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ABSTRACT

We present a new method of magnification for textured im-
ages featuring scale invariance properties. The procedurepre-
serves the visual aspect as well as the statistical properties
of the initial image. An augmentation of information is per-
formed by locally adding small scale details below the ini-
tial pixel size. This is made possible thanks to a family of
scale invariant stochastic processes, namely compound Pois-
son cascades. This extrapolating procedure yields a poten-
tially infinite number of magnified versions of an image. It
allows for large magnification factors (virtually infinite)and
is physically conservative: zooming out to the initial reso-
lution yields the initial image back. This work is motivated
by an application to images of the quiet Sun to quantitatively
predict statistical and visual properties of images taken by a
forthcoming high resolution telescope.

Index Terms— Image enhancement, resolution, image
generation, scale invariance, stochastic processes, modeling.

1. INTRODUCTION

We present a new method to magnify random textured images
by any factor (even much larger than 2) while preserving their
visual aspect as well as their statistical properties. Thispro-
cedure uses an augmentation of information by adding small
scale details below the initial pixel size as the resolutiongets
(virtually) finer. We focus on random textured images such
as those resulting from observations of the Sun by a spatial
telescope or clouds by a satellite. Our approach uses a min-
imum of a priori on the original image. It relies on the fact
that natural images and random textures usually present scale
invariance properties [1, 2] to randomly extrapolate new de-
tails. Furthermore, we require that the content of the aug-
mented image beconsistentwith the information available at
larger scales from the original image. This consistency is de-
fined by two requirements: the preservation of scale invari-
ance properties of the initial image(statistical consistency)
and a zoom out to the initial resolution must yield the original
image back(physical consistency). One application domain
is in solar physics where current observations are 1024×1024
images at resolution 1800km (E.I.Telescope onboard SOHO)

[3]. Therefore, physicists are considering the design of a new
spatial telescope with a much better resolution of 80km which
is about 25 times finer than that of EIT. However as the reso-
lution gets finer, the flux of photons on the CCD sensor gets
smaller so that the images may be under-exposed and un-
usable. Our approach proposes a way to simulate realistic
images extrapolated from the current ones. The evolution of
statistics at finer resolutions such as histograms could even be
predicted. Another application lies in procedural texturesyn-
thesis for computer graphics. Our procedure could allow for
an online enhancement of a texture depending on visualiza-
tion conditions. More generally it could be used to enhance
textured regions in a segmented image.

After some mathematical definitions we present our ap-
proach. Next, we illustrate the method on numerical examples
and finally point to an application in solar physics.

2. MATHEMATICAL PRELIMINARIES

2.1. Statistical scale invariance of images

The statistics of natural images have been studied in depth [1]
and have revealed two main properties: scale invariance and
non-Gaussian statistics. This is also true for a large variety of
”random textures” [2]. Note that some models for natural im-
ages can be used to synthesize random textures as well. The
scale invariance of natural images is basically characterized
by a power law Fourier spectrum∝ 1/k2−η over a wide range
of spatial frequencies. The notion of scale invariance can be
defined for higher order statistics as well [4]. LetTI(r) be a
multiscale transform (wavelets, box averages...) at scaler of
the imageI under study. The scale invariance property results
in the power law scaling behaviorETI(r)

q ∝ rζ(q), q ∈ R

whereE stands for mathematical expectation. Theζ(q) are
calledmultiscaling exponents. They can be decomposed in a
linear partqH depending on a parameterH and a non-linear
part τ(q), such thatτ(0) = τ(1) = 0 andH = ζ(1). For
instance in the caseζ(q) = qH (e.g. a fractional Brownian
field), the imageI is said self-similar and its scale invariance
is characterized by the parameterH only. Theτ(q) betray
a multiscaling property: whenτ(q) 6= 0 a set of exponents
is necessary to describe the scale-invariance of the image.It



can be shown that theτ(q) depict the non-Gaussianity of the
image statistics. For a multiscaling image, the parametersH
andτ(q) are linked to the power law Fourier spectrum which
is ∝ 1/k2+2H+τ(2) [5]. Infinitely Divisible Cascades (IDC)
are a family of multiscaling models for natural images re-
cently proposed in [5]. Our approach uses a sub-family of
IDC, namely Compound Poisson Cascades (CPC).

2.2. Compound Poisson Cascades (CPC)

We give below a brief presentation and refer to [5] for more
details. This model is based on a multiplicative construction
where smaller scales of an image inherit information from
larger scales in a continuous way. LetQL

ℓ (x) be the pixel
value at locationx; let L andℓ, L > ℓ, the limiting largest
and smallest scales of the resulting image. Let(xi, ri) a Pois-
son point process with: (i)xi uniformly distributed in the 2D
plane, ensuring the homogeneity ofQL

ℓ in space; (ii)ℓ ≤
ri ≤ L distributed with density1/r3 (so that the final texture
is mathematically well defined ifℓ > 0 only). The(xi, ri) are
marked by i.i.d. positive random variablesWi called multi-
pliers, independent of the(xi, ri). Let f(x) be a non negative
function with compact support. For allx of the image, the
CPCQL

ℓ (x) is defined by

QL
ℓ (x) = C

∏

i

W
f

“

x−xi
ri

”

i (1)

whereC is a normalization coefficient such thatEQL
ℓ = 1.

Such models are homogeneous but very irregular objects and
correspond from a mathematical standpoint to distributions
with log compound Poisson law. Their scale invariance is
characterized byH = 0 andτ(q) = q(EW q

i −1)+1−EW q
i

for scales betweenℓ andL. Their Fourier spectrum obeys a
power law∝ 1/k2+τ(2). QL

ℓ (x) is equal in distribution (
.
=) to

Q1
ℓ/L(x/L). Its variance is given by:

σ2
QL

ℓ

= (ℓ/L)τ(2) − 1 (2)

An essential property of CPC is that for any0 < r2 ≤ r1 ≤
r0, Qr0

r2
obeys a multiplicative multiscaling decomposition

Qr0

r2
= Qr0

r1
· Qr1

r2
(3)

whereQr0

r1
andQr1

r2
are two independent CPC with the same

τ(q). One can create a larger family of images by using
fractional pseudo-integration and derivation. The fractional
pseudo-integration, denoted by the operatorIH , is performed
in practice by a1/||k||H low-pass filter in the Fourier domain
for ||k|| > 0 (the singularity atk = 0 is treated separately).
The fractional pseudo-derivation, denoted byDH = I−1

H , is
the inverse of the integration and is performed in practice by
a ||k||H high-pass filter. Note that these two operations pre-
serve the scale invariance of the original image but modify
the scaling exponentsζ(q) by adding, respectively subtract-
ing, a linear partqH . Thus, CPC may be used to model very

Fig. 1. Schematic view of the magnification process.

rough images (or textures) withζ(1) = 0 as well as smoother
images withζ(1) = H > 0.

3. VIRTUAL RESOLUTION ENHANCEMENT

3.1. The approach

Our purpose is to (virtually) refine the resolution of scale in-
variant textured images thanks to an adapted augmentation
of information. We require the augmentation to beconsis-
tentwith the initial image, which means that (i) the resulting
image has the same scale invariance properties as the origi-
nal one and (ii) zooming out the magnified image to the ini-
tial resolution yields the initial image back. To this aim, one
must add details with well suited properties at scales below
the pixel size of the original image. These details can be
generated from the extrapolation of the initial image wavelet
coefficients assuming a local power law behavior as in [6].
However, the new wavelet coefficients strongly depend on the
wavelet used for the image decomposition and on the esti-
mation of the local regularity. Another possibility is to use
I.F.S. (Iterated Function Systems) [7]. Interpolation using
I.F.S. consists in applying another iteration of the initial I.F.S.
determined thanks to the collage theorem [7]. These meth-
ods preserve scale invariance but they are deterministic and
do not extrapolate the multifractal behavior of the initialim-
age. Our method is more flexible since it adds scale invariant
and multifractal information at high resolution in a stochastic
manner. A fundamental assumption which is also a limitation
is that the scale invariance properties of the original image are
known, which is the case for, e.g., synthetic textures, or im-
ages that have been previously analyzed. The main thrust is
to a priori describe the initial image by aglobal model using
a fractionally pseudo-integrated CPC. This model is used to
derive alocal procedure to add random correlated details in
every pixel of the initial image. Eventually, a renormalization
step ensures that the procedure is conservative in the sense
that zooming out to the initial resolution gives the original
image back.

3.2. Magnification procedure

The initial image is supposed to have some random texture
looking, e.g. taken from a turbulent physical system such as



the quiet Sun characterized by the scale invariance parameters
H andτ(q) estimated from a prior multifractal analysis [3].
The image is a priori modeled by

I1 = I0 + αIH{Qr0

r1
− 〈Qr0

r1
〉} (4)

where〈〉 stands for spatial averaging andI0 for the average
intensity of the image; the fluctuation term is a fractionally
pseudo-integrated CPC with zero mean, amplified by a factor
α. The scalesr0 andr1 stand for the largest scale and the
finest scale (the pixel size) of the image. We stress that this
global model is not aimed at describing the complete image
but is only used to derive alocal procedure of augmentation.
The main idea of this magnification procedure is to replace
Qr0

r1
by Qr0

r2
in (4) by using the multiscale decomposition of

CPC (3) to get an imageI2 at resolutionr2 ≤ r1. The proce-
dure is schematically represented in fig. 1.

The first step magnifiesI1 by resampling it atr2 ≤ r1

using a spline interpolation [8] leading to a smoothed version
Iinterp of I1. A fractional derivation yieldsJ1 = DHIinterp

which corresponds to the termα
(
Qr0

r1
− 〈Qr0

r1
〉
)

in (4). By
using the multiscale decomposition (3) in this model ofJ1,
we define a new imageJ2 at resolutionr2 ≤ r1:

J2 = J1 · Q
r1

r2
+ α〈Qr0

r1
〉
(
Qr1

r2
− 〈Qr1

r2
〉
)

(5)

whereQr1

r2
contains the new information at scales smaller

thanr1. Qr1

r2
is independent ofQr0

r1
; it is generated using (1)

with the same parameters asQr0

r1
. Note that sinceQr1

r2
(x)

.
=

Q1
r2/r1

(x/r1), the information brought by the CPC between
scalesr1 andr2 depends on the magnification factorr2/r1

only. The first term in (5) mainly describes the augmenta-
tion of information inJ1 at scalesr2 ≤ r ≤ r1. It ensures
the coupling between the initial imageJ1 and the new details
Qr1

r2
. The second term ensures that the energy level of the new

details is consistent with the initial image.J2 is then an image
with the sameτ(q) asI1 and a power law Fourier spectrum
over a larger range of spatial frequencies. Note that each re-
alization ofQr1

r2
will produce one possible realization of the

magnification of the original image among a potential infin-
ity. The parameterα depends onr1/r0 and can be estimated
using (2):

α̂ =

√√√√ σ2
J1

̂(r1/r0)
τ(2)

− 1

(6)

whereτ(2) can be estimated from the power law Fourier spec-
trum ∝ 1/k2+2H+τ(2) or from some multiscaling analysis.
AsE〈Qr0

r1
〉 = 1, we set〈Qr0

r1
〉 = 1 in (5). Section 4.2 details

the sensitivity of our approach to parameters. The pseudo-
integration step yieldsK2 = I0 + IHJ2. Finally, the mag-
nified imageI2 results from a renormalization ofK2 which
makes the procedure “conservative”. While (5) adds informa-
tion at scalesr2 ≤ r ≤ r1, it slightly affects scales larger than
r1 as well. Therefore, we impose that the sum of intensities in
regions ofI2 corresponding to a pixel of sizer1 in I1 equals

⇓ (a) ⇑ ⇓ (b) ⇑

(c) (d)

Fig. 2. Illustration of our magnification procedure: (a) initial
16×16 image, (b) zoom in the ‘×32’ interpolated image con-
tained in the 4×4 black square of the initial image, (c) ‘×32’
magnified image with augmentation, (d) zoom in the black
square region. The dotted lines correspond to initial pixels.

the pixel value inI1. The augmentation procedure and the
conservation step are non-linear and local operations so that
a direct ‘×32’ magnification is very different from five suc-
cessive ‘×2’ magnifications. Ideally, the ratior2/r1 should
be close to 1 to preserve the scale invariance of the original
image and limit any “boxing” artifact due to the conservation
step. In the present work, and for obvious practical reasons,
we user2/r1 = 1/2.

4. COMPUTATIONAL ILLUSTRATION

4.1. Main properties

We illustrate our approach in the ideal case where the initial
image is precisely of the form given by (4). A set of initial
images of size 32×32 is built withα = 8 andI0 = 23, for
r0 = 1 andr1 = 1/32 and withH = 0.7. In these examples
we have chosenτ(q) = −((1 + 0.7)q/(1 + q0.7)− 1) which
leads toτ(2) = −0.20. A magnification ‘×32’ is performed
as five ‘×2’ elementary magnifications leading to 1024×1024
images. Fig. 2 compares typical results obtained by simple
interpolation and by our magnification procedure. The same
procedure can be applied to images of the Sun with the same
visual and quantitative results (see our webpages).

Here, we assume thatα, r1/r0 and τ(2) are exactly



(a) (b)

Fig. 3. (a) Power law Fourier spectrums and (b) multifractal
exponents of ‘×2’ and ‘×32’ magnified images.

known. Fig. 2 clearly illustrates the augmentation of infor-
mation by the introduction of new small scale details inside
initial pixels while a simple interpolation only smoothes the
image. Moreover, reducing (by aggregation) the resolution
of I2 back tor1 yieldsI1 back. Fig. 3(a) presents a log-log
plot of the Fourier spectra ofI1 andI2 after magnifications
by factors 2 and 32. We see that the power law Fourier
spectrum ofI1 has been preserved and extended to higher
frequencies without any discontinuity. Fig. 3(b) shows that
the multiscaling exponents estimated fromI2 are close to the
theoretical ones within reasonable error bars. Thus we have
shown, at least on these examples, that our magnification pro-
cedure adds new information to the original image while (i)
enhancing its visual aspect, (ii) preserving its scale invariance
properties and (iii) being conservative with respect to zoom
in and out operations. These tests have been applied to a wide
variety of multifractal images and have given similar results.

4.2. Sensitivity to parameters

We now consider the realistic situation whereα and the ratio
r1/r0 are unknown. We still assume that the scaling expo-
nents ofI1 are known from a prior analysis. As seen in (6),α

depends onr1/r0 so that an error on̂r1/r0 may lead to an er-
ror onα̂. The scaler1 is the smallest scale available, the pixel
size. Therefore, the estimation ofα is directly linked to the
estimation of the larger scaler0 in the image, which may be in
general smaller but sometimes larger than the image size. On
one hand, ifr0 is over-estimated, the power of details is too
small, the final image misses some energy at high frequen-
cies. On the other hand, ifr0 is under-estimated, the power
of details is too big and results in too much energy at high
frequencies. Fortunately, a precise estimation ofr0 is not so
crucial for our procedure to be efficient. In practical cases, the
maximum error onr0 will be within a factor 2 which leads to
an error onα of 10%. Furthermore, the fractional pseudo-
integration as well as the conservation step tends to reduce
the uncertainty on̂α. In the end, the error is close to negligi-
ble. As a conclusion, the accuracy of the estimation ofr1/r0

andα is not critical.

5. CONCLUSION

We have presented a new approach to the magnification of
random textured images featuring scale invariance properties
by using an augmentation of information. Our method locally
adds small scale details below the pixel size using stochastic
processes. It preserves the original scale invariance proper-
ties, extends them to smaller scales (statistical consistency)
and is conservative (physical consistency), that is a zoom out
of the magnified image yields the original image back. One
originality of our approach lies in the synthesis of new details
in a random manner so that this magnification/extrapolation
can potentially produce infinitely many magnified versions of
an image. An application to the detailed modeling of quiet
Sun images which have revealed multiscaling properties [3]
is now the subject of ongoing work. Our approach opens
new insights to a quantitative prediction of visual quality
and statistics of future observations at a finer resolution (1
pixel= 80 km) given present low resolution observations (1
pixel=1800 km). Another application under study is in image
processing for the enhancement of textured regions. Other
illustrations of this magnification method are available at
www.isima.fr/∼koenig and∼chainais.
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