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Abstract

The leaf area index (LAI) is one of the most common leaf area and canopy structure quantifiers. 
Direct LAI measurement and determination of canopy characteristics in larger areas is unrealistic 
due to the large number of measurements required to create the distribution model. This study 
compares the regression models for the ALS-based calculation of LAI, where the effective leaf area 
index (eLAI) determined by optical methods and the LAI determined by the direct destructive method 
and developed by allometric equations were used as response variables. LiDAR metrics and the laser 
penetration index (LPI) were used as predictor variables. The regression models of LPI and eLAI 
dependency and the LiDAR metrics and eLAI dependency showed coefficients of determination (R2) 
of 0.75 and 0.92, respectively; the advantage of using LiDAR metrics for more accurate modelling is 
demonstrated. The model for true LAI estimation reached a R2 of 0.88. 

Keywords: airborne laser scanning, LiDAR, leaf area index, effective leaf area index, LAI, eLAI, 
allometric models, destructive method, indirect methods

INTRODUCTION
The most used environmental indicator 

characterizing the canopy structure is leaf area index 
(LAI). LAI is a key feature of the forest structure that 
serves as the primary indicator for the exchange of 
matter and energy within forest ecosystems. LAI 
is a  dimensionless variable characterized as the 
maximum area of photosynthetic tissue per unit of 
ground area (Myneni et  al., 1997). The amount of 
LAI depends on the species composition of the stand, 
the development stage, the prevailing site factors, 

the season, and the type of forest management. It 
is a  dynamic parameter that changes from day to 
day (especially in spring and autumn), and over 
time, the physical and biological forces that form 
and change the forest environment affect it. LAI 
is likewise one way to evaluate the health status 
of trees unfolding from these factors. Methods for 
LAI detection can be divided into three categories: 
direct, semidirect, and indirect. The direct methods 
generally use destructive procedures to estimate 
the total number of leaves on the tree and their 
areas, whereas the indirect methods use some 
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aspect of the radiation regime within the stand and 
derive LAI from light distribution under the canopy 
(Jonckheere et al., 2004).

The direct methods are most accurate for sample 
trees but very time-consuming; therefore, they 
are not used for the determination of spatial and 
temporal LAI distribution. However, they may be 
considered the most important for validation of 
indirect methods. These include the destructive 
method of collecting leaves from standing trees and 
collecting falling leaves to litter-traps (Jonckheere 
et al., 2004). The direct destructive method damages 
trees irreversibly, so it is not used in larger and 
more valuable trees. The semi-direct methods 
include allometric models based on simple physical 
dimensions (diameter at breast height (DBH), 
tree height, base crown, crown projection, etc.) as 
predictor variables and LAI as a response variable 
determined by the direct method (Asner et  al., 
2003). Allometric relations are accurate, but they 
are stand-specific or species-specific (Mencuccini 
and Grace, 1995; Le Dantec et al., 2000). 

Currently, indirect methods based on non-contact 
transmittance measurements are used in forest 
stands. These methods use the Beer–Lambert law 
(Monsi and Saeki, 2005). 

The leaf area index can be determined on the 
basis of gap fraction information or based on 
the combination of gap fraction and gap size 
distribution using tracing radiation and architecture 
of canopies (TRAC) or hemispheric photo analysis 
(Chen and Cihlar, 1995).

The indirect optical methods are characterized 
by nonseparation of the leaves from different parts 
of the crown layer, such as branches or parts of the 
stem. The indirect methods determine so-called 
effective leaf area index (eLAI), which can be used 
for recalculation into true LAI by the correction 
factor, which is stand-specific and species-specific. 
The factor reflects the mutual overlapping of the 
needles within the annual shoot, the branches, 
and the whorls, thus the proportion of wood in 
the sensor field of view (Chen et  al., 1991). In the 
case of beech, this factor is not used, because 
leaves are mostly randomly distributed. Therefore, 
to determine true LAI, it is sufficient to repeat 
the measurement out of the vegetation period; 
the woody area index (WAI) is determined and 
subtracted from eLAI (Caldwell et al., 1983a; 1983b).

The indirect techniques using remote sensing 
are the most suitable for estimating LAI on a wider 
spatial scale. We can divide them into techniques 
using passive optical sensors and LiDAR. The basis 
of LAI estimation using passive optical sensors 
is the correlation between LAI and some of the 
vegetation indices, e.g., Normalized Difference 
Vegetation Index (NDVI) (Lüdeke et al., 1991; Gower 
et al., 1999). The disadvantage is seen especially in 
case of high LAI value occurrences when the NDVI 
is so saturated that it is unable to distinguish these 
high LAI values, which means the NDVI and LAI 

will not increase linearly (Zheng and Moskal, 1991). 
The other technology is airborne laser scanning 
(ALS), which has been used in most studies to 
estimate an effective leaf index, but is not correct in 
case of non-random distribution of foliage and does 
not distinguish nonfoliage elements (e.g., branches, 
bark) in the canopy. Corrections must be made for 
calculation of true LAI (Chen et  al., 1997; Leblanc 
et al., 2005).

Airborne laser scanning uses a  laser scanner 
carried mainly by satellite, aircraft, helicopter or 
unmanned aerial vehicle. The entire system is able 
to capture accurate three-dimensional data thanks 
to the inertial navigation system (INS) and Global 
Navigation Satellite System. Most studies have used 
small-footprint, discrete return scanners, and LAI 
estimation using some penetration indices (semi-
empirical approach) or LiDAR metrics (empirical 
approach). The created models are valid only for 
the trees and stands for which they were derived 
and calibrated (Riaño et  al., 2004; Solberg et  al., 
2010). ALS-based models for eLAI estimation 
can be calibrated using terrestrial laser scanning 
(Musselman et al., 2013).

In this paper, we compare different regression 
models based on the laser penetration index and 
LiDAR metrics as predictor variables and models 
based on effective leaf area index and true leaf 
area index as response variables. We focused only 
on modelling of young beech forest stands, because 
in situ measurements, especially by the direct 
destructive method, are time-consuming. There are 
not many studies using true LAI as the response 
variable in ALS-based modelling, e.g., (Beets et  al., 
2011; Qu et al., 2018). eLAI as response variable is 
commonly used for LAI estimation based on remote 
sensing resulting in underestimation of true LAI. 

MATERIALS AND METHODS

Study Area
The field measurements were carried out during 

August and September 2015 at the University Forest 
Enterprise Křtiny (UFE), an organizational part of 
Mendel University in Brno, Czech Republic. The 
sample plots were placed in young beech forest 
stands (21 years old) with a tree species composition 
of 91% beech (Fagus sylvatica L.), 8% larch (Larix 
decidua Mill.), and 1% oak (Quercus petraea Matt.). 
The average tree height of the forest stand was 9 m 
and the average DBH was 9 cm. In total, 6 sample 
plots were surveyed tacheometrically using total 
station. 

ALS Data Acquisition and Initial Processing
The airborne laser scanning data used in this study 

was scanned on September 17 and 18, 2014, in the 
ETRS-89 UTM 33N coordinate system and the GRS-80 
geodetic reference system. The parameters of airborne 
laser scanning acquisition are shown in Tab. I.
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The data classification was performed in 
TerraScan software. Ground points were classified 
by automatic methods as Class 2, Ground, and first 
return points as Class 5, High Vegetation.

Destructive Methods and Allometric 
Equations

All tree girths at breast height were measured in 
the forest stands, and 9 sample trees were chosen 
on the basis of the girth distribution frequency. 
Each sample tree was cut into 1  m sections, from 
which sample leaves were collected for calculation 
of SLA, and then LAI.

The sample leaves were scanned immediately 
after harvesting, and their exact area was 
determined using ImageJ image analysis software 
(National Institutes of Health, Bethesda, MD, USA). 
These leaves were dried for 48 h at 105 ℃ and then 
weighed with milligram precision. The specific leaf 
area of the leaves was calculated from the known 
dry mass by the following formula:

SLA = Sf × md
-1, (1)

where:
Sf........leaf fresh mass area and 
md .....dry mass weight.

All leaves of individual sections were also 
harvested and dried for 48 h at 105 ℃. After being 
weighed, the ratio of SLA to tree segment was 
applied and the segment leaf area was calculated. 
Based on a regression analysis, allometric equations 
were created where tree girth was used as an 
independent variable. Leaf areas on the plots were 
estimated based on these dependencies.

Indirect Methods
LAI-2200 Plant Canopy Analyzer (Li-cor Inc.), 

hemispherical photographs, and PSI LaiPen LP 100 
(Photon Systems Instruments, s. r. o.) were used to 
measure effective leaf area. The use of these tools 
requires the absence of direct sunlight; thus, all 
measurements were performed strictly in diffuse 
radiation (homogeneously overcast sky or short 
time before sunrise or short time after sunset).

Two sensors of the LI-COR LAI-2200 PCA were 
used to determine LAI. One sensor was set up on 
a tripod at a height of 180 cm in an unshaded area, 

where it was set to automatically measure radiation 
at half-minute intervals. eLAI was determined 
based on comparing radiation in the forest stand 
and in the area with a clear view of the sky.

The LaiPen LP 100 works on a  similar principle 
as the LI-COR LAI 2200 PCA. The instrument 
measures the transmittance value as the irradiance 
ratio obtained under and over the canopy. Two 
instruments were used, one on a  reference area 
with a  clear view of the sky and the other to 
measure in the plots. Horizontal levelling of the 
instrument was achieved using the gyroscope 
integrated within it.

Effective leaf index was also determined by image 
analysis of hemispherical photographs. For this 
purpose, a  set consisting of a  Sony NEX-7 camera 
with an FC-E8 fish-eye lens served to capture images 
with a field of view of 180°. The entire system was 
installed into the auto-levelling platform to keep 
the camera in the horizontal position. Effective leaf 
area index was estimated in WinScanopy software 
(Regent Instruments Inc.).

LAI Estimation Using ALS Data
In ArcMap (ESRI Inc.) software, the laser 

penetration index for each sample plot 5.5 m in 
diameter was calculated by using the following 
formula (Musselman et al., 2013):

=
+
mGLPI

mG mV
, (2)

where:
mG .....the number of returns belonging to the 

ground per unit area and 
mV .....the number of first returns per unit area. 

The area size for the LPI calculation was 
determined by correlation matrices. LPI was 
calculated for different area sizes, and the highest 
correlation with the eLAI measurement results was 
sought. Area size depends on instrument field of 
view and tree heights (or crown projection for the 
destructive method) (Mikita et al., 2011). The size of 
the plots cut out from the point cloud has a significant 
effect on the success of regression models.

Another method of LAI calculation by laser 
scanning was the use of LiDAR metrics, which were 
calculated in FUSION software (US Department 
of Agriculture, Forest Service, Pacific Northwest 
Research Station). In the beginning, the sample 
plots (square shape, diameter 5.5 m) were clipped 
from the point cloud by the clipdata command, 
then the LiDAR metrics of the individual plots 
were calculated using the cloudmetrics command. 
The cloudmetrics command computes a  variety 
of metrics describing a  point cloud. This metrics 
are based on point elevation attributes and return 
intensity (for more details, see the FUSION manual 
(McGaughey et  al., 2018)). Most significant metrics 
are percentile values for point elevations and 
various ratios of returns above specific height 

I: Area laser scanning (ALS) acquisition parameters

Sensor Leica ALS70

Date Sept. 2014

Flight speed (ms-1) 70

Flying altitude (m a.g.l.) 700

Pulse repetition frequency (kHz) 301.8

Pulse density 7.8

Half scan angle (deg.) 24
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breaks. The LiDAR metrics were selected using 
the sequential replacement technique in the leaps 
package for R. These selected metrics served 
as predictors for the linear regression model. 
A regression triplet was tested in the final models.

RESULTS

Linear Regression Model Based on LPI 
(Predictor) and eLAI (Response)

Using the PMCMR package for R, the Friedman 
test and the Neményi test of multiple comparison 
was used. Optical methods were found to provide 
similar results (Tab. II, Fig. 1). 

Therefore, a  mean of eLAI values per sample 
plot measured by the LI-COR LAI-2200 PLA were 

used as response variables. An important part 
of the regression analysis is examination of the 
regression triplet, i.e., procedures for identifying 
the model quality for a  given set of data, the data 
quality of a  proposed model, and fulfilment of all 
least-squares assumptions. The following tests were 
performed: Fisher–Snedecor overall test, Scott's 
multicollinearity criterion, Cook–Weisberg test for 
heteroscedasticity, Jarque–Berra test for normality, 
Wald test for autocorrelation, Durbin–Watson test 
for autocorrelation, and sign test. Based on these 
tests, no negative conclusions that would affect the 
credibility of the regression model were drawn. 
The resulting linear regression model is described 
in Tabs. III and IV. Tab. IV shows the estimates and 
significances of regression model parameters. All 
parameters are significant.

II: Friedman and Neményi post-hoc test. The significant differences are highlighted in bold.

Friedman Chi-Squared = 230.57, df = 3, p-value < 2.2*10-16

Fish-eye Li-COR LaiPen

Li-COR 0.98 – –

LaiPen 0.97 1.00 –

Direct < 2 × 10-16 < 2 × 10-16 < 2 × 10-16

1 
 

 1 

 2 

 3 

1: Box plot of LAI values determined by individual methods 

III: Statistical characteristics of regression model based on LPI and eLAI

Coefficient of Determination R2 0.7450

Mean squared prediction error (MSPE) 1.4426

Akaike information criterion (AIC) -0.1598

Cross-validated R2 0.398

Cross-validated RMSE 1.2

IV: Estimation of regression model parameters

Variable Estimate Std. Error Conclusion p-Value Lower Limit Upper Limit

Intercept 10.6855 1.3520 Significant 0.0014 6.9317 14.4393

LPI -29.0258 8.4901 Significant 0.0268 -52.5981 -5.4535
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Another model uses the most correlated LiDAR 
metric as a  predictor. Based on these tests, 
no negative conclusions that would affect the 
credibility of the regression model were drawn. 
The resulting linear regression model is described 
in Tabs. V and VI. Tab. VI shows the estimates and 
significances of the regression model parameters. 
All parameters are significant.

Allometric Equations for LAI Determination 
at Plot Level

Several allometric models (tree girth as predictor 
and leaf area as response) using nonlinear 
regression analysis (power, exponential, and 
polynomial functions) were created on the basis of 
girths and leaf areas of nine sample trees, where 
girth is predictor variable and leaf area is response 
variable. The Gauss–Newton derivative method 
of numerical nonlinear optimization was used for 
model fitting in most of the cases. In case of method 
divergence, derivative-free method simplex was 
used. Most models contain errors in the regression 
triplet. The power and polynomial model contain 
a  residual dependency. The exponential model in 
the form y  =  aebx contains heteroscedasticity and 
residual dependency; therefore, the model was 
refitted to the form y  =  eax. The regression triplet 
test of the second exponential model showed 
no negative conclusions that would affect the 
credibility of the regression model. Allometric 
model parameters and statistical characteristics are 
described in Tab. VII.

LAI Modelling-Based LiDAR Metrics 
(Predictors)

LAI was determined on plots by using the above-
mentioned allometric equations. Linear regression 
model–based LiDAR metrics for LAI estimation 
were fitted. The best predictors were selected using 
sequential replacement techniques in the leaps 
package for R. These models were validated using 
leave-one-out cross-validation (LOOCV). Tab.  VIII 
shows the parameter estimate and predictor 
variable for regression model, including statistical 
parameters and results of cross-validation and 
correlation with indirect method.

DISCUSSION
The range of LAI values depends on the method 

of estimation used. The eLAI values detected by the 
optical methods were similar and the differences 
between them were statistically insignificant. 
Based on analysis of variance, we can say that the 
optical methods (more precisely, the devices used) 
underestimated the true leaf area; LAI determined 
by the direct destructive method was more accurate 
by 29%, on average. 

Bréda (2013) compared the LAI values measured 
using the LI-COR LAI 2000 PCA instrument with 
measurement by litter-traps. The LAI values of other 
plots of our study are higher (max. 11.80  m2.m-2), 
because Bréda (2013) used another direct method, 
determination by litter-traps. Morrison (1991) 
reported a bias of 10% with respect to the average. 

V: Statistical characteristics of regression model based on LiDAR metric and eLAI

Coefficient of Determination R2 0.9212

Mean squared prediction error (MSPE) 0.4189

Akaike information criterion (AIC) -7.209

Cross-validated R2 0.791

Cross-validated RMSE 0.65

VI: Estimation of regression model parameters

Variable Estimate Std. Error Conclusion p-value Lower Limit Upper Limit

Abs -8.2859 2.1303 Significant 0.0177 -14.2007 -2.3713

Percentage of all returns above 2.00 0.2073 0.0303 Significant 0.0024 0.1232 0.2915

VII: Allometric model parameters and statistical characteristics

Formula a R2 MSPE AIC

y = eax 0.0893 0.83 81.62 32.29

VIII: Statistical parameters of the resulting regression model for LAI estimation based on LiDAR metrics

Parameter Predictor R2 RMSE AIC cvR2 cvRMSE Indirect Method Correlation

0.1984 Percentage of all 
returns above mean 0.8665 0.4758 -4.6020 0.875 0.69 0.51
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The results of Bréda (2013) obtained by LAI 2000 
PCA ranged from 4.2 up to 5.2 m2.m-2, similar to our 
results. The deviation of direct and indirect methods 
is also similar. 

Mussche et al. (2001) determined eLAI (LAI) values 
by LAI 2200 PCA, hemispherical photos, and litter-
traps ranging from 3.68 to 5.08 m2.m-2 for stands 
with 50% beech composition; the highest values 
were reached by the litter-traps. In comparison 
with LAI directly measured by litter-trap, the 
underestimation of LAI calculated by hemispheric 
photo analysis was 27.55% and by the LAI 2200 PCA 
was 21.65%. The underestimation is comparable 
to our study despite the different approach to the 
direct method. The average underestimation of the 
LAI 2200 PCA in comparison with litter-traps was 
determined by Cutini et al. (1998) to be 29.57%, and 
that again corresponds to our study despite the use 
of the different direct method.

In case of LiDAR utilization for LAI modelling, 
it very much depends on the method of obtaining 
a  response variable, whether it is eLAI computed 
by optical methods or LAI obtained by direct 
measurement. Airborne laser scanning generally 
correlates well with hemispherical photos, which 
can be extended to all optical methods (Alonzo 
et al., 2015). ALS is a suitable. technology for aerial 
mapping of LAI distribution, and this is confirmed 
by many earlier studies, e.g., (Riaño et  al., 2004; 
Solberg, 2010; Musselman et al., 2013; Alonzo et al., 
2015; Kwak et al., 2007; Barilotti et al., 2006; Peduzzi 
et al., 2012; Pirotti, 2011).

Several regression models were created with 
coefficients of determination ranging from 0.75 to 
0.92, whereas models containing LiDAR metrics as 
predictor variables achieved higher coefficients. It 
was not possible to create an LPI model to estimate 

LAI with the destructive method as response 
variable. The higher success using LiDAR metrics 
is mainly due to preservation of the total amount 
of points in the point cloud; in the case of LPI, the 
first return points and points on the ground were 
used. Therefore, LiDAR metrics had better describe 
the vertical structure of the stand. Kwak et al. (2007) 
made similar claims; they reached higher coefficients 
of determination than in the case of LPI by using the 
Laser Interception Index (LII), which they explain by 
preservation of the total amount of points.

Riaño et  al. (2004) stated that LAI estimation is 
generally better for deciduous than coniferous 
stands. Barilotti et  al. (2006) created a  regression 
model for eLAI calculation with a  R2 of 0.89; 
field measurements were carried out using the 
LI-COR LAI-2000 PCA. Musselman et  al. (2013) 
created a  regression model with a R2 of 0.64; they 
performed 24 measurements using hemispherical 
photo analysis. Kwak et al. (2007) created equations 
of eLAI and LPI dependence for three tree species. 
They reached R2 of 0.73 for Larix leptolepis Sieb. 
et Zucc. and R2 of 0.81 for Quercus spp. and Pinus 
koraiensis Sieb. et Zucc. They also used a different 
index than the LPI (the laser interception 
index), thus they achieved higher coefficients of 
determination (0.85–0.88). Peduzzi et  al. (2012) 
created a  regression model for mixed forests in 
Virginia, which explained 69% variability of eLAI. 
In combination with radar interferometry data, 
they created a  model with a  R2 of 0.77. Solberg 
(2010) estimated eLAI from ALS data in pine stands 
affected by defoliation; the created models had very 
high coefficients of determination (from 0.92 to 
0.94). Higher coefficients of determination may be 
related to a smaller overlay of the leaves and better 
laser beam penetration.

CONCLUSION
The created models are valid only at the regional level or at the level of the forest-like structure, i.e., 
stands with similar species composition and age. Pirotti (2011) mentioned the same; the regression 
models published here are similar to the regression rebate as models of other authors. Most authors 
developed ALS-based models for calculation of effective LAI. However, the destruction methods are 
the most accurate. This work has revealed a significant benefit of using LiDAR metrics compared to 
the laser penetration index, also for modelling of effective leaf area index. Qu et al. (2018) confirm 
it, but they recommend using the height metrics. In our research, the density metric Percentage of 
all returns above mean was used. In the empirical approach to modelling, both height and density 
metrics are calculated, and the best ones are selected. Qu et  al. (2018) also points out the risk of 
multicollinearity between similar height metrics. Using height and density metrics together will 
avoid multicollinearity. 
However, an effective LAI usually underestimates the actual LAI. This paper of showed the possibilities 
of upscaling the actual LAI using airborne laser scanning. The LiDAR metrics-based model reach the 
R2 of 0.87, the highest coefficient of determination during the cross-validation (0.88), and the lowest 
cross validated root mean square error (0.69).
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