instance, the MOR unit can exploit at most M = 4
wells. The results show that the smaller M the tighter the linear relaxation
of GGA. For some instances, in terms of linear relaxation, a value of M close
to the optimal amount of wells exploited in a day is sufficient to make GGA
better than GGD can even help GGA having better linear relaxation than
GGD.
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Figure 3: Evolution of the linear relaxation for the formulations GGA and
GGD.

We have also run the second optimization phase for all instances presented
in Table 1. The time T was only improved for the instance with L = 480
and |V | = 120 (T ∗ = 479.5 instead of T = 480). Thus, results of the second
optimization phase were not tested for several vehicles. Even so, it remains
valuable since it takes place in the global decision process of the problem.

The results for the two-indexed and the three-indexed formulations are
presented in Table 2. The number of vehicles used (K) and the sum of the
total time spent by all the MOR units (T ′) are given. The three-indexed
formulation produces a better linear relaxation than the two-indexed formu-
lation. However, the two-indexed formulation performs better to compute the
optimal solution. In addition to the number of wells, the problem becomes
more difficult when the number of vehicles increases. Moreover, the working
day limit also contributes to the difficulty of the problem. Results suggest
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Table 1: The first optimization phase for the MORP using one vehicle.

MTZ GGA GGD
L |V | P∗ RL∗ T time nodes RL∗ T time nodes RL∗ T time nodes

480 20 12.60 17.21 477 2 1292 12.92 477 0 1 13.41 477 11 17
480 30 15.88 18.38 477 5 2337 17.19 477 6 979 16.61 477 841 191
480 40 15.88 18.38 477 7 2081 17.19 477 6 963 16.61 477 30137 255
480 60 15.84 18.43 467 15 3203 16.86 467 3 90 - - - -
480 80 9.97 13.80 479 83 5429 11.67 479 32 1410 - - - -
480 120 18.73 19.09 480 73 2996 19.05 480 204 1910 - - - -
480 160 19.10 19.47 480 240 2095 19.46 480 2540 3378 - - - -
480 200 19.64 19.82 480 62 3256 19.77 480 20626 2360 - - - -
960 20 24.45 32.11 952 817 915570 28.39 952 98 14807 25.65 960 452 264
960 30 31.65 35.93 950 424 228949 35.29 950 446 46898 32.43 950 5313 527
960 40 19.76 24.17 909 406 40244 23.84 909 135 10898 22.34 909 63631 2401
960 60 31.65 35.96 950 974 301668 35.18 950 377 33257 32.26 - - -
960 80 37.70 38.05 959.5 3240 57320 38.00 959.5 866 21595 - - - -
960 120 37.99 38.41 960 2764 36803 38.42 960 872 6716 - - - -
960 160 40.05 40.19 960 377 5893 40.16 960 585 877 - - - -
960 200 40.05 40.19 960 420 6672 40.16 960 789 951 - - - -
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Table 2: The first optimization phase for the MORP using several vehicles.

Two-indexed formulation Three-indexed formulation
K L |V | P ∗ RL∗ T ′ time (s) nodes RL∗ T ′ time (s) nodes

2 480 10 20.97 27.74 911 2 8416 24.09 870 22 9139
2 480 20 24.45 29.55 953 74 41047 25.08 953 4 487
2 480 30 31.16 35.79 941 51 51661 33.78 941 1149 75216
2 480 40 31.16 35.79 941 646 84815 33.78 941 1315 64397
2 480 50 28.99 34.70 928 654 94922 30.93 928 7929 101935
2 480 60 30.39 35.78 946 326 57405 32.99 946 1619 60724
2 480 70 25.88 32.86 916 2 3374 30.43 916 1219 26108
2 480 80 19.35 27.03 881 78 69927 22.86 876 16426 313421
2 960 20 ≥ 46.51 55.89 - - - 52.75 - - -
2 960 30 ≥ 62.26 69.44 - - - 68.57 - - -
3 480 10 29.82 29.82 909 1 503 29.82 901 2 639
3 480 20 33.72 40.42 943 553 704266 36.73 943 27788 214856
3 480 30 45.49 52.31 943 2394 2269664 49.86 - - -
3 960 20 62.16 62.16 933 134 138791 62.16 - - -
3 960 30 ≥ 88.78 98.44 - - - 97.63 - - -
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it is suitable to use a small time window (480 minutes). The three-indexed
formulation found sometimes a smaller value of T ′ as shown in bold.

6 Concluding remarks

Several formulations for the MORP are proposed in this work and the first
ever results using several vehicles are presented. Additionally, we proposed
to improve the subtour constraints by taking advantage of the time window.
Thus, instances close to reality (up to 200 wells) are solved. Among the
formulations for one vehicle, GGA performs globally better than MTZ and
GGD to prove optimality. For several vehicles, the two-indexed formulation
is faster to prove optimality in spite of weaker linear relaxations.

Computational experiments show that the time window restriction plays
a key role in computing an optimal solution: the smaller the time window, the
easier the problem to solve. Optimal solutions can be computed for medium-
sized instances with two MOR units. When using three vehicles, this does
not hold as the CPU time increases dramatically for small instances.

The larger instances used here are larger than the problems considered
by the company in the Rio Grande do Norte Basin. Consequently, the oil
company is now able to compute the optimal solution for the MORP instead
of using solutions given by heuristics.

For future work, there are several promising research to be developed
for this problem. For example, investigating situations where the second
optimization phase becomes really useful. Moreover, the experiments show
that for large time windows the problem becomes more difficult. Thus, we
could study an approach to split large time windows. In terms of algorithms,
several strategies could be explored such as exact algorithms as a branch-and-
cut. It could be applied for difficult cases when a large number of vehicles are
needed. Furthermore, pareto-based strategies to deal with the multiobjective
function can be tested. Finally, the dynamic oil filling in the well can be
integrated the models.
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de pistoneio. Master’s thesis, Universidade Federal do Rio Grande do
Norte, Departamento de Informática, Natal, Brazil, 2002.
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