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recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Clermont Université

https://core.ac.uk/display/49293683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00565085v2


Rigorous derivation of the thin film

approximation with roughness-induced correctors∗

Laurent Chupin† Sébastien Martin‡

April 2012

Abstract

We derive the thin film approximation including roughness-induced
correctors. This corresponds to the description of a confined Stokes flow
whose thickness is of order ε ≪ 1; but we also take into account the rough-
ness patterns of the boundary that are described at order ε2, leading to a
perturbation of the classical Reynolds approximation. The asymptotic ex-
pansion leading to the description of the scale effects is rigorously derived,
through a sequence of Reynolds-type problems and Stokes-type boundary
layer problems. Well-posedness of the related problems and estimates in
suitable functional spaces are proven, at any order of the expansion. In
particular, we show that the micro-/macro-scale coupling effects may be
analyzed as the consequence of two features: the interaction between the
macroscopic scale (order 1) of the flow and the microscopic scale (order ε)
is perturbed by the interaction with a microscopic scale of order ε2 related
to the roughness patterns. Moreover, the converging-diverging profile of
the confined flow, which is typical in lubrication theory provides additional
micro-macro-scales coupling effects.
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†Université Blaise Pascal, Clermont-Ferrand II, Laboratoire de Mathématiques CNRS-
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1 Introduction

1.1 General framework

Lubricated flows are very present in today’s world: from the journal bearings
to the computer disk drives through the microfluid or in biofluid mechanics.
The first relevant model for such thin flows was proposed by O. Reynolds in
1886, see [24]. From a mathematical point of view, the rigorous justification
of the Reynolds equation from the Stokes equation is due to G. Bayada and
M. Chambat [4]. Other studies have further refined this result, especially those
of S. Nazarov [22] and more recently J. Wilkening [27] who provides practical
error estimates at any order with an extensive description of the constants with
respect to the normalized gap.

From another point of view, many studies investigate the effect of wall rough-
ness on Newtonian flows. In 1827, Navier [21] was one of the first scientists to
note that the roughness could drag a fluid. Since then, numerous studies at-
tempted to prove mathematical results in this direction, see for instance the
works of W. Jäger and A. Mikelic [18], Y. Amirat and co-authors [1, 2] and
more recently the works of D. Bresch and V. Milisic [10]. Note that all these
works formulate the roughness using a periodic function (whose amplitude and
period are supposed to be small). In a context of more general “roughness”
patterns, there exists similar recent results, see [3, 15].

Numerous works focus on the combination of the two phenomena: lubrica-
tion and roughness. Let us mention the seminal works by H.G. Elrod [13] who
used a formal double-variable technique applied to the so-called Reynolds rough-
ness. With a different scaling of the roughness, D.-C. Sun and K.-K Chen [26]
formally derive the effect of the so-called Stokes roughness in the framework
of lubrication. In [23], N. Phan-Thien generalized these approaches by de-
scribing the perturbation solution to the Reynolds and Stokes equations for a
two-dimensional slider bearing with homogeneous surface roughness. However,
the scalings that were previously considered are different from the one that we
address.

From a mathematical point of view, analytical studies have been led for
various situations: in the papers by I. Ciuperca and co-authors [5, 7], the size
of the roughness is assumed to be at least of the same order as the thickness of
the film. In [9], D. Bresch and co-authors consider the case where the roughness
is assumed to be small compared to the thickness of the flow (which is the case
in the present paper) but they show a convergence in a rescaled domain, that
focuses on the roughness effect. Recently, in [11], J. Casado-Dı́az and co-authors
proposed a relatively general study (in terms of orders of magnitude of roughness
and thickness of the domain). However, their article is entirely focused on the
wall laws which is not our point of view in this paper.

In this paper, we focus on flows in a thin domain (with thickness ε ≪ 1)
which is rough. The size of the roughness is assumed to be of size ε2 which
is physically realistic, see for example [19]. By separating the effects due to
lubrication and those due to the roughness, we present and rigorously justify
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an asymptotic expansion with respect to ε. The development is done at any
order, so that we are guaranteed to be optimal with respect to the truncation
error. We also highlight the particular effects of roughness, and the multiscale
coupling effects of the curvature of the macroscopic domain (which cannot be
neglected in lubricated devices).

Several relevant questions are not addressed in this article. First, concerning
the choice of orders of magnitude for the thickness of the fluid and the roughness
(ε and ε2 in this article). It seems fairly sensible to believe that the proposed
method can be adapted to cases where the thickness of the fluid is of order ε,
while the roughness is of the order εα, with α > 1. Nevertheless, the ansatz
will be different, depending on α. Second, recent works on random roughness,
see [3, 15], could make us think that our results can be extended to more general
cases of roughness. In fact, the construction of our development strongly de-
pends on the behavior of solutions of the Stokes equation on a half-space, whose
lower boundary is periodic. The behavior of such solutions must be sufficiently
decreasing at infinity to justify our development. Unfortunately, it seems that
this decrease is only logarithmic in the case of a random boundary (while it is
exponential in our periodic case). Besides, another task related to the regularity
of the roughness patterns is not addressed in this paper: what is the behavior
of the solution when the patterns are not Lipschitz continuous? In particular,
what is the influence of roughness jump discontinuities over the flow?

1.2 Position of the problem

We consider the flow of a viscous incompressible fluid in a domain of Rd+1,
d ∈ N\{0}. Mathematically, we take into account the thickness and the roughness
by introducing a small parameter ε > 0 and defining a time dependent domain

Ωε(t) =
{
(x, y) ∈ T

d × R , −ε2h−

(
x− st

ε2

)
< y < εh+(x)

}
.

Here, Td :=
(
R/Z

)d
denotes the torus; the two functions h+ and h− are sup-

posed to be smooth, positive and 1-periodic in each variable of R
d (we will

say x-periodic). In this prospect ε−2 is considered to be an integer. The vec-
tor s ∈ R

d denotes the shear velocity of the device (velocity of the lower rigid
surface). Moreover, the upper (resp. lower) boundary of the domain Ωε(t) is
denoted Γ+

ε (resp. Γ−
ε ). A typical situation describing the scaling orders is illus-

trated on figure 1. For the sake of simplicity, we have assumed that there is no
oscillation at the upper boundary, even if our methodology applies when con-
sidering roughness patterns on the upper boundary (with the same wavelength
and amplitude).

Stokes equations express, in particular, the momentum conservation con-
necting the velocity field U = (u, v) to the pressure p. These equations must
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O(ε)

O(ε2)

O(ε2)
O(1)

Figure 1: Geometry of the Stokes flow: thin film assumption and roughness
patterns.

be supplemented by no-slip boundary conditions:




−∆U+∇p = 0, in Ωε(t),
div U = 0, in Ωε(t),

U = 0, on Γ+
ε (t),

U = (s, 0), on Γ−
ε (t).

(1)

In the sequel, for the sake of simplicity, we may omit the variable t although
the domain depends on time as a parameter.

It is well-known (see [4] or more recently [27]) that the solutions of the
Stokes system in a thin confined domain with a flat bottom are approached by
those of the Reynolds equation. More precisely, under the thin film assumption,
assuming that the bottom is flat, i. e. h− = 0, the flow is governed by:

u+(x, y) = u0

(
x,

y

ε

)
+O(ε2), v+(x, y) = εv0

(
x,

y

ε

)
+O(ε3),

p+(x, y) =
p0(x)

ε2
+O(1),

where u0, v0 and p0 correspond to the rescaled velocity field and pressure at
main order. It can be shown that p0, which only depends on the variable x,
is the unique solution (defined up to an additive constant) of the Reynolds
equation; besides, the velocity can be deduced from the pressure by means of a
straightforward integration.

In this context, we aim at describing the corresponding correction due to the
the rough boundary at main order. As an illustration, numerical experiments, see
figures 2 to 5, have been performed with FreeFem++

1, based on the finite element

1www://freefem.org
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method. In particular, we have used a (P2,P2,P1) finite element decomposition,
which satisfies the discrete inf-sup condition, leading to a well-posed discretized
problem. Numerical results highlight the differences in terms of computational
costs and they give a preview of the perturbations due to the roughness patterns
compared to a smooth boundary, which gives insight into the boundary layer
structure and its interaction with the main flow.

The paper is organized as follows:
In section 2, we present the formal asymptotic expansion, based on a se-

quence of functions which alternatively satisfy a Reynolds-type problem and a
corrective Stokes problem (defined in a semi-infinite boundary layer domain).
In section 3, we present the well-posedness of the intermediate problems and
analyze the behavior of the solutions. Moreover, we establish an algorithm re-
lated to the computation of the approximation of the solution, at any order.
In particular, we show that each problem only depends on the previous ones,
although this property is not clear at first glance! section 4 is devoted to the
error analysis which, in the end, rigorously justifies the asymptotic expansion,
see Theorem 4.6. In section 5, we focus on the coupling scale effects: we present
quantitative comparison in the case with or without roughness correction, em-
phasizing the fact that the converging-diverging profile of the lubricated space
is a a real source of complexity. Finally, some technical proofs are postponed in
the Appendixes.

2 Asymptotic expansion: ansatz and intermedi-

ate problems

2.1 Notations

With the sight of the different scales in the domain, we split the domain Ωε(t)
into three parts : Ωε(t) = Ω−

ε (t) ∪ Γ ∪ Ω+
ε where Ω−

ε (t) and Ω+
ε are defined by

Ω+
ε =

{
(x, y) ∈ T

d × R , 0 < y < εh+(x)
}
,

Ω−
ε (t) =

{
(x, y) ∈ T

d × R , −ε2h−

(
x− st

ε2

)
< y < 0

}
,

and the boundary Γ connecting the two subdomains is defined by Γ = T
d×{0}.

The first step of the construction of the ansatz is to notice that the flow is
controlled by that in the domain Ω+

ε which is of order ε with respect to the
vertical coordinate, and that the flow in the domain Ω−

ε (t), which is of order ε2

in both horizontal and vertical directions, can induce a correction. Let us define
the two rescaled subdomains. As a matter of fact, the main flow is governed by
the Reynolds thin film flow, based on the changes of variables

Z :=
y

ε
.
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Figure 2: Mesh used for the computations of the solution of the Stokes system
(approximation with the (P2, P2, P1) finite element approximation). Domain
with roughness patterns or with smooth boundary.

Figure 3: Pressure distribution in the domain with/without roughness patterns.
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Figure 4: Horizontal velocity distribution in the domain with/without roughness
patterns.

Figure 5: Vertical velocity distribution in the domain with/without roughness
patterns.
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Due to the consideration of the roughness patterns, the boundary layer is
rescaled by the homothetic transformation

X :=
x

ε2
, Y :=

y

ε2
, T :=

t

ε2
.

Definition 2.1 We define the following rescaled domains:

− The Reynolds domain is defined by

ωR :=
{
(x, Z) ∈ T

d × R , 0 < Z < h+(x)
}
,

whose the upper and lower boundaries are respectively denoted γ+ and γ0.

− The boundary layer domain is defined by

ωbl(T ) =
{
(X, Y ) ∈ T

d × R , −h−(X− sT ) < Y
}
,

whose the lower boundary is denoted γbl(T ).

Notice that the boundary layer does depend on time, as this subdomain has
a moving boundary which emerges from the roughness patterns of the lower
surface and the shear velocity of this surface. Actually, time-dependant bound-
ary conditions leads us to define a more suitable rescaled variable which takes
into account the shear effects and the adhering conditions that relate time and
space variables. Notice that time-dependency of the boundary layer is taken
into account in the space variable as a simple parameter, which allows us to
insist on the instantaneity of the Stokes system, even at this rescaled level.

2.2 Ansatz

We propose the following asymptotic expansion

(u, v, p) := (u(N), v(N), p(N)) + (R(N),S(N),Q(N)) (2)

with the following partial sums:

u(N)(x, y, t) =
N∑

j=0

εj
[
uj

(
x,

y

ε

)
+ ε ũj+1

(
x,

x− st

ε2
,
y

ε2

)]
,

v(N)(x, y, t) =

N∑

j=0

εj+1

[
vj

(
x,

y

ε

)
+ ṽj+1

(
x,

x− st

ε2
,
y

ε2

)]
,

p(N)(x, y, t) =

N∑

j=0

εj−2

[
pj

(
x,

y

ε

)
+ ε p̃j+1

(
x,

x− st

ε2
,
y

ε2

)]
.

Each term of this expansion corresponds to the solution of a Reynolds problem
or Stokes problem. More precisely, we will see that (uj , vj , pj) is the solution of
a Reynolds-type problem. This solution being extended in the boundary layer,
this leads to a perturbation of the no-slip boundary condition on the shearing
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(bottom) surface. Thus, the exact boundary condition is not satisfied and we
have to impose a correction; this is the role of (ũj+1, ṽj+1, p̃j+1) which is the
solution of a Stokes problem in a semi-infinite domain. As a consequence, the
behavior of the Stokes solution is such that it defines a perturbation of the zero
no-slip boundary condition at the top of the domain and, thus, this will be taken
into account in the definition of the elementary solution at next order, in order
to balance all the effects related to the successive perturbations of the flow and
boundary conditions.

Let us mention that the expansion includes a remainder (R(N),S(N),Q(N))
which, by means of subtraction, is proven to satisfy a Stokes problem in the
“physical” domain. A major task of this work is to derive some bounds on
this remainder w.r.t. ε in order to prove in a rigorous way that the asymptotic
expansion is valid.

Before describing the systems satisfied by the previous terms, let us highlight
that difficulties are twofold: not only well-posedness of the elementary problems
is a major task, but also suitable definition of these elementary problems is
crucial: in the range of difficulty, it can be viewed as the most important point
of the analysis, as it enhances to include all the corrective properties of the
expansion by keeping the well-posedness properties of the elementary problems
and feasibility of a numerical procedure (algorithm) for the computation of the
solution.

2.3 Order 0 and first corrections

We put the ansatz (2), into the Stokes system (1), and then identify the terms
of same order with respect to ε.

◦ Main flow at scale ε0: Reynolds flow in the thin film domain. The
functions (u0, v0, p0) satisfy the classical Reynolds problem

(
R(0)

)





−∂2
Zu0 +∇xp0 = −A0, on ωR,

∂Zp0 = −B0, on ωR,
divxu0 + ∂Zv0 = −C0, on ωR,

(u0, v0) = (s, 0), on γ0,
(u0, v0) = (0,−β1) on γ+,

where the functions A0, B0 and C0 only depend on the variable x. We
will see, a posteriori, that A0 = 0, B0 = 0 and C0 = 0. Coefficient β1

will be related to the corrective procedure (although it will be proven to be
independent from the corrective procedure), see Remark 2.5.

◦ First correction at scale ε1: Stokes flow in the boundary layer. We
first set T = 0 (the boundary problem can be defined in a similar way for
any time T 6= 0). The functions (ũ1, ṽ1, p̃1) satisfy a Stokes problem:
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(
S(1)

)




−∆Xũ1 − ∂2
Y ũ1 +∇Xp̃1 = 0, on ωbl(0),

−∆Xṽ1 − ∂2
Y ṽ1 + ∂Y p̃1 = B0, on ωbl(0),

divXũ1 + ∂Y ṽ1 = 0, on ωbl(0),

(ũ1, ṽ1) = (Ũ1, Ṽ1), on γbl(0),

where the source term in the boundary condition should be read as

Ũ1 : X → h−(X) ∂Zu0(x, 0) and Ṽ1 ≡ 0.

The value of Ũ1 is chosen as follows: the velocity u0, initially defined for
Z > 0, is naturally defined on Z < 0 by means of the polynomial extension.
The role of Ũ1 is to compensate the first order error on the physical bottom
boundary y = −ε2h−(X).

Moreover, we will prove that for the solutions ũ1 and ṽ1 of
(
S(1)

)
the limits

lim
Y →+∞

∫

Td

ũ1(x,X, Y ) dX and lim
Y→+∞

∫

Td

ṽ1(x,X, Y ) dX

exits. They are respectively denoted α1(x) and β1(x).

Remark 2.1 Since (u0, v0, p0) is the solution of the classical Reynolds equation
(see the system (R(0)) with A0 = 0, B0 = 0 and C0 = 0), we easily compute

Ũ1 : X 7→ −h−(X)

(
h+(x)

2
∇xp0(x) +

s

h+(x)

)
.

In the same way, we will see that β1 = 0 whereas α1 6= 0.

Remark 2.2 Notice in particular that the variables x only plays the role of a
parameter in this Stokes problem

(
S(1)

)
. This remark will be common to all the

Stokes problems written in this part.

Remark 2.3 Rigorously, the boundary layer problem is time-dependent and
should be defined as:





−∆Xũ[T ] − ∂2
Y ũ[T ] +∇Xp̃[T ] = 0, on ωbl(T ),

−∆Xṽ[T ] − ∂2
Y ṽ[T ] + ∂Y p̃[T ] = B0, on ωbl(T ),

divXũ[T ] + ∂Y ṽ[T ] = 0, on ωbl(T ),

(ũ[T ], ṽ[T ]) = (Ũ1(· − sT ), Ṽ1(· − sT )), on γbl(T ).

Notice that the so-called “initial boundary corrector” (ũ1, ṽ1, p̃1) does not depend
on time T , unlikely to the boundary corrector solution. But we now argue that
the “general boundary corrector” (ũ[T ], ṽ[T ], p̃[T ]) (defined at time T ) can be
deduced from the “initial boundary corrector” thanks to the instantaneity of
Stokes equations:

(
ũ[T ], ṽ[T ], p̃[T ]

)
(·,X, Y ) =

(
ũ1, ṽ1, p̃1

)
(·,X− sT, Y ).

A similar remark can be made on all issues discussed later.
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Remark 2.4 On the same way, the rigorous definition of α1 (or of β1), in the
construction of the corrector system, should be the following one:

α1(x) = lim
Y →+∞

∫

Td

ũ1(x,X− sT, Y ) dX

which, actually, does not depend on T since ũ1 is X-periodic (using X′ = X−
sT ).

Remark 2.5 The behavior of the solution of the Stokes problem is such that

lim
Y→+∞

∫

Td

ṽ1(x,X, Y ) dX := β1(x).

This limit value is exactly the one that has to be imposed in the definition of the
previous Reynolds problem, namely (R(1)). At first glance, one may think that
problems (R(1)) and (S(1)) are strongly coupled through the constant β1:

− constant β1 is necessary to define the Reynolds problem;

− constant β1 results from the behavior of the solution of the Stokes problem,
whose data highly depend on the solution of the Reynolds problem.

As will be proven later, not only is each problem well-posed but also - this might
be surprising - the two problems are NOT coupled, as β1 will be proven to be
independent from the Stokes problem! See in particular Proposition 3.8 and also
subsection 3.3.

Due to the non-zero limit of the integral quantity
∫
Td ũ1(x,X, Y ) dX as Y

tends to +∞, the contribution of ũ1 in the asymptotic development brings an
error at the top boundary. This is corrected by the following contribution:

◦ Second correction at scale ε1: Reynolds flow in the thin film do-
main. The functions (u1, v1, p1) satisfy the Reynolds problem:

(
R(1)

)





−∂2
Zu1 +∇xp1 = −A1, on ωR,

∂Zp1 = −B1, on ωR,
divxu1 + ∂Zv1 = −C1, on ωR,

(u1, v1) = (0, 0), on γ0,
(u1, v1) = (−α1,−β2), on γ+,

where the two functionsA1, B1 and C1 only depend on the variable x and will
be precise later (indeed, A1 = 0, B1 = 0 and C1 is given by equation (18)).

Now, we present the systems satisfied by the corrective terms in the asymp-
totic expansions: these contributions allow a better description of the initial
Stokes flow by increasing the order of the approximation. Notice that the fol-
lowing system highly depends on the previous solutions as source terms.
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2.4 Higher orders of the asymptotic expansion

Each order of precision is obtained using a Reynolds flow corresponding to the
next order of the thin film assumption; then the corrections due to the roughness
patterns have to be taken into account. Notice that the solutions of the previous
systems may play the role of source terms in the proposed corrections.

◦ Correction at scale εj: Stokes flow in the boundary layer.

For 2 ≤ j ≤ N + 1, the functions (ũj , ṽj , p̃j) satisfy the classical Stokes
problem:

(
S(j)

)





−∆Xũj − ∂2
Y ũj +∇Xp̃j = F̃ j , on ωbl(0),

−∆Xṽj − ∂2
Y ṽj + ∂Y p̃j = G̃j , on ωbl(0),

divXũj + ∂Y ṽj = H̃j , on ωbl(0),

(ũj , ṽj) = (Ũ j , Ṽj), on γbl(0),

where the boundary conditions are related to

Ũj : X 7→ −

[ j+1

2
]+1∑

k=1

(−1)kh−(X)k

k!
∂k
Zuj−k(·, 0),

Ṽj : X 7→ −h−(X)Cj−2(·) +

[ j
2
]+2∑

k=2

(−1)kh−(X)k

k!
divx∂

k−1
Z uj−k−1(·, 0).

The source terms are defined by

F̃ j : (X, Y ) → Aj−2 + (2∇x · ∇Xũj−2 +∆xũj−4 −∇xp̃j−2) (·,X, Y ),

G̃j : (X, Y ) → Bj−1 + (2∇x · ∇Xṽj−2 +∆xṽj−4) (·,X, Y ),

H̃j : (X, Y ) → Cj−2 − divxũj−2(·,X, Y ).

The value of Ũ j and Ṽj is chosen as follows: the velocities uj−k and vj−k,
k ≥ 1, initially defined for Z > 0, are naturally defined on Z < 0 by means of
the polynomial extension. The role of Ũ j and Ṽj is to compensate the errors on
the physical bottom boundary y = −ε2h−(X).

Moreover, we will prove that, using a good choice for the values Aj−2, Bj−1

and Cj−2 (see equations (16)–(18)), the solutions ũj and ṽj of (S(j)) are such
that

lim
Y →+∞

∫

Td

ũj(x,X, Y ) dX and lim
Y→+∞

∫

Td

ṽj(x,X, Y ) dX

exist (and will be denoted αj(x) and βj(x) respectively).

Remark 2.6 Note that for small values of the integer j, the expressions of the
source terms are slightly different. In fact, by convention we must read 0 when a
term is not defined. For example, F̃2 = A0 since ũ0 = 0, ũ−2 = 0 and p̃0 = 0.



DERIVATION OF THE THIN FILM APPROXIMATION 14

Remark 2.7 The boundary terms given by Ũ j and Ṽj come from to the error
due to the extension of all the previous interior terms uk and vk, k < j, see
their extensions (5) on page 19.

◦ Main flow at scale εj: Reynolds flow in the thin film domain.

For 2 ≤ j ≤ N , the functions (uj , vj , pj) satisfy the Reynolds problem:

(
R(j)

)





−∂2
Zuj +∇xpj = F j , on ωR,

∂Zpj = Gj , on ωR,
divxuj + ∂Zvj = Hj , on ωR,

(uj , vj) = (0, 0), on γ0,
(uj , vj) = (−αj ,−βj+1), on γ+,

with the general source terms

F j : (x, Z) → −Aj(x) + ∆xuj−2(x, Z),
Gj : (x, Z) → −Bj(x) + ∂2

Zvj−2(x, Z) + ∆xvj−4(x, Z),
Hj : (x, Z) → −Cj(x).

Remark 2.8 As previously, note that for small values of the integer j, the
expressions of the source terms are slightly different. By convention we must
read 0 when a term is not defined. For example G2 = −B2+∂2

Zv0 since v−2 = 0.

Remark 2.9 Coefficient βj+1 should be related to the corrective procedure (al-
though it will be proven to be independent from the corrective procedure) at the
next step. More precisely, the behavior at infinity of the solution of the Stokes
problem

(
S(j)

)
is such that

lim
Y →+∞

∫

Td

ṽj+1(x,X, Y ) dX := βj+1(x).

This limit value is exactly the one that has to be imposed in the definition of
the Reynolds problem (R(j)). At first glance, one may think that, by means of
construction, problems (R(j+1)) and (S(j+1)) are strongly coupled through the
constant βj+1. As will be proven later, not only is each problem well-posed but
also - this might be surprising - the two problems are NOT coupled, as βj+1

will be proven to be independent from the Stokes problem! See in particular
Proposition 3.8 and also subsection 3.3 (algorithm).

Then, subtracting the asymptotic expansion from the initial solution, we easily
find that the remainder should satisfy a Stokes system in the initial domain, with
source terms which highly depend on the above solutions, see section 4. In order
to make the previous asymptotic expansion rigorous, we will have to control the
remainder. Before entering into the details of the definition and control of the
remainder, let us describe the mathematical properties of the Reynolds-type
and Stokes-type problems which have been presented in this section.
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3 Mathematical results related to the different

scale problems

3.1 Stokes problems: well-posedness and behavior of the

solutions

In this section, we show that the Stokes problems (S(j)) are well posed, and we
prove that for a suitable choice of the “constants” Aj , Bj and Cj , the limits

lim
Y→+∞

∫

Td

ũj(x,X, Y ) dX and lim
Y→+∞

∫

Td

ṽj(x,X, Y ) dX,

do exist. We present a result (see Proposition 3.2) whose interest is twofold:
i) it allows us to obtain a well-posedness result on the Stokes problems (S(j))
by using a lift procedure and classical results on Stokes systems in semi-infinite
domains; ii) it allows us to explain how the boundary conditions and the source
term in the divergence equation can be translated into boundary conditions on
the plane Y = 0.

Definition 3.1 Let H̃ ∈ C(Td×R,R), Ũ ∈ C(Td,Rd) and Ṽ ∈ C(Td,R) and let
us consider (ũ, ṽ) such that

{
divXũ+ ∂Y ṽ = H̃, on ωbl,

(ũ, ṽ) = (Ũ , Ṽ), on γbl.
(3)

Then we define the linear operators

Lu : (H̃, Ũ , Ṽ) 7→

∫

Td

ũ(X, 0) dX ∈ R
d, Lv : (H̃, Ũ , Ṽ) 7→

∫

Td

ṽ(X, 0) dX ∈ R.

Remark 3.1 The existence of a solution to equation (3) follows from the fact

that for all function ũ on ωbl such that ũ = Ũ on Y = −h−(X), the couple

(
ũ(X, Y ) , Ṽ(X) +

∫ Y

−h−(X)

(
H̃ − divXũ

)
(X, ζ) dζ

)

defines a solution of (3).

We will see that, in practical cases, the velocity imposed at the bottom has
a peculiar form. We will use the following proposition.

Proposition 3.2 Let f ∈ C∞(R,Rd), f ∈ C∞(R,R), H̃ ∈ C(Td×R,R). Then

Lv

(
H̃, f(h−(X)), f(h−(X))

)
= −

∫

{Y <0}

H̃(X, Y ) dXdY −

∫

Td

f(h−(X)) dX.
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Proof. We apply the Green’s formula :

∫

{Y <0}

H̃(X, Y ) dX dY =

∫

{Y <0}

(
divXũ+ ∂Y ṽ

)

=

∫

Td

(
ũ(X,−h−(X))
ṽ(X,−h−(X))

)
·

(
−∇Xh−(X)

−1

)
dX

+

∫

Td

(
ũ(X, 0)
ṽ(X, 0)

)
·

(
0
1

)
(−dX).

As ũ and ṽ have a particular shape on the bottom boundary, we obtain

∫

{Y <0}

H̃(X, Y ) dX dY = −

∫

Td

f(h−(X)) dX −

∫

γbl

f(h−(X)) · ∇Xh−(X) dX

−

∫

Td

ṽ(X, 0) dX.

By periodicity of function h−, we have

∫

γbl

f(h−(X)) · ∇Xh−(X) dX =

∫

γbl

∇XF(h−(X)) dX = 0,

where F is a primitive of f . This concludes the proof. @blacksquare
As a consequence of Proposition 3.2, it is possible to define a lift procedure, so

that problem (S(j)) reduces to an associated Stokes problem with free-divergence
and homogeneous boundary conditions. Well-posedness of such a Stokes prob-
lem is well-known (see [16, 17, 18, 25] which provide the functional framework).
We now focus on the behavior at infinity of the solution of problem (S(j)).

3.1.1 Initialization step: analysis of problem (S(1))

We properly define the Stokes problem (S(1)) introduced on page 10 so that it
is well-posed and the behavior of the solution is controlled as Y → +∞. More
precisely, we prove (see appendix A) the following lemma:

Lemma 3.3 There exists a source term B0 (in fact B0 = 0) such that sys-
tem (S(1)) admits a solution which takes the following form, for all (X, Y ) ∈
T
d×]0,+∞[,





ũ1(X, Y ) = Lu(0, Ũ1, Ṽ1) +
∑

k∈Zd\{0}

P
(1)
k

(Y )e−2π‖k‖Y+2πik·X

ṽ1(X, Y ) = Lv(0, Ũ1, Ṽ1) +
∑

k∈Zd\{0}

Q
(1)
k

(Y )e−2π‖k‖Y+2πik·X

p̃1(X, Y ) =
∑

k∈Zd\{0}

R
(1)
k

(Y )e−2π‖k‖Y+2πik·X

where P
(1)
k

and Q
(1)
k

are affine functions and where R
(1)
k

are constant.
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It is important to notice that the X-average on ũ1 (resp. v1) does not depend
on Y . We deduce that its limit when Y tends to +∞, denoted α1 (resp. β1),
satisfies

α1 = Lu(0, Ũ1, Ṽ1) (resp. β1 = Lv(0, Ũ1, Ṽ1)).

As a straightforward consequence, we get the following property:

Corollary 3.4 The solution of
(
S(1)

)
satisfies:

‖ũ1(X, Y )−α1‖ ≤ C(δ) e−δY Y > 0, ∀δ < 2π,
|ṽ1(X, Y )− β1| ≤ C(δ) e−δY Y > 0, ∀δ < 2π,

|p̃1(X, Y )| ≤ C e−2πY Y > 0,

where the constant C(δ) only depends on δ.

3.1.2 Induction step: analysis of problem (S(j)) for j ≥ 2

We show in appendix B the following result about the solution of (S(j)) intro-
duced on page 13:

Lemma 3.5 Let j ≥ 2. There exist source terms Aj−2, Bj−1 and Cj−2 such
that

∫

Td

F̃ j(X, ·) dX = 0,

∫

Td

G̃j(X, ·) dX = 0,

∫

Td

H̃j(X, ·) dX = 0.

For such a choice, the solution of (S(j)) is written, for all (X, Y ) ∈ T
d×]0,+∞[,





ũj(X, Y ) = Lu(H̃j , Ũ j , Ṽj) +
∑

k∈Zd\{0}

P
(j)
k

(Y )e−2π‖k‖Y+2πik·X

ṽj(X, Y ) = Lv(H̃j , Ũ j , Ṽj) +
∑

k∈Zd\{0}

Q
(j)
k

(Y )e−2π‖k‖Y+2πik·X

p̃j(X, Y ) =
∑

k∈Zd\{0}

R
(j)
k

(Y )e−2π‖k‖Y+2πik·X

where P
(j)
k

, Q
(j)
k

and R
(j)
k

are polynomial functions.

We deduce that the X-average of ũj and ṽj does not depend on Y , so that

αj = Lu(H̃j , Ũj , Ṽj) and βj = Lv(H̃j , Ũj , Ṽj).

As a straightforward consequence, we get the following property:

Corollary 3.6 For all j ≥ 2, the solution of
(
S(j)

)
satisfies:

‖ũj(X, Y )−αj‖ ≤ C(δ) e−δY Y > 0, ∀δ < 2π,
|ṽj(X, Y )− βj | ≤ C(δ) e−δY Y > 0, ∀δ < 2π,

|p̃j(X, Y )| ≤ C(δ) e−δY Y > 0, ∀δ < 2π,

where C(δ) only depends on δ.
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3.2 Well-posedness of the Reynolds problem

In this part, we show that the Reynolds-type problems (R(j)) are well posed as
soon as the “constants” Aj , Bj and Cj are chosen as previously. In particular,
due to the fact that Cj = divxαj , system (R(j)) implies that uj +αj , vj +βj+1

and pj satisfy the following Reynolds-type problems on ωR:

(R)





−∂2
Zu+∇xp = F , on ωR,

∂Zp = G, on ωR,
divxu+ ∂Zv = 0, on ωR,

(u, v) = (U0,V0), on γ0,
(u, v) = (0, 0), on γ+.

Here, we assume that the data satisfy some regularity assumptions, i. e. U0 ∈
C∞(Td)d, V0 ∈ C∞(Td), F ∈ C∞(ωR)

d and G ∈ C∞(ωR). Moreover, we
assume that ∫

Td

V0(x) dx = 0, (4)

which correspond to a compatibility condition for system (R). In fact we have
the following result proven in appendix C:

Lemma 3.7 Under the compatibility condition (4), problem (R) admits a unique
solution (u, v, p) ∈ C∞(ωR)

d × C∞(ωR)× C∞(ωR)/R.

Now let us highlight two crucial properties:

• we first show that βj+1 only depends on the solution of the Stokes prob-
lem

(
S(j−1)

)
, as will be proven in Proposition 3.8;

• as a consequence, we show that assumption (4) is always satisfied for the
Reynolds problems (R(j)), as will be stated in Remark 3.2

Proposition 3.8 Coefficient βj+1 which couples problems
(
R(j)

)
and

(
S(j+1)

)

only depends on the solution of problems
(
S(j−1)

)
and

(
R(k)

)
for k ≤ j − 2:

βj+1(x) = divx

(∫

{Y <0}

ũj−1(x,X, Y ) dXdY

)

−divx




[ j+1

2
]+2∑

k=2

(−1)k

k!

(∫

Td

h−(X)k dX

)
∂k−1
Z uj−k(x, 0)


 .

Proof. We recall that, from the Fourier analysis, βj+1 = Lv(H̃j+1, Ũ j+1, Ṽj+1),

where Ũ j+1 can be viewed as a polynomial function of h−(X) and where Ṽj+1,
which is also a polynomial function of h−(X), takes the following form

Ṽj+1(X) = −h−(X)Cj−1(x) +

[ j+1

2
]+2∑

k=2

(−1)kh−(X)k

k!
divx∂

k−1
Z uj−k−1(x, 0),
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Applying Proposition 3.2, we obtain

βj+1(x) = −

∫

{Y <0}

H̃j+1(x,X, Y ) dX dY + Cj−1(x)

∫

Td

h−(X) dX

−

( [ j+1

2
]+2∑

k=2

(−1)kh−(X)k

k!
divx∂

k−1
Z uj−k−1(x, 0) dX

)
.

Let us rewrite the right-hand side: first, since H̃j+1 = Cj−1−divxũj−1 we have

∫

{Y <0}

H̃j+1(x,X, Y ) dX dY

= Cj−1(x)

∫

{Y <0}

1 dXdY −

∫

{Y <0}

divxũj−1(x,X, Y ) dXdY

= Cj−1(x)

(∫

Td

h−(X) dX

)
− divx

(∫

{Y <0}

ũj−1(x,X, Y ) dXdY

)
.

Then, the last term in the right-hand side is simply treated by putting the divx
operator out of the partial sum. We obtain the expression announced for βj+1.

@blacksquare

Remark 3.2 It is important to notice that for the Reynolds problems (R(j)),
assumption (4) is always satisfied since V0 = βj+1. From Proposition 3.8, we
deduce that βj+1 is a x-divergence term which implies, due to the periodicity,
that ∫

Td

βj+1(x) dx = 0.

This corresponds to assumption (4).

From this Remark, the compatibility condition (4) is satisfied for the sys-
tems (R(j)), we deduce the following result:

Corollary 3.9 For all j ∈ N, Reynolds-type problem (R(j)) admits a unique
solution (uj , vj , pj) ∈ C∞(ωR)

d × C∞(ωR)× C∞(ωR)/R.

As we noted in subsection 2.3 for the first order term (u0, v0, p0), we can
easily show by induction that the solution (uj , vj , pj) of problem (R(j)) is poly-
nomial with respect to the variable Z. Moreover the degree of these polynomials
are given by, for any n ∈ N, deg p2n = deg p2n+1 = 2n, degu2n = degu2n+1 =
2n+ 2, deg v2n = deg v2n+1 = 2n+ 3. It is therefore natural to extend the ve-
locity field (uj , vj) for Z < 0, using its (finite) Taylor development with respect
to Z. Due to the boundary Dirichlet condition imposed on (uj , vj) for Z = 0,
and due to the divergence condition on this velocity (see the problem (R(j)))
we obtain, for all j ∈ N\{0},

uj(·, Z) =

j+2∑

k=1

∂k
Zuj(·, 0)

Zk

k!
, vj(·, Z) = −Cj −

j+3∑

k=2

divx∂
k−1
Z uj(·, 0)

Zk

k!
. (5)
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These are the terms which, measured in Z = −εh−
(
x−st
ε2

)
, must be compen-

sated the boundary layer corrector. By Lemmas 3.3, 3.5 and 3.7 (and related
corollaries), we have proven that each term of the asymptotic expansion satis-
fies a well-posed problem. Moreover, we have characterized the behavior of each
solution.

3.3 Algorithm

In the two previous subsections, we have proven that the intermediate problems,
that is Stokes problems (S(j)) and Reynolds-type problems (R(j)), were all well
posed, independently of each other. Clearly, to solve the Stokes problem, you
must know some solution of the problem of Reynolds and vice versa. Here, we
describe the procedure to really solve all the problems thoroughly.

To evaluate the development up to orderN (see the ansatz (2) on page 9), we
theoretically add all intermediate profiles: (u0, v0, p0), (ũ1, ṽ1, p̃1), (u1, v1, p1),
(ũ2, ṽ2, p̃2) etc. More generally, knowing the terms (uk, vk, pk) and (ũk, ṽk, p̃k)
for any k < j, we compute the terms (uj , vj , pj) and (ũj , ṽj , p̃j) as follows.

Initialization:

(0) Main flow: (u0, v0, p0) solves (R(0)) with A0 = 0, B0 = 0, C0 = 0,
β1 = 0.

(1’) Corrective Stokes flow: (ũ1, ṽ1, p̃1) solves (S
(1)) with

Ũ1(X) = h−(X) ∂Zu0(x, 0), Ṽ1 ≡ 0.

(1”) Corrective Reynolds flow: (u1, v1, p1) solves (R
(1)) with

α1 = lim
Y→+∞

∫

Td

ũ1(·,X, Y ) dX, β2 = 0, A1 = 0, B1 = 0, C1 = divxα1.

Iterative procedure: Assume that, for 1 ≤ k ≤ j − 1,

• problem (S(k)), with solution (ũk, ṽk, p̃k), is defined; in particular, the

source terms (F̃k, G̃k, H̃k) and the boundary terms (Ũk, Ṽk) have been
defined;

• problem (R(k)), with solution (uk, vk, pk))is defined; in particular, the
source terms (Fk, Gk, Hk) and the boundary terms (αk, βk+1) have been
defined, i. e. coefficients Ak, Bk, Ck have been also defined.

(j’) Corrective Stokes flow: (ũj , ṽj , p̃j) solves (S
(j)) with

• the following source terms

F̃ j(X, Y ) = Aj−2 + (2∇x · ∇Xũj−2 +∆xũj−4 −∇xp̃j−2) (·,X, Y ),

G̃j(X, Y ) = Bj−1 + (2∇x · ∇Xṽj−2 +∆xṽj−4) (·,X, Y ),

H̃j(X, Y ) = Cj−2 − divxũj−2(·,X, Y ).
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• the following boundary conditions

Ũ j(X) = −

[ j+1

2
]+1∑

k=1

(−1)kh−(X)k

k!
∂k
Zuj−k(x, 0),

Ṽj(X) = −h−(X)Cj−2(x) +

[ j
2
]+2∑

k=2

(−1)kh−(X)k

k!
divx∂

k−1
Z uj−k−1(x, 0).

(j”) Corrective Reynolds flow: (uj , vj , pj) solves (R
(j)) with

• the following boundary values

αj = lim
Y→+∞

∫

Td

ũj(·,X, Y ) dX

βj+1 = divx

(∫

{Y <0}

ũj−1(·,X, Y ) dXdY

)

−divx




[ j+1

2
]+2∑

k=2

(−1)k

k!

(∫

Td

h−(X)k dX

)
∂k−1
Z uj−k(·, 0)


 .

• the following constants: Aj = −∆xαj−2, Bj = −∆xβj−3, Cj =
divxαj .

• the following source terms

F j(x, Z) = −Aj(x) + ∆xuj−2(x, Z),
Gj(x, Z) = −Bj(x) + ∂2

Zvj−2(x, Z) + ∆xvj−4(x, Z),
Hj(x) = −Cj(x).

4 Error analysis

The error analysis is based on a three-step procedure: i) first we recall classical
estimates related to the Stokes system satisfied by the remainder. At this stage,
the estimates do depend on the small parameter ε through the expression of
the source terms and also through the domain Ωε whose measure tends to zero
as ε tends to zero; ii) then we establish estimates which allow us to control
the source terms; iii) finally we translate the previous estimates (expressed in
a norm which depends on ε) into estimates which are relevant with respect to a
convergence procedure: the chosen norm preserves the constant states defined
in thin domains.

The remainder is defined by the ansatz proposed on equation (2). Using the
linearity of the Stokes system, we easily deduce, after some formal computations,
that the remainder (R(N),S(N),Q(N)) satisfies a Stokes-type system:

(Aε)





−∆xR− ∂2
yR+∇xQ = F

(N)
ε , on Ωε(t),

−∆xS − ∂2
yS + ∂yQ = G

(N)
ε , on Ωε(t),

divxR+ ∂yS = H
(N)
ε , on Ωε(t),

(R,S) = (U (N)
ε ,V

(N)
ε ), on Γ+

ε ,

(R,S) = (U−(N)
ε ,V

−(N)
ε ), on Γ−

ε (t),
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where the source terms F (N)
ε , G

(N)
ε and H

(N)
ε take the following form:

K(N)
ε (x, y, t) = KR

ε

(
x,

y

ε

)
+Kbl

ε

(
x,

x− st

ε2
,
y

ε2

)
.

with the following precise definitions:

F
R
ε := εN−1

(
ε∆xuN +∆xuN−1

)
,

F
bl
ε := εN−2

(
ε3∆xũN+1 + ε2∆xũN + ε∆xũN−1 +∆xũN−2

+2ε∇x · ∇XũN+1 + 2∇x · ∇XũN − ε∇xp̃N+1 −∇xp̃N
)
,

GR
ε := εN−2

(
ε3∆xvN + ε2∆xvN−1 + ε∆xvN−2 +∆xvN−3 + ε∂2

ZvN + ∂2
ZvN−1

)
,

Gbl
ε := εN−2

(
ε3∆xṽN+1 + ε2∆xṽN + ε∆xṽN−1 +∆xṽN−2

+2ε∇x · ∇XṽN+1 + 2∇x · ∇XṽN
)
,

HR
ε := 0,

Hbl
ε := −εN

(
εdivxũN+1 + divxũN

)
.

About the boundary condition, using the ansatz at the boundary Γ+
ε and Γ−

ε

we get

U
(N)
ε (x) =

N+1∑

j=1

εj
(
αj(x)− ũj

(
x,

x

ε2
,
h+(x)

ε

))
− εN+1

αN+1(x),

V
(N)
ε (x) =

N+1∑

j=1

εj
(
βj(x) − ṽj

(
x,

x

ε2
,
h+(x)

ε

))
,

U
−(N)
ε (x) = εN+2 × function

(
h−
(x− st

ε

)
,uN (x, 0), ...,u0(x, 0)

)
.

V
−(N)
ε (x) = εN+2 × function

(
h−
(x− st

ε

)
, vN (x, 0), ..., v0(x, 0)

)
.

For the sake of simplicity, we do not explicitly give the functions appearing in

the boundary terms U−(N)
ε and V

−(N)
ε . They write like the boundary term Ũ j

and Ṽj in the Stokes problem (S(j)). The existence and uniqueness results of
such a problem are well-known (see for example [8]). We will endeavor to obtain
estimates of the solution according to the sources terms and to the dependence
on ε. By means of construction, as the initial Stokes problem is well-posed and
all intermediate problems are also well-posed, we have necessarily

∫

Ωε

H(N)
ε =

∫

Γ+
ε

(
R

(N)

S(N)

)
· n =

∫

Td

V(N)
ε −

∫

Td

U
(N)
ε · ∇xh

+. (6)

In the sequel, we will drop the overscripts (·)(N) for the sake of clarity.
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4.1 Lift procedure

4.1.1 Lift velocity at the boundary

To obtain estimates on the remainder (R,S,Q) with respect to ε, we first
introduce a explicit velocity field which has the same boundary conditions:

f(x, y) =
y + ε2h−(x/ε2)

εh+(x) + ε2h−(x/ε2)

and we consider the following velocity field (R̃bound, S̃bound) defined on Ωε by

R̃bound(x, y) = f(x, y)Uε(x) + (1− f(x, y))U−
ε (x),

S̃bound(x, y) = f(x, y)Vε(x) + (1− f(x, y))V−
ε (x).

Due to the definition of the function f , this vector field satisfies

(R̃bound, S̃bound) = (Uε,Vε) on Γ+
ε and (R̃bound, S̃bound) = (U−

ε ,V
−
ε ) on Γ−

ε .

4.1.2 Lift velocity using the Bogovskii formulae

One of the features of the previous Stokes system is that the divergence of
(R,S) is not equal to zero. A classical method relies on the use of a lifting of

the velocity field (R,S) by introducing a solution (R̃div, S̃div) of the following
problem:

(A′
ε)





divxR̃div + ∂yS̃div = H, on Ωε,

(R̃div, S̃div) = (0, 0), on Γ−
ε ,

(R̃div, S̃div) = (0, 0), on Γ+
ε ,

where H = Hε − (divxR̃bound + ∂yS̃bound). An explicit solution of this system
exists, corresponding to the Bogovskii formulae (see [6]). The advantage of this
formula is to provide precise estimates of the solution. In particular, we have
(see for instance [14, p.121]):

Proposition 4.1 (Bogovskii [6]) If H ∈ Hm(Ωε), m ≥ 0 has free average

then there exists a solution (R̃div, S̃div) ∈ Hm+1(Ωε) of problem (A′
ε) such that

‖∇x,y(R̃div, S̃div)‖Hm(Ωε) ≤
c

ε
‖H‖Hm(Ωε),

where the constant c does not depend on ε. Besides, one has also

‖(R̃div, S̃div)‖L2(Ωε) ≤ c‖H‖L2(Ωε).

Remark 4.1 In fact, the constant c/ε that appears in the right hand side mem-
ber is explicitly given in [14]. It depends on the number of star-shaped subdo-
mains with respect to some open ball to cover Ωε. For the rugous domain Ωε,
let us focus on the boundary layer Ω−

ε (t): the average slope of the roughness
patterns is 1 whereas the thickness of the domain is ε so that the bottom of a
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roughness can be “seen” from a ball of radius O(ε). Thus, covering up the do-
main, whose length is of order 1, with such balls, we need O(1/ε) balls. Besides,
a straightforward use of the Poincaré inequality (note that the domain thickness
is of order ε) provides the L2-bound.

Remark 4.2 Note that the free average condition of the Proposition 4.1 exactly
corresponds to the condition (6) satisfied for the Stokes system (Aε).

4.2 Classical Stokes estimates

In order to cancel the boundary condition and the divergence of the vector field
considered, we define R = R− (R̃bound + R̃div) and S = S − (S̃bound + S̃div).
We have 




−∆xR− ∂2
yR+∇xQ = Fε, on Ωε,

−∆xS − ∂2
yS + ∂yQ = Gε, on Ωε,

divxR+ ∂yS = 0, on Ωε,
(R,S) = (0, 0), on Γ−

ε ,
(R,S) = (0, 0), on Γ+

ε ,

where Fε = Fε −∆x,y(R̃bound+ R̃div) and Gε = Gε −∆x,y(S̃bound+ S̃div). We
are now able to derive classical estimates:

Proposition 4.2 One has:

i) Estimates in the L2-norm:

‖(R,S)‖L2(Ωε) . ε2‖(Fε,Gε)‖L2(Ωε), ‖Q‖L2(Ωε) . ε‖(Fε,Gε)‖L2(Ωε).

ii) Estimates in the H1-norm:

‖(R,S)‖H1(Ωε) . ε‖(Fε,Gε)‖L2(Ωε), ‖Q‖H1(Ωε) . ‖(Fε,Gε)‖L2(Ωε).

Proof. Choosing R as a test function in the first equation, S as test function in
the second one and using the free divergence relation, we obtain the following
estimate

‖∇xR‖2L2(Ωε)
+ ‖∂yR‖2L2(Ωε)

+ ‖∇xS‖
2
L2(Ωε)

+ ‖∂yS‖
2
L2(Ωε)

≤ ‖Fε‖L2(Ωε)‖R‖L2(Ωε) + ‖Gε‖L2(Ωε)‖S‖L2(Ωε).

Successively using the Poincaré inequality and the Young inequality ab ≤ 1
2a

2+
1
2b

2 in the right-hand side of the previous inequality, we obtain

‖Fε‖L2(Ωε)‖R‖L2(Ωε) ≤ cε‖Fε‖L2(Ωε)‖∂yR‖L2(Ωε)

≤
1

2
‖∂yR‖2L2(Ωε)

+
1

2
c2ε2‖Fε‖

2
L2(Ωε)

,
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where the constant c does not depend on ε. A similar estimate holds for the other
source terms ‖Gε‖L2(Ωε) and ‖S‖L2(Ωε). Hence, we successively get (omitting
the constants for the sake of simplicity)

‖∇xR‖2L2(Ωε)
+ ‖∂yR‖2L2(Ωε)

+ ‖∇xS‖
2
L2(Ωε)

+ ‖∂yS‖
2
L2(Ωε)

. ε2‖Fε‖
2
L2(Ωε)

+ ε2‖Gε‖
2
L2(Ωε)

, (7)

Then, using the Poincaré inequality again we obtain

‖R‖2L2(Ωε)
+ ‖S‖2L2(Ωε)

. ε4‖Fε‖
2
L2(Ωε)

+ ε4‖Gε‖
2
L2(Ωε)

. (8)

In the same way, taking respectively −∆xR − ∂2
yR and −∆xS − ∂2

yS as test
functions in the two first equations of the Stokes problem, we get

‖∆xR‖2L2(Ωε)
+‖∂2

yR‖2L2(Ωε)
+‖∆xS‖

2
L2(Ωε)

+‖∂2
yS‖

2
L2(Ωε)

. ‖Fε‖
2
L2(Ωε)

+‖Gε‖
2
L2(Ωε)

.

It is then easy to estimate the pressure:

‖∇xQ‖2L2(Ωε)
+ ‖∂yQ‖2L2(Ωε)

. ‖Fε‖
2
L2(Ωε)

+ ‖Gε‖
2
L2(Ωε)

. (9)

Using the Poincaré-Wirtinger inequality we obtain

‖Q‖2L2(Ωε)
. ε2‖Fε‖

2
L2(Ωε)

+ ε2‖Gε‖
2
L2(Ωε)

. (10)

All these estimate imply the result announced by the proposition. @blacksquare

Corollary 4.3 In terms of velocities (R,S), one has:

i) Estimates in the L2-norm:

‖(R,S)‖L2(Ωε) . ε2‖(Fε,Gε)‖L2(Ωε) + ε2‖(R̃bound, S̃bound)‖H2(Ωε)

+ ε2‖(R̃div, S̃div)‖H2(Ωε) + ‖(R̃bound, S̃bound)‖L2(Ωε)

+ ‖(R̃div, S̃div)‖L2(Ωε),

‖Q‖L2(Ωε) . ε‖(Fε,Gε)‖L2(Ωε) + ε‖(R̃bound, S̃bound)‖H2(Ωε)

+ ε‖(R̃div, S̃div)‖H2(Ωε).

ii) Estimates in the H1-norm:

‖(R,S)‖H1(Ωε) . ε‖(Fε,Gε)‖L2(Ωε) + ε‖(R̃bound, S̃bound)‖H2(Ωε)

+ ε‖(R̃div, S̃div)‖H2(Ωε) + ‖(R̃bound, S̃bound)‖H1(Ωε)

+ ‖(R̃div, S̃div)‖H1(Ωε),

‖Q‖H1(Ωε) . ‖(Fε,Gε)‖L2(Ωε) + ‖(R̃bound, S̃bound)‖H2(Ωε)

+ ‖(R̃div, S̃div)‖H2(Ωε).
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4.3 Explicit estimates with respect to ε

4.3.1 Control of the source terms

To analyze the terms like ‖Fε‖L2(Ωε) which appear in the estimates given by
the Corollary 4.3, we distinguish two kind of terms: those related to a thin film
flow, depending on x and y/ε, and those related to the boundary layer and
depending on x, x/ε2 and y/ε2. We prove, in appendices D and E the following
propositions:

Proposition 4.4 Let f ∈ C1(Td × ωbl), such that X 7→ f(·,X, ·) is periodic,
f(·, ·, Y ) = O(e−Y ) for Y → +∞ (uniformly w.r.t. the other variables). Let us
consider the function f ε defined by

∀(x, y) ∈ Ωε(t), f ε(x, y) = f

(
x,

x− st

ε2
,
y

ε2

)
.

Then we have ‖f ε‖2L2(Ωε(t))
. ε2 and ‖f ε‖2H1(Ωε(t))

. 1/ε2.

Proposition 4.5 Let g ∈ C0(ωR) be defined on {(x, Z), Z < 0} by a regular
extension and let us consider a function gε defined by

∀(x, y) ∈ Ωε(t), gε(x, y) = g
(
x,

y

ε

)
.

Then we have ‖gε‖2L2(Ωε(t))
. ε.

Recalling the definition of the terms Fε, Gε and Hε (see the subsection 4.1),
Propositions 4.4 and 4.5 allow us to derive estimates w.r.t. ε:

‖Fε‖L2(Ωε) . εN−1, ‖Gε‖L2(Ωε) . εN−3/2,

‖Hε‖L2(Ωε) . εN+1, ‖Hε‖H1(Ωε) . εN−1.
(11)

4.3.2 Boundary lift

We first use the following estimates about the function f introduced in subsec-
tion 4.1.1:

‖f‖L2(Ωε) ≤ ε1/2, ‖∇xf‖L2(Ωε) ≤ ε−1/2, ‖∂yf‖L2(Ωε) ≤ ε−1/2,

‖∇x∂yf‖L2(Ωε) ≤ ε−3/2, ‖∇2
xf‖L2(Ωε) ≤ ε−5/2, ∂2

yf ≡ 0.

We easily deduce the following bounds for the lift velocity at the boundary:

‖R̃bound‖L2(Ωε) ≤ εN+3/2,

‖∇xR̃bound‖L2(Ωε) ≤ εN+1/2,

‖∆xR̃bound‖L2(Ωε) ≤ εN−3/2,

‖∂yR̃bound‖L2(Ωε) ≤ εN+1/2,

∂2
yR̃bound ≡ 0,

‖∂y∇xR̃bound‖L2(Ωε) ≤ εN−1/2,

‖S̃bound‖L2(Ωε) ≤ εN+5/2,

‖∇xS̃bound‖L2(Ωε) ≤ εN+1/2,

‖∆xS̃bound‖L2(Ωε) ≤ εN−3/2,

‖∂yS̃bound‖L2(Ωε) ≤ εN+3/2,

∂2
y S̃bound ≡ 0,

‖∂y∇xS̃bound‖L2(Ωε) ≤ εN−1/2.

(12)
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4.3.3 Bogovskii lift

From the estimates for the boundary lift (R̃bound, S̃bound), we can use Proposi-
tion 4.1 with a control on the source term H with respect to ε. We obtain

‖(R̃div, S̃div)‖L2(Ωε) ≤ εN+1/2,

‖(R̃div, S̃div)‖H1(Ωε) ≤ εN−1/2,

‖(R̃div, S̃div)‖H2(Ωε) ≤ εN−3/2.

(13)

4.3.4 Estimates

Coupling the estimates on the source terms (11) and the estimates on the lift (12)
and (13) we can rewrite Corollary 4.3 as follows:

Theorem 4.6 (Estimates on the remainder) One has:

‖(R(N),S(N))‖L2(Ωε) . εN+1/2, ‖Q(N)‖L2(Ωε) . εN−1/2,

‖(R(N),S(N))‖H1(Ωε) . εN−1/2, ‖Q(N)‖H1(Ωε) . εN−3/2.

This theorem rigorously justifies ansatz (2).

4.4 Error analysis on adapted spaces

In this subsection, we translate the previous estimates into similar estimates in
which the chosen norm does not depend on the thickness ε. This is motivated
by the fact that the Ωε−norm of any constant function vanishes as ε tends to 0,
as the measure of the domain tends to 0. Thus, estimates have to be expressed
in suitable norms that do not depend on ε and allow us to capture the scale
effects in both the rescaled “thin film domain” and the rescaled boundary layer.

Definition 4.7 (Rescaling operator and unfolding operator) Let δ be a
positive integer, and let (x, y) ∈ T

d×]a, b[.

i) The “rescaling operator”

Rδ : L2(Td×]a, b[) → L2(Td×]a, b[)
f 7→ Rδ(f),

is defined by Rδ(f) (·, Z) := f (·, δZ) for all Z ∈]a, b[.

ii) The “unfolding operator”

Uδ : L2(Td×]a, b[) → L2(Td × T
d×]a, b[)

f 7→ Uδ(f),

is defined by Uδ(f)(x,X, ·) := f
(
δ
[x
δ

]
+ δX, ·

)
for all (x,X) ∈ T

d×T
d,

where [·] denotes the integer part in Z
d.
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Notice that the so-called “rescaling operator” only rescales the (vertical) last
coordinate; the “unfolding operator” only acts on the (horizontal) first variable.
The main properties of these operators, from [12], are recalled in appendix F.

The formal development we have introduced requires the separation of the
domain Ωε into two “sub-domains”: ωR and ωbl. To take into account the
anisotropy of each of these domains, we express the usual L2(Ωε)-norm as follows
(the proof of this lemma is given in appendix F).

Lemma 4.8 Let f ∈ H1(Ωε). The following estimates hold:

i) Zeroth order derivative:

‖f‖
2
L2(Ωε)

= ε ‖Rε (f)‖
2
L2(ωR) + ε2 ‖Rε2 ◦ Uε2 (f)‖

2
L2(ωbl)

.

ii) First order derivatives:

‖∇xf‖
2
L2(Ωε)

= ε2 ‖∇x (Rε2 ◦ Uε2 (f))‖
2
L2(ωbl)

+
1

ε2
‖∇X (Rε2 ◦ Uε2 (f))‖

2
L2(ωbl)

+ ε ‖∇x (Rε (f))‖
2
L2(ωR) ,

‖∂yf‖
2
L2(Ωε)

=
1

ε
‖∂Z (Rε (f))‖

2
L2(ωR) +

1

ε2
‖∂Y (Rε2 ◦ Uε2 (f))‖

2
L2(ωbl)

.

Now let us define a norm that is adapted to the measure of a function for
both the “thin film” approximation and the “roughness boundary layer” aspect:

JfK2s = ‖Rε (f)‖
2
Hs(ωR) + ‖Rε2 ◦ Uε2 (f)‖

2
Hs(ωbl)

.

Unlike the Ωε-norms whose drawback is to fail at capturing concentration effects,
this norm preserves the constant states independently from the value of ε. Thus,
it is a correct way to characterize convergence results in both the thin film region
and the boundary layer. We can re-write Theorem 4.6 using the norm J·Ks:

Theorem 4.9 (Third estimates on the remainder) One has:

i) L2-estimates: J(u, v)−(u(N), v(N))K0 . εN−1/2, Jp−p(N)K0 . εN−3/2,

ii) H1-estimates: J(u, v)−(u(N), v(N))K1 . εN−3/2, Jp−p(N)K1 . εN−5/2.

5 Discussion on the different scale effects

In this section, we discuss two qualitative aspects of the asymptotic expansion.
Firstly, we focus on the contribution of the roughness patterns on the thin film
approximation. Then we focus on a typical case that is considered in most of
the boundary layer studies: the constant cross-section channel, meaning that
function h+ is constant.
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5.1 Contribution of the rugosities in the thin film approx-

imation

Let us consider the thin film approximation with a flat bottom, i. e. h− = 0.
Then the asymptotic expansion reduces to

u
(N)
△ (x, y, t) = u0

(
x,

y

ε

)
+

N∑

j=1

ε2ju2j

(
x,

y

ε

)
,

v
(N)
△ (x, y, t) = εv0

(
x,

y

ε

)
+

N∑

j=1

ε2j+1v2j

(
x,

y

ε

)
,

p
(N)
△ (x, y, t) = ε−2p0

(
x,

y

ε

)
+

N∑

j=1

ε2j−2p2j−2

(
x,

y

ε

)
,

meaning that only half of the sequence of Reynolds problems (R(2j)) is consid-
ered. Moreover, each Reynolds problem is easy to treat: the pressure obeys an
elliptic (Reynolds) equation and the corresponding velocity field can be deduced
from the pressure gradient by means of a simple integration, see for instance [27].
When considering the roughness patterns, complexity is greater since we have
checked that each Reynolds-type solution of problem (R(2j)) has to be modi-
fied by a two-shot correction: i) a Stokes boundary layer correction and ii) a
Reynolds correction.

Besides, it is possible to draw a quantitative study of the convergence of
the asymptotic expansion, with or without roughness correction, towards the
solution of the full problem. More precisely, suppose that, aiming at evaluating
the exact solution defined on Ωε(t), one uses the asymptotic expansion related
to the thin film approximation only (i. e. voluntarily omitting the boundary
layer corrections); then the error is not controlled by the remainder anymore. If
the boundary layer corrections are neglected, the error may be controlled by the
lack of precision due to the neglect of the first order boundary layer correction
and the related remainder, namely

εũ1

(
x,

x− st

ε2
,
y

ε2

)
+ εu1

(
x,

y

ε

)
+O(ε2),

εṽ1

(
x,

x− st

ε2
,
y

ε2

)
+ ε2v1

(
x,

y

ε

)
+O(ε2),

ε−1p̃1

(
x,

x− st

ε2
,
y

ε2

)
+ ε−1p1

(
x,

y

ε

)
+O(1).

Thus the error is controlled by the following estimates (using the results of
Propositions 4.4 and 4.5)

‖ (u, v)− (u
(N)
△ , v

(N)
△ )‖L2(Ωε) . ε3/2, ‖ε2(p− p

(N)
△ )‖L2(Ωε) . ε1/2,

whereas the full asymptotic expansion satisfies (see Theorem 4.6):

‖ (u, v)− (u(N), v(N))‖L2(Ωε) . εN+1/2, ‖ε2(p− p(N))‖L2(Ωε) . εN+1/2.
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Note that, at main order (i. e. N = 1), the truncated velocity field is of or-
der ε3/2 with or without roughness correction. In contrast, the approximation
of the pressure distribution is severely altered by the neglect of the roughness
correction; this is a key-point in the framework of lubrication as one may be
interested in the control of the load, defined as the L1-norm of the pressure in
the whole domain.

5.2 Multiscale coupling effects due to the curvature of the

film thickness

In most of the boundary layer problems dealing with Stokes or Navier-Stokes
equations, the typical situation is concerned with a simple geometrical case,
as the considered domain is a constant cross-section channel, perturbed by the
roughness patterns. More precisely, assuming that

∀x ∈ T
d, h+(x) := H > 0.

The computation of the solutions becomes much easier than in the full lubrica-
tion problem: any Stokes boundary layer problems is such that coefficients do
not depend on x as a parameter, i. e. Aj = 0, Bj = 0 and Cj = 0 for all j ∈ N.

• The main Reynolds problem (R(0)) reduces to a simple Couette flow:

u0(x, Z) = (1− Z/H) s, v0 ≡ 0, p0 ≡ 0.

• The corrective Stokes problem (S(1)) now reads

(
S(1)

)




−∆Xũ1 − ∂2
Y ũ1 +∇Xp̃1 = 0, on ωbl(0),

−∆Xṽ1 − ∂2
Y ṽ1 + ∂Y p̃1 = 0, on ωbl(0),

divXũ1 + ∂Y ṽ1 = 0, on ωbl(0),

(ũ1, ṽ1) = (Ũ1, 0), on γbl(0),

where the boundary condition should be read as Ũ1(X) = −
h−(X)

H
s. In the

sequel, we will introduce the linear operatorsMu, Mv andMp, which only de-
pends on the data h− and H , such that the solution of the Stokes problem (S(1))
reads

ũ1 = Mu s, ṽ1 = Mv s, p̃1 = Mp s.

Remark 5.1 In practice, these operators Mu, Mv and Mp are represented
by matrices which are easily obtained by solving d Stokes problems like

(
S(1)

)
in

which we substitute s by a vectors which form a base for R
d.

Using the linearity of this Stokes problem and Proposition 3.2, we deduce
that α1 and β1 satisfy α1 = Ls and β1 = 0, where L ∈ Md(R) is the matrix of

the application s 7→
−1

H
Lu(0, h

−(X) s, 0). Moreover, we get

Ls = −
1

H

∫

[0,1]d
Mu s(X, 0) dX.
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• In that case, the corrective Reynolds problem (R(1)) can be written with
respect to the unknowns u1 + α1, v1 and p1. It is similar to the Reynolds
problem (R(0)), replacing s with α1 = L s. We obtain

u1(x, Z) = −(Z/H)Ls, v1 ≡ 0, p1 ≡ 0.

• In the same way, the corrective Stokes problem (S
(2)
C ) is similar to the

Reynolds problem (S(1)), replacing s with Ls. By linearity, we deduce ũ2 =
Mu L s, ṽ2 = Mv Ls, etc. More generally, we obtain, for all j ∈ N\{0},

uj(x, Z) = −(Z/H)Lj s, vj ≡ 0, pj ≡ 0,

ũj =Mu L
j−1 s, ṽj = Mv L

j−1 s, p̃j = Mp L
j−1 s.

Such analysis implies that, for N ∈ N, we obtain for instance for the veloc-
ity u(N):

u(N) = s−

(
Z

H
− εMu

)(
(Id+ εL+ · · ·+ (εL)N )s

)
,

where Z denotes the application (x, y, t) 7→ y/ε. We naturally introduce

u(∞) = s−

(
Z

H
− εMu

)(
(Id− εL)−1s

)
, v(∞) = εMv

(
(Id− εL)−1s

)
,

p(∞) =
1

ε
Mp

(
(Id− εL)−1s

)
.

The function (u(∞), v(∞), p(∞)) exactly satisfies the Stokes equations in Ωε, and
the bottom boundary condition corresponding to the initial Stokes problem.
Using a Fourier analysis (exactly as in subsection 3.1.1), we show that the
boundary condition on the top boundary is satisfied with an error of order e−H/ε.
Following the same method that in section 4, we deduce that, for any Sobolev
norms,

‖u− u(∞)‖ . e−H/ε, ‖v − v(∞)‖ . e−H/ε, ‖p− p(∞)‖ . e−H/ε.

Proposition 5.1 If the height h+ is constant then it suffices to solve d Stokes
problems to deduce an approximation with an exponential decreasing error.

A Proof of Lemma 3.3

Existence of a solution to the Stokes problem (S(1)) is usual, see for instance [1,
18]. Moreover, if (ũ1, ṽ1, p̃1) is a solution of (S(1)) satisfying ∇ũ1, ∇ṽ1, p̃1
∈ L2(Td × (0,+∞)), then it is also a solution of:





−∆Xũ1 − ∂2
Y ũ1 +∇Xp̃1 = 0, on ωbl ∩ {Y > 0},

−∆Xṽ1 − ∂2
Y ṽ1 + ∂Y p̃1 = B0, on ωbl ∩ {Y > 0},

divXũ1 + ∂Y ṽ1 = 0, on ωbl ∩ {Y > 0},∫
Td ũ1(X, 0) dX = Lu(0, Ũ1, Ṽ1),∫
Td ṽ1(X, 0) dX = Lv(0, Ũ1, Ṽ1).
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Note that in all the Stokes problems which appear in this paper, the pressures
are given up to an additive constant. This constant is chosen here such that

∫

Td×(0,+∞)

p̃(X, Y ) dX dY = 0.

This allows us to pass to the Fourier transform with respect to X:

ũ1(X, Y ) =
∑

k∈Zd

ûk(Y )e2πik·X, ṽ1(X, Y ) =
∑

k∈Zd

v̂k(Y )e2πik·X,

p̃1(X, Y ) =
∑

k∈Zd

p̂k(Y )e2πik·X.

The previous system on (ũ1, ṽ1, p̃1) is translated into





(2π)2‖k‖2ûk − ûk

′′
+ 2πikp̂k = 0 on {Y > 0} ∀k ∈ Z

d,

(2π)2‖k‖2v̂k − v̂k
′′
+ p̂k

′
= B0δk=0 on {Y > 0} ∀k ∈ Z

d,
2πik · ûk + v̂k

′ = 0 on {Y > 0} ∀k ∈ Z
d,

û0(0) = Lu(0, Ũ1, Ṽ1),

v̂0(0) = Lv(0, Ũ1, Ṽ1),∫ +∞

0 p̂0(Y ) dY = 0,
(14)

where ûk

′
, v̂k

′
and p̂k belong to L2(0,+∞). Now we solve the Fourier problem

and describe the behavior of the solution of the Stokes problem.
• For k = 0, the system reduces to





−û0

′′
= 0 with û0(0) = Lu(0, Ũ1, Ṽ1) and û0

′
∈ L2(0,+∞),

v̂0
′ = 0 with v̂0(0) = Lv(0, Ũ1, Ṽ1) and v̂0

′ ∈ L2(0,+∞),

−v̂0
′′ + p̂0

′
= B0 with

∫ +∞

0
p̂0(Y ) dY = 0 and p̂0 ∈ L2(0,+∞).

This leads us to the following equalities û0 = Lu(0, Ũ1, Ṽ1), v̂0 = Lv(0, Ũ1, Ṽ1),
p̂0 = 0 with the choice

B0 = 0. (15)

• For k 6= 0, we proceed as follows. The idea is to decompose ûk as the sum

ûk = (k · ûk)k+ (k⊥ · ûk)k
⊥.

We take the scalar product with k⊥ of the first equation of system (14):

(2π)2‖k‖2(k⊥ · ûk)− (k⊥ · ûk)
′′ = 0 on {Y > 0} ∀k ∈ Z

d.

Since we have k⊥ · ûk ∈ L2(0,+∞) then it takes the form ake
−2π‖k‖Y with

ak ∈ R. Now, taking the scalar product with k of the first equation of the
system (14), we obtain the pressure with respect to the quantity k · ûk:

p̂k = 2πi(k · ûk)−
i

2π‖k‖2
(k · ûk)

′′.
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Moreover, using the third equation of (14), we express k · ûk as a function of v̂k:

k · ûk = (2π)−1iv̂k
′,

and then the second equation of the system (14) corresponds to the following
homogeneous linear differential equation for the quantity v̂k:

1

(2π)2‖k‖2
v̂k

′′′′ − 2v̂k
′′ + (2π)2‖k‖2v̂k = 0.

The solutions of this ODE, which belongs to L2(0,+∞), take the form

v̂k(Y ) = (ckY + dk)e
−2π‖k‖Y , (ck, dk) ∈ R

2.

By using the expression of k · ûk and p̂k as a function of v̂k, we successively get

k · ûk(Y ) = (2π)−1i((ck − 2π‖k‖dk)− ‖k‖ckY/L)e
−2π‖k‖Y ,

p̂k(Y ) = cke
−2π‖k‖Y .

Finally, we obtain the contribution ûk using the results for k · ûk and k⊥ · ûk.
We conclude by defining the following functions:

P
(1)
k

(Y ) = (2π)−1i((ck − 2π‖k‖dk)− 2π‖k‖ckY )k+ akk
⊥,

Q
(1)
k

(Y ) = ckY + dk and R
(1)
k

(Y ) = ck.

B Proof of Lemma 3.5

It is based on the induction.
• Initialization (j = 2). Recall that F̃2 = A0, G̃2 = B1 and H̃2 = C0.

In order to ensure that the averages with respect to the variable X are null,
since A0, B1 and C0 only depend on the variable x, we have to choose

A0 = 0, B1 = 0 and C0 = 0.

Consequently the source terms are null and, as in the proof of Lemma 3.3, we
apply a similar procedure. We obtain





ũ2(X, Y ) = Lu(0, Ũ2, Ṽ2) +
∑

k∈Zd\{0}

P
(2)
k

(Y )e−2π‖k‖Y+2πik·X,

ṽ2(X, Y ) = Lv(0, Ũ2, Ṽ2) +
∑

k∈Zd\{0}

Q
(2)
k

(Y )e−2π‖k‖Y+2πik·X,

p̃2(X, Y ) =
∑

k∈Zd\{0}

R
(2)
k

(Y )e−2π‖k‖Y+2πik·X,

where P
(2)
k

, Q
(2)
k

and R
(2)
k

are affine functions.
• Induction. Let j ≥ 2 and suppose that Lemma 3.5 holds for any index

k < j and let us prove that it still holds for k = j.
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First, we have to show that it is possible to choose Aj−2, Bj−1 and Cj−2

(which do not depend on the Stokes variables (X, Y )) such that the source terms
are free average with respect to X. Let us recall that

F̃ j(X, Y ) = Aj−2 + (2∇x · ∇Xũj−2 +∆xũj−4 −∇xp̃j−2) (·,X, Y ).

Since ũj−2 is X-periodic, and since the X-average of p̃j−2 is zero by induction
assumption, it is sufficient to impose Aj−2 = −∆x

(∫
Td ũj−4(·,X, Y ) dX

)
, that

is
Aj−2 = −∆xαj−4. (16)

It is important to notice that Aj−2 does not depend on Y . In the same way,

using the definition G̃j(X, Y ) = Bj−1 + (2∇x · ∇Xṽj−2 +∆xṽj−4) (·,X, Y ), we
impose

Bj−1 = −∆xβj−4. (17)

Finally, since we have H̃j(X, Y ) = Cj−2 − divxũj−2(·,X, Y ), we impose

Cj−2 = divxαj−2. (18)

For such choices for Aj−2, Bj−1 and Cj−2, the source terms F̃ j , G̃j and H̃j are
periodic and free-average with respect to the X variable. Moreover, thanks to
the induction assumption, they take the following form

F̃ j(X, Y ) =
∑

k∈Zd\{0} P̃k(Y )e−2π‖k‖Y+2πik·X,

G̃j(X, Y ) =
∑

k∈Zd\{0} Q̃k(Y )e−2π‖k‖Y+2πik·X,

H̃j(X, Y ) =
∑

k∈Zd\{0} R̃k(Y )e−2π‖k‖Y+2πik·X,

where P̃k, Q̃k and R̃k are polynomial. Using the Fourier transform of the sys-
tem (S(j)), we deduce an equivalent system on the Fourier coefficients (ûk, v̂k, p̂k):





(2π)2‖k‖2ûk − ûk

′′
+ 2πikp̂k = P̃ke

−2π‖k‖Y on {Y > 0} ∀k ∈ Z
d,

(2π)2‖k‖2v̂k − v̂k
′′
+ p̂k

′
= Q̃ke

−2π‖k‖Y on {Y > 0} ∀k ∈ Z
d,

2πikûk + v̂k
′ = R̃ke

−2π‖k‖Y on {Y > 0} ∀k ∈ Z
d,

û0(0) = Lu(H̃j , Ũ j , Ṽj),

v̂0(0) = Lv(H̃j , Ũ j , Ṽj),

where ûk

′
, v̂k

′
and p̂k belong to L2(0,+∞) and where

∫ +∞

0 p̂0(Y ) dY = 0.

• For k = 0, since P̃0 = 0, Q̃0 = 0 and R̃0 = 0, we deduce that (see the
proof of Lemma 3.5 for the same kind of calculations):

û0 = Lu(H̃j , Ũj , Ṽj), v̂0 = Lv(H̃j , Ũj , Ṽj) and p̂0 = 0.

• For k 6= 0, using the same method as previously (see the proof of Lemma 3.5),
we first obtain a linear differential equation on the function defined by f(Y ) =
k⊥ · ûk(Y ):

(2π)2‖k‖2f(Y )− f ′′(Y ) = k⊥ · P̃ke
−2π‖k‖Y .
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Since P̃k is a polynom, the solutions are written k⊥ · ûk(Y ) = Pk(Y )e−2π‖k‖Y ,
where Pk is a polynom. Next we obtain

p̂k = 2πi(k · ûk)−
i

2π‖k‖2
(k · ûk)

′′ −
i

2π‖k‖2
(k · P̃k)e

−2π‖k‖Y ,

k · ûk =
i

2π

(
v̂k

′ − R̃ke
−2π‖k‖Y

)
.

Moreover v̂k satisfies the non-homogeneous linear differential equation

1

(2π)2‖k‖2
v̂k

′′′′
− 2v̂k

′′
+ (2π)2‖k‖2v̂k

=

(
Q̃k +

i

2π‖k‖2
(k · P̃k

′
)−

i

‖k‖
(k · P̃k)

)
e−2π‖k‖Y .

The solutions of this ODE are the sum of the solution of the homogeneous
equation (solved before) and a particular solution which, due to the form of the
right-hand side, can be obtained as a product between a polynomial function
and e−2π‖k‖Y . From such an expression for v̂k the proof is concluded.

C Proof of Lemma 3.7

To study the Reynolds system (R), we use some algebraic transformations:
• Integrating the pressure equation gives

p(·, Z) = p+

∫ Z

0

G(·, ζ) dζ, (19)

where x 7→ p(x) is a function to be determined.
• Then, putting the above equality into the (u, p) relationship gives

−∂2
Zu+∇xp = F −

∫ Z

0

∇xG(·, µ) dµ,

which we integrate twice in the Z-variable to obtain u. The divergence equation
provides an expression of v (by a simple integration).

• Integrating between 0 and h+ the divergence equation of (R), we get

divx

(h+3

12
∇xp

)
= divx

(h+

2
U

0
)
− V0 (20)

+divx

(∫ h+

0

∫ y

0

∫ η

0

{
F(·, ζ)−

∫ ζ

0

∇xG(·, µ) dµ

}
dζ dη dy

)

−divx

(
h+

2

∫ h+

0

∫ η

0

{
F(·, ζ)−

∫ ζ

0

∇xG(·, µ) dµ

}
dζ dη

)
.

Obviously, equation (20) with assumption (4) can be written as

divx (A∇xp) = divxB − C with

∫

Td

C = 0,
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where the coefficients A = 1
12h

+3
, B = B(h+,F ,G,U0) and C = V0 are

smooth and depend on all the data. Existence and uniqueness of a solution
p ∈ H1(Td)/R immediately follow from the Lax-Milgram theorem. From the
regularity of the data, p ∈ C∞(Td)/R; then the regularity of u and v follows by
means of integration.

D Proof of Proposition 4.4

Expressing the L2-norm of function f ε, we have

‖f ε‖2L2(Ωε(t))
=

∫

Td

(∫ εh+(x)

−ε2h−((x−st)/ε2)

∣∣∣f
(
x,

x− st

ε2
,
y

ε2

)∣∣∣
2

dy

)
dx.

Using the change of variable Y = y/ε2, we get

‖f ε‖2L2(Ωε(t))
= ε2

∫

Td

(∫ h+(x)/ε

−h−((x−st)/ε2)

∣∣∣f
(
x,

x− st

ε2
, Y
)∣∣∣

2

dY

)
dx

≤ ε2
∫

Td

(∫

R

∣∣∣f
(
x,

x− st

ε2
, Y
)∣∣∣

2

1[Y >−h−((x−st)/ε2)](Y ) dY

)
dx

Now considering the function F(x,X) =
∫
R
|f(x,X, Y )|2 1[Y >−h−(X)](Y ) dY ,

we use a straightforward adaptation of Theorem 2 in [20] to obtain:
∫

Td

|F(x,x/ε)| dx ≤

∫

Td

sup
X∈Td

|F(x,X)| dx.

By periodicity with respect to the second variable, the same argument applies
to function (x,X) 7→ F(x,X− st/ε2) so that, defining the constant

C(f) :=

∫

Td

(
sup
X∈Td

∣∣∣∣
∫

R

|f(x,X, Y )|2 1[Y >−h−(X)](Y ) dY

∣∣∣∣
)

dx,

we obtain the following L2-bound: ‖f ε‖2L2(Ωε(t))
≤ ε2C(f).

In order to state the H1-estimates, we proceed as follows: first we have

∇xf
ε(x, y, t) = ∇xf

(
x,

x− st

ε2
,
y

ε2

)
+

1

ε2
∇Xf

(
x,

x− st

ε2
,
y

ε2

)
,

∂yf
ε(x, y, t) =

1

ε2
∂Y f

(
x,

x− st

ε2
,
y

ε2

)
.

Then we apply the previous computation related to the L2-estimate in order to
get:

‖∇x,yf
ε‖2L2(Ωε(t))

= ‖∇xf
ε‖2L2(Ωε(t))

+ ‖∂yf
ε‖2L2(Ωε(t))

.

Using the formula (a+ b)2 ≤ 2(a2+ b2) for the derivative with respect to x, and
using the previous L2-estimate, we deduce:

‖∇x,yf
ε‖2L2(Ωε(t))

≤ 2 ε2 C(∇xf) + 2 ε−2C(∇Xf) + ε−2C(∂Y f).
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E Proof of Proposition 4.5

By means of a simple calculation, we get

‖gε‖2L2(Ωε(t))
=

∫

Td

(∫ εh+(x)

−ε2h−((x−st)/ε2)

∣∣∣g
(
x,

y

ε

)∣∣∣
2

dy

)
dx

= ε

∫

Td

(∫ h+(x)

−εh−((x−st)/ε2)

|g(x, Z)|2 dZ

)
dx

= ε

∫

Td

(∫ h+(x)

0

|g(x, Z)|2 dZ

)
dx+O(ε2),

which states the result.

F Proof of Lemma 4.8

First, we infer from [12] the following property of the unfolding operator:

Proposition F.1 One has:

i) For any f, g ∈ L2(Td×]a, b[) we have Uδ(fg) = Uδ(f)Uδ(g).

ii) For any f ∈ L1(Td×]a, b[),

∫

Td

∫ b

a

f(x, y) dy dx =

∫

Td

∫

Td

∫ b

a

Uδ(f)(x,X, y) dy dX dx.

Using this proposition, we prove Lemma 4.8 i) (other items may be proven with

a straightforward computation). We have: ‖f‖
2
L2(Ωε)

= ‖f‖
2
L2(Ω+

ε )+ ‖f‖
2
L2(Ω−

ε ) .
Using the properties of the rescaling operator,

‖f‖
2
L2(Ω+

ε ) :=

∫

Td

∫ εh+(x)

0

|f(x, y)|
2
dy dx = ε

∫

Td

∫ h+(x)

0

|f (x, εZ)|
2
dZ dx (a)

= ε

∫

Td

∫ h+(x)

0

|Rε(f) (x, Z)|
2
dZ dx (b)

where we have used (a) the change of variables y = εZ, (b) the definition
of the rescaling operator. Using the properties of the rescaling and unfolding
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operators,

‖f‖2L2(Ω−

ε ) :=

∫

Td

∫ 0

−ε2h−( x

ε2
)
|f(x, y)|2 dy dx

=

∫

Td

∫

R

|f(x, y)|
2
1]−ε2h−( x

ε2
),0[(y) dy dx

=

∫

Td

∫

Td

Uε2

(∫

R

|f(·, y)|
2
1]−ε2h−( x

ε2
),0[(y) dy

)
(x,X) dX dx (a)

=

∫

Td

∫

Td

(∫

R

|Uε2(f)|
2
(x,X, y)1]−ε2h−(X),0[(y) dy

)
dX dx (b)

=

∫

Td

∫

Td

(∫ 0

−ε2h−(X)

|Uε2(f)|
2
(x,X, y) dy

)
dX dx

= ε2
∫

Td

∫

Td

(∫ 0

−h−(X)

|Uε2(f)|
2 (x,X, ε2Y ) dY

)
dX dx (c)

= ε2
∫

Td

∫

Td

(∫ 0

−h−(X)

|Rε2 ◦ Uε2(f)|
2 (x,X, Y ) dY

)
dX dx (d)

where we have used (a) Proposition F.1-ii), (b) Proposition F.1-i), (c) the change
of variables y = ε2Y , (d) the definition of the rescaling operator.
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