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Résumé Court 

Dans les bases de données spatiales actuellement mises en oeuvre, les phénomènes naturels 

sont généralement représentés par des géométries ayant des frontières bien délimitées. Une 

telle description de la réalité ignore le vague qui caractérise la forme de certains objets 

spatiaux (zones d’inondation, lacs, peuplements forestiers, etc.). La qualité des données 

enregistrées est donc dégradée du fait de ce décalage entre la réalité et sa description.  

Cette thèse s’attaque à ce problème en proposant une nouvelle approche pour représenter 

des objets spatiaux ayant des formes vagues et caractériser leurs relations topologiques. Le 

modèle proposé, appelé QMM model (acronyme de Qualitative Min-Max model), utilise les 

notions d’extensions minimale et maximale pour représenter la partie incertaine d’un objet. 

Un ensemble d’adverbes permet d’exprimer la forme vague d’un objet (ex : a region with a 

partially broad boundary), ainsi que l’incertitude des relations topologiques entre deux objets 

(ex : weakly Contains, fairly Contains, etc.). Cette approche est moins fine que d’autres 

approches concurrentes (modélisation par sous-ensembles flous ou modélisation probabiliste). 

Mais elle ne nécessite pas un processus d’acquisition complexe des données. De plus elle est 

relativement simple à mettre en œuvre avec les systèmes existants de gestion de bases de 

données.  

Cette approche est ensuite utilisée pour contrôler la qualité des données dans les bases de 

données spatiales et les entrepôts de données spatiales en spécifiant des contraintes d’intégrité 

par l’intermédiaire des concepts du modèle QMM. Une extension du langage de contraintes 

OCL (Object Constraint Language) a été étudiée pour spécifier des contraintes topologiques 

impliquant des objets ayant des formes vagues. Un logiciel existant (outil OCLtoSQL 

développé à l’Université de Dresden) a été étendu pour permettre la génération automatique 

du code SQL d’une contrainte lorsque la base de données est gérée par un système relationnel.  

Une expérimentation de cet outil a été réalisée avec une base de données utilisée pour la 

gestion des épandages agricoles. Pour cette application, l’approche et l’outil sont apparus très 

efficients. 

Cette thèse comprend aussi une étude de l’intégration de bases de données spatiales 

hétérogènes lorsque les objets sont représentés avec le modèle QMM. Des résultats nouveaux 

ont été produits et des exemples d’application ont été explicités. 
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Résumé long 

Les bases de données spatiales et les systèmes d’information géographique (SIG) sont de plus 

en plus utilisés pour répondre à des besoins transactionnels liés à la gestion des phénomènes 

du monde réel. De même, les cubes de données géo-décisionnelles sont devenus des outils 

incontournables qui permettent au preneur de décisions d’analyser l’extension spatiale d’un 

phénomène donné. Cette analyse est facilitée par la possibilité d’une navigation 

cartographique au niveau de la dimension spatiale du phénomène. Un point commun entre ces 

outils transactionnels et décisionnels consiste à représenter les phénomènes spatiaux en 

utilisant des géométries bien définies ou considérées comme telles. Une telle description 

simplifiée de la réalité ignore le vague de forme de certains objets comme des zones 

d’inondation ou des peuplements forestiers. Par exemple, une région crisp (ayant des 

frontières bien définies) ne peut être une représentation correcte d’un lac physiquement 

entouré par des frontières partiellement ou complètement larges; les berges du lac dépendent 

du niveau des précipitations). Il s’agit donc d’un problème de qualité puisque la fiabilité des 

données est dégradée par ce décalage entre la réalité et sa description.  

 Cette thèse propose une approche permettant de représenter des objets spatiaux ayant des 

formes vagues et de caractériser leurs relations topologiques. Plus spécifiquement, nous 

définissons un modèle qualitatif appelé QMM model (acronyme de Qualitative Min-Max 

model) qui utilise les notions d’extensions minimale et maximale pour représenter la partie 

incertaine d’un objet. Un ensemble d’adverbes permet alors d’exprimer le vague de forme des 

objets (ex : a region with a partially broad boundary, a line with a completely broad interior) 

ainsi que l’incertitude des relations topologiques (weakly Contains, fairly Contains, strongly 

Covers, etc.). Cette approche fournit une évaluation de l’incertitude moins fine que d’autres 

approches concurrentes (modélisation par sous-ensembles flous ou modélisation probabiliste) 

mais elle ne nécessite pas un processus d’acquisition complexe des données. De plus elle est 

relativement simple à mettre en œuvre avec les systèmes existants de gestion de bases de 

données.  

 Cette approche est ensuite utilisée pour contrôler la qualité des données dans les bases de 

données spatiales et les entrepôts de données spatiales en spécifiant des contraintes d’intégrité 

par l’intermédiaire des concepts du modèle QMM. Une extension du langage de contraintes 

OCL (Object Constraint Language) a été étudiée pour spécifier des contraintes topologiques 

impliquant des objets ayant des formes vagues. Plus précisément les expressions de 
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contraintes  s’appuient sur une forme adverbiale d’où l’acronyme AOCLOVS  (Adverbial OCL 

for Objects with Vague Shapes) pour caractériser cette extension d’OCL. Un logiciel existant 

(outil OCLtoSQL développé à l’Université de Dresde) a été étendu pour permettre la 

génération automatique du code SQL d’une contrainte lorsque la base de données est gérée 

par un système relationnel.  Une expérimentation de cet outil a été réalisée avec une base de 

données utilisée pour la gestion des épandages agricoles. Pour cette application, l’approche et 

l’outil sont apparus très efficients. 

 Cette thèse comprend aussi une étude de l’intégration de bases de données spatiales 

hétérogènes lorsque les objets sont représentés avec le modèle QMM. Des résultats nouveaux 

ont été produits et des exemples d’application ont été explicités. 
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Chapter 1: Introduction  

1.1 Research context 

Over the last two decades, Geographical Information Systems (GIS) and spatial databases 

have been increasingly used to meet some transactional and decisional needs in various areas. 

The rise of GIS and spatial databases has been stimulated by the technological advances and 

an increasing relevance of multi-source integrated spatial information in the management of 

phenomena such as forestry, geology, agriculture, disaster control and emergency 

management, land cover/land use planning, national defence and security, etc. The increasing 

use of GIS leads to increasing requirements about presenting a reliable description of 

geographic information. Such a description should always consider the imperfection that is an 

endemic feature of the geographic information (Goodchild 1995a, Duckham et al. 2001). The 

imperfection can be present, in the description of a spatial object, in different forms including 

vagueness (e.g. Erwig and Schneider 1997), error (e.g. Heuvelink 1998), imprecision (e.g. 

Worboys 1998(b)), inconsistency (e.g. Rodriguez 2005), etc.  

Dealing with imperfection is generally based on general taxonomies that propose 

definitions of its different types and causes (Bédard 1987, Smithson 1989, Parsons 1996, 

Smets 1996, Goodchild and Jeansoulin 1998, Fisher 1999a, Worboys 1998a, Hazarika and 

Cohn 2001, Devillers and Jeansoulin 2005). The first aim of such taxonomies is in 

distinguishing the nuances between the imperfection types, rather than accurately 

characterising the nature of imperfection (Parsons and Hunter 1998). According to Dilo 

(2006), these taxonomies has led to the development of different formalisms, each intended to 
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capture a particular nuance of imperfection. The definitions of imperfection types and the 

nuances between them are explained in details in the literature review (Chapter 2).   

The inherent imperfection of geographic information leads to deficiencies in spatial data 

quality (Guptill and Morrison 1995, Goodchild and Jeansoulin 1998, Aalders 2002, Devillers 

2004, Devillers and Jeansoulin 2005, Van Oort 2006). The ‘quality’ can be defined as “the 

totality of features and characteristics of a product or service that bear on its ability to satisfy 

stated or implied needs” (ISO 2002, originally in ISO standard 8402). Spatial data quality is 

generally described by a set of elements such as the positional accuracy and genealogy called 

the elements of spatial data quality (Guptill and Morrison 1995). The description of such 

elements is made by the data producer and helps the users to determine if the available data 

meet their needs. Moreover, the information about spatial data quality is increasingly required 

by users of transactional spatial databases and spatial data warehouses (Devillers 2004). In the 

latter case, it became the first criterion needed because the relevance of a decision depends 

strongly on the quality of data loaded in the data warehouse (Knightbridge Solutions 2006). 

Spatial data quality may also be degraded when inappropriate spatial models are used to 

describe the geographic reality (Dilo 2006). For instance, the traditional (this term is used in 

the remainder of the thesis to refer crisp spatial models) spatial models assume that the 

geographic reality is certain, crisp, unambiguous and independent of context. (Duckham et al. 

2001). Then, natural phenomena such as an earthquake or an inundation are represented using 

crisp spatial objects; although they include inherent shape vagueness (e.g., broad boundaries 

separate the different disaster areas). This simplification of geographic reality decreases the 

reliability of its description because a relevant property of spatial objects is lost (Tang 2004) 

(i.e. their inherent shape vagueness). According to Clementini and Di Felice (1997), this 

mismatch between the geographic modeling and the complex geographic reality presents a big 

limitation of traditional spatial models. It entails a gap between the spatial reality and its 

description in spatial databases and GIS. Consequently, the users cannot have knowledge 

about the uncertainty of the spatial objects and of their relationships. They may miss-interpret 

the available data and make wrong decisions.       

Furthermore, the traditional spatial models do not always meet the modeling needs in a 

spatial integration process especially when crisp source geometries are used to represent 

vague concepts in the source databases. The spatial data integration aims to make 

heterogeneous geometries compatible with each other in a final database, so that they can be 

displayed on the same map and their relationships can be analysed (Shepherd 1992, Devogel 
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1997). Spatial data integration is a complex problem that can be defined, addressed and 

resolved differently according to different needs. In this context, we are interested in a 

vertical integration (Poulliot 2005) where the same objects are represented by heterogeneous 

and redundant crisp geometries in different sources with different specifications. Then, the 

final geometries resulting from the latter integration process (ex. displacement, rubber 

sheeting, size modification, distortion) may be plagued by increased vagueness and then the 

traditional spatial models are not able to reliably represent them. For example, a forest stand 

is a vague concept that may be falsely represented by heterogeneous and redundant crisp 

geometries in different data sources with different specifications, each intended to represent a 

different interpretation of an aerial photo that represents the object (De Groeve et al. 2000). 

When such crisp source geometries have similar qualities, a better final geometry is obtained 

by considering all of them (Devogel 1997). In the example of forest stands, a region with a 

broad boundary is then generated from the integration. The broad boundary refers to the 

difference between the union and intersection of crisp source polygons and reflects the 

disaccord between the experts in the interpretation of aerial photos. If considered in the same 

context, the final geometry should then more reliable than those representing the same object 

in the data sources because the shape vagueness is now explicitly represented. Figure 1.1 

shows a spatial object A represented by three crisp heterogeneous and redundant polygons P1, 

P2 and P3 in three different source databases S1, S2 and S3. The final geometry of A is a region 

with a broad boundary obtained by merging P1, P2 and P3. The intersection of P1, P2 and P3 is 

the kernel or the certain part (the black sub-region in Figure 1.1) of the final geometry R. The 

broad boundary (the grey part of R in Figure 1.1) of R corresponds to the difference between 

the intersection and union of P1, P2 and P3.   

 

 

 

 

 

 

Figure 1.1 Example of a region with a broad boundary resulting from the integration of redundant and 
heterogeneous source polygons 

In spatial modeling, the importance of topological relationships such as Overlap or 

Contains is widely recognised (Clementini and Di Felice 1997). These relationships are 

preserved under continuous geometric transformations (e.g. rotation, scaling, translation). 
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Several spatial models studied the topological relationships between objects with crisp shapes 

(Egenhofer and Herring 1990, Egenhofer and Franzosa 1991, Mark and Egenhofer 1994, 

Cohn et al. 1997). In GIS applications, these models (called traditional in the remainder of the 

thesis) provide the theoretical bases for the spatial reasoning and computation of topological 

relationships involved in the spatial queries and in topological integrity constraints 

(Clementini and Di Felice 1997). Nonetheless, the traditional spatial models do not describe 

the shape vagueness of spatial objects that exist in the geographic reality as well as that 

resulted from a vertical integration (see above). Existing approaches such as Burrough (1996), 

Erwig and Schneider (1997), Zhan (1997), Clementini and Di Felice (1997), Worboys 

(1998b), Roy and Stell (2001), Schneider (2001), Morris (2003), Tang (2004), Pfoser and 

Tryfona (2005), Pfoser et al. 2005, Dilo (2006) and Reis et al. (2006) proposed methods to 

represent spatial objects with vague shapes and to compute their topological relationships. In 

these proposals, the problem of shape vagueness is generally addressed without studying the 

possibilities of expressing the topological integrity constraints involving spatial objects with 

vague shapes. The specification of such topological integrity constraints cannot be based on 

traditional spatial models and remains unexplored. For example, an integrity constraint 

controlling a topological relationship between two regions with broad boundaries such as 

geopolitical conflict zones should consider the case where the relationship is partially 

respected (e.g. weakly overlap, fairly inside.). Such a specification is not available in 

traditional approaches. To overcome this limitation, one can suggest reusing existing 

approaches that deal with objects with vague shapes. However, these approaches have some 

limits (presented in the next section) that make difficult their use to specify topological 

constrains involving objects with vague shapes.  

1.2 Problem statement 

Shape vagueness is a type of imperfection arising when there is an uncertainty to sharply 

distinguish an object shape from its neighbourhood. This imperfection concerns the presence 

of broad boundaries for regions (Burrough and Frank 1996), broad endpoints and/or interiors 

for lines (Clementini 2005) and broad interiors for points (Santos and Moreira 2007). For 

instance, some spatial objects such as a lake or a forest stand are delimited in real life by 

broad boundaries rather than crisp ones. Likewise, when mapping the vegetation, the 

transition from one class to another may be gradual. It may be difficult to decide whether a 
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location belongs to one vegetation class or another (Dilo 2006). Dealing with spatial objects 

with vague shapes is also recurrent in decisional applications such as the evaluation of the risk 

of fire in the Sydney Olympic Park (Zeng et al. 2003) or the management of data about the 

environmental phenomena in the forests of central Africa (FAO 2001). In this same context, 

Groeve et al. (2000) proposed a method to represent a forest stand as a region with a broad 

boundary by merging its different representations. The shape vagueness of a spatial object can 

also be caused by the ignorance. For example, one might have a vague idea about the spatial 

extent of an oil deposit; i.e. additional information could reduce this vagueness (Cohn and 

Gotts 1996a) but is not available. Thus, the shape vagueness concerns the spatial extents of 

spatial objects in various geographic applications.   

Several approaches investigated the importance and possibility to handle the spatial objects 

with vague shapes (Burrough 1996, Erwig and Schneider 1997, Zhan 1997, Clementini and 

Di Felice 1997, Worboys 1998b, Roy and Stell 2001, Schneider 2001, Morris 2003, Tang 

2004, Pfoser and Tryfona 2005, Pfoser et al. 2005, Dilo 2006, Reis et al. 2006). These 

approaches can be categorized in two main groups: (2) the models based on mathematical 

theories such as Fuzzy Logic (Zadeh 1965) and (1) the qualitative or exact models. The 

principles of each model category and their differences are explained in details in chapters 2 

and 3. In this section, we just introduce the different categories and enumerate some of their 

limits in order to justify the problems addressed in the thesis. 

For the first category of models, fuzzy logic is the most often used theory (Dilo 2006). The 

fuzzy approaches such as (Robinson and Thongs (1986) Altman 1987, Burrough 1989, Brown 

1998, Schneider 2001, Tang 2004, Hwang and Thill 2005, Dilo 2006) allow a finite 

quantification of the vagueness of spatial objects and of their topological relationships. The 

fuzzy approaches are better adapted to raster data where the vagueness levels are shown by 

computing the membership degree of each pixel to the object class involved, i.e. these 

approaches support a field-oriented view of the geographic reality. However, the hardest 

problem of fuzzy approaches is to define the membership functions intended to compute the 

shape vagueness inside the geometry of a given object. The definition of such functions is 

based on quantitative hypotheses that are also difficult to be set (Clementini 2005). It is also 

problematic to combine different membership functions to compute the shape vagueness 

inside a same object, where different factors entail the vagueness (Godjjevac 1999). Moreover, 

the current computational technology does not allow efficient processing to define and 

manage probabilistic and fuzzy models (other limits of this category of models are presented 
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in the literature review (Chapter 2)). According to Erwig and Schneider (1997), the qualitative 

approaches refer to a pertinent alternative to represent shape vagueness. 

The qualitative or exact1 approaches such as (Cohn and Gotts 1996, Erwig and Schneider 

1997, Clementini and Di Felice 1997, Clementini 2005) represent the spatial objects with 

vague shapes by extending the traditional spatial models. The advantage of these approaches 

is that existing definitions, techniques, data structures, algorithms, etc., do not need to be 

redeveloped but only modified and extended, or simply used (Erwig and Schneider 1997). For 

example, Cohn and Gotts (1996) proposed the Egg-Yolk model that extends the RCC model 

(Randell and Cohn 1989). In the Egg-Yolk model, a region is composed by a core (the yolk) 

that is surrounded by a broad boundary that partially belongs to the region. With regards to 

fuzzy approaches, Egg-Yolk model does not allow computing of the membership degree of a 

given point inside the broad boundary. However, such a model provides a representation of 

vagueness notion while retaining the simplicity of using traditional spatial models. 

Furthermore, quantitative hypotheses are not required to represent shape vagueness using a 

qualitative approach. Nevertheless, exiting qualitative approaches do not consider the case of 

spatial objects with partial vague shapes. For example, a region with a partial broad boundary 

(e.g. a lake with swamp banks on one side and rocky banks on the other side) cannot be 

represented using existing approaches since a broad boundary is defined as a connected and 

closed area that surrounds the region’s core (this definition is not respected if the lake’s 

boundary is linear in some locations and broad in some others). In the same way, a line can be 

partially vague when only one endpoint is broad or when the interior is partially broad. Also 

the latter cases are not supported by existing approaches. Other limits of existing qualitative 

models are discussed in the literature review.  

Based on the limits of existing approaches dealing with shape vagueness, a new qualitative 

spatial is required to cover the different cases of spatial objects with different levels of shape 

vagueness. Such a model is necessary to control the topological consistency of spatial 

databases supporting this type of objects. According to Frank (2001), the consistency of 

vague data should be controlled through specific constraints which tolerate a partial 

satisfaction of the defined rules. Nonetheless, the principal approaches dealing with the 

specification of topological integrity constraints are based on traditional spatial models such 

as the 9-intersection model (Egenhofer and Herring 1991), the CBM approach (Clementini 

and Di Felice 1995) and the RCC theory (Randell and Cohn 1989, Cohn et al. 1997) that 

                                                 
1 The terms qualitative and exact are used interchangeably along the thesis 
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ignore the shape vagueness. These approaches (Cockcroft 1997, Normand 1999, Servigne et 

al. 2000, Duboisset 2007) are also based on a binary logic to evaluate whether a topological 

relationship is respected or not. They do not consider the case where a topological 

relationship is partially (e.g. weakly, fairly, strongly, etc.) verified. Such a case is recurrent in 

the relationships involving objects with vague shapes. For example, let the topological 

integrity constraint TC1: “a pollution zone should weakly overlap an urban zone”. Figure 1.2 

shows two representations of the spatial objects involved in the constraint TC1. In the first 

case (Figure 1.2(a)), the pollution zone is represented as a crisp polygon. The spatial objects 

are disjoint and therefore the first representation does not satisfy the topological integrity 

constraint presented above. In the second case (Figure 1.2(b)), the pollution zone is 

represented as a region with a broad boundary that partly overlaps the urban zone. Since the 

broad boundary is an uncertain part of the pollution zone, it is possible to associate the adverb 

weakly to the overlap relation. If TC1 is specified using a traditional approach, the expression 

‘weakly overlap’ should be replaced by ‘disjoint or meet’ in order to accept the crisp 

configurations. The first configuration is then accepted while it is not reliable (the broad 

boundary of the pollution zone is ignored). However, the second configuration is not valid 

because the vague shapes are not supported by the approach used to define the integrity 

constraint. More specifically, the partial satisfaction of the overlap relation cannot be tested 

since the term ‘weakly’ is not supported. The term ‘weakly’ requires the representation of the 

broad boundary of the pollution zone (i.e. the existence of such a boundary can be used to 

justify that the overlap relation is weak, otherwise the relation is true or false).  

  

 

 

     Pollution zone       urban zone            Pollution zone                        urban zone 

    (a) crisp representation of the pollution zone        (b) vague representation of the pollution zone 

Figure 1.2 Two different representations of a pollution zone and of the resulting differences regarding 
its topological relationship with an urban zon 
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The general problem addressed in this thesis is: 

 

 

This general problem is composed of a transactional axis (topological integrity constraints 

for objects with vague shapes in a spatial database environment) and a decisional one 

(topological relationships between geometries with vague shape in a spatial dimension of a 

spatial data warehouse). These axes are related since the geometries stored in transactional 

databases may be integrated and loaded into a spatial data warehouse through what is known 

as an ETL process (Extract-Transform-Load). In this case, shape vagueness may result from 

spatial data integration when heterogeneous crisp geometries (representing the same object in 

different data sources) are merged in order to produce a final geometry (with its vagueness) 

that represents a given spatial object in the data warehouse (see the example in Section 1.1).  

Existing exact spatial models generally study shape vagueness as an imperfection that 

characterises some natural objects. In this work, we show that shape vagueness can also result 

from integration and causes some difficulties in the final databases. Among these difficulties, 

we only concerned with the specification of topological relationships between geometries 

with vague shape in the final databases (see the second specific problem).   

The general problem presented above is decomposed into three specific ones:  

•  Insufficiencies of existing exact models regarding the representation of spatial 

objects with different levels of shape vagueness (i.e. partial shape vagueness, 

complete shape vagueness) and the specification of their topological 

relationships 

The literature review presented in section 2.3 shows that most of existing exact 

models do not model spatial objects with partially vague shapes such as a region 

with a partially broad boundary (i.e. a boundary that is crisp in certain areas and 

broad in other areas) or a line with one broad endpoint and one crisp endpoint. For 

example, a lake may be surrounded by crisp rocky banks on one side and swamp 

banks on the other side. Likewise, the itinerary of a XVth century explorer can be 

sharply known in some locations and only broadly known in some others. Most of 

existing works evaluate the shape vagueness through a binary logic that considers 

an object as vague or not vague (crisp). However, the geographic reality is more 

complex and an object may be partially vague, i.e. it may include vagueness and 

Insufficiencies of existing approaches regarding the specification of topological 

integrity constraints involving spatial objects with vague shapes and their topological 

relationships, both in transactional spatial databases and in spatial data warehouses. 
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crispness at the same time in different parts of the boundary. Accordingly, there is 

today no exact approach to evaluate the vagueness of topological relationships that 

occur between objects with different levels of shape vagueness. 

•  Problem of topological relationships vagueness for geometries with vague 

shapes resulting from the integration of heterogeneous and redundant crisp 

geometries of a same object 

A spatial data warehouse is generally loaded from several data sources that are 

heterogeneous on several levels. In this work, we are interested in considering the 

geometrical heterogeneities between geometries representing the same object at 

the same epoch in different sources in order to better know this object and its 

vagueness. Accordingly, these geometries should be merged before being loaded 

in the spatial data warehouse as they represent a same object in the reality. The 

final geometry may be vague if it is generated from heterogeneous crisp 

geometries that have a similar quality level. In this case, the integration process 

requires a method to identify the appropriate topological relationships between the 

final geometries. These topological relationships should consider the shape 

vagueness because they cannot be identified to those defined in the data sources. 

Consequently, there is a problem of topological relationships vagueness that we 

define as the uncertainty about the valid topological relationships for geometries 

with vague shapes loaded into the final database. In Figure 1.3, an example of a 

vertical integration of redundant crisp geometries is presented to illustrate the 

problem of topological relationships vagueness. In this example, two spatial 

objects O1 and O2 are represented using heterogeneous crisp geometries in two 

different data sources S1 and S2. Regions with broad boundaries are then resulted 

from the integration of available geometries of O1 and O2. The broad boundaries 

refer to the difference between the intersection and union of source geometries of 

the object involved. In this context, the topological relationship defined in the 

sources (i.e. Disjoint in our example) between geometries of O1 and O2 can be just 

partially respected by final geometries with vague shapes. Even though one 

chooses to ignore the shape vagueness by crisping (e.g. choose the unions, 

intersections, union/intersection or intersection/union as crisp geometries of O1 

and O2 in the final database) the final geometries, the problem remains since other 

relationships are also possible (e.g. Meet is also possible in our example).  
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Figure 1.3. Example of topological relationships vagueness in a vertical integration of redundant crisp 
geometries  

The topological relationships vagueness concerns the relationships between 

geometries representing the members of one hierarchy level of a spatial dimension 

as well as those between the geometries belonging to its different hierarchy levels. 

For example, let the spatial dimension of a spatial data warehouse (intended to 

analyze the distribution of taxes) defined by the following hierarchy (building, 

county, state, region, nation). If the geographic union of points representing the 

buildings (commercial, residential and industrial) is not within the spatial extent of 

their county, every individual building should be analyzed to determine how the 

required taxes should be distributed between two or more counties2. In this thesis, 

we deal only with the intra-level topological relationships vagueness. We are 

conscious that inter-levels topological relationships are also very important since 

the shape vagueness should be considered to correctly compute the aggregations of 

fact measures. This latter aspect exceeds the objectives of this thesis and requires 

additional investigations that will be made in future researches.  

•  Inadequacy of existing approaches regarding the formal specification of  

integrity constraints involving objects with vague shapes 

Several approaches (see section 2.4) handle the specification of integrity 

constraints in spatial databases. Generally, the shape vagueness is not considered, 

neither in the geometric representations of some spatial objects nor during the 

specification of their topological integrity constraints (see example in figure 1.2).  

                                                 
2 This example is adapted from another one presented in (Malinowski and Zimányi 2005). 
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The problem of formally expressing the integrity constraints involving spatial 

objects with vague shapes remains, to our knowledge, always unexplored. There 

exists an extension of the Object Constraint Language (OCL for short) that allows 

the modeling of topological integrity constraints involving spatial objects 

represented by crisp shapes (Pinet et al. 2007). This method allows generating 

SQL code from spatial OCL constraints in order to check the consistency of a 

given spatial database. Nonetheless, it cannot express topological integrity 

constraints involving spatial objects with vague shapes. Additional syntax 

elements are required to express the possible partial satisfaction (see above) of 

topological relations between the objects with vague shape involved.    

1.3 Objectives and hypotheses of the research  

1.3.1 Objectives 

The general objective of this research consists of proposing an approach to specify 

topological integrity constraints in both transactional spatial databases and data 

warehouses that support spatial objects with vague shapes and their topological 

relationships. Three specific objectives are set: 

•     To propose a spatial model in order to represent spatial objects having different 

levels of shape vagueness and to identify their topological relationships  

•   To develop an approach in order to reduce the topological relationships 

vagueness for geometries with vague shapes resulting from the integration of 

heterogeneous crisp geometries of a same object. This approach reuses the spatial 

model proposed in the first objective.  

•     To add required syntax to the Object Constraint Language (OCL): 

- To formally express the topological integrity constraints involving spatial objects 

with vague shapes and their topological relationships 

      - To generate SQL scripts from OCL constraints in order to check the consistency 

of a given spatial database 
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1.3.2 Hypotheses  

The general hypothesis of this research can be presented as follows: it is possible to provide 

an approach that supports the specification of topological integrity constraints involving 

spatial objects with vague shapes and of their topological relationships, both in 

transactional spatial databases and in spatial data warehouses.  

Three specific hypotheses have been established for this research: 

� It is possible to propose a new qualitative model that supports the description of 

spatial objects with different levels of shape vagueness. Such a model may be 

integrated in a general approach intended to express topological integrity constraints 

for spatial object with vague shapes and their relationships. 

� It is possible to deal with topological relationships vagueness in the spatial dimension 

of a data warehouse using a qualitative spatial model able to describe the shape 

vagueness. In other words, we assume that it is possible to study the shape vagueness 

using the same approach independently of the factors causing this vagueness. 

�  It is possible to enrich the constraints language OCL in order to formally express the 

integrity constraints involving spatial objects with vague shapes and their topological 

relationships.  

1.4 Methodology 

This thesis has been realized in the context of a global research project dealing with the 

integrity constraints in transactional spatial databases and in data cubes. Two other PhD 

students participated in this project: Magali Duboisset, a PhD student at Blaise Pascal 

University in France, and Mehrdad Salehi, a PhD student at Laval University. The research of 

Magali Duboisset has been supported by Cemagref (Institut de recherche Français pour 

l'ingénierie de l'agriculture et de l'environnement). She proposed extensions of OCL in order 

to express integrity constraints involving topological relationships between spatial objects 

with well-defined shapes. A part of her work consisted in studying the expressiveness of OCL 

(Duboisset et al. 2005). An extension called OCL9IM has been implemented into an existing 

OCL editor called OCL2SQL and developed by the Dresden University (Demuth and 

Hussmann 1999, Demuth et al. 2001). OCL2SQL allows the translation of OCL constraints in 
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SQL queries or triggers. Then, she implemented a second extension called OCL9IM+adverbe 

where she used a set of adverbs (e.g., partially, entirely, etc.) to describe the topological 

relationships. She compared the two extensions and proved that they have the same 

expressiveness. 

Mehrdad Salehi proposes a formal model for spatial datacubes where he distinguishes 

different types of components of a datacube structure with regards to the spatial component of 

data. Such a formal model is required before proposing a framework for identifying different 

types of integrity constraints in spatial datacubes. Based on this model, he identifies different 

types of integrity constraints in spatial datacubes. Examples of these integrity constrains are: 

summarizability integrity constraints, hyper-cellability integrity constraints, fact integrity 

constraints and traditional integrity constraints in spatial datacubes. Each one of these 

categories of integrity constraints are further categorized into several sub-categories. Using 

these results as well as a formal classification of integrity constraints in spatiotemporal 

databases, he finally develops a formal integrity constraints specification language (ICSL) for 

defining various types of integrity constraints in spatial datacubes. This ICSL is developed 

based on a controlled natural language and a natural hybrid language with pictograms. 

In practice, the research projects of Mehrdad Salehi and Magali Duboisset have started one 

year before the present thesis. Then, the results of these research projects have been reused in 

this thesis and they accelerated the realization of my objectives. The general objective of our 

research group is to study different problems related to the specification of spatio-temporal 

integrity constraints for different types of spatial objects (objects with well-defined shapes as 

well as objects with vague shapes) in the context of spatial transactional databases and spatial 

data cubes. 

In this thesis, the methodology followed is composed of four phases:  

• Phase 1: literature review and formulation of the research problem 

This step began with an in-depth literature review in the following domains: (1) modeling of 

spatial objects with vague shapes in spatial databases and GIS, (2) the formal specification of 

integrity constraints for spatial objects and their topological relationships. The literature 

review is justified by the complexity of spatial vagueness problem which has three 

dimensions at least: a philosophical dimension in addition to the modeling and technological 

ones. In this research, we principally contribute in the modeling and implementation of spatial 

objects with vague shapes. We reviewed several research works such as Smithson (1989), 
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Smets (1996), Worboys (1998a), Fisher (1999a), Hazarika and Cohn (2001) and Smith (2001) 

that proposed different categorizations of spatial imperfection types and defined the spatial 

vagueness and its different uses. Then, we studied some works on the formal specification of 

integrity constraints for spatial objects and their topological relationships (Cockcroft 1997, 

Normand 1999, Elmasri and Navathe 2000, Servigne et al. 2000, Borges et al. 2002, Pinet et 

al. 2004). We concluded that these approaches do not consider the shape vagueness of spatial 

objects because they are based on traditional spatial models. For that, we explored some 

research works such as Robinson and Thongs (1986), Altman (1987), Burrough (1989), Cohn 

and Gotts (1996a), Clementini and Di Felice (1997), Erwig and Schneider (1997), Tang 

(2004), Reis et al. (2006), Verstraete et al. (2007) that proposed different spatial models to 

represent spatial objects with vague shapes. These approaches are generally categorized into 

two types of models: the exact models in addition to the models based on quantitative 

mathematical theories. Finally, we studied the advantages and limitations of existing exact 

models in order to justify the research questions and the objectives of this thesis. 

• Phase 2: proposing a spatial model for spatial objects with vague shapes and their 

topological relationships 

According to the literature review, the existing exact models cannot present spatial objects 

with partially vague shapes such as a lake with rocky borders on one side and swamp borders 

on the other side. These models consider this type of objects with vague shapes as invalid. We 

used the principles of the point-set topology (Egenhofer and Herring 1990) to propose a new 

exact model. We defined three types of spatial objects with vague shapes: broad points, lines 

with vague shapes and regions with broad boundaries. Additionally, we propose a general 

framework to identify the topological relationships between objects with vague shapes. The 

vagueness of a topological relationship can be qualitatively evaluated using a set of 

adverbs such as weakly or strongly. Then, this model is reused to deal with the topological 

relationships vagueness for geometries with vague shapes resulting from the integration of 

heterogeneous and redundant source geometries loaded in a spatial data warehouse. We 

studied the topological relationships that are possible between final geometries according to 

those which can occur between source geometries. We intended to reduce the topological 

relationships vagueness by preventing the impossible relationships between final geometries 

loaded in the data warehouse. 
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• Phase 3: Extending Spatial OCL in order to express the integrity constraints 

involving spatial objects with vague shapes and their topological relationships 

There are different approaches to express the integrity constraints in spatial databases 

(Cockcroft 1997, Elmasri and Navathe 2000, Servigne et al. 2000, Borges et al. 2002, Bédard 

et al. 2004, Pinet et al. 2004, Rodriguez 2005). The Object Constraint Language is based on 

the object-oriented development principles (Pinet et al. 2004). This Language has been 

extended by Duboisset (2007) in order to formally express the integrity constraints involving 

topological relationships between objects with crisp shapes. Then, two reasons motivated the 

selection of Spatial OCL to express topological integrity constraints involving spatial objects 

with vague shapes. First, Spatial OCL is based on the standard constraint language OCL 

associated to the UML formalism. It allows a declarative specification of constraints; it has a 

pertinent expressiveness and has been implemented into an existing constraint editor called 

OCL2SQL (Duboisset 2007). Second, Spatial OCL is an element of context of this research; 

the motivated choice of this language was mainly initiated during the thesis of Magali 

Duboisset (2007). Extending the language Spatial OCL includes two stages:   

1. Extending the meta–model of Spatial OCL: three new objects types have been 

introduced into the meta-model of OCL. These objects types refer to: broad point, line 

with a vague shape and region with a broad boundary.  

2. Enriching the syntax of Spatial OCL to support integrity constraints involving spatial 

objects with vague shapes: we introduced a method to identify the topological 

relationships between spatial objects with vague shapes. We enriched Spatial OCL by 

a set of topological operators where their vagueness may be expressed using a set of 

specific adverbs (e.g. weakly contains, fairly contains, strongly disjoint, etc.). These 

topological operators have been defined in the proposed spatial model and can be 

introduced in the expression of a spatial query or an integrity constraint.  

• Phase 4: Validation of the research results 

In this phase, we tested the validity of the results obtained in the first three phases. This 

validation phase is composed by four principal stages:  

1. Implementing an architecture to store the objects with vague shapes and their 

topological relationships: in Oracle Spatial, geometric attributes are managed through 

a generic type called SDO_Geometry. In this research, we reused this data type to 

define the geometries of objects with vague shapes.    
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2. Extending Spatial OCL2SQL editor by introducing topological operators adapted to 

objects with vague shapes: OCL2SQL has been extended in order to express 

topological integrity constraints involving objects with vague shapes. This extension is 

based on the spatial model proposed in the phase 2 and the extension of Spatial OCL 

made in phase 3. The topological operators for objects with vague shapes have been 

implemented as Oracle functions that reuse the method SDO_Relate of Oracle Spatial. 

Each defined function refers to a Java method which realizes necessary controls before 

executing the operator on the database and displaying a final result. 

3. Testing the application on a real spatial database storing objects with vague shapes: 

In this step, we tested our approach using the extension of OCL2SQL in order to 

express some integrity constraints in an agricultural database. This database stores 

vector data describing the parcels that received organic fertilizers produced by 

wastewater plants and the agro-food industry in France. In the database, these parcels 

generally have vague shapes because they have been drawn approximately by users 

with a GIS-based interface; there is usually a difference between the drawn parcel and 

the real parcel. We define the agricultural parcels as regions with broad boundaries 

using an extension of Oracle Spatial. Then, we define the integrity constraints using 

OCL2SQL before generating a SQL script that can be executed in the database. The 

objective of this step is to prove that the extension of Spatial OCL is operational. 

However, we did not aim at testing the execution performances of the implementation 

of proposed topological operators.  

• Phase 5: Analyzing the results obtained in the different phases 

This phase is composed by three main steps: 

1. Reviewing the contributions of the thesis: the results obtained in the phases 2-4 are 

reviewed according to the objectives set in the beginning of the thesis. This revision 

aims at showing the validity of hypotheses presented above.  

2. Comparing the results obtained in the thesis to those of existing approaches: this step 

aims at showing the similarities and differences between the results of this thesis and 

those of existing approaches. It also discusses the advantages and limits of our 

contributions with regards to other approaches. 
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3. Drawing the possible perspectives of this work: based on the limits discussed in the 

previous step, some future researches are proposed. The future researches aims at 

achieving the objectives that cannot be reached in this thesis.     

The next activity diagram describes the methodology followed in this thesis:  
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Figure 1.3 UML activity diagram of the research methodology 
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1.5 Structure of the thesis 

The results of this research are presented in seven chapters. Chapter 2 presents a literature 

review which sets the background of this research and justifies the research questions. This 

chapter reviews: (1) taxonomies of spatial data imperfections, (2) modeling of spatial objects 

with vague shapes and of their topological relationships, and (3) the specification of integrity 

constraints in spatial databases. Chapters 3, 4, 5 and 6 present the contributions of this 

research and refer to four papers realized during the thesis. These papers have not been 

substantially modified after being integrated in the thesis. Therefore, the content of some 

chapters may look redundant. This redundancy is generally required to set the context of our 

research and to help the journals reviewers to understand the background of our contributions. 

Chapter 3 explains the terminology used in this thesis. It also presents a qualitative (or 

exact) model to represent spatial objects with vague shapes and to identify their topological 

relationships. We call this approach the Qualitative Min-Max (QMM for short)3 model. In 

Chapter 3, we mainly focus on the identification of topological relationships involving 

regions with broad boundaries. In Chapter 4, we are interested in the identification of 

topological relationships involving lines with vague shapes. Chapter 5 reuses the principles of 

the QMM model to deal with the topological relationships vagueness for final geometries with 

vague shapes resulted from the spatial data integration. Chapter 6 presents the extension of 

Spatial OCL to express the topological integrity constraints involving regions with broad 

boundaries and their topological relationships. Chapter 7 draws the conclusions and 

perspectives of this research.    

  
  
 

 
 
 
 
 
 
 
 
 

                                                 
3 This term has introduced in our second paper (Chapter 4) in order to reference our spatial model. Nonetheless, 
it is important to denote that we speak about the same spatial model in the remainder of the thesis. 
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CHAPTER 2: Literature Review 

2.1 Introduction  

This chapter describes the researches related to the present thesis work. The discussion is 

organized in three parts. Section 2.2 presents some categorizations of spatial data 

imperfections as well as the definitions of principal terms used to express its different types. 

This section is also interested in: (1) the management of the spatial imperfection in spatial 

databases and spatial data warehouses, and (2) the relationships between the spatial data 

quality and spatial data imperfections. Sections 2.3 and 2.4 respectively review related works 

in two domains: (1) the modeling of spatial objects with vague shapes, and (2) the formal 

specification of spatial integrity constraints.   

2.2 Spatial data Imperfections 

Two types of data are generally used to describe a spatial phenomenon: (1) qualitative data 

and (2) quantitative data. These data may be vague, imprecise, incomplete, contradictory, etc. 

(Dutta 1991). Works such as Smithson (1989), Fisher (1999a) and Mowrer (1999) proposed 

categorizations of the spatial objects as well as definitions and taxonomies of the spatial 

imperfection types. Other works such as Burrough (1996), Cohn and Gotts (1996a), 

Clementini and Di Felice (1997), Erwig and Schneider (1997), Tang (2004), Dilo (2006) and 

Reis et al. (2006) studied the possibilities of modeling the spatial objects with vague shapes 
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and of computing their topological relationships. Finally, some researches such as Pfoser and 

Jensen (1999), Pfoser and Tryfona (2001) and Pfoser et al. (2005) were interested in modeling 

the imperfection types in spatio-temporal phenomena. 

Section 2.2.1 presents the principal taxonomies of spatial imperfection types. Section 2.2.2 

focuses on the definition of principal terms used in the literature to express the various types 

of spatial data imperfections. Sections 2.2.3 and 2.2.4 present the levels of spatial data 

imperfections and principal strategies to manage it, respectively. Section 2.2.5 relates the 

spatial data imperfection questions to the transactional spatial databases. In the same way, 

Section 2.2.6 studied the forms of imperfections in spatial data warehouses. Section 2.2.7 is 

interested in the relation between the spatial data quality and spatial data imperfections. 

2.2.1 Taxonomies of spatial imperfections 

The definition of spatial imperfection types is a very complex question where different 

disciplines such as philosophy, sciences and technology can overlap each other. The objective 

of this section is to show the divergence of taxonomies of spatial data imperfections proposed 

in GIS and the spatial databases domain. These taxonomies refer to the background of any 

framework aiming at modeling a spatial imperfection type (Dilo 2006). Generally, the 

taxonomies organize spatial imperfection types by using generalization/specialization 

relationships. Devillers (2005) reviewed the principal taxonomies in this domain (Smithson 

1989, Smets 1996, Worboys 1998a, Fisher 1999a, Hazarika and Cohn 2001, Smith 2001).  

Smithson (1989) considers the ignorance concept as the origin of any other type of spatial 

data imperfection (figure 2.1). Such a philosophical point of view finds its roots in the works 

of Socrate who limited the perfect knowledge to only one certainty: the ignorance. Using the 

reflexivity property, he considers the ignorance of this basic knowledge as a double 

ignorance. This idea was also reused by (Bédard 1987) who introduced the notion of “meta-

uncertainty”: the uncertainty about uncertainty (cf. Section 2.2.3). 

Fisher (1999a) focuses, in his taxonomy, on the notion of uncertainty that appears 

differently for the well-defined objects and ill-defined ones. Two types of objects have been 

also distinguished by Smith (2001): bona fide (well-defined) objects and fiat (ill-defined) 

objects (see section 2.3.1). For the well-defined objects, the uncertainty is often modeled 

through the probabilities theory such as a confusion matrix which determines whether an 

object is ill-classified or not (Fisher 1999b). For the ill-defined objects, uncertainty refers to 
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the ambiguity of the object definition as well as of thematic and/or spatial attributes. The 

latter case relates to a qualitative imperfection which occurs at the conceptual level. 

 

 

 

 

 

Figure 2.1 Taxonomy of spatial data imperfections (Fisher 1999(b)) 

According to Worboys (1998b), the spatial data imperfections refer to the factors causing a 

deficiency in the spatial data quality. These factors relates to the error component (a deviation 

of the data from one value considered as true), incompleteness (a lack of relevant information 

to describe a spatial phenomenon), inconsistency (conflicts between data stored in the same 

structure), inaccuracy (a coarse level of granularity or resolution at which the measurement is 

made or the data is represented), and vagueness defined as a lack of precision in the definition 

of the concepts used to describe the geographic information. 

Smets (1996) distinguishes three types of imperfections: inaccuracy, inconsistency and 

uncertainty. The inaccuracy and inconsistency are two imperfections that can characterise the 

data whereas the uncertainty relates to the knowledge state about the world (the relationship 

or distance between the available information and the geographic reality). 

Couclelis (1996) proposed a first attempt to consider the spatial vagueness in the 

classification of spatial objects. She proposed to examine the spatial vagueness according to 

three aspects: (1) the empirical nature of the objects, (2) the observation mode of spatial 

objects and (3) the user’s needs. Hazarika and Cohn (2001) are also interested in the notion of 

spatial vagueness. This notion is considered as the root of their spatial imperfection 

taxonomy. In (Hazarika and Cohn 2001), the spatial vagueness notion exceeds the simple 

difficulty of drawing a linear boundary around a given region. It can also occur for objects 

with well-defined boundaries where there is an uncertainty about their locations. 
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2.2.2 Terminology related to spatial data imperfections 

In the literature, several terms have been used to express the different types of spatial data 

imperfection. In this section, we review the definitions of these terms. 

• Uncertainty: it can characterize the knowledge state about a given assertion (Smets 1996). 

It refers to the difficulty to determine whether a data is true or false. Uncertainty is considered 

as a root of different categorizations of spatial data imperfections (Smets 1996, Worboys 

1998b, Fisher 1999a). It is presented as a generic imperfection that can be specialized into 

different forms such as the imprecision for quantitative data and the fuzziness for qualitative 

data (Bédard 1987, Erwig and Schneider 1997). According to Bédard (1987), the uncertainty 

can result from the intrinsic limitations of the modeling process (omission of details, omission 

of compatibility between cognitive and physical level, etc.)). It can also result from the gap 

between the geographic reality and its description. For example, this gap occurs when fiat 

spatial objects such as air pollution zones (i.e., regions with broad boundaries in the reality) 

are presented using crisp polygons. Uncertainty can appear at various levels and in different 

forms during the development process of a spatial database (see section 2.3.1). Then, the 

terms ‘imperfection’ and ‘uncertainty’ can be used interchangeably since the uncertainty 

includes different types of spatial imperfections. In section 2.3.1, we use the term 

‘uncertainty’ in order to respect the contributions of Bédard (1987). However, in the 

remainder of this thesis, the term ‘imperfection’ is generally preferred.  

• Error : it refers to the difference between the available value and another one considered as 

true (Goodchild 1995a, David and Fasquel 1997). The error can result from an inadequate 

calibration of the measurement device, an inadequate use of this device or an erroneous 

application of the procedures using these measurements as input data. Then, erroneous 

measurements of the spatial phenomena are introduced as true values to be stored in the 

database. The error is also related to the concept of reliability. The reliability expresses the 

closeness of collected data to the reality observed (Azouzi 1999). 

• Imprecision: it refers to limitations on the granularity or resolution at which the observation 

is made, or the information is represented (Worboys 1998b). A data value is imprecise when 

it corresponds to an interval (e.g., the age of a person is between 35 and 45), a disjunction of 

values (e.g. the age of Jean can be is 35 or 36) or a negation of a given assertion (e.g. John do 

not have 35 years old) (Motro 1995). In the context of spatial data, the precision can be 



 43 

statistical when it refers to the dispersion around an average value (Mowrer 1999). It can be 

also numerical when it corresponds to the number of significant decimals given by a 

measurement device (Goodchild 1995a, Mowrer 1999). Statistical precision is generally 

computed through a probabilistic method using available measurements. It can also be given 

by computing an ellipse of error (Chrisman 1991). The error and imprecision are orthogonal 

concepts since the level of the first does not affect that of the second (Mowrer 1999, 

Duckham et al. 2001). For example, the observation “Quebec is in the north of America” is 

more accurate and, at the same time, less precise than the statement “Quebec is in the United 

States ». The second statement is simply inaccurate. 

• Vagueness: according to Fisher (1999a), the vagueness is an inherent imperfection that 

characterizes the definitions of some concepts called vague (e.g. young person, bald person, 

large surface, North, South, etc.). The membership degree to a given vague concept cannot be 

computed using a binary logic (i.e., 0 or 1) because its definition is partially respected by 

elements involved in most cases. The vague concepts can be modeled using Fuzzy Logic 

(Zadeh 1965). Then, a membership degree is expressed as a value (i.e., belonging to the 

interval [0,1]) computed using a membership function that defines the vague concept. In the 

spatial domain, the vagueness is an inherent property of geometries of fiat spatial objects such 

as valleys, or oceans. It relates to the difficulty of distinguishing an object shape from its 

neighborhood. For example, an air pollution zone is a region with a vague shape because it is 

surrounded by a broad boundary rather the sharp one. Navratil and Frank (2006) consider that 

the vagueness of concepts entail ambiguous classification of spatial objects. Spatial vagueness 

can also characterise bona fide objects when there is an uncertainty about their locations. In 

this case, Hazarika and Cohn (2001) speak about ‘location vagueness’. Nonetheless, an object 

with a vague shape can be also vaguely located. 

Hazarika and Cohn (2001) do not correlate the shape vagueness to the difficulty of drawing a 

linear boundary for a given region (e.g. a lake). They consider the temporal data dimension 

that may affect certainty about the shapes of spatial objects. Accordingly, it is important to 

denote that shape vagueness is a more general notion than fuzziness. Fuzziness is generally 

associated to the problem of drawing linear boundaries for regions (Hazarika and Cohn 2001). 

However, the shape vagueness can also refer to the broadness of a line interior and/or 

boundary (Reis et al. 2006). In the same way, shape vagueness may occur for composed 

geometries that may contain uncertain parts in addition to certain ones (Schneider 1999). In 

this work, we are interested only in the shape vagueness for simple fiat objects without 
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considering the temporal dimension. We use the term “shape vagueness” because it is more 

exhaustive than fuzziness to describe the shape imperfection of some geographic objects. 

Moreover, fuzziness is often correlated to the use of Fuzzy Logic (Zadeh 1965) to model the 

boundary broadness. Using this term can be falsely interpreted by assuming that we use Fuzzy 

Logic to realize the objectives of this thesis (which is not the case as explained later). 

Figure 2.2(a) shows an example of a region with a broad boundary. Figure 2.2(b) presents an 

example of a line where the interior is broad whereas its endpoints remain well-defined. 

Figure 2.2(c) shows an example of a composed vague region (white polygons for uncertain 

sub-regions and grey polygons for certain ones). 

  

 

 

                                                 

Figure 2.2 Examples of spatial objects with vague shapes 

• Ambiguity:  it appears when different results are obtained using different classification 

methods for the same set of elements. In this context, broad boundaries can be considered as 

the result of an ambiguity to affect a set of spatial points to different object classes. 

Nonetheless, it is important to denote that ambiguity results from the classification process 

and not from an inherent property of the classes. It corresponds to an imperfection type 

occurred at the conceptual level defined in (Bédard 1987). Ambiguity can affect the 

identification (being or not being such an entity?) or the categorization (Being an entity of 

type A or type B?) of a given object. 

• Discord: it appears when different conceptual schemas are proposed by different designers 

of a same geographic phenomenon. According to Van Oort (2006), each designer uses his 

proper terminology to define the spatial concepts in the database dictionary. He defines his 

specific “product ontology”. The existence of different product ontologies is a first discord 

type. In the same way, the database users have their specific terminologies and definitions 

(i.e. their own problem ontologies). Then, the heterogeneities between the product and 

problem ontologies present a second type of discord. 

• Indeterminacy: it occurs when a spatial object is ill-classified because its definition is 

ambiguous or coarsely described (Roy and Stell 2001). Indeterminacy is a reflexive, 
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symmetric and transitive relation and is generally modeled through the theory of Rough Sets 

(Pawlak 1994). 

• Incompleteness: it refers to a lack of some relevant values and/or occurrences of spatial 

objects involved. It is generally defined as a partial description of a spatial phenomenon. 

• Inconsistency: it relates to the existence of logical contradictions in the same database 

(Worboys and Duckham 2004). For example, an implicit inconsistency can be deduced from 

the following premises: 

Dijon contains 300000 inhabitants 

A city of less 500000 inhabitants is not a big city 

Dijon is a big city 

Inconsistencies are generally managed through integrity constraints (Kainz 1995, Motro 

1995, Cockcroft 1997, Normand 1999, Servigne et al. 2000, Pinet et al. 2004). Inconsistencies 

arise when integrity constraints are violated. According to Rodriguez (2005), inconsistency is 

related to what are called primary or secondary forms of error. The primary form of error 

corresponds to a wrong description of location or characteristics/qualities of spatial objects. 

For example, if an integrity constraint that states that a given object have only one location, 

there is an inconsistency derived from a primary type of error if there is more than one 

location for the involved object. This type of inconsistency occurs because there are 

differences in data accuracy or precision, but also because many observations of spatial 

phenomena are essentially vague. For example, the boundaries of forests, mountains, lakes, 

and oceans cannot be determined with precision; i.e. two observers may draw two different 

shapes/locations for the same object.  

A spatial inconsistency related to a secondary error refers to a contradiction between stored 

data and constraints associated with definitions of geometric primitives. For example, a 

polygon must be bounded by closed and non self-intersecting polylines that represents its 

boundary. Inconsistency may also be related to semantic contradictions, such as when a road 

overlaps a building. These types of inconsistency depend on the spatial domain, and they are 

captured by rules that should be expressed within the data model. 
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2.2.3 Levels of uncertainty 

Bédard (1987) considers four levels of uncertainty: 

- Conceptual level: the uncertainty refers to the fuzziness in the identification of an 

observed reality. For example, a house can be defined as “a surface greater than 100 m2 

intended for a residential exploitation ». The definition of the ‘house’ concept presented 

above is fuzzy. It brings to raise the following questions: When is-it possible to consider 

that a building is principally used for residential exploitation? Moreover, the conceptual 

imperfection may also refer to the categorization fuzziness. For example, it is possible to 

have uncertainty to consider a given building as a house or a commerce (assuming they 

are two different classes of objects with different sets of properties) if it is exploited 

simultaneously for these two finalities (commercial at ground level, residential at first 

level). 

- Descriptive level: it concerns the uncertainty in the attribute values of an observed 

reality. At this level, the uncertainty can relate to the fuzziness in the qualitative values 

and the imprecision in the quantitative values. For example a thematic attribute 

describing the vulnerability of a forest stand can have the following fuzzy values: 

“weak” , “fair” or “strong”. 

- Spatio-temporal level: a spatial object is generally described by a geometry and a 

temporality. These data are managed in the database likewise the thematic attributes. 

For an object geometry, the uncertainty refers to the shape vagueness where there is an 

inherent difficulty to distinguish the object partially or completely from its 

neighborhood (e.g. a zone of pollution). In the same way, it relates to inaccuracy or 

imprecision of an object location or other spatial data such as its area or perimeter. For 

temporal data, the uncertainty relates to the vagueness when there is an inherent 

difficulty to distinguish an event extension on the time axis (e.g., the birthday of one 

historic person). It can also correspond to the imprecision or inaccuracy about an event 

location on the time axis. 

- Meta-uncertainty level: it refers to the uncertainty about the uncertainties occurred in 

the first three levels (ex. 95% certainty of a point to fit within its error ellipse in geodetic 

adjustment; a population survey about voting preferences that claims a precision of ± 

3%  19 times out of 20). Bédard (1987) spoke about the “uncertainty of uncertainty”.  
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2.2.4 Management of uncertainty 

Bédard (1987) distinguishes two approaches to manage the uncertainty in spatial databases: 

• Reduction: uncertainty reduction refers to a rigorous definition of modeling rules (i.e. 

defining the contents of a model, what to observe and how) and communication rules 

(i.e. defining the model form, the modeling language to use). From a technical point of 

view, the uncertainty reduction is realized by using specific tools: mathematical 

procedures to improve the data precision (e.g. statistics with overabundant 

measurements), Fuzzy Logic to reduce the qualitative uncertainty, inclusion of lineage 

in digital maps, the use standard specifications and symbols (e.g. ISO standards), etc. 

(Bédard 1987, Hunter 1998). 

• Absorption: uncertainty absorption refers to the risk related to the uncertainty that 

remains after all reduction means have been used. For example, it may refer to the 

guarantees made by a database producer in order to compensate the users damaged by 

poor data. In the same way, the user can absorb the imperfection when he accepts to use 

non-guaranteed databases. Absorption can also take place when a professional 

guarantees data (then his professional liability insurances absorb the risk). Bédard 

(1987) defined the uncertainty absorption as the level of monetary risk in providing or 

using of a given database. When damages occur, the uncertainty is absorbed by the ones 

who pay for these damages. This solution is often perceived as a protection against the 

potential liability claims whether the database entail damages for the users (Hunter 

1998).  

 Finally, the reduction and absorption are substantially different. The reduction is ensured 

through technical tools and methods whereas the absorption is guaranteed through 

institutional and legal tools. In practice, the imperfection is managed by combining these two 

approaches. 

2.2.5 Spatial imperfections in spatial databases 

2.2.5.1 Introduction 

A spatial database is a data collection describing the thematic and spatial properties of real 

world phenomena (temporal properties are also possible) (Bédard 1999). According to Kemp 

(2008), spatial databases can be implemented using various technologies, the most common 
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being the relational technology. They can have various structure architectures according to 

their intended purpose. There are two categories of spatial databases: transactional and 

analytical. Transactional spatial databases are the most frequent ones; they are often used to 

facilitate collection, storage, integrity checking, manipulation and display of the 

characteristics of spatial phenomena. For example, data about precipitations or temperature 

variations can be stored in a transactional spatial database. The geometry of a spatial object 

refers to a geometrical primitive (i.e., a point, a line or a polygon) or a collection of these 

primitives. Analytical spatial databases are more recent and they are very useful in business 

intelligence applications. This type of databases includes data warehouses and data marts used 

to meet strategic analytical needs. They can comprise multidimensional structures termed 

datacubes or hypercubes. When spatial data are involved, the datacubes become spatial 

datacubes.     

The spatial databases are managed through specific software tools called Spatial Database 

Management Systems (Spatial DBMS). “ A Spatial DBMS is a DBMS whose the meta-model 

allows the definition and implementation of spatial data types, proposes a query language for 

spatial data and provides definitions of spatial indexes and algorithms for spatial joins” 

(Guting 1994). According to Vauglin (1997), a spatial DBMS supports the management of 

geometries and the execution of spatial queries (e.g., finding rivers crossing a forest) in 

addition to the functionalities available for non-spatial databases. Several DBMS such as 

Oracle Spatial contains specific libraries to store and manage geographical data (Gregan 

2004). The spatial DBMS provide additional functionalities in the Data Definition Language 

(DDL) and the Data Manipulation Language (DML). For example, Oracle Spatial proposes a 

specific data structure called SDO_Geometry in order to store geometries of spatial objects. In 

the same way, the function SDO_Relate executes spatial queries where the conditions concern 

topological relationships between spatial objects (i.e., finding spatial objects that meet a 

river). A spatial indexing method is also integrated into Oracle Spatial.  

2.2.5.2 Imperfection aspects in spatial databases modeling  

Bédard (1999) proposed a pictogram-based language in order to help the database designer to 

describe the geometry properties of a given spatial object. Temporal pictograms are also 

provided to represent the temporal existence and geometric evolution of a given spatial object. 

These pictograms are available through a design editor for spatial databases called Perceptory 

(Bédard et al. 2004). In (Miralles 2006), Perceptory has been extended to support the 
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description of the spatial extensions of spatial objects with vague shapes. In this same way, 

Parent et al. (1997) provided syntactic tools to build class diagrams of spatio-temporal 

applications. This approach has been extended to model the random imperfections 

(measurement problems) and the vagueness of spatial concepts (Shu et al. 2003). Likewise, 

several works (Duckham et al. 2001, Yazici et al. 2001, Fonseca et al. 2003, Shu et al. 2003) 

enriched the meta-models of some design methods in order to support the spatial vagueness. 

For example, Yazici et al. (2001) proposed an extension of UML (Unified Modeling 

Language) by adding two constructors: U used to represent inaccuracy and imprecision (that 

can characterize an object location) and F used to describe the shape vagueness. They 

applied this extension to describe an environmental information system for a pollution 

phenomenon. 

2.2.5.3 Management of imperfections in spatial databases 

A spatial database is a formal description of the geographic reality where two types of 

operations can be done: transformations and modifications (Motro 1995). A description of 

database refers to its structure and its contents. However, the operations of transformation and 

modification consist in the update of the contents and the structure of the database, 

respectively. In this thesis, we are interested in the description component because we are 

focused on the modeling of spatial databases. Accordingly, a modeling process generally aims 

at producing a database description that respects two principles properties: the soundness and 

completeness. On the one hand, a description is sound, if it includes only necessary data to 

describe the reality. On the other hand, a description is complete if it includes all of data that 

describe the reality. At the conceptual level of a database description, the vagueness results 

from a simplification of the complex reality and/or an ambiguous definition of the spatial 

objects (Yazici et al. 2001). At the physical level, several solutions can be implemented to 

deal with different aspects of imperfections in relational databases (Motro 1995): 

1. “Null” values: a “null” value denotes that no information is available.  It can be also 

used to denote the inapplicability; i.e., that a specific attribute is inapplicable to a given 

object.  

2. Disjunctive value: it is a set of values that necessarily include the true one (but we 

don’t know precisely which one is true). A disjunctive value occurs when there is an 

uncertainty to assign one value to a given attribute. Then, a set of values (separated by OR 

operator) are assigned to the attribute. 
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3. Confidence factors: they denote the confidences that one can have about the 

description elements (Motro 1995). For example, confidence factors have been used into 

retrieval systems to indicate the confidence that a specific word describes in a given 

document. 

4. Probabilistic databases: in these databases, data are represented through variables 

where each is related to a probability distribution function. The data are stored in the 

database with a probability that present their truth degrees. Examples: P (age (Jean) = 32) 

= 0,6; P (age (Jean) = 33) = 0,4. 

5. Possibilistic or fuzzy databases: in these databases, concepts are modeled as fuzzy 

subsets (Zadeh 1965). These concepts are managed by the DBMS through a fuzzy 

inference system that computes a membership degree for each instance according to a 

membership function associated to the concept involved.  

In the context of spatial databases, a geometry with a vague shape can be represented 

though a fuzzy membership function defined in raster data where the shape vagueness is 

shown using a color degradation (figure 2.3(a)). This method has high implementation and 

management costs. It is only possible for a limited surface and consists in computing the 

membership degree of each pixel to a given class. However, the vector format allows a 

less expensive representation of geometries with vague shapes (Cohn and Gotts 1996(a), 

Clementini 2005). Morris (2003) proposes a model to store geometries with vague shapes 

in a vector format using fuzzy subsets. In this approach, a region is represented as a set of 

sub-regions. For each one, a membership degree is computed through a membership 

function defining the global fuzzy region (figure 2.3(b)). A membership degree refers to 

the projection of a sub-region on the membership function. 

 

  

 

                                                         1 

                    

                                      (a) Raster representation                (b) Vector representation 

Figure 2.3 Representation of a region with a vague shape 

The databases were initially invented to meet transactional needs that consist in managing 

one or several daily activities of an organization. However, the economic competition 

encouraged the rise of decisional needs where it is required to analyze time-variant data in 

Region with a vague shape 

Projection 

Membership function 
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order to make the best decisions. Decisional needs are met using specific structures called 

data warehouses (Malinowski and Zimányi 2007). The management of data warehouses 

requires large storage capacities in order to store a large amount of data loaded from different 

source databases. The data warehouses are used to load data cubes intended to meet the needs 

in analysis and decision-making processes. In the next section, we focus on some spatial 

imperfections (those related to spatial data integration) in spatial data warehouses.  

2.2.6 Spatial imperfections in spatial data warehouses 

A data warehouse is a subject-oriented, integrated, time-variant and non-volatile collection of 

data in order to support a decision-making process (Inmon 1992). It can be also defined as a 

time-variant data collection that is extracted from different transactional databases and files, 

organised by subject, and stored into one final data structure in order to support a decision-

making process (Kimball 1996). The data warehouses are generally represented using a 

multidimensional model such as the star schema. A star schema is composed by a single fact 

table connected to a set of dimensions tables. The dimensions refer to the analysis 

perspectives such as the time or space. A dimension contains one or several hierarchies 

typically composed by several granularity levels such as the country, region, and county for a 

spatial dimension. According to Malinowski and Zimányi (2005), a level refers to a set of 

instances called members that have common characteristics. For example, the level ‘region’ 

of the spatial dimension contains the following members: East, West, North, and South. Two 

consecutive levels of a hierarchy are called child and parent depending on whether they 

include more detailed or more general data, respectively. The members of a parent level are 

obtained by aggregating its child members of the immediately lower level. The fact table 

stores one or several attributes that represent the analysis such as the sales amount or the 

number of accident victims. They are generally numerical attributes that are summarized 

before being analyzed according to the set of dimensions (Rafenelli et al. 2003). According to 

Rivest et al. (2003), a fact refers to a combination of dimension members, with the measures 

value for a particular aggregation level. For example, a fact can correspond to the “car sales 

in Quebec city at the first half of 2008”; i.e. the sum of car sales for the member Quebec of 

the dimension Space and for the member first half of 2008 of the dimension Time. The 

combination of all facts and dimensions refers to a data cube. Different data cubes can be 

obtained from the same data warehouse. 
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Franklin (1992) estimates that 80% of transactional data have a spatial component. This 

fact justifies the rise of spatial data warehouses that support the management of significant 

amounts of time-variant data including a spatial component. The spatial data are captured by 

their geometries and can be managed in the dimension tables as well as in the fact table. In 

spatial dimensions, the members of different levels can be related by classical relationships or 

topological relationships. In this second case, each member of a hierarchy level has a 

geometry that is normally within the geometry of its parent member belonging to the 

immediately higher level. However, other topological relationships such as Overlap or Covers 

are possible but require the use of specific operations to compute measure aggregations. 

These relationships occur when the hierarchy levels are loaded from heterogeneous source 

databases. In practice, it is generally difficult to geometrically deduce the topological 

relationships between objects belonging to different hierarchy levels. These relationships can 

be managed through semantic links between the geometries involved stored in the data 

warehouse. In a fact table, the spatial measures can correspond to geometries or quantitative 

spatial data such as the area or distance.  

A spatial data warehouse is generally loaded from different data sources. These data 

sources are involved in an integration process in order to be adapted to the structural and 

semantic requirements of the data warehouse. In the spatial data integration, the data sources 

are generally heterogeneous at different levels such as the database structures heterogeneities, 

the geometric heterogeneities, etc (Devogel 1997). Then, different forms of imperfections can 

be observed in a spatial data warehouse. On the one hand, each source database includes its 

own imperfections that can be propagated in the data warehouse. For example, the 

hierarchical levels of a spatial dimension are typically extracted from different sources. Then, 

inconsistencies can be shown during the navigation from one level to another: the navigation 

from a county level to a municipality level can be inconsistent whether data are extracted from 

different data sources; some municipalities are not completely inside their parent county. 

Moreover, the imperfection in spatial data warehouses can be related to the data aggregations. 

For example, the aggregated values may be different to the sum (when the aggregation 

function is SUM) of values stored at the lower level. For example, the inhabitants living in the 

broad boundary of an urban zone may not be computed in the sum of urban inhabitants the 

region involved. In some cases, the inconsistencies between the different aggregation levels 

are managed through warnings that inform the users about the possible incoherencies 

(Levesque et al. 2007).  



 53 

The geometric heterogeneities between source geometries can also entail the shape 

vagueness. The geometry of each member of a spatial hierarchy level can refer to the final 

geometry obtained by merging heterogeneous geometries available in the source databases. 

The principal tool to merge source geometries is the Overlay method (Frank 1987, 

Demirkesen and Schaffrin 1996, Harvey and Vauglin 1996). This method compute the 

intersection of the different source geometries using a tolerance value around the nodes of a 

source geometric representation taken as a reference in order to merge the others. A source 

geometry is excluded from the integration process whether it is not inside the tolerance zone. 

When the quality of source geometries cannot be evaluated, the shape of a final geometry 

becomes vague if there is a non-empty difference between the union and intersection of 

source geometries (Shepherd 1992). The topological relationships, between the members of 

the same spatial hierarchy level as well as those between the child and parent members 

belonging to different levels, should then consider the shape vagueness of the geometries 

involved.  

Dealing with the spatial data imperfections leads to investigate how they entail deficiencies 

in the spatial data quality. Moreover, the advances in the information technologies domain 

gave place to increasingly powerful material solutions at the level of storage capacities and 

personal use of spatial data. From this perspective, the spatial data quality is increasingly 

described by the spatial databases producers and required by the users.  

 

2.2.7 Spatial data quality and management of imperfections 

2.2.7.1 Notion of spatial data quality 

• Definitions 

In the standard ISO 19113 (ISO/TC211 2002), the general definition of quality is “the totality 

of features and characteristics of a product or service that bear on its ability to satisfy stated 

or implied needs”. According to Devillers (2004), various definitions have been associated to 

the concept of quality in the domain of geographical information systems. Two main groups 

of definitions can be then identified. The first group associates the quality of a product or a 

service to the standards and specifications, allowing to reduce the errors in the product. The 

second group associates quality with the satisfaction of the users’ needs, i.e. a product with a 
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good quality level should meet or exceed the users’ needs. These two groups of definitions are 

commonly identified by “internal quality” and “external quality” (Aalders, 2002, Dassonville 

et al. 2002). In GIS, the first group is generally placed from the point of view of the producers 

of data, compared to the second group which is placed from the point of view of the users 

(Kahn and Strong, 1998).  

The internal quality relates to the meeting by the data producer of the requirements defined 

by the user or by himself. These requirements represent the theoretical specifications or the 

nominal ground (David and Fasquel 1997) that is used to evaluate the internal quality. 

Generally, the data producer describes the internal quality of its product using the following 

elements: (1) actuality of data, (2) geometric and thematic accuracy, (4) genealogy, (5) 

logical consistency and (6) completeness (Mostafavi et al. 2004). This description generally 

appears as a quality report associated to the database (Boin and Hunter 2006). The internal 

quality can be evaluated by making the comparison with theoretic specifications of the reality 

description called the “nominal ground” (David and Fasquel 1997). On the other hand, the 

external quality corresponds to the concept of adequacy to the user’s needs or “fitness for 

uses” (Juran et al. 1979). Bédard and Vallière (1995) define “the external quality as the set of 

characteristics which make spatial data ready to meet user’s needs in a given application”. 

The external quality cannot be objectively described by the data producer because a same 

database can be intended for different uses. Accordingly, Devillers (2004) proposes a fast and 

intuitive approach to communicate the information about the spatial data quality and to 

improve the evaluation of the external quality. 

• Elements of spatial data quality 

In (Guptill and Morrison 1995, Azouzi 2000, Aalders 2002, Van Oort 2006), the spatial data 

quality is described through the following elements: 

� Genealogy (or lineage): it refers to the history of a geographic dataset. It 

describes the source of data as well as the acquisition and derivation methods 

including all transformations involved in the data production process (Van 

Oort 2006).  

� Completeness: it measures the exhaustiveness of the data in terms of the spatial 

and thematic properties (Brassel et al.1995). In the case of absence of data, one 

speaks about data omission. In the case of excess data, one speaks about a data 

commission (Guptill and Morrison 1995, Van Oort 2006).  
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� Logical consistency: it relates to the fidelity of relationships encoded in the 

data structure of the digital spatial data (Guptill and Morrison 1995, Van Oort 

2006). The consistency is composed by: (1) the conceptual consistency (i.e., 

the validity of data according to the conceptual schema), the thematic 

consistency (i.e., the validity of data according to the value domains), the 

structural consistency (i.e., the validity of data according to the physical 

structure of data in the DBMS) and the topological consistency (i.e., the 

validity of geometrical properties of the spatial objects and of their topological 

relationships).  

� Positional accuracy: it relates to the positions exactness of geographic objects. 

A distinction is generally made between the relative accuracy and absolute 

accuracy (Guptill and Morrison 1995). The absolute accuracy refers to the 

relationship between a geographic position on a map (a street corner, for 

instance) and its real-world position measured on the surface of the earth. The 

relative accuracy is the difference in the distance measured between two points 

on a map and the true distance between these same two points, which is 

measured using conventional surveying methods.  

� Attribute accuracy: it provides an assessment of the accuracy of the 

identification of entities and assignment of attribute values in a data set. It 

measures the accuracy of quantitative and qualitative values assigned to the 

thematic attributes (the population of an urban area, the city name, etc.) of the 

spatial objects involved. The thematic attributes can be measured according to 

different measurement scales: cardinal, ordinal and nominal. Each type of 

values requires specific procedures to measure the attribute accuracy (Azouzi 

2000).  

� Temporal accuracy: it refers to the accuracy of the temporal information 

describing geographic entities and their temporal relationships. It is also called 

the “temporal quality” (Van Oort 2006). It can be subdivided in: (1) the 

accuracy of temporal measurements, (2) the consistency of temporal topology 

(i.e., the relationships between the temporal events) and (3) the temporal 

validity (i.e., the actuality of data and their validity according to the time).  

The elements of spatial data quality can be used to evaluate the spatial data imperfections 

in a spatial database. These elements cover principally the problems of inaccuracy, 



 56 

incompleteness, inconsistency, imprecision and vagueness. Then, improving the internal 

spatial data quality leads to the reduction of spatial data imperfections. However, reducing 

spatial data imperfections is not a solution for the spatial objects with vague shapes. This 

strategy would decrease the reliability of spatial databases because the geographic reality 

would be excessively simplified. The spatial objects with vague shapes and their topological 

relationships are not always properly represented using the traditional spatial models. In the 

next section, we review existing approaches that proposed different models to represent 

objects with vague shapes and to identify their topological relationships.  

2.3 Spatial objects with vague shapes and their topological 

relationships  

Section 2.3.1 presents a categorization of spatial objects. Section 2.3.2 is interested in the 

modeling of spatial objects with vague shapes. Section 2.3.3 is focused on the identification 

of their topological relationships. Section 2.3.4 reviews the classifications of integrity 

constraints and existing tools to formally express them.  

2.3.1 Fiat objects vs bona fide objects 

Two categories of spatial objects are distinguished: (1) fiat objects and bona fide objects 

(Smith 1994, Smith and Varzi 2000, Brodeur et al. 2003). This categorization is based on the 

distinction between “fiat boundary” and “bona fide boundary”. A fiat boundary cannot be 

directly observed in the reality (Bittner 2000). For example, the boundaries between the hills 

of a mountain chain are fiat. Forest stands and lakes are two examples of fiat objects. 

However, a bona fide boundary establishes a discontinuity in the space. It refers to a sharp 

line or a physical demarcation between two objects having qualitative and physical 

differences (Smith 1994). Buildings and roads are examples of bona fide objects. 

Nonetheless, the notion of fiat and bona fide classification cannot be applied independently to 

the users’ needs and specificities of the studied phenomenon. In other words, a given object 

cannot be inherently classified as fiat or bona fide. In practice, any object can be in the first or 

in the second class according to the definition given to this object. For example, it is generally 

difficult to determine the start and final points of a road. In the latter case, it is more 
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appropriate to consider a road as a fiat object than a bona fide one. Then, it is possible to 

conclude that the boundary between the fiat class and bona fide class is broad.     

The fiat objects refer to spatial objects with vague shapes (in our terminology) such as 

regions with broad boundaries or broad lines. For this type of objects, several researches 

(Guarino and Wetly 2000, Hwang and Thill 2005) made the distinction between the identity 

vagueness and unit vagueness. This distinction reminds the first uncertainty level (i.e., a 

conceptual uncertainty) defined in (Bédard 1987).  

Generally, the traditional geometrical models do not allow the representation of vague 

shapes. They reduce the spatial extensions of the spatial objects to their certain parts (Yazici 

et al. 2001). For example, a lake with a broad boundary is represented as a region with a sharp 

boundary despite the non-reliability of this representation (in the best cases, metadata are 

stored in the databases to describe the data imperfection). This approach can be motivated by 

two reasons: (1) a tendency to eliminate the shape vagueness in the geometric representations 

and (2) the absence of a technology that allows the storing and management of spatial objects 

with vague shapes. This modeling approach reduces the reliability of spatial databases. For 

example, let a database intended for the storage of spatio-temporal data describing some 

phenomena related to climatic changes. In this example, the climatic zones should be 

represented as regions with broad boundaries because they have fiat boundaries that cannot be 

reliably represented as linear demarcations. These zones are modeled as being bona fide in 

order to allow their management using existing technologies. Consequently, an inherent 

property of these objects is lost. Let a second example of a spatial database that stores data 

about the moving traffic in a navigation system. In this database, a vehicle coordinates 

represent only an estimation of its real position at a moment t. Moreover, there are generally 

no data that inform the user about the truth degree of such estimation. For that reasons, there 

is a necessity to meet new needs by managing spatial objects with vague shapes and 

computing their topological relationships using a new modeling approach. 

In general, we distinguish between at least two categories of models used to represent the 

spatial vagueness. In the first category, crisp spatial concepts are transferred and extended to 

formally express the spatial vagueness; we speak about the exact models such as Cohn and 

Gotts (1996b), Clementini and Di Felice (1997), Erwig and Schneider (1997). In the second 

category, three principal mathematical theories are generally used: (1) the models based on 

the Fuzzy Logic (Zadeh 1965) (e.g., Altman 1987, Burrough 1989, Brown 1998, Schneider 

2001, Tang 2004, Hwang and Thill 2005, Dilo 2006), which can be used to represent 
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continuous phenomena such as temperature, (2) the models based on the Rough Sets theory 

(e.g., Ahlqvist et al. 1998, Worboys 1998b), which represents the objects with vague shapes 

as a pair of approximations (the upper approximation and lower approximation), and (3) the 

models based on the probability theory (e.g., Burrough and Frank 1996, Pfoser et al. 2005), 

which is principally used to evaluate the errors in positions and attributes. In the next section, 

we review the principal approaches belonging to these categories of models.  

2.3.2 Modeling of spatial objects with vague shapes  

2.3.2.1     Definitions based on exact models 

The exact or qualitative models reuse the existing definitions in traditional spatial models to 

represent the spatial objects with vague shapes. The Egg-Yolk theory (Cohn and Gotts 1996a) 

is an extension of the RCC (Region Connection Calculus) model (Randell and Cohn 1989, 

Cohn et al. 1997). This theory has been the first that introduced the concept of regions with 

broad boundaries (Hazarika and Cohn 2001). In this approach, a region with a broad 

boundary is made up of two crisp sub-regions (surrounded by crisp boundaries). The internal 

sub-region is called “Yolk” (i.e., the certain part of the geometry) which is surrounded by an 

external sub-region called “White” (i.e., the broad boundary or the uncertain part of the 

geometry). The union of the “Yolk” and “White” refers to the “Egg” (i.e., an Egg-Yolk region 

is made up of two sub-regions with crisp boundaries). Cohn and Gotts (1996b) consider the 

“Yolk” as a region vaguely localised inside a container sub-region (i.e., the “Egg”). Since the 

points and lines are not considered in the RCC model, the Egg-Yolk theory does not model the 

shape vagueness of these two types of objects. In addition, regions with broad boundaries 

with empty “yolk” or empty “egg” are not admitted. The crisp regions cannot be represented 

using the Egg-Yolk theory.  

Likewise, Clementini and Di Felice (1997) proposed a definition of regions with broad 

boundaries based on the principles of the general point-set topology (Egenhofer and Herring 

1990). A region with a broad boundary is defined as a composition of two sub-regions with 

crisp boundaries A1 and A2, with A1⊆ A2. The broad boundary of A refers to the closure of the 

difference between A1 and A2, 21 AAA −=∆ . In this approach, A1 and A2 should be 

topologically valid; i.e. they should be closed, regular and connected (Clementini and Di 

Felice 1997). For the linear geometries, Clementini and Di Felice (1997) distinguish two 

types of lines with vague shapes: completely broad lines and lines with broad boundaries (i.e. 
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the line endpoints are broad). Tang (2004) proposed an extension of the approach defined in 

Clementini and Di Felice (1997) by giving a more detailed formal definition for regions with 

broad boundaries. He distinguishes four mutually disjoint topological invariants: an interior, 

an interior of the boundary, a boundary of the boundary, and an exterior (figure 2.4). 

 
         Region with a broad boundary  

 

 
 

              (a) Interior            (b) boundary of the boundary     (c) Interior of the boundary 

         Figure 2.4 Topological invariants of a simple region with a broad boundary (Tang 2004) 

 The condition A1⊆  A2 in Clementini and Di Felice (1997) does not exist in Erwig and 

Schneider (1997). Erwig and Schneider (1997) are interested in another kind of vagueness, 

where a region with a vague shape is a composed geometry. The geometry components 

belong to a pair of subsets. First, the kernel subset contains the sub-regions that definitely 

belong to the region with a vague shape. Second, the boundary subset contains the sub-

regions that possibly belong to the region with a vague shape. Likewise, the points with vague 

shapes and lines with vague shapes are respectively defined as a pair of subsets of points and 

lines. Crisp spatial objects can be expressed through this model when the boundary subset is 

empty. Figure 2.5 gives an example of a region with a vague shape A, in which the white sub-

regions compose to the boundary subset and gray ones compose the kernel subset. 

 

 

 

Figure 2.5 Representation of a region with a vague shape according to (Erwig and Schneider 1997) 

2.3.2.2 Models based on mathematical approaches  

� Probabilistic approaches 

� Principles  

The probabilities theory is a branch of mathematics concerned with random phenomena 

(Wikipédia 2008). This theory evaluates the uncertainty by computing a value that belongs to 

an interval bounded by 0 for impossible events and 1 for certain events. Two types of 
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probabilities are generally distinguished. On the one hand, the random probability refers to 

the realization chance of a future event which depends on some unpredictable physical 

phenomena (e.g., obtaining a certain number while turning a chance wheel). On the other 

hand, the epistemic probability relates to the uncertainty of the assertions when there is a lack 

of knowledge about the circumstances and causalities. This type of probabilities has got to do 

with our possession of knowledge, or information (Berglund 1993).  

More formally, if X indicates the universe of probable events, it is possible to define a 

probability distribution P: X → [0, 1]. The value given by P (X) specifies the probability that 

an event x occurs. A probability distribution should satisfy the following axioms: 

 

� Modeling spatial imperfection by using probabilistic approach 

In the case of spatial data, probabilistic methods are quantitative approaches mainly used to 

deal with the positional inaccuracy and precision by using probability distributions (Worboys 

and Duckham 2004). For example, Shu et al. (2003) use this theory to represent the random 

positions of spatial objects. Accordingly, the probability distributions are intended to two 

principal uses. A spatial probability distribution can model the random position of a spatial 

object (Fisher 1999(b), Shu et al. 2003, Worboys and Duckham 2004). Other approaches 

(Bordoloi et al. 2004, Pbesma et al. 2006) use the same concept to visualize the uncertainty 

by using raster data. In the latter case, a probability distribution allows to assign a weight for 

each pixel belonging to the spatial extension of an object visualized. In geodesy, the least 

squares compensation method has been related to the probability theory and is taught in every 

basic geodesy class as a fundamental approach to model imperfection in position and 

measurements. This method allows to estimate the non-systematic errors (due to independent 

factors non-related to a failure in the measurement device) in a dataset when there is a 

superabundance of measurements.  

The probability theory is a quantitative approach which has two principal advantages: (1) 

an advanced mathematical background (Yao 1998), and (2) a simplicity of application. 

However, in the spatial domain, it is rarely used for other types of imperfections than the 

inaccuracy or imprecision. These imperfections can result from the difficulty of observations, 

the linguistic vagueness, the inherent shape vagueness of some objects, the complexity of 

human spatial reasoning, etc.  
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� Fuzzy approaches 

� Basic elements of Fuzzy Logic 

Fuzzy Logic (Zadeh 1965) is based on the notion of Fuzzy Subsets that are generally used to 

model vague concepts such as “young person”, “small”, etc. This theory is an extension of the 

binary logic (i.e., the use of only two values {0, 1} to evaluate the truth of an assertion). The 

works of Zadeh (1965) represent the beginning of the proposals of modeling approaches 

based on fuzzy inference systems. His first contributions were the use of the fuzzy logic to 

represent the natural language.  

The binary logic distinguishes firmly between the members (i.e. elements having 1 as a 

membership degree to the universe) and non-members (i.e. elements having 0 as a 

membership degree to the universe) of a given universe X. The fuzzy logic is a generalization 

of the binary logic since it establishes the correspondence between the members of the 

universe X with all values belonging to the interval [0, 1]. Then, the elements of X do not have 

a strict membership (i.e., 0 or 1) but rather a membership degree belonging to the interval [0, 

1] and computed by using a membership function. Godjjevac (1999) defines the notion of 

membership degree as the compatibility of a given element with the concept represented by 

the fuzzy subset involved. A membership function can take different forms according to the 

application: it can be monotonous, triangular, trapezoidal, bell-shaped, etc. A membership 

function is generally expressed as follows:  

]1,0[:~ →X
A

µ  

According to this function, the non-members of a given subset A have a membership 

degree equal to 0. However, the members which are certainly in A have a membership degree 

equal to 1. Other elements which partially belong to A have a membership degree between 0 

and 1.  

� Fuzzy modeling of spatial objects with vague shapes   

In the context of spatial databases, several approaches such as (Robinson and Thongs 1986, 

Altman 1987, Burrough 1989, Zhan 1997, Schneider 1999, Tang 2004, Dilo et al. 2005, 

Hwang and Thill 2005, Verstraete et al. 2007) used the theory of fuzzy subsets to model the 

spatial objects with vague shapes and their topological relationships (Dutta 1991). In these 

approaches, the spatial objects with vague shapes are called fuzzy spatial objects. The term 
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'fuzzy' does not express a type of spatial imperfections but rather an indication about the 

mathematical approach used to model shape vagueness. Figure 2.3 shows examples using 

fuzzy approaches to represent the spatial objects with vague shapes. 

Zhan (1997) and Dilo (2006) interpret a spatial object with a vague shape as a fuzzy 

subset. In (Zhan 1997), the membership function of a spatial object with a vague shape is 

made up of n cuts−α (an cut−α  is a crisp set containing the elements having membership 

degrees higher or equal to a value α belonging to the interval [0, 1] (Godjjevac 1999)) in 

order to facilitate its interpretation. In the same way, Somodevilla and Petry (2003) 

represented a region with a vague shape by a set of cuts−α  organized inside a minimum 

rectangle including the region. Schmitz and Morris (2006) proposed a fuzzy model (in the 

sense of Fuzzy Logic) also based on the concept ofcuts−α  to represent fuzzy regions. They 

use this concept to describe the internal structure of the broad boundary that surrounds the 

interior of the region. The use of cuts−α  allows to deal with principal limitations of fuzzy 

approaches related to the interpretation and use of the membership functions defining the 

fuzzy subsets. Figure 2.6 shows a region where the broad boundary is decomposed into 

n cuts−α . α = 0 in the exterior, α = 1 in the interior and α belongs to the interval ]0,1[ inside 

the broad boundary (with α1>α2>α3).   

 

 

 

 

 

 

 

Figure 2.6 A region with multiple cuts−α  (Schmitz and Morris 2006)  

 According to Schmitz and Morris (2006), the definition of fuzzy regions assumes that the 

boundary is broad everywhere and an cut−α  should uniformly surround the interior of the 

region. This assumption is not realistic because a region can have a partially vague shape; i.e., 

broad boundaries in some locations and sharp boundaries in some others (e.g., a lake with 

rocky banks on one side and swamp banks on the other side). In this case, a cut−α  should 

have more than one definition in order to be always inside the broad boundary. However, 
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an cut−α cannot have more than one definition inside the same fuzzy subset. Consequently, 

regions with partially broad boundaries cannot be represented by using this approach.  

In (Tang et al. 2003, Tang 2004), a spatial object with a vague shape is defined in two 

different ways. The first definition is based on the properties of a crisp topological space 

(Tang 2004). In a crisp topological space, the membership of a given point is evaluated by 

using a binary logic (1 if the point belongs to the object, 0 else). The second definition 

respects the topological properties of a fuzzy topological space. The concept of fuzzy 

topological space is a generalization of crisp topological space, in which the spatial objects 

are defined as fuzzy subsets (i.e. the membership degree of a point isα , where 10 ≤≤ α ). 

Bjørke (2004) and Schneider (2001) proposed a method to identify the broad boundary of a 

region by computing the membership of each point to the interior and boundary, respectively. 

� Rough Sets 

Rough sets theory (Pawlak 1994) is a formal approach to deal with the difficulty to 

distinguish between the elements belonging to a first set A and those contained by a second 

set B. For example, let two data sources A and B involved in an integration process. A and B 

store the same set of forest stands where the geometries are defined with different resolutions 

and precisions. To distinguish similar forest stands, Rough sets theory can be used to define 

two approximations for each stand: a minimal approximation and a maximal one. They 

correspond to the geometric representation having the smallest resolution and that having the 

highest resolution, respectively (figure 2.7). 

 

 

 

   

Figure 2.7 Example of an integration of two geometries based on the rough sets (Worboys 1998b)  

In the case of spatial data, Rough sets theory has been also used to model spatial objects 

with vague shapes and their topological relationships (Beaubouef and Petry 2001). Worboys 

(1998b) used this theory in a context of multi-resolution representations. Ahlqvist et al. 

(1998) introduced the concept of approximate classification which corresponds to the set of 

Upper approximation 

Lower approximation 
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rough sets associated to the data. In this approach, the membership to the maximum 

approximation reflects the uncertainty of the concerned element. 

Roy and Stell (2001) deal with indeterminacy defined as a knowledge imperfection that 

prevents a bivalent evaluation of a given assertion (true or false). They define an 

indeterminate region by using approximate sets (Pawlak 1994). An indeterminate region is 

composed of a lower approximation and an upper one. The difference between these 

approximations refers to the broad boundary of a region. When this difference is empty, the 

region is crisp because the two approximations are equal (Roy and Stell 2001).  

2.3.3 Topological relationships between spatial objects with vague shapes 

In the context of objects with crisp shapes, several models (Egenhofer and Herring 1990, 

Egenhofer and Franzosa 1991, Mark and Egenhofer 1994, Cohn et al. 1997) studied the 

specification of topological relationships in GIS and spatial databases. These models are 

based on two principal approaches: (1) the point-set topology (Egenhofer and Herring 1990) 

and (2) mereology4. The principles of mereology have been reminded in (Varzi 2004). First, 

we review these models used for characterising the topological relationships between crisp 

objects. Then, we present the extensions of these traditional models to deal with topological 

relationships between vague objects.  

� RCC model and 9-intersection model for characterising the topological relationships 

between crisp objects 

The RCC (Region Connection Calculus) model is based on the mereology. The RCC model 

has been presented in different papers as a tool to identify the spatial and temporal 

relationships (Randell and Cohn 1989, Cohn et al. 1997, Stell 2000). In the RCC model, the 

“ region” is the only geometric primitive used to represent spatial objects; i.e. the points and 

lines are not considered. Moreover, a primitive relationship called “Connection” noted C is 

used to express a general relationship between two simple regions with crisp shapes: C (A, B) 

(A “ is connected” to B).  

 

                                                 
4 Region is the only geometric primitive defined (i.e. the points and lignes are not considered). The region is the 
elementary component of the space  
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Two versions of RCC model have been proposed:  

� RCC-5: this model proposes five relationships between two simple regions: 

DR (Disjoint), PO (Partial Overlap), PP (Proper Part), PPi (Proper Part 

inverse) and EQ (Equal).  

� RCC-8: the relationships proposed in this model can be derived from those 

defined the RCC-5 model (figure 2.8). 

  

  

 

 

Figure 2.8 Topological relationships according to RCC-5 and RCC-8 models (Dilo 2006) 

The 9-Intersection model allows an identification of topological relationships based on the 

principles of the point-set topology (Egenhofer and Franzosa 1991). This model is typically 

referenced when one speaks about the topological relationships and it has been integrated in 

different frameworks to specify these relationships (Chen and Li 1997). In this model, the 

topological relationships are identified by using 9-Intersection matrices that denote the 

intersections between the boundaries, interiors and exteriors of the objects involved. The 9-

Intersection model distinguishes 8 topological relationships between two simple crisp regions 

(Disjoins, Equal, Overlap, Contains, Inside, Covers, Covered by, Meet), 36 relationships 

between two simple crisp lines, 19 relationships between a simple crisp region and a simple 

crisp line, 2 relationships between two crisp points, 3 relationships between a crisp point and 

a simple crisp line, and 3 relationships between a crisp point and a simple crisp region. This 

model is an extension of the 4-Intersection model (Egenhofer 1989) where only the interior 

and boundaries of objects are considered to identify the topological relationships. The 9-

Intersection model also includes the intersections with exteriors. 
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Figure 2.9 Topological relationships between two simple regions with well-defined shapes according 
to the 9-Intersection model (Egenhofer and Herring 1990) 

� Extensions of traditional models to deal with topological relationships between 

objects with vague shapes 

In the context of spatial objects with vague shapes, the topological relationships can be 

specified by extending the RCC and 9-Intersection models (Cohn and Gotts 1996a, 

Clementini and Di Felice 1997, Erwig and Schneider 1997, Roy and Stell 2001, Tang 2004). 

Erwig and Schneider (1997) used a three-valued logic to compute the topological 

relationships involving objects with vague shapes. Then, an intersection between two 

topological invariants can be true, false, or may be (i.e. when an uncertain part of the 

geometry is involved in the intersection). 

In Cohn and Gotts (1996b), a topological relationship between two Egg-Yolk regions A 

and B is identified using a 4-Intersection matrix which enumerates four sub-relations: 

R1(Egg(A) - Egg(B)), R2(Egg(A) - Yolk(B)), R3(Yolk(A) - Egg(B)), and R4(Yolk(A) - Yolk(B)) 

(figure 2.10). These four sub-relations are those defined in RCC-5 model: Partially Overlap 

(PO), Proper part (PP), Equal (E), Proper Part inverse (PPi), and Distinct (D).  In (Cohn and 

Gotts 1996b), only 46 matrices are consistent and refer to 46 topological relationships that can 

be drawn between two regions with broad boundaries. Figure 2.10 presents the relationship 

number 15 identified in Cohn and Gotts (1996b). The principal advantage of this approach 

relates to its simplicity to identify the topological relationships. However, it does not provide 
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a framework to specify topological relationships involving points, lines, or regions with crisp 

shapes. 

 
 
 
 

Figure 2.10 Identification of topological relationships in (Cohn and Gotts 1996(b)) 

Clementini and Di Felice (1997) introduced the concept of approximate topological 

relationships defined as relationships between regions with broad boundaries. They used a 

formalism based on a 3*3-Intersection matrix where the crisp boundary is replaced by a broad 

one. This approach considers the rules defined in Clementini and Di Felice (1997) to check 

the consistency of a matrix (12 rules to eliminate each matrix that cannot be drawn). Then, 

only 44 matrices are consistent and refer to 44 relationships which can be drawn between two 

regions with vague shapes. These relationships are grouped into 17 clusters that are organized 

in a conceptual neighborhood graph. This approach may be very useful when the topological 

relationships are coarsely described by the user. However, it is not sufficiently expressive 

when the needs are more specific and the user has a clear idea about the required relationship 

between regions with broad boundaries involved. For example, figure 2.11 shows an example 

of two different relationships which belong to the same cluster and identified by the same 

matrix.   

             
 
 
                          
                                                    

           Figure 2.11 Identification of the topological relationships in (Clementini and Di Felice 1997) 

In the same way, Reis et al. (2006) reused the model proposed in (Clementini and Di 

Felice 1997) in order to identify the topological relationships between lines with vague 

shapes. In this approach, 2 conditions defined in (Clementini and Di Felice 1997) are used to 

reduce the number of topological relationships. Then, 5 topological relationships are 

distinguished between two completely broad lines and 77 between two lines with broad 

boundaries (or endpoints).  

Tang (2004) proposed an extension of the 9-Intersection model where he identifies more 

topological relationships than (Clementini and Di Felice 1997) by using a 4*4-Intersection 

matrix. Indeed, this approach distinguishes 152 topological relationships described by 152 

PO (Egg(A), Egg(B)) PPI (Egg(A), Yolk(B)) 

PO (Yolk(A), Egg(B)) PO (Yolk(A), Yolk(B)) 

0 0 1 
0 1 1 
1 1 1 
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matrices (see the example in figure 2.12). In practice, the absence of a classification of these 

topological relationships reduced the utility of the model because it is very difficult to make 

an easy and intuitive distinction between them. Moreover, Tang (2004) does not make the 

distinction between the internal boundary and external one for a region with a broad 

boundary. Consequently, several topological relationships cannot be identified by a 4*4-

Intersection matrix.   

 

               
  
   
                                                                                                    
 
 

Figure 2.12 Identification of the topological relationships in (Tang 2004) 

� Using Fuzzy Set theory to deal with topological relationships between objects with 

vague shapes 

Fuzzy Set theory is also used to identify the topological relationships between objects with 

vague shapes (Zhan 1997, Schneider 2001, Somodevilla and Petry 2003, Bjørke 2004, Du et 

al. 2005, Dilo 2006). According to Zhan (1997), a topological relationship is called R (i.e. a 

parameter used to replace the eight relationships identified in the 4-Intersection model 

(Egenhofer 1989)). For each pair of cuts−α  of regions involved, a sub-relation r is 

identified. Then, the possibility of the global relation R is deduced from the number of sub-

relations arising between the different cuts−α . This approach is easy to use in practice, but it 

presents some complexity when thecuts−α  are non-uniformly distributed between 0 and 1.  

In the same way, Dilo (2006) identifies six possible topological relationships (i.e. Disjoint, 

Touches, Crosses, Overlaps, Within, and Equal) between two spatial objects with vague 

shapes. A topological relationship is defined by using fuzzy operators (e.g. union, 

intersection, absolute difference, and bounded difference) applied to the fuzzy subsets that 

define the objects involved. According to Dilo (2006), many topological relationships may 

exist at the same time with different Truth degrees  (e.g. Overlap(A, B) with the Truth degree 

= 0,2; Meet(A,B) with the Truth degree = 0,3; Disjoint(A, B) with the Truth degree =  0,5). Du 

et al. (2005) proposed an extension of the 9-Intersection model in order to describe the 

fuzziness of topological relationships. Shi and Liu (2007) consider two stages to model the 
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topological relationships: (1) giving a qualitative definition for each relationship and (2) 

computing each instance of this relationship by using Fuzzy Logic. In the same way, Bjørke 

(2004) uses a linguistic variable which gives an association to a crisp relation and a quantifier 

which indicates the strength of the topological relationship computed by using fuzzy 

operators.  

The fuzzy models allow a description of the internal structure of broad parts of an object 

with a vague shape. However, some quantitative hypotheses are generally required in order to 

define the membership functions either for the computation of spatial objects or the 

evaluation of their topological relationships. This requirement can be considered as a 

limitation of the fuzzy approaches because the definition of these hypotheses is generally 

arbitrary; i.e. they are neither based on perception studies nor application evaluations (Bjørke 

2004). Additionally, the fuzzy approaches are expensive in the implementation and more 

adapted to the raster data than to the vector data. In the raster data, the gradual transition of 

the interior or boundary of a given fuzzy object can be shown through the membership degree 

computed for each pixel (Clementini 2005).  

In this section, we made a bibliographical study on the modeling of topological 

relationships between spatial objects with vague shapes. These topological relationships 

present relevant data that should be consistent and reliable in spatial databases. The 

consistency of topological relationships is generally controlled through a set of rules called 

the topological integrity constraints. In the next section, we review these constraints in the 

context of spatial databases. 

2.4 Consistency of spatial databases and integrity constraints 

2.4.1 Introduction 

The specification of integrity constraints is an important design step in a development process 

of spatial databases (Borges et al. 2002). The integrity constraints should be respected when 

the database is updated in order to preserve its logical consistency (Elmasri and Navathe 

2000). The logical consistency requires the specification of different types of constraints 

which can relate to the spatial object attributes as well as the relationships between spatial 

entities (topological, metric, order, temporal). According to Bédard (1987), a spatial object 
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has a definition, a thematic description (thematic attributes), a spatial extension (a geometry) 

and a temporal description (existence and geometric evolution). All of these aspects can be 

concerned by integrity constraints.  

2.4.2 Classification of integrity constraints   

In spatial databases, the terms “integrity” and “consistency”  are used to remind that the data 

should be exact, correct, valid and consistent (Kainz 1995). Accordingly, the integrity 

constraints are used to define the characteristics of valid data that can be accepted in a given 

database. Integrity constraints can relate to the properties of relational databases such as the 

uniqueness of some keys. They can also relate to semantic properties (e.g. a house is build on 

1,1 ground), to spatial properties and relationships (e.g., a building should not overlap a 

road), or to temporal properties and relationships. The integrity constraints can be defined at 

the conceptual level through specific tools (Bédard et al. 2004).  

According to Hendrik et al. (1997), the integrity constraints can be intra-object when they 

are defined on the attributes of only one object. In the same way, they can be inter–objects 

when they control the validity of a spatial relationship (topological, metric, directional and 

order relationships) between two objects.  

Mehrdad Salehi (2005) proposes a formal classification of integrity constraints based on 

the distinctive components of spatio-temporal databases that refer to space, time, themes, and 

their combinations. This classification of integrity constraints is based on a classification of 

objects in spatio-temporal databases that has been widely used and considered as a base in 

developing spatio-temporal schema modeling languages such as Perceptory (Bédard et al. 

2004) and MADS (Parent et al. 2006). In spatio-temporal databases, objects are classified 

based on their spatial, temporal, and thematic (i.e. non-spatial and non-temporal) properties 

and on the combinations of these properties. Objects that hold geometric attributes are usually 

called “spatial”. Objects for which the existence is managed (e.g., their birth and death dates) 

and their non-spatial attribute values that evolve through time are called “temporal”. “Spatio-

temporal” objects are those having a geometry evolving in time. Objects that are not in these 

previous categories are usually called “thematic”. Accordingly, Mehrdad Salehi assumes that 

an IC is an assertion carrying a number of concepts that are related to space, time, themes, and 

their combinations. These concepts are in fact used to build an integrity constraint language 

for spatio-temporal databases called “ICLS concepts”. Based on the nature of ICSL concepts 
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appearing in the IC assertion, an integrity constraint is then classified.  Following to this, 

spatial-only integrity constraints and spatial integrity constraints are specialized to primary, 

topological, metric, ordering, and hybrid integrity constraints. Sub-classes of temporal-only 

and temporal integrity constraints are primary, topological, and metric integrity constraints. 

He distinguishes two types of spatio-temporal-only integrity constraints as inherent and 

hybrid. Finally, three types of spatio-temporal integrity constraints, i.e., inherent, composite, 

and hybrid are distinguished. 

Elmasri and Navathe (2000) distinguish three categories of integrity constraints. Firstly, 

the inherent constraints refer to the rules related to the data model and not to the application. 

For example, the uniqueness of primary keys is an inherent constraint of the relational 

databases. Secondly, the implicit constraints are defined on the physical schema of the 

database by using the Data Definition Language (DDL for short). For example, the integrity 

constraints on the domain values are implicit. Thirdly, the explicit constraints are defined 

using application languages at the level of class methods. The business rules can be 

considered as examples of explicit constraints.   

Fahrner et al. (1995) proposed a classification based on the impact of an integrity 

constraint on the database states. Then, an integrity constraint can be static when it should be 

checked according to a single state of the database. For example, “the surface of an 

administrative region should be higher than each of its municipalities». Likewise, the 

transitional constraints are used to restrict the number of possible transitions from one state of 

the database to another. For example, the constraint, “when the data describing an 

administrative region are updated, its budget should never be reduced”, is transitional. 

Moreover, dynamic constraints allow restricting sequences of transitions between possible 

states of a given database.  

Cockcroft (1997) distinguishes three principal categories of integrity constraints in spatial 

databases: 

• Topological integrity constraints: they refer to the topological relationships 

between spatial objects belonging to the same data collection. They can also refer to 

the geometrical properties of the objects without considering the meaning of 

geographical features involved. These constraints relate mainly to the connectedness 

and adjacency between geometries involved. For example, “a polygon should be 

closed” or “objects belonging to the same collection should form a connected 
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graph” (isolated objects are not admitted). In (Cockcroft 1997), these constraints are 

inherent to the data model itself and do not need to be specified in the conceptual 

schema of the database. 

• Semantic integrity constraints: these constraints are defined according to the 

meaning of geographical entities (Cockcroft 1997). The semantic constraints result 

from the combination of the geometric information, spatial relationships, and 

meaning of spatial objects involved. Then, the semantic constraints may contain 

topological conditions. For example, “a road network should be connected”. This 

integrity constraint is semantic because the definition of a road network should be 

considered. Moreover, the network connectedness is a topological condition that 

should be respected by this type of objects. 

• User-defined integrity constraints: according to Cockcroft (1997), the user-defined 

constraints express esoteric rules defined by the domain experts. They can express 

legislative rules, environmental constraints, etc. For example, “the distance between 

a military zone and the closest urban area should be greater than 3 km”. 

 The classification of Cockcroft (1997) has its specific limitations. Firstly, metric 

constraints cannot be classified into one of the three categories proposed by Cockcroft (1997). 

In these constraints, the topological conditions are replaced by metric ones. For example, 

“The distance between two polygons or two lines is defined as the minimal distance between 

all nodes of the objects involved». Secondly, the semantic constraints can contain metric 

conditions (e.g. the maximum distance between a house and a fire hydrant is lower or equal 

to 20 m). Likewise, they can be purely semantic (e.g., a house has only one owner). Thirdly, it 

is difficult to distinguish between the semantic constraints from user-defined ones. Moreover, 

a semantic component may exist in a topological constraint especially when it verifies a 

topological relationship between two spatial objects. 

In the data warehouses, it is also necessary to control the logical consistency of 

aggregations. This consistency is managed through specific constraints defined on the 

aggregation functions such as min, max, sum, count and average (Ross et al. 1998). 

Aggregative integrity constraints can be integrated into an optimization process which 

prevents the execution of an expensive computing process whether a set of data cannot be 

aggregated (Levy and Mumick 1996).  
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Some simple integrity constraints can be represented in the conceptual schema of a given 

data warehouse. For example, an aggregation association between two hierarchical levels of a 

spatial dimension means that the members of an intermediate level has only one parent 

member at the immediately higher level (e.g.,“ Montpellier belongs only to the South_France 

category”). In this context, Perceptory is a design tool which provides a set of pictograms 

extending the Unified Modeling Language (UML) in order to establish the conceptual schema 

of a spatial data warehouse (Bédard 2006).  

Salehi (2005) aims also at specifying complex integrity constraints in a spatial data 

warehouse. In this context, intra-level topological relationships (between spatial objects of the 

same hierarchical spatial dimension level) or inter-level ones (between spatial objects 

belonging to different hierarchical levels of the same spatial dimension) should be controlled 

through specific integrity constraints. These constraints are often difficult to be managed 

since the geometrical data stored in the different levels result from an integration process 

involving several heterogeneous data sources. More specifically, topological constraints 

should consider the uncertainty about the appropriate intra-level and inter-level topological 

relationships between the integrated geometries that can be vague. Accordingly, Frank (2001) 

and Rodriguez (2005) proposed the implementation of tolerant constraints that considers the 

shape vagueness of data resulting from an integration process. Figure 2.13 shows the 

integration of different geometric representations (of two spatial objects A and B) loaded from 

two different data sources. According to Rodriguez (2005), the integration result is partially 

consistent because final geometries have vague shapes. Then, the maximal consistency of 

these geometries is obtained by the intersection. However, the minimal consistency is that 

obtained by the unions of source geometries of A and B. 

 

  

  

  

Figure 2.13 Integration of two heterogeneous source geometries (Rodriguez 2005) 

The implementation of integrity constraints in a database is preceded by a formal 

specification done through specific languages or representations that we review in the next 

section.  
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2.4.3 Formal specification of spatial integrity constraints  

2.4.3.1 First-order logic based languages 

A formula of first-order logic can be made up of symbols representing variables, constants, 

predicates, functions, quantifiers and logical connectors (Dehornoy 2006). First-order logic 

has been used to specify integrity constraints as in languages used to model the knowledge in 

artificial intelligence (Reiter 1987). For example, the constraint TC3: “a person gender should 

correspond to one of the following values: male or female” is expressed as follows: 

)()()()( xfemalexmalexpersonx ∨⊃∀  

In spatial domain, Hadzilacos and Tryfona (1992) used the first-order logic and the 4-

intersection model to specify spatial integrity constraints. For example, the constraint C3: 

“parcels should not intersect buildings” is expressed as follows: 

 

 

 

With r6 and r7 refer to the following topological relationships: “Contains” and “Covered by” 

defined in the 4-Intersection model, respectively. 

However, the first-order logic based languages are generally difficult to be used to express 

the integrity constraints. Long formulas are required to specify the integrity constraints 

because their syntaxes are often limited. Benzaken and Doucet (1993) used the object-

oriented concepts through a specific programming language called THEMIS. The integrity 

constraints are implemented as methods written using this language.  

2.4.3.2 Visual specification of spatial integrity constraints  

According to Proulx et al. (1995), a visual language requires the use of visual expressions 

(e.g. icons, diagrams) to formally express a topological integrity constraint. The main 

advantage of a visual language relates to its facility of use. These languages can be useful to 

help novice users to express simple topological integrity constraints. For example, CIGALES 

is a visual language proposed by Calcinelli and Mainguenaud (1994) in order to express 

simple spatial queries.    

  Servigne et al. (2000) proposed a visual interface to define the topological integrity 

constraints. In this approach, a topological integrity constraint is defined in three phases using 

DEFINE CONSTRAINT CONSTRAINT 
CONSTRAINT_IN_BUILDING_BLOCK 
AMONG (LANDPARCEL, BUILDING_BLOCK) 
AS r6 (LANDPARCEL, BUILDING_BLOCK) OR  
r 7 (LANDPARCEL, BUILDING_BLOCK)  
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a visual interface. The first phase is to choose the objects involved, before specifying a spatial 

relationship and setting a specification related to the validity of this relationship. Then, the 

general form of a spatial integrity constraint is presented as follows: 

Constraint = (Class Object 1, Relation, Class Object 2, Specification) 

The argument “specification” can refer to a prohibition, an authorization, the maximum 

number of occurrences, etc. The main advantage of this approach lies in its simplicity and 

intuitive use. For example, the constraint C4: “a parcel should not be crossed by a road” can 

be expressed as follows: 

(Parcel, crossed by, Road, forbidden) 

In the same way, Erwig and Schneider (2003) proposed a visual language to specify valid 

topological relationships between spatio-temporal objects. The logical consistency of such 

relationships is verified through a set of graphs that describe their valid evolutions (Erwig and 

Schneider 2003). 

According to Proulx et al. (1995), visual languages have various limitations related 

principally to a lack of normalization symbols and pictograms used in the interfaces depend 

on cultural aspects (e.g. some symbols change from one country to another). Moreover, it is 

generally difficult to specify in the same integrity constraint two topological constraints 

involving the same objects. 

2.4.3.3 Tabular specification 

Normand (1999) proposed a tabular approach based on the formalism defined in (Government 

of Canada 1996) in order to express the spatial integrity constraints. This approach consists in 

exploring the constraint description given by the expert in order to represent its necessary 

elements in the cells of a related table. Table 1 shows the tabular specification of the 

following spatial constraint: “a stream may be adjacent to a river whether its endpoints are 

on the boundary of this river. In the other cases, it should be adjacent to two other streams”. 

Table 2.1 Tabular specification of integrity constraints 

Operator Relations Cardinalities Objets Dimensions of objects involved 

  Equality 0-0 River 1 

Disjunction - 
Or Adjacency 1-2 

1 

Disjunction - 
Or Adjacency 1-2 

Stream 

- 
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2.4.3.4 Spatial Extension of Object Constraint Language (OCL) 

OCL (Waremer and Kleppe 1998) is a formal language mainly used for the specification of 

integrity constraints; this language has been integrated in UML. In OCL, the integrity 

constraints are expressed through the notion of “invariants”. An invariant refers to a 

condition which should be always satisfied by each instance of a given class. The constraint 

context refers to the element of the conceptual schema on which the constraint is defined: a 

class, an interface or a type defined in the UML class diagram. OCL is based on the principle 

of “navigation”. This principle relates to the possibility of defining constraints involving 

different classes related to the context class. 

For spatial integrity constraints, Duboisset et al. (2005) and Pinet et al. (2004) proposed an 

extension of the meta-model of OCL. A new generic type called BasicGeoType has been 

proposed in order to integrate geographical data types in OCL. Moreover, new functions have 

been defined in order to introduce topological operators as additional syntax elements of 

OCL. These operators find their theoretical background in (Egenhofer and Franzosa 1991). In 

the case of topological relationships between crisp regions, eight operators have been defined 

where each allows the identification of a topological relationship proposed in the 9-

Intersection model. According to this approach, a spatial integrity constraint is an invariant 

defined for a given context class. For example, let the constraint C4: “buildings and roads 

should be disjoint or adjacent”. C4 can be expressed as follows: 

Context road inv :  

Building.allInstances�forAll(b|Self.geometry�aredisjoint(b) or self.geometry�areAdjacent(b)) 

2.5 Conclusion 

The spatial imperfection is an inherent property of spatial data. In Section 2.2, we stressed the 

diversity of the contributions around the question of spatial data imperfections. Several 

taxonomies such as (Bédard 1987, Parsons 1996, Smets 1996, Smithson 1989, Fisher 1999a, 

Worboys 1998, Hazarika and Cohn 2001) have been proposed to classify these imperfections 

according to various points of view: the origin and nature of imperfection, the nature of 

objects involved (i.e. well-defined, ill-definite), the factors causing a deficiency of data 

quality, etc. Bédard (1987) studied the forms and levels of uncertainties in a spatial object 

description (Bédard 1987). Then, we reviewed the management of uncertainty in spatial 
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databases and data warehouses. We concluded that the data quality of these databases is 

directly affected by different forms of spatial imperfections. 

In this thesis work, we are specifically interested in the logical consistency of spatial 

objects with vague shapes and of their topological relationships. The logical consistency is 

controlled through integrity constraints which represent a set of rules specified at the 

conceptual level and applied to the data in order to prevent the inconsistencies in a given 

spatial database. The definition and application of integrity constraints can be affected by 

various forms of imperfection such as concepts ambiguity, shape vagueness, and inaccuracy 

of the quantitative information checked by these constraints. Among these forms of 

imperfection, we are interested in the shape vagueness that may characterise the geometry of 

some spatial objects such as pollution zones. Representing spatial objects with vague shapes 

requires the use of a specific spatial model which allows a more reliable description of reality. 

This model presents the background of any approach aiming at the management of integrity 

constraints for spatial objects with vague shapes and their topological relationships.  

In Section 2.3, we studied related works to the problem of modeling spatial objects with 

vague shapes. These models can be grouped in two principal categories. First, exact models 

extend concepts and structures of models defined for crisp objects in order to represent spatial 

objects with vague shapes (Burrough and Frank 1996, Cohn and Gotts 1996(a), Clementini 

and Di Felice 1997, Roy and Stell 2001). The advantage of these models lies in their low 

development cost. However, the existing exact models do not represent spatial objects with 

partially vague shapes. For example, a lake can be surrounded by a broad boundary (swamp 

banks) on one side and a linear boundary on the other side (rocky banks) at the same time. 

The existing exact models consider that a broad boundary should correspond to a closed and 

connected polygonal zone that surrounds the interior of the region involved. These models 

consider these regions as invalid. Moreover, the topological relationships between such 

objects with vague shapes cannot be computed through the existing exact models.  

The second category of models (Dilo et al. 2005, Schneider 2001, Zhan 1997, Worboys 

1998(b), Roy and Stell 2001, Tang 2004, Pfoser and Tryfona 2005) includes approaches 

based on mathematical theories such as Rough Sets theory (Pawlak 1994) or Fuzzy Logic 

(Zadeh 1965). Fuzzy Logic has been used in the principal proposals in this category of 

models. The fuzzy approaches have the advantage of modeling the internal structure of vague 

parts of a given object. For example, a fuzzy approach generally allows to compute the 

membership degree of each point inside the broad boundary of a region. However, these 
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approaches are expensive in terms of implementation as well as they require the setting of 

some quantitative assumptions necessary to define the membership functions.  

Section 2.4 presents a literature review on the classification of integrity constraints and 

their formal specification. We concluded the absence of an approach which allows the 

specification and implementation of topological constraints involving spatial objects with 

vague shapes and their topological relationships. Existing methods for integrity constraints 

modelling do not support spatial objects with vague shapes. The fuzzy approaches provide a 

quantitative evaluation of shape vagueness of this type of objects and of their spatial 

relationships. Consequently, De Tré et al. (2004) proposed an extension of the notion of 

generalized constraints (presented in (Zadeh 1965)) in order to model a partial satisfaction of 

integrity constraints involving spatial objects with vague shapes. An integrity constraint is 

partially respected when it is satisfied with a membership degree between 0 and 1. However, 

the fuzzy approaches present different limitations discussed in section 2.3. 
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3.1 Résumé de l’article 

La notion de frontière large est généralement utilisée pour remplacer les frontières linéaires 

pour des objets ayant des formes vagues. Une frontière large est un invariant topologique qui 

doit respecter les conditions de fermeture et de connexité. En effet, les régions ayant des 

frontières partiellement larges sont considérées comme inconsistantes dans les modèles 

existants (e.g. un lac avec des berges rocheuses et d’autres marécageuses). L’objectif de ce 

travail est de représenter différent niveaux de vague de forme et de les considérer lors de 

l’identification des relations topologiques. Ainsi, un objet ayant une forme vague est défini 

comme étant une composition de deux extensions spatiales: une extension minimale et une 

autre maximale. Ensuite, les relations topologiques sont identifiées en appliquant le modèle de 

9-Intersection pour les sous-relations entre les extensions minimales et maximales des objets 

impliqués. Quatre sous-relations sont ainsi représentées dans une matrice 4*4 que nous 

utilisons également pour établir une classification des relations topologiques. Pour les régions 

ayant des frontières larges, 242 relations sont distinguées et classées dans 40 groupes. Cette 



 88 

approche permet une expression adverbiale des contraintes d’intégrité et des requêtes 

spatiales. 

3.2 Abstract  

A broad boundary is generally used to replace one-dimensional boundary for spatial objects 

with vague shapes. For regions with broad boundaries, this concept should respect both 

connectedness and closeness conditions. Therefore, some real configurations, like regions 

with partially broad boundaries (e.g., lake with rocky and swamp banks), are considered 

invalid. This paper aims to represent different levels of shape vagueness and consider them 

during the identification of topological relationships. Then, an object with a vague shape is 

composed by two crisp components: a minimal extent and a maximal extent. Topological 

relationships are identified by applying the 9-Intersection model for the sub-relations 

between the minimal and maximal extents of objects involved. Four sub-relations are then 

represented through a 4-Intersection matrix used to classify the topological relationships. For 

regions with broad boundaries, 242 relationships are distinguished and classified into 40 

clusters. This approach supports an adverbial expression of integrity constraints and spatial 

queries. 

3.3   Introduction  

To satisfy the requirements of several categories of users, Geographic Information Systems 

(GIS) and spatial databases provide tools to store, retrieve, analyze, and display spatial data. 

Ensuring their usability requires controlling the spatial data quality, which can be degraded by 

several types of imperfections. Several approaches (Smithson 1989, Fisher 1999(b), Mowrer 

1999, Duckham et al. 2001) proposed different categorizations of data imperfections that are 

generally caused by the complexity of reality and limitations of the instruments and processes 

used in the measurements (Bédard 1987). Moreover, inappropriate spatial data representations 

can also be another source of data quality degradation (Dilo 2006). Spatial reality is generally 

forced to be represented by crisp spatial object types (i.e., points, lines, and regions), whereas 

the shapes of many spatial objects are inherently vague (e.g., forest stand, pollution zone, 
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valley, or lake). Shape vagueness occurs when it is difficult to distinguish the boundary (e.g., 

regions with broad boundaries) and/or the interior (e.g., broad points or lines with broad 

interior) of an object's geometry from other spatial objects of the neighborhood. Using crisp 

spatial object types to represent spatial objects with vague shapes entails a clear gap between 

the spatial reality and its formal representation in databases and GIS (Cheng et al. 2001, 

Yazici et al. 2001). 

Pertinent solutions were found to overcome the "classical" sources of spatial data quality 

degradation (Bédard 1987, Goodchild 1995, Guptill and Morrison 1995, Ubeda and 

Egenhofer 1997, Frank 2001, Van Oort 2006, Devillers et al. 2007, Pinet et al. 2007). Several 

approaches (Burrough and Frank 1996, Cohn and Gotts 1996, Clementini and Di Felice 1997, 

Erwig and Schneider 1997, Schneider 2001, Tang 2004, Pfoser et al. 2005, Dilo 2006) have 

studied specificities of objects with vague shapes to determine their appropriate 

representations. A review of the literature in this domain (cf. Section 2.3) stresses that current 

GIS and spatial database systems do not offer the specific structure to formally represent this 

type of objects (as pointed by Clementini and Di Felice 1997 ten years ago). With regard to 

this problem, researchers are increasingly more motivated to model shape vagueness in order 

to: (1) reduce the gap between the geographic reality and the spatial models (Cohn and Gotts 

1996), (2) provide formal modeling tools to represent shape vagueness (Yazici et al. 2001), 

and (3) specify spatial queries involving spatial objects with vague shapes (Erwig and 

Schneider 1997). In the same way, the spatial data integration requires the extraction of 

heterogeneous representations of the same objects from different data sources. The main 

difficulty lies in choosing one of them when no information exists about their quality 

(Rodriguez 2005). By using a spatial model that supports shape vagueness, it becomes 

possible to merge different representations in such a way that the integration result looks like 

an object with a vague shape. For example, figure 3.1 shows a spatial object that has a 

representation A in a first source and a representation B in a second one. The integration result 

can correspond to one geometry with a vague shape made up of A and B (figure 3.1). The 

intersection of A and B corresponds to the certain part (i.e., the part that exists in both 

representation A and representation B) or the minimal extent of the spatial object. However, 

the union is the maximal extent that the object can fill; it groups the certain and the uncertain 

parts (i.e., a geometry part is uncertain when it does not exist in all candidate representations 

for the integration) of the geometry. Indeed, there are strong and different motivations to 

present pertinent solutions in order to adequately model the shape vagueness.  
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                              Representation A 

                                                                                                                    Integration result 

                                    Representation B 

  

Figure 3.1 Integration of different spatial representations of a same object (e.g., lake) 

To model objects with vague shapes, researchers were firstly inspired by the modeling of 

crisp spatial objects. In point-set topology (Egenhofer and Herring 1990), crisp spatial objects 

are typically decomposed into three mutually disjoint topological invariants: an interior, a 

boundary, and an exterior. Several approaches (Clementini and Di Felice 1997, Tang 2004, 

Reis et al. 2006) extend the crisp models by identifying other topological invariants for the 

objects with vague shapes. For example, Clementini and Di Felice (1997) distinguish three 

topological invariants for regions with broad boundaries: an interior, a broad boundary (i.e., a 

two–dimensional boundary), and an exterior. In this approach, the shape vagueness is 

correlated to the broad boundary, which should respect the closeness and the connectedness 

conditions (Clementini and Di Felice 1997, Tang 2004). Thus, any representation that does 

not verify these conditions is considered invalid. Nonetheless, the shape vagueness can also 

characterize only some parts of an object's geometry. For example, figure 3.2 shows a lake 

surrounded by crisp rocky banks on one side and swamp ones on the other side at the same 

time (figure 3.2). We denote this kind of feature as objects with partially vague shapes that 

cannot be represented by existing models. Then, the main questions are: How is it possible to 

define an exact model where different levels of shape vagueness could be considered? How 

can we retain this expressivity during the specification of topological relations between such 

objects? 

 

 

 

Figure 3.2 A lake with a partially broad boundary 

The first objective of this paper is to allow the representation of three levels of shape 

vagueness: crispness, partial shape vagueness, and complete shape vagueness. Modeling 

objects with vague shapes requires a framework for identifying topological relations. The 

second objective is to consider the different levels of vagueness in the identification of 

topological relations between objects with vague shapes. In several studies (Clementini and 

Di Felice 1997, Tang 2004, Reis et al. 2006), topological relations can be identified by 

Maximal extent 

Minimal extent 

Rocky banks 

Swamp banks 
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enumerating the intersections between the topological invariants of the objects with vague 

shapes involved. For each model, the number of relations depends upon the number of 

topological invariants. In this work, we look for an expressive model in which it is possible to 

specify the vagueness level of the topological relation instances. We think that it would be 

pertinent for the user to know whether objects are weakly or strongly disjoint. Accordingly, 

the third specific objective of this work is to classify the topological relations according to 

their vagueness level.  We should denote that this model is called Qualitative Min-Max model 

(QMM model) in Chapter 4. This label has been proposed after the acceptance of this paper in 

order to facilitate using and reference to our approach. In this Chapter, we do not use this 

label in order to preserve as well as possible the original version of the paper. 

The remainder of the paper is organized as follows. In sections 3.4, we present previous 

works on the modeling of objects with vague shapes and their topological relationships. 

Section 3.5 addresses the problem of this paper. In section 3.6, we present three basic types of 

spatial objects with vague shapes: regions with broad boundaries, lines with vague shapes 

and broad points. Then, section 3.7 gives a proposition based on the 9-Intersection model 

(Egenhofer and Herring 1990) in order to identify the topological relations among objects 

with vague shapes. The model is applied to regions with broad boundaries, and their 

topological relations are studied in detail in the appendix 1. As a result of this approach, 242 

relations can be distinguished through a 4-Intersection matrix. Section 3.8 proposes a 

hierarchical clustering of topological relations between regions with broad boundaries, and 

section 3.9 explains how to use our approach to express spatial queries and integrity 

constraints. In section 3.10, our model is compared with existing exact approaches (Cohn and 

Gotts 1996, Clementini and Di Felice 1997, Tang 2004).  Finally, section 3.11 presents our 

conclusions and discusses future research.      

3.4   Previous works 

3.4.1   Spatial vagueness 

According to (Erwig and Schneider 1997, Hazarika and Cohn 2001, Pfoser et al. 2005), 

spatial vagueness can characterize the position and/or shape of the spatial extent of a given 

object. From this perspective, the shape vagueness refers to the difficulty of distinguishing an 

object shape from its neighborhood. Shape vagueness is an intrinsic property of an object that 
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certainly has an extent in a known position but cannot or does not have a well-defined shape 

(Erwig and Schneider 1997). For example, a region has a vague shape when it is surrounded 

by a broad boundary instead a sharp one. One could normally use the term « fuzziness » to 

speak about «shape vagueness» since it would correspond to the unclearness of an object 

shape as it is defined in a general ontology (i.e., to the definitions found in the Oxford and the 

Cambridge dictionaries). Nevertheless, in order to avoid confusion with the mathematical 

definition found in the specialized ontology of Fuzzy Set Theory (Zadeh 1965) which is used 

in several GIS-related papers (e.g., Altman 1987, Burrough 1989, Brown 1998, Schneider 

2001), we have decided to use the expression “shape vagueness”. Accordingly, one must not 

confuse “fuzziness” as defined in Fuzzy Set Theory with the concept of “shape vagueness” as 

defined in the present paper.  

Spatial vagueness can also characterize well-defined (or crisp) objects when there is 

uncertainty about objects' positions despite their sharp shapes; we refer to this scenario as 

positional vagueness. Positional vagueness is a measurement imperfection related to the 

accuracy and precision of the instruments and processes used in the measurements (Mowrer 

1999). Figure 3.3 shows this categorization of spatial vagueness into "shape vagueness" and 

"positional vagueness". In this paper, we only deal with the formal representation of spatial 

objects with vague shapes and the topological relations between them. 

 

 

 

 

 

Figure 3.3 Categorization of spatial vagueness 

In general, we distinguish between at least two categories of models used to represent 

spatial vagueness. In the first category, crisp spatial concepts are transferred and extended to 

formally express spatial vagueness; we speak about exact models (Cohn and Gotts 1996, 

Clementini and Di Felice 1997, Erwig and Schneider 1997) as explained in the next section. 

In the second category, three principal mathematical theories are generally used: (1) models 

based on the Fuzzy Logic (Zadeh 1965) (e.g., Altman 1987, Burrough 1989, Brown 1998, 

Schneider 2001, Tang 2004, Hwang and Thill 2005, Dilo 2006), which can be used to 

represent continuous phenomena such as temperature, (2) models based on rough sets (e.g., 

Ahlqvist et al. 1998, Worboys 1998), which represent the objects with vague shapes as a pair 

Spatial vagueness 

Shape vagueness Positional vagueness 
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of approximations (upper and lower approximations), and (3) models based on probability 

theory (e.g., Burrough and Frank 1996, Pfoser et al. 2005), which is principally used to model 

errors of positions and attributes.  

3.4.2   Formal definitions of objects with vague shapes 

In the original version of paper, this section reviews previous works that formally define 

objects with vague shapes. In the present manuscript, this review literature has been 

transferred in Chapter 2 (cf. Section 2.3) in order to reduce redundancies and improve the 

readability of the thesis. 

3.5   Problem statement 

The exact models presented earlier (Cohn and Gotts 1996, Clementini and Di Felice 1997, 

Erwig and Schneider 1997, Tang 2004, Reis et al. 2006) have the advantage of explicitly 

distinguishing the topological invariants of objects involved. Through this discrete viewpoint 

of space, the specification of topological relations can be improved (Clementini and Di Felice 

1997). For these reasons, we propose an exact model in order to achieve objectives. 

Nevertheless, we think that the existing models do not distinguish between different levels of 

shape vagueness and are not sufficiently expressive to represent partial shape vagueness. In 

reality, a region with a broad boundary is not always surrounded by a large boundary 

everywhere. For example, the boundary of a given lake can be broad in some locations and 

sharp in some others.  This situation cannot be represented by existing exact models, because 

the connectedness condition is violated. The same problem is present for lines. Only two 

cases of shape vagueness are distinguished for lines (cf. section 2.3). Nonetheless, a line can 

have a partially broad interior independently of the boundary. Moreover, the studied models 

are not sufficiently expressive in terms of topological relations since there is no distinction 

between the inner and outer boundary for regions with broad boundaries. Some works try to 

offer more expressivity by increasing the number of topological invariants (e.g., Tang 2004). 

Nevertheless, the absence of relation clustering limits their practical use. Indeed, the main 

research questions of our paper are the following: 

1- How can we obtain more expressive definitions of the objects with vague shapes 

through an exact model? How can we represent shape vagueness? 
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2- What are the topological relations between objects with vague shapes? How is it 

possible to identify topological relations between objects that have different levels of 

shape vagueness? How can we formally identify these relations? 

3- How can we classify the topological relations between regions with broad boundaries 

in order to facilitate their use in practice? How could resulting clusters reflect the 

vagueness level of a topological relation?  

3.6   Spatial objects with vague shapes 

In general, there is no agreement regarding the appropriate formal definition of spatial objects 

with vague shapes, because shape vagueness can be interpreted in different ways. It is not the 

objective of this work to unify these interpretations. We are interested in proposing an 

expressive and easy definition of spatial objects with vague shapes through an exact model. In 

our approach, we transfer the Egg-Yolk model into point-set topology context in order to both 

consider points and lines and permit the representation of objects with partially vague shapes. 

In the literature, many expressions have been used to speak about shape vagueness of spatial 

objects. For example, Burrough and Frank (1996) used the terms "objects with indeterminate 

boundaries", Dilo (Dilo 2006) used the terms "vague spatial objects" and Clementini and Di 

Felice (1997) used "objects with large boundaries". We find these different expressions 

pertinent but they are not sufficiently expressive to cover the shape vagueness for a line's 

interior or a point (i.e. a point does not have a boundary; it is composed by an interior). In 

other words, we make distinction between "broad interior" and "broad boundary" that we 

consider as specializations of "shape vagueness". This distinction is useful especially in the 

cases of lines and points. From this perspective, we distinguish three basic types of spatial 

objects with vague shapes: broad points, lines with vague shapes (i.e., lines with broad 

boundaries, lines with broad interiors or broad lines), and regions with broad boundaries. 

Figure 3.4 shows our categorization of objects with vague shapes. 
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Broad lineLine with broad interiorLine with broad boundary

Broad pointLine with vague shapeRegion with broad boundary

Object with vague shape

 

 
 
 
 
 
 
 
 

Figure 3.4 Categorization of objects with vague shapes 

Each object with a vague shape is composed of n crisp object types (i.e., point, line, and 

region) distributed into a pair of sets called (1) the minimal extent and (2) the maximal extent 

(figure 3.5). Figure 3.5 presents an example of broad points, lines with vague shapes, and 

regions with broad boundaries. A broad point is a zone that we approximate to a crisp region 

containing all of elementary space portions that the point can possibly fill. The minimal extent 

of point is equal to its maximal extent because the shape vagueness concerns a unique 

topological invariant: the interior (cf. section 3.6.1 for more details). For a line with a vague 

shape (cf. section 3.6.2), the minimal extent is the union of the linear parts. However, its 

maximal extent can contain some broad parts (i.e., presented as broad points in figure 3.5(b)), 

at which the line can have any shape. For a region with a broad boundary (cf. section 3.6.3), 

the shape vagueness concerns the boundary. The minimal extent refers to the geometry when 

the boundary is as close as possible (i.e. it is drawn around the area which certainly belongs to 

the region). The maximal extent is the geometry of the object when the boundary is as far 

away as possible (i.e. it is drawn around the area, which contains all of points possibly 

belonging to the region).  

  
 
 
 
 
 
 

 

Figure 3.5 Minimal and maximal extents for (a) a broad point, (b) a line with a vague shape and (c) a 
region with a broad boundary 

Generally, the minimal extent refers to the geometry's parts definitely belonging to the 

spatial object. The maximal extent corresponds to the object's geometry when shape 

vagueness is taken into account and added to the minimal extent. Outside of the maximal 

extent, there are no spatial points that can possibly belong to the object. The number n of crisp 

(a) A broad point (b) A line with a vague shape (c) A region with a broad boundary  

Minimal extent = maximal extent Minimal extent  

Maximal extent  

Maximal extent  Minimal extent  
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object types composing an object with a vague shape is 1 for a broad point (i.e., a zone that 

we represent as a crisp region composed of the quasi-totality of possible elementary space 

portions that the point can fill (cf. section 3.6.1)), 2 for a region with a broad boundary (i.e., 

two crisp regions (cf. section 3.6.3)), and n for lines with vague shapes (i.e., 1 or n points of 

the line are broad (cf. section 3.6.3)). For example, a region with a broad boundary 

corresponds to a pair of crisp regions that respectively represent the minimal and maximal 

extents. This general definition of spatial objects with vague shapes is based on the following 

principles: 

1- A spatial object with a vague shape is a generalization of a crisp spatial object. 

2- The minimal and the maximal extents are made up of crisp spatial object types. Only 

the combination of two extents corresponds to the object with a vague shape.  

3- For the minimal and the maximal extents, the topological invariants should be 

mutually disjoint.   

The first principle means that the spatial extent of an object with a vague shape is crisp 

when its minimal extent is equal to its maximal one. The second principle requires that the 

minimal and maximal extents verify the topological consistency conditions of the crisp spatial 

object types (e.g., a simple crisp region should be connected). Finally, the third principle 

permits the identification of topological relations based on the intersections between the 

topological invariants of the minimal and maximal extents of spatial objects with vague 

shapes involved. In the next sections, we present our definitions of broad points, lines with 

vague shapes, and regions with broad boundaries. 

3.6.1   Broad point 

In the crisp context, a point p is a 0-dimensional object type which corresponds to an 

elementary portion of the space. This portion refers to the interior of the point (i.e. the only 

topological invariant of the point). Because a point does not have a boundary (the dimension 

of the boundary of an object with a dimension n is n-1), the shape vagueness can characterize 

only the interior and thus the point itself. Semantically, a broad point occurs when an intrinsic 

property of the point or a lack of knowledge does not permit to sharply distinguish the point 

from its neighborhood. For such a case, the spatial extent of the object is typically replaced by 

a zone that we represent as a crisp region composed of the family of elementary space 
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portions that the point can fill (see an example of broad point in figure 3.6). The closure5 of 

this crisp region represents an infinity of possible elementary space portions for the point. 

Consequently, a broad point does not have a minimal extent; it only has a maximal extent.  

 
Simple Crisp point Broad point 
  

Figure 3.6 Broad point 

Since a simple broad point corresponds, in fact, to a simple crisp region, it should verify 

the following conditions: 

1- The closure is a non-empty connected regular closed set. 

2- The interior is a non-empty connected regular open set. 

3- The boundary and exterior are connected. 

To provide an example of a broad point, consider an application to help the fire brigades in 

their interventions. Generally, a fire fighter cannot precisely localize the fire source. However, 

he can draw an area in which the fire source should exist. This intervention area corresponds 

to a broad point and can be represented through our model. It is clear that the size of the 

region representing the broad point depends on the shape vagueness level (i.e., a larger 

region refers to a fuzzier point).  

3.6.2 Line with a vague shape 

Shape vagueness for lines has been studied in-depth in another paper that presents Chapter 4 

of this thesis. In order to reduce the redundancies, we summarize the original content of this 

section.  

A crisp line is composed by an interior connected by two endpoints that refer to its 

boundary. We consider that shape vagueness can characterize any point of the line. Indeed, 

the line boundary can be partially or completely broad while the interior remains well-

defined; we then speak about lines with broad boundary. For example, the trajectory of an 

aircraft (for which the pilot attempted a crash-landing) can be represented as a line with a 

partially broad boundary (only the final endpoint is ill-known). In the same way, the interior 

can be partially or completely broad while the endpoints are well-defined; we then speak 

                                                 
5 The closure, in point set topology, is the union of the interior and the boundary. 
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about lines with partially and completely broad interior, respectively. The extreme case of line 

shape vagueness arises when all topological invariants of the line (i.e. the interior and the 

boundary) are broad. For example, the trajectory of an historical person can be represented as 

a completely broad line whether few information are available about it. Thus, a completely 

broad line arises when there is a difficulty to sharply distinguish each point one the line from 

its neighborhood. However, a completely crisp line is a particular case of lines with vague 

shapes, for which all of the interior and boundary are well-defined. In Chapter 4, lines with 

vague shapes are specifically studied. All of these aspects are presented more in detail.  

3.6.3   Region with a broad boundary 

A crisp region is a two-dimensional spatial object type in which the shape is typically 

composed of an interior, a boundary, and an exterior. For a region, shape vagueness occurs 

when there is difficulty in precisely distinguishing between the interior and exterior through a 

sharp boundary. From this perspective, shape vagueness is generally correlated with the 

boundary, which can itself be sharp, partially broad, or completely broad. It is possible to 

draw a minimal spatial extent by considering the boundary to be as close as possible (i.e., it is 

drawn around the area which certainly belongs to the region). In the same way, a maximal 

spatial extent can be drawn by considering the boundary to be as far as possible (i.e., it is 

drawn around the area which contains all of points possibly belonging to the region). Figure 

3.7 represents an example of a region with a partially broad boundary. The spatial extent of a 

region with a broad boundary is composed of a portion called the minimal extent (i.e., all of 

the points definitely belonging to the spatial object) and covered by a maximal extent (i.e., all 

of the points possibly belonging to the spatial object).  

 
 
 
 

Figure 3.7 Region with partially broad boundary 

We consider that a simple region with a broad boundary is made up of two crisp regions: 

(1) the maximal extent, which can be "Equal", "Contains", or "Covers" (2) the minimal extent 

(see examples in figure 3.7). When the boundary is completely sharp (i.e. it does not contain 

any broad point), the region is completely crisp. This is a particular case of regions with 

broad boundaries for which the maximal extent is equal to the minimal extent; we speak 

Minimal extent Maximal extent 
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about regions with none broad boundary (or crisp regions). In the second case, the region 

boundary is broad only in some locations. We speak about regions with partially broad 

boundaries, where the maximal extent covers the minimal extent. For example, a forest stand 

or a lake can have sharp boundaries (e.g., rocky borders for a lake and a total cut for a forest 

stand) and broad boundaries (e.g., swamp borders for a lake) at the same time. The third case 

represents a typical region with a broad boundary for which the boundary is completely 

broad. For example, the boundary of a pollution zone is broad everywhere since the pollution 

decreases from its kernel to the region exterior. In figure 3.8, we present an example of each 

of these three cases. 

 
Topological invariants of 

minimal and maximal extents 
Region with a broad 

boundary 
Representation Maximal and minimal 

extents 
Interior  Boundary 

Minimal 
extent 

   Region with none 
broad boundary (i.e., 
crisp region) 

 

Maximal 
extent 

   

Minimal 
extent 

   Region with partially 
broad boundary (i.e., 
region  with partially 
vague shape) 

 

Maximal 
extent 

   

Minimal 
extent 

   Region with 
completely broad 
boundary (i.e., region 
with completely vague 
shape) 

 

Maximal 
extent 

 
 
 
 

  

Figure 3.8 Regions with broad boundaries 

Since the minimal and maximal extents are crisp regions, we distinguish three mutually 

disjoint topological invariants for each of them: an interior, a boundary, and an exterior. 

Thus, a region with a broad boundary A
~

 is made up of six topological invariants: the interior 

of the minimal extent°
min

~
A , the boundary of the minimal extentmin

~
A∂ , the exterior of the 

minimal extent −
min

~
A , the interior of the maximal extent°max

~
A , the boundary of the maximal 

extent max
~
A∂ , and the exterior of the maximal extent −

max
~
A  (figure 3.8). 
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• Definition 1: A simple region with a broad boundary A
~  is composed of two simple 

crisp regions max
~
A  and min

~
A , where Equal6( max

~
A , min

~
A ), Contains( max

~
A , min

~
A ), or 

Covers( max
~
A , min

~
A ). min

~
A is the minimal extent of A

~ , min
~
A∂  is the inner boundary of A

~ , 

max
~
A  is the maximal extent of A

~
, and max

~
A∂ is the outer boundary of A

~ . min
~
A is the set 

of points certainly belonging to A~ . However, the maximal extent max
~
A  is the union of 

the minimal extent and the set of points possibly belonging to the region with a broad 

boundary.   

The following conditions should be respected for any type of regions with broad boundaries: 

1- The closures of the maximal and the minimal extents are non-empty regular connected 

closed subsets. 

2- The interiors of the maximal and minimal extents are non-empty regular open sets. 

3- The boundaries and exteriors of the maximal and minimal extents are connected. 

 
In this paper, we limit our investigations to simple regions with broad boundaries (i.e., we 

do not consider vague regions with complex vague shapes such as regions with broad 

boundaries and holes or regions with broad boundaries and several cores). We adopt this 

strategy in order to clearly present the bases of our model before improving it. Figure 3.9 

presents some examples of invalid regions with broad boundaries. In case (a), the region is 

invalid because its closure is non-regular, i.e. there is an isolated line that belongs to the 

closure. In case (b), the interior of the region is non-connected because it is composed of two 

disjoint minimal extents (or cores). Then, this shape cannot be considered as a simple region 

with a broad boundary and therefore it is invalid according to our model. In the case (c), the 

exterior does not respect the connectedness condition of the exterior (see condition 3 

presented above) since the interior contains a hole. This type of regions is considered as 

invalid because we only deal with simple regions with broad boundaries and without holes.   

 
 
         
      (a) Non-regular closed closure               (b) Non-connected interior               (c) Non-connected exterior 

Figure 3.9 Examples of invalid regions with broad boundaries 

  

                                                 
6 The spatial relations (i.e., Equal, Contains, Covers) used in this definition are those defined in (Egenhofer and 
Herring 1990). 
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This general definition covers the crisp regions occurring when Equal ( max
~
A , min

~
A ). 

Accordingly, this property can be used to represent a region with only one extent and without 

a full membership to the object (i.e., a region without any core; shape vagueness is about all 

of the region and not only about its boundary). Our model is capable to represent this type of 

regions but we do not study them in detail in the present paper. Hereafter, we only focus on 

the typical regions with broad boundaries where Contains( max
~
A , min

~
A ) or Covers( max

~
A , min

~
A ) 

and their topological relations.  

3.7 Topological relations between spatial objects with vague 

shapes 

3.7.1   Principles 

To identify the topological relations between two objects with vague shapes, we interpret their 

maximal and minimal extents as independent crisp geometries. In fact, our methodology 

consists of identifying four specific topological relations between the minimal and maximal 

extents of the objects with vague shapes involved. For that, we define a 4-Intersection matrix 

containing the following four topological sub-relations: R1( min
~
A , min

~
B ), R2( min

~
A , max

~
B ), 

R3( max
~
A , min

~
B ), and R4( max

~
A , max

~
B )(see example in figure 3.10). These topological sub-

relations assigned to the matrix's cells are those defined in the 9-Intersection model 

(Egenhofer and Herring 1990). For example, if we study the topological relations between 

two regions with broad boundaries, each cell receives one of the eight possible topological 

relations between two simple crisp regions (i.e., Disjoint, Overlap, Meet, Equal, Contains, 

Inside, Covers, Covered by). Then, the 4-Intersection matrix corresponds to the following 

representation:                                                        

                                                                   min

~
B                   max

~
B  

     min
~
A  R1( min

~
A , min

~
B ), R2( min

~
A , max

~
B ) 

       max
~
A     R3( max

~
A , min

~
B ), R4( max

~
A , max

~
B ) 

 
Figure 3.10 shows the content of the matrix that describes the topological relation between 

a region with a partially broad boundaryA~  and a region with a completely broad 
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boundaryB~ . In the matrix (b), the letters O and C are used to denote the relations Overlap and 

Contains, respectively.  

  
 
 
 
 
 
 

 
 
 
 

 
 

 

Figure 3.10 Description of the topological relation between two regions with broad boundaries: (a) 
visual content of the matrix, (b) formal identification of the relations between the minimal and 

maximal extents of the objects involved 

The content of a given matrix corresponds to the topological sub-relations relating the 

minimal and maximal extents. We use the topological sub-relation between the maximal 

extents R4( max
~
A , max

~
B ) to label the global topological relation. For example, if R4( max

~
A , max

~
B ) is 

Overlap, we consider that spatial objects with vague shapes globally Overlap each other. If 

R4( max
~
A , max

~
B ) is Contains, we consider that the global topological relation is Contains. 

In figure 3.11, we present examples of an identification of topological relations between 

spatial objects with vague shapes. The first example presents a description of the topological 

relation between two regions with completely broad boundariesA
~ andB

~ . The second example 

concerns a line with a fairly vague shapeL
~ and a region with a completely broad boundaryA

~ . 

The third example shows the identification of the topological relation between two lines with 

fairly vague shapesL~ andK
~ . Finally, the last example concerns the relation between a region 

with a completely broad boundaryA
~ and a broad pointP~ . 

 

 

 

 

 

A
~

B
~

                  min

~
B                            max

~
B  

 min

~
A   O ( min

~
A , min

~
B ), O ( min

~
A , max

~
B ) 

 max

~
A   C ( max

~
A , min

~
B ), O ( max

~
A , max

~
B ) 

(a) 

(b) 

min
~
B  

max
~
B  

min
~
A 

max
~
A  

max
~
A  

min
~
A 

max
~
B  min

~
B  
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Spatial representation Correspondent matrix  

Global topological relation : Overlap 

 
 
 
 

     min

~
B                            max

~
B  

min

~
A   Overlap ( min

~
A , min

~
B ), Overlap ( min

~
A , max

~
B ) 

max

~
A       Contains ( max

~
A , min

~
B ), Overlap ( max

~
A , max

~
B ) 

Global topological relation : Contains                              min

~
L                            max

~
L  

min

~
A   Overlap ( min

~
A , min

~
L ), Overlap ( min

~
A , max

~
L ) 

max

~
A     Contains ( max

~
A , min

~
L ), Contains ( max

~
A , max

~
L ) 

Global topological relation : Overlap                         min

~
L                            max

~
L  

min

~
K  Disjoint ( min

~
K , min

~
L ), Disjoint ( min

~
K , max

~
L ) 

max

~
K Disjoint ( max

~
K , min

~
L ), Overlap ( max

~
K , max

~
L ) 

Global topological relation : Disjoint             max

~
P  

                            min

~
A   Disjoint ( min

~
A , max

~
P ) 

  max

~
A  Disjoint ( max

~
A , max

~
P ) 

Figure 3.11 Examples of identification of topological relations through a 4-Intersection matrix 

3.7.2 Topological relations between a region with a broad boundary and a crisp 

one 

In our approach, the 4-Intersection matrix highlights the sub-relations that exist between the 

components of the geometries with vague shape. Indeed, this expressivity is highlighted when 

the maximal extent of the spatial object with a vague shape is non-empty and different from 

the minimal extent. In the other cases, some cells in the matrix will have the same values. For 

example, figure 3.12 shows a region with a completely broad boundary that overlaps a crisp 

region. The topological relation can be reduced to a 2-Intersection matrix, because the 

regionB
~  is crisp and so its minimal extent equals its maximal one. Hereafter, we do not study 

topological relations that involve crisp regions. We focus on regions with different non-empty 

maximal extent and non-empty minimal extent. 

 

 

 

A
~

 
B
~

 

A
~

 
L
~

 

L
~

 K
~

 

P
~  

A
~
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                       min

~
B                            max

~
B              min

~
B  

min

~
A   Overlap ( min

~
A , min

~
B ), Overlap ( min

~
A , max

~
B )  min

~
A   Overlap ( min

~
A , min

~
B ) 

max

~
A     Overlap ( max

~
A , min

~
B ), Overlap ( max

~
A , max

~
B ) max

~
A   Overlap ( max

~
A , min

~
B ) 

Figure 3.12 Example of a topological relation between a region with a broad boundary and a crisp 
region 

The values assigned to the different cells of the matrix should not be arbitrarily chosen. In 

general, the value of R ( max
~
A , max

~
B ) enforces the other values. In the next section, we study 

these aspects specifically for the topological relations between regions with broad boundaries. 

  

3.7.3   Topological relations between regions with broad boundaries 

Eight topological relations are possible between two simple crisp regions. By considering 

these as the possible values in the four cells of the matrix, there are 409684 =  possible 

matrices. However, definition 1 imposes a condition mandating that the extents of a region A
~

 

with a broad boundary should be related by one of the following relations: Equal( max
~
A , min

~
A ), 

Contains( max
~
A , min

~
A ), or Covers( max

~
A , min

~
A ). Indeed, a 4-Intersection matrix cannot identify a 

topological relation between two regions with broad boundaries when this condition is 

violated. Thus, the contents of the matrix cells are not independent. For example, if the 

maximal extents are disjoint, it is inconsistent for an Overlap to exist between the minimal 

extents (figure 3.13). In figure 3.13, the sub-relation O ( min

~
A , min

~
B ) is grey to denote that is not 

allowed whereas D ( min

~
A , min

~
B )  is black to show that is permitted. Consequently, several of 

the 4096 possible matrices are invalid because the dependency between the cells of the matrix 

involved is not respected.  

 

 

 

 

 

 

B
~

 A
~
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                                   min
~
B                    max

~
B  

                min
~
A   O ( min

~
A , min

~
B )           --   

               max
~
A              --               D ( max

~
A , max

~
B ) 

 
 
            
                       
                         (a) Invalid Disjoint' relation                         (b) Valid Disjoint' relation 

 

Figure 3.13 Controlling the validity of a Disjoint relation 

In order to enumerate the valid 4-Intersection matrices, we firstly studied possible values in 

the other three cells for each of the eight possible values of R( max
~
A , max

~
B ). For example, if 

Contains ( max
~
A , max

~
B ), the only possible relation betweenmax

~
A and min

~
B is Contains; otherwise, 

the expected relation cannot respect the general definition of a region with a broad boundary. 

Figure 3.13 shows an example of an inconsistent matrix in which Disjoint ( max
~
A , max

~
B ) and 

Contains ( min
~
A , min

~
B ).  This matrix is inconsistent because R ( max

~
B , min

~
B ) ∉{ Contains, Covers, 

Equal}. In the second step, we also fix the relation between min
~
A and min

~
B to deduce the 

possible values of R ( min
~
A , max

~
B ). For example, when Contains ( max

~
A , max

~
B ) and Contains 

( min
~
A , min

~
B ), R ( min

~
A , max

~
B ) should not be Meet or Equal. In this way, 31 rules (cf. appendix 2) 

are defined in order to ensure the consistency of matrices and to minimize the number of 

topological relations. In the premises of rules, we specify either R ( max
~
A , max

~
B ) or (R 

( max
~
A , max

~
B ) and R ( min

~
A , min

~
B ).   Then, we deduce the possible values in the remaining cells. 

In figure 3.13, the matrix on the left is not valid because it requires the minimal extent to be 

disjoint to the minimal extent (i.e., the definition of regions with broad boundaries is not 

respected, because R( max
~
A , max

~
B ) should be Contains, Covers, or Equal). 

This study proves that only 242 topological relations are possible between two simple 

regions with broad boundaries (cf. appendix 1). More specifically, only one matrix is valid 

when Disjoint ( max
~
A , max

~
B ), 29 matrices are valid when Contains ( max

~
A , max

~
B ), 29 for Inside 

( max
~
A , max

~
B ), 46 for Covers ( max

~
A , max

~
B ), 46 for Covered by ( max

~
A , max

~
B ), 65 for Overlap 

( max
~
A , max

~
B ), 4 for Meet ( max

~
A , max

~
B ), and 22 when Equal ( max

~
A , max

~
B ). The topological 

relations are numbered from 1 to 242 according to the relation between max
~
A and max

~
B . Table 

3.1 shows this numbering (see the appendix 1 to explore these relations). 

A
~

 B
~  A

~
 B

~  
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Table 3.1 Relations' numbers 

 
The relation between (max

~
A , max

~
B ) Correspondent matrices 

Disjoint ( max

~
A , max

~
B )  1 

Contains ( max

~
A , max

~
B ) 2�30 

Equal ( max

~
A , max

~
B ) 31�52 

Covers ( max

~
A , max

~
B ) 53�98 

Covered by ( max

~
A , max

~
B ) 99�144 

Inside ( max

~
A , max

~
B ) 145�173 

Meet ( max

~
A , max

~
B ) 174�177 

Overlap ( max

~
A , max

~
B ) 178�242 

3.8   Clustering of topological relations between regions with broad 

boundaries 

3.8.1   Principles 

In our work, the proposed model is expressive in terms of the topological relations 

distinguished between regions with broad boundaries. In this context, 242 topological 

relations are enumerated. Consequently, the clustering of relations into larger groups of 

relations is an important step, because it is very difficult to keep in the mind this high number 

of relations.  It is additionally very difficult to find a name for each one of them, and so the 

user will have difficulty of choosing the appropriate topological operator in order to express a 

query or an integrity constraint. Mark and Egenhofer (Mark and Egenhofer 1994) studied the 

clustering of topological relations between simple crisp regions and simple crisp lines both 

through a formal basis and by taking into account cognitive aspects. Clementini and Di Felice 

(1997) defined a topological distance to classify the approximate topological relations 

between regions with completely broad boundary. In this way, they deduced 17 clusters that 

they represent in a conceptual neighborhood graph.  

In our approach, most of the distinguished topological relations are not completely 

different from each other. For example, two simple regions with broad boundaries can weakly 

or completely overlap each other depending on the content of the 4-Intersection matrix 

involved. In the first case, only the maximal extents overlap. In the second case, however, 

Overlap is the unique value in the matrix cells. Thus, it is possible to deduce the relation 



 107 

vagueness level according to the content of the 4-Intersection matrix. The objective of this 

section is to group the 242 topological relations into a limited number of clusters based on the 

content of their respective matrices.  

3.8.2    Clustering results  

In section 3.7, we showed that the global topological relationship is identified through a 4-

Intersection matrix that enumerates four sub-relations. Thus, a topological relation becomes 

possible if it appears at least once in the matrix. This possibility increases according to the 

number of similar sub-relations. For example, a Covers topological relation in which Covers 

( max
~
A , max

~
B ) and Covers ( min

~
A , min

~
B ) is stronger than another where only Covers ( max

~
A , max

~
B ). 

Because there are eight possible values for the matrix cells, we distinguish eight basic clusters 

that we call: DISJOINT, CONTAINS, INSIDE, COVERS, COVERED BY, EQUAL, MEET, 

and OVERLAP. Each cluster contains all of the topological relations for which at least one of 

the four sub-relations has the same name. For example, figure 3.14 shows a topological 

relation that belongs to the following clusters: DISJOINT, CONTAINS, and COVERS. 

Nevertheless, it belongs to the DISJOINT cluster more strongly than to the CONTAINS and 

COVERS clusters. 

 
 
                                                                         
 

 

 

 

 

Figure 3.14 Example of clustering of a topological relation    

For each one of the eight basic clusters, we identify four levels of relation membership: (1) 

completely, (2) strongly, (3) fairly, and (4) weakly (table 2).  A topological relation belongs to 

the cluster completely when the four sub-relations are similar.  It belongs to the cluster 

strongly when only three sub-relations have the same name as the cluster. The level labelled 

fairly contains all relations for which two sub-relations have the same name as the cluster. 

Finally, the level called weakly contains the relations for which only one sub-relation has the 

same name as the cluster. Figure 3.15 presents some relations that belong to different levels of 

Disjoint 

Covers Contains 

Disjoint 

CONTAINS Cluster 

DISJOINT Cluster 

COVERS Cluster 
max

~
A  

max
~
B  

min
~
A  

min
~
B  
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CONTAINS and DISJOINT clusters, respectively, according to the contents of their 

correspondent matrices.  

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.15 Evaluation of a topological relation membership to one of the eight basic clusters 

3.8.3   Overlapping clusters 

The main result of this clustering process is a hierarchical classification of the topological 

relations (figure 3.16). The top level is made up of eight basic clusters that each contains 

typically four levels: completely, strongly, fairly, and weakly. The resulting 32 sub-clusters 

overlap each other because a topological relation typically belongs to different levels of 1, 2, 

3, or 4 clusters at the same time. For example, topological relation number 56 (see the 

appendix 1 and the table 3.2) belongs fairly to the CONTAINS cluster and weakly to the 

COVERS and INSIDE clusters. The bottom level of the classification contains the 242 

topological relations that appear in different sub-clusters.  

Table 3.2 Clustering results 

Cluster's name Vagueness 
level 

Topological relations' numbers (cf. appendix 1) 

Weakly 13, 14, 15, 17, 41, 42, 43, 44, 67, 69, 70, 71, 72, 74, 75, 80, 
113, 115, 116, 117, 118, 120, 121, 126, 157, 159, 161, 162, 
193, 194, 195, 196, 197, 198, 199, 200, 201, 204, 205, 208,  
213, 214, 215, 216 

Fairly 16, 73, 76, 119, 122, 158, 175, 176, 202, 203, 206, 207, 
209, 210, 211, 212 

Strongly 174, 217 

DISJOINT 

Completely 1 

CONTAINS Weakly 31, 34, 36, 39, 43, 44, 45, 48, 51, 52, 57, 59, 61, 63, 67, 68, 
69, 71, 73, 76, 77, 79, 80, 82, 85, 86, 88, 91, 93, 94, 95, 96, 
102, 105, 110, 113, 118, 125, 128, 130, 135, 137, 140, 145, 
146, 153, 157, 163, 167, 173, 181, 184, 186, 189, 193, 195, 
198, 210, 213, 218, 219, 221, 223, 226, 230, 232, 234, 238, 
240 

175 

Fairly disjoint Strongly disjoint  

Disjoint 

Disjoint Disjoint 

Disjoint 

Completely disjoint 

Disjoint 

Disjoint 

Disjoint 

Overlap 

Disjoint 

Overlap Contains 

Disjoint Disjoint 

Overlap Contains 

Overlap 

Strongly contains 

Contains 

Contains Contains 

Overlap 

Completely contains 

Contains 

Contains Contains 

Contains Covers 

Contains Contains 

Overlap 

 

Fairly contains 

Disjoint 

Covers Contains 

Overlap 

 

 Weakly contains 

Weakly disjoint 
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Fairly 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 
24, 25, 26, 27, 28, 29, 32, 33, 37, 53, 54, 55, 56, 60, 103, 
104,  152, 178, 179, 180 

Strongly 2, 3, 4, 5, 7  

Completely 6 

Weakly 4, 25, 26, 29, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 
45, 46, 47, 48, 49, 50, 51, 52, 55, 77, 78, 79, 84, 91, 101, 
123, 124, 125, 131, 138, 145, 148, 170, 171, 230, 231, 232, 
233 

Fairly 24, 30, 31, 169 

Strongly  

EQUAL 

Completely  

Weakly 7, 18, 19, 21, 25, 30, 35, 38, 40, 41, 42, 46, 47, 50, 52, 53, 
55, 56, 57, 59, 60, 61, 63, 67, 68, 69, 71, 73, 76, 77, 79, 80, 
88, 93, 94, 95, 96, 99, 107, 108, 115, 116, 123, 124, 129, 
132, 135, 137, 139, 141, 147, 156, 159, 160, 166, 167, 171, 
183, 185, 187, 192, 194, 196, 201, 211, 215, 218, 219, 221, 
223, 225, 227, 228, 231, 233, 235, 239, 241 

Fairly 20, 49, 54, 58, 62, 64, 65, 66, 70, 72, 74, 75, 78, 82, 85, 86, 
89, 90, 91, 92, 97, 98, 136, 142, 168, 220, 222  

Strongly 83, 84, 87 

COVERS 

Completely 81 

Weakly 3, 12, 14, 21, 22, 23, 26, 30, 33, 37, 39, 40, 42, 44, 45, 47, 
49, 51, 53, 61, 62, 69, 70, 77, 78, 83, 85, 88, 90, 92, 94, 99, 
101, 102, 103, 105, 106, 107, 109, 113, 114, 115, 117, 122, 
123, 125, 126, 135, 140, 141, 142, 143, 151, 163, 164, 166, 
170, 180, 186, 187, 191, 195, 196, 200, 212, 216, 219, 220, 
223, 225, 226, 227, 229, 232, 233, 234, 235, 242  

Fairly 50, 89, 95, 100, 104, 108, 110, 111, 112, 116, 118, 119, 
120, 121, 124, 128, 130, 132, 133, 136, 137, 138, 139, 144, 
165, 224, 228 

Strongly 129, 131, 134 

COVERED BY 

Completely 127 

Weakly 2, 9, 13, 18, 22, 23, 28, 29, 31, 32, 36, 38, 41, 43,  46, 48, 
51, 52, 56, 59, 64, 67, 72, 79, 82, 88, 90, 93, 98, 103, 105,  
107, 109, 113, 114, 115, 117, 122, 123, 125, 126, 128, 132, 
133, 135, 138, 140, 141, 142, 143, 178, 184, 185, 188, 193, 
194, 197, 209, 214, 218,  225, 226, 227, 229, 230, 231, 236, 
240, 241 

Fairly 8, 34, 35, 57, 58, 99, 100, 101, 102, 106, 145, 152, 153, 
154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 
166, 167, 168, 169, 170, 171, 172, 173, 181, 182, 183 

Strongly 146, 147, 148, 149, 151 

INSIDE 

Completely 150 

Weakly 9, 11, 12, 15, 36, 38, 39, 40, 59, 61, 62, 63, 64, 66, 74, 80, 
105, 107, 108, 109, 110, 112, 120, 126, 153, 155, 156, 161, 
174, 184, 185, 186, 187, 188, 189, 190, 191, 192, 204, 205, 
206, 207, 213, 214, 215, 216 

Fairly 10, 65, 68, 111, 114, 154, 175, 176, 208 

MEET 

Strongly  
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Completely 177 

Weakly 5, 11, 17, 19, 28, 33, 45, 46, 47, 48, 60, 63, 66, 71, 75, 86, 
87, 92, 93, 94, 98, 109, 112, 117, 121, 130, 133, 134, 139, 
140, 141, 149, 155, 160, 162, 164, 173, 178, 180, 181, 183, 
184, 185, 186, 187, 193, 194, 195, 196, 206, 207, 208, 209, 
210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 223, 
225, 226, 227, 228, 230, 231, 232, 233 

Fairly 27, 96, 97, 143, 144, 172, 179, 182, 188, 189, 191, 192, 
197, 198, 200, 201, 202, 203, 204, 205, 221, 222, 224, 229, 
234, 235, 240, 241  

Strongly 190, 199, 236, 238, 239, 242 

OVERLAP 

Completely 237 

 
 
 
 
 
 
 
 
 
  
 
 

     
 
 
 
 
 
 

Figure 3.16 Hierarchical classification of the topological relations 

3.9 Specification of spatial queries and integrity constraints 

In the previous sections, we presented a framework for identifying topological relations 

between regions with broad boundaries. Because it uses the 9-Intersection model (Egenhofer 

and Herring 1990), our model can be easily integrated in a spatial database system. Indeed, 

the SQL language can be extended in order to retrieve regions with broad boundaries based 

on the qualitative information given by the user regarding their topological relations. In fact, a 

topological relation between two regions with broad boundaries can be recognized through 

the combination of four crisp topological operators. For example, relation number 56 

corresponds to (Disjoint, Disjoint, Contains, Covers). Hereafter, we suppose that we 

242 relations in the bottom level 

Inside 

Weakly Fairly Completely Strongly 

Covers 

Root 

Disjoint Contains Covered by Overlap Equal Meet 

Weakly Fairly Strongly Completely 
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integrated our spatial model in a relational engine in order to give an example of its possible 

use in spatial queries involving regions with broad boundaries. We suppose that the spatial 

database stores pollution zones, which are represented as regions with broad boundaries. In 

the first query example, the user gives a coarse description of the topological relation when he 

introduces the specification fairly DISJOINT. The query results should contain the pollution 

zones related to a user-defined zone A by a topological relation belonging to this sub-cluster. 

In the second example, the query is more specific because the user identifies all topological 

sub-relations that relate (min
~
A , min

~
B ),  ( min

~
A , max

~
B ), ( max

~
A , min

~
B ), and ( max

~
A , max

~
B ). The third 

example shows another use of our model, in which it is possible to display the different 

strength levels of a relation (e.g., weakly Overlap or strongly Overlap) that occurs between 

two regions with broad boundaries (cf. table 3.3). Table 3.3 shows a possible result for the 

query presented in example 3. 

Table 3.3 Result of query 3 
P1.id P2.id Determine 

11 23 Weakly overlap 
45 14 --- 
18 26 Strongly Overlap 

 
Example 1: Select Pollution_Zone.geometry From Pollution_Zone Where  
                   vague_Relate (pollution_zone.geometry, A.geometry, fairly DISJOINT); 
 
Example 2: Select Pollution_Zone.geometry From Pollution_Zone Where  

                               vague_Relate (Pollution_Zone.geometry, A.geometry, Disjoint, Meet, 
                                                        Contains, Contains); 
 

Example 3: Select P1.id, P2.id, determine (P1.geometry, P2.geometry, "Overlap")  
                                From  Pollution_Zone P1, P2 Where P1.id<>P2.id; 
 

In the same way, it is possible to use the model to formally express spatial integrity 

constraints for objects with vague shapes. For example, let the constraint saying that ‘two 

different lakes can be only fairly meet or completely disjoint'. This constraint can be formally 

expressed by integrating new spatial operators (e.g., completely Contains, weakly Covers, 

etc.) in a formal constraint language like the Object Constraint Language (OCL) (Pinet et al. 

2007). The database storing the lakes is consistent only if the topological relations between 

the different entities belong to fairly MEET or completely DISJOINT sub-clusters (see 

example 4).  

 
Example 4: Context Lake inv:  

        Lake.allInstances � forAll  (a, b| a<>b implies fairly MEET(a,b) or     
        completely DISJOINT(a,b)); 
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3.10 Discussion 

Clementini and Di Felice (1997) propose an extension of the 9-Intersection model (Egenhofer 

and Herring 1990) that uses a broad boundary to replace the sharp boundary. In this approach, 

44 topological relations are distinguished between two regions with broad boundaries. By 

considering a topological distance, Clementini and Di Felice (1997) draw a conceptual 

neighborhood graph that shows similarity degrees between relations classified into 17 

clusters. The main advantage of this approach is the ability to support a coarser spatial 

reasoning involving regions with broad boundaries. When the needs are more specific, it 

becomes more difficult to use this model. Furthermore, the identification of a broad boundary 

as a two-dimensional topological invariant requires respecting consistency conditions related 

to closeness and connectedness. Tang (2004) presents a more expressive model than that 

defined by Clementini and Di Felice (1997), because he decomposes the broad boundary into 

the boundary's interior and the boundary's boundary. Based on this definition, Tang (2004) 

presents another extension of 9-Intersection model, in which topological relations are 

identified through a 4*4-Intersection matrix. He distinguishes 152 topological relations 

presented as variants of the 44 relations proposed by Clementini and Di Felice 1997). 

Nonetheless, this model does not distinguish between the boundaries of the minimal and 

maximal extents. Accordingly, many topological relations cannot be distinguished (see 

examples in Section 2.3). Moreover, regions with partially broad boundaries (see example in 

figure 3.2) are considered invalid and cannot be presented through existing exact models. In 

our approach, we resolve this problem by considering a simple region with a broad boundary 

as a general concept which can be specialized into: regions with none broad boundary (or 

crisp regions), regions with a partially broad boundary and regions with a completely broad 

boundary. A region is then defined as a maximal extent and a minimal extent, in which either 

Equal (
max

~
A ,

min

~
A ) or Contains (

max

~
A ,

min

~
A ) or Covers ( max

~
A , min

~
A ). The notion of broad boundary 

(i.e., in the sense of connected and closed polygonal zone) is not formally defined as a 

topological invariant in our model. It can be deduced from the difference between the minimal 

extent and the maximal one. This difference can be non-empty everywhere around the 

minimal extent (i.e., region with completely broad boundary), non-empty in some location 

and empty in some others (i.e., region with partially broad boundary) or empty everywhere 

around the minimal extent (i.e., crisp region). Our main motivations for adopting this 

framework are (1) to consider regions with partially broad boundaries and (2) to present an 

expressive model in terms of the identification of topological relations between regions with 
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broad boundaries. With regards to principal exact models (Clementini and Di Felice 1997, 

Cohn and Gotts 1996, Erwig and Schneider 1997, Tang 2004), our approach allows to make 

distinction between partial shape vagueness and complete shape vagueness. This distinction 

is very important in order to deal with two main problems: an ontological problem and a 

modeling one. First, the ontological problem means that “shape vagueness” is generally 

considered as a "binary imperfection" (i.e., only two possibilities are considered for an 

object’s shape: crisp or vague). Spatial objects can be characterized by different levels of 

shape vagueness (e.g., how can we classify a region with partially broad boundary? Is - it a 

crisp or a vague region?). These levels are easily computed in fuzzy models by using a 

quantitative approach. In our submission, we try to categorize two levels by using a 

qualitative approach because we believe that “shape vagueness” is a qualitative problem. It is 

clear that our approach cannot provide a fine computation of shape vagueness as in fuzzy 

models. However, we believe that our model provides a solution to qualitatively distinguish 

different levels of shape vagueness in the category of exact models. We do not claim that 

exact models are better than fuzzy ones, because the needs are not identical and therefore the 

direct comparison is not appropriate. Second, the modeling problem refers to the lack of 

expressivity in existing exact models to represent the objects, which include sharpness and 

broadness in their topological invariants at the same time. To deal with this second problem, 

our model can formally represent regions with partially broad boundary in addition to those 

with completely broad boundary. This distinction is ignored in the most of existing exact 

models; notably in (Clementini and Di Felice 1997, Cohn and Gotts 1996, Erwig and 

Schneider 1997, Tang 2004)).  

For topological relationships, we propose a 4-Intersection matrix where it is possible to 

identify respective sub-relations between minimal extents and maximal ones: (min
~
A , min

~
B ),  

( min
~
A , max

~
B ), ( max

~
A , min

~
B ), and ( max

~
A , max

~
B ).  These sub-relations are labelled by using the 9-

Intersection model (Egenhofer and Herring 1990). In our paper, 31 rules (or strategies) have 

been defined in order to minimize the number of topological relations between regions with 

broad boundaries and to control their consistency.  In this context, we would clarify that the 

seven first strategies defined in (Schmitz and Morris 2006) can be considered as a subset of 

our 31 rules (see these rules in the appendix 2). More specifically, Strategy 1 (Schmitz and 

Morris 2006) can correspond to Rule 1 in our model, Strategy 2 <==> Rule 2, Strategy 3 

<==> Rule 3, Strategy 4 <==> Rule 3 (this rule is applied for Inside and Contains relations), 

Strategy 5 <==> Rule 5, Strategy 6 <==> Rule 6 and Strategy 7 <==> Rule 6 (this rule is 
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applied for Inside and Contains relations). The 8th strategy presented in (Schmitz and Morris 

2006) does not provide any indication about the appropriate topological sub-relations when 

overlap relations arise between components of regions with broad boundaries involved (i.e., it 

recommends additional investigations). However, in our paper, we propose eight strategies 

when an Overlap relation occurs between maximal extents of two regions with broad 

boundaries (Rule 20 – Rule 27). Then, incoherent and redundant topological relations have 

been removed by using the 31 rules presented in the appendix 2. We distinguish 242 different 

topological relations that we classify into eight overlapping basic clusters. Each cluster has 

four membership levels (or sub-clusters): completely, strongly, fairly, and weakly. This 

classification of the topological relations is proposed to support an adverbial expression of 

topological integrity constraints. Nevertheless, our model is not able to quantify the gradual 

change inside the maximal extent in the same way as the fuzzy approaches do (Zhan 1997, 

Schneider 2001, Du et al. 2005, Dilo 2006, Verstraete et al. 2007). Finally, we are convinced 

that a more detailed comparison of the models' expressivity requires to be thoughtfully 

investigated in another paper.  

The Egg-Yolk model (Cohn and Gotts 1996) was our main inspiration to develop this 

framework for identifying topological relations. However, there are some fundamental 

differences between our model and that defined in (Cohn and Gotts 1996). For instance, the 

topological relations used in (Cohn and Gotts 1996) are those defined in the RCC-5 model 

(Randell and Cohn 1989, Cohn et al. 1997). In contrast, the topological relations used in the 

cells of our matrix are those defined in the 9-Intersection model (Egenhofer and Herring 

1990). It is true that we follow the same methodology to identify topological relations. 

However, our definitions of objects with vague shapes are substantially different. Our model 

is based on the point-set theory where points and lines are considered as basic crisp spatial 

object types. In terms of originality, we do not formally redefine the concept 'broad boundary' 

as it is done in most of existing exact models. Our approach is based on the distinction 

between a minimal extent and a maximal one. The broad boundary can be deduced from the 

difference between these two extents but it is not defined as a topological invariant of the 

object. In (Cohn and Gotts 1996), a conceptual neighborhood graph was drawn with 44 

topological relations are classified into 13 clusters. In our model, we define a hierarchical 

classification based on the content of the matrices we use to identify the topological relations. 

This classification is the basis of an adverbial approach that we use to specify topological 

integrity constraints between regions with broad boundaries. 
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3.11 Conclusions and future works 

Shape vagueness is an inherent property of many spatial objects like lakes, valleys, and 

mountains. In GIS and spatial databases, it is a general practice to neglect shape vagueness 

and formally represent spatial objects with vague shapes as crisp geometries. Using such 

inappropriate representations can provide a source of spatial data quality degradation, because 

the reliability of spatial data is decreased. With emergence of prediction applications, data 

integration, and strategic decisional needs, researchers are increasingly motivated to propose 

different methods for the formal representation of shape vagueness. A review of the literature 

regarding this topic proves that existing exact models do not permit the representation of 

objects with partially vague shape. For such objects, shape vagueness partially characterizes 

one or several of its topological invariants. For example, a lake can have rocky banks on one 

side and swamp banks on the other side at the same time; the boundary is broad only for the 

swamp part. In this work, we have proposed an exact model in order to represent spatial 

objects that can have: crisp shapes, partially vague shapes, or completely vague shapes. We 

have considered this categorization of shape vagueness during the identification of 

topological relations.  

More specifically, this paper contributes in three main ways. Based on point-set topology, 

we firstly define three basic types of spatial objects with vague shapes: broad point, line with 

a vague shape (i.e., lines with broad boundaries, lines with broad interiors or broad lines), 

and region with a broad boundary. Each one of them is typically defined as a minimal 

extent min
~
A and a maximal extentmax

~
A , and these extents must verify some topological 

conditions in order to be valid. This model permits the representation of spatial objects with 

partially vague shapes considered as invalid in the existing models of (Clementini and Di 

Felice 1997, Tang 2004, Reis et al. 2006). Then, we identify a topological relation through 

use of a 4-Intersection matrix that permits the enumeration of four sub-relations: R1 

( min
~
A , min

~
B ), R2 ( min

~
A , max

~
B ), R3 ( max

~
A , min

~
B ), and R4 ( max

~
A , max

~
B ). By using this formalism for 

simple regions with broad boundaries, 242 relations can be distinguished (cf. appendix 1). In 

order to retain our propositions useful in practice, we propose the clustering of these 

topological relations. A topological relation can belong to one or several clusters with various 

qualitative strengths: completely, strongly, fairly, and weakly. The objective of this qualitative 

clustering is to improve the specification of spatial queries and integrity constraints involving 

spatial objects with vague shapes. 
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In this paper, our study is limited to the regions with broad boundaries which are composed 

by a simple core (or minimal extent). Extending this approach to regions with more complex 

shapes (e.g., regions with broad boundaries and holes, regions with several cores, regions 

composed by disjoint uncertain sub-regions, etc.) is one of our future researches. We are 

conscious that it can be a limitation of our current model but considering this type of regions 

requires additional investigations which exceed the objectives of this paper. The goal of this 

paper is to clearly present the basis of our approach before improving it. Another extension 

consists of using this approach to improve the logical consistency of spatial databases 

involving spatial objects with vague shapes. More specifically, we are interested in the 

specification of integrity constraints in spatial databases storing objects with vague shapes. 

We hope to identify both integrity constraint categories and the requirements for their formal 

expression. The framework presented earlier can provide a basis for the extension of a formal 

constraint language like OCL (Pinet et al. 2007) to express tolerant integrity constraints for 

objects with vague shapes.  

Finally, this approach can be used to deal with geometric heterogeneities between sources 

databases in decisional applications. These applications require the integration of spatial data 

from heterogeneous sources before they are stored in a spatial data warehouse (Bédard et al. 

2007). The main difficulty lies in choosing one of the available geometric representations. We 

suggest merging the different representations in such way that the result looks like a spatial 

object with a vague shape. The tolerant integrity constraints can be used to increase the 

logical consistency of such data. 
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4.1 Résumé de l’article 

Le vague de forme est plus difficile à modéliser pour les lignes que pour les régions 

(Clementini 2005). Deux types de lignes ayant des formes vagues sont généralement 

distingués : (1) les lignes ayant des frontières vagues et (2) celles qui sont complètement 

vagues (Clementini and Di Felice 1997, Reis et al. 2006). Cependant, l'intérieur d'une ligne 

peut être partiellement ou complètement vague indépendamment des points finaux. La forme 

d'une ligne peut être également vague quand seulement une des points finaux est vague. En 

effet, un problème conceptuel caractérise les travaux existants où différents types et niveaux 

de vague de forme ne sont pas considérés. Ce problème implique le besoin d’une méthode 

permettant l’identification des relations topologiques entre les lignes avec différentes formes 

vagues. Cet article propose une approche qualitative appelée le modèle QMM (acronyme de 

Qualitative Min-Max), où des lignes avec des niveaux différents de vague de forme sont 

distingués : aucun, vague de forme partiel et vague de forme complet. Nous définissons 

formellement une ligne avec la forme vague en tant qu’une combinaison d’une extension 
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minimale et une autre maximale. Les relations topologiques sont alors identifiées en fonctions 

des sous-relations entre les extensions minimales et maximales respectives des lignes 

impliquées. Le poids d'une relation topologique peut être exprimée qualitativement en 

employant des adverbes tels que faiblement ou fortement. Cette approche peut être servir à 

exprimer des contraintes topologiques et des requêtes spatiales sur des lignes ayant des 

formes vagues. 

4.2 Abstract 

Shape vagueness about lines is more complicated to model than about regions (Clementini 

2005). Two types of lines with vague shapes are generally distinguished: (1) lines with broad 

boundary and (2) completely broad lines (Clementini and Di Felice 1997, Reis et al. 2006). 

However, a line's interior can be partially or completely broad independently of the 

endpoints. A line's shape can be also vague when only one of the endpoints is broad. Then, 

there is a conceptual problem, because different types and levels of shape vagueness are 

ignored in existing works. Overcoming this problem implies studying the identification of 

topological relations between lines with different vague shapes. This paper proposes a 

qualitative approach called Qualitative Min-Max model (QMM model for short), where 

different levels of shape vagueness of lines are distinguished: none, partial vagueness and 

complete vagueness. We formally define a line with vague shape as having a minimal extent 

and a maximal one. The topological relations are then specified according to the sub-relations 

between respective minimal and maximal extents of lines involved. The strength of a 

topological relation can be qualitatively expressed by using a set of adverbs such as weakly or 

fairly. This approach can be integrated into a framework to express topological integrity 

constraints and spatial queries. 

4.3 Introduction 

Topological errors can refer to the anomalies in an object's shape (e.g., unclosed polygon) or 

more often to an invalid topological relation between two objects (e.g., an overlap relation 

between two buildings). These topological properties and relations change according to the 

shapes of spatial objects stored in the database (Ubeda and Egenhofer 1997) as well as over 
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time if objects move, enlarge, rotate, etc. Moreover, some researches notably in (Altman 

1987, Burrough and Frank 1996, Cohn and Gotts 1996, Hunter and Goodchild 1996, Erwig 

and Schneider 1997, Couclelis 1996)) proved that spatial objects can have vague shapes (e.g. 

regions with broad boundaries like a pollution zone) and/or uncertain positions. These spatial 

data imperfections are generally caused by the complexity of reality and limitations of the 

measurement instruments and processes (Bédard 1987). Shape vagueness occurs when there 

is a difficulty to distinguish an object shape from its neighborhood and therefore the 

topological invariants (e.g., a broad boundary) could not have the same definitions as in the 

crisp context (Winter 2000). Using crisp spatial object types to represent spatial objects with 

vague shapes entails a gap between the knowledge that we have about spatial objects and their 

formal representation in spatial databases and GIS (Cheng and Lin 2001, Yazici et al. 2001). 

Then, the topological properties and relations can also change whether the objects 

manipulated have vague shapes such as regions with broad boundaries (e.g., a pollution zone), 

lines with vague shapes (e.g., the trajectory of an historic explorer) or broad points (e.g., a 

wreck on the bottom of the sea). 

In the literature, the topological aspects for regions with broad boundaries have been 

thoughtfully explored (Altman 1987, Burrough and Frank 1996, Cohn and Gotts 1996, Erwig 

and Schneider 1997, Zhan 1997, Hazarika and Cohn 2001, Roy and Stell 2001, Winter 2000, 

Morris 2003, Robinson 2003, Zhan and Lin 2003, Tang 2004, Dilo 2006, Bejaoui et al. 2008). 

However, lines with vague shapes have not received the same attention except in few works 

(Clementini and Di Felice 1997, Clementini 2002, Clementini 2005, Reis et al. 2006). These 

last approaches proposed modeling of lines by using the appropriate shapes (i.e., using two- 

dimensional parts which denote the shape vagueness such as broad endpoints) and 

emphasizing of lines shape vagueness during the identification of topological relations (e.g., 

connection, crossing, etc). Two types of lines with vague shapes are generally distinguished: 

(1) lines with broad boundary and (2) completely broad lines. However, the interior of a 

given line can be partially or completely broad independently of the boundary (or endpoints). 

A line's shape can also be considered as vague when only one of the endpoints is broad (e.g., 

an engine trajectory with only one ill-defined endpoint). However, existing works (Clementini 

and Di Felice 1997, Clementini 2002, Clementini 2005, Reis et al. 2006) do not explicitly and 

exhaustively distinguish these different types and levels of shape vagueness for lines. 

Furthermore, the shape vagueness affects the identification of topological relations, which 

depend on the objects' shapes. It is the second main problem addressed in this work. 
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In this paper, we study the different types and levels of shape vagueness which can 

characterize the topological invariants of a given line (i.e., boundary and interior). We look 

for a new geometric model to describe different levels of shape vagueness of the boundary 

and/or interior. More specifically, we aim to make a distinction between the notions of broad 

interior and broad boundary, because each can be vague independently of the other. In this 

paper, this distinction is useful for simple lines with vague shapes and it will be extended for 

multi-lines and polygons. Additionally, a topological invariant (i.e., the interior or the 

boundary) of a given line can be characterized by one of the following levels of shape 

vagueness: none (i.e. the topological invariant is well-defined), partial shape vagueness and 

complete shape vagueness. In the same way, we aim to describe the vagueness of a 

topological relation by using a qualitative approach. We think that is pertinent for users to 

know whether two lines with vague shapes are weakly or strongly connected. For that, we 

define a line with a vague shape as a minimal extent (i.e., it contains all of the points which 

certainly belong to the line) included into a maximal extent (i.e., it contains all of the points 

which possibly belong to the line). The difference between these two extents refers to the 

shape vagueness of the line involved. Therefore, the topological relations between two lines 

with vague shapes can be qualitatively identified according to sub-relations between their 

respective extents. These sub-relations are identified through an extension of CBM method 

(Clementini and Di Felice 1995) which provides a limited number of topological operators 

that are more expressive than those defined in the 9-Intersection model (Egenhofer and 

Herring 1990, Clementini and Di Felice 1995, Clementini 2005). Our approach can be then 

seen as an extension of existing geometric models for objects with well-defined shapes. This 

model can be simply used to support the specification of topological relations in queries and 

integrity constraints by using a set of adverbs (e.g., weakly, fairly, strongly, and completely), 

which denote the vagueness of a relation to occur between the crisping of lines with vague 

shapes. The crisping of a line with a vague shape refers to any line with well-defined 

endpoints and interior that is strictly inside the spatial extent covered by the line with a vague 

shape (Bennett 2000, Clementini 2005). We call this approach: the Qualitative Min-Max 

model (QMM model for short), because it deals with shape vagueness in a qualitative way by 

distinguishing different types of lines with vague shapes according to the difference between 

the minimal extent and the maximal one. This first part of model is called Qualitative Min-

Max Definitions (QMMDef for short), because it includes the principles of the spatial model to 

represent the shape vagueness for linear geometries. In addition, QMM model includes a 

second part called Qualitative Min-Max Topological relations (QMMTR for short) used to 
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identify the topological relations between lines with vague shapes by studying the sub-

relations between the minimal extents and maximal extents of lines involved. The vagueness 

of each topological relation can be qualified by using a set of adverbs such as weakly or fairly. 

We denote that we speak about the same model presented in the previous chapter and applied 

to regions with broad boundaries. We recall that the acronym QMM model have been 

proposed after acceptance of the first paper in order to facilitate reference to our approach. 

The remainder of this paper is organized as follows. In Section 4.4, we explore some 

previous works on the definition of lines with vague shapes and their topological 

relationships. In Section 4.5, we present the QMMDef model for lines with vague shapes, 

where we thoughtfully underline the different levels of shape vagueness. In Section 4.6, we 

propose the QMMTR model in order to identify topological relations between lines with vague 

shapes. For that, we propose an extension of the CBM method in order to identify the 

topological sub-relations, which occur between minimal and maximal extents of lines 

involved. After that, we define a 4-Intersection matrix in order to describe these sub-relations 

and classify topological relations. Section 4.7 proposes an adverbial approach to classify the 

topological relations by using the similarity between the sub-relations enumerated in their 

respectives 4-Intersection matrices. In Section 4.8, we show how this adverbial approach can 

be used to express topological integrity constraints and spatial queries involving lines with 

vague shapes. Section 4.9 draws the conclusions and some perspectives of this work. 

4.4 Shape vagueness for lines 

Shape vagueness occurs when an intrinsic property of the object or a lack of knowledge does 

not allow to sharply distinguish this object from its neighborhood (Bejaoui et al. 2008). For 

regions, the shape vagueness is generally correlated to the boundary which should be broad. 

For example, a lake can be considered as a region with a broad boundary, because its limits 

change according to the level of precipitation. Two types of models are generally used to 

represent objects with vague shapes. Exact models such as Burrough and Frank (1996), Cohn 

and Gotts (1996), Clementini and Di Felice (1997), Erwig and Schneider (1997) and Hazarika 

and Cohn (2001) proposed the extension of the models defined for crisp objects to underline 

the vagueness of the boundary (e.g., the one-dimensional boundary is replaced by a broad 

one) without any hypothesis about its internal structure. The main advantage of this approach 
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is its simplicity to be integrated in existing spatial database systems (Erwig and Schneider 

1997, Clementini and Di Felice 1997). Other approaches (Altman 1987, Brown 1998, 

Burrough and Frank 1996, Dilo 2006, Robinson and Thongs 1986, Schneider 2001, Tang 

2004, Zhan 1997, Morris 2003, Robinson 2003, Zhan and Lin 2003) are based on Fuzzy Sets 

Theory (Zadeh 1965) in order to precisely describe the structure of broad boundary, or on 

Rough Sets (Pawlak 1994) (e.g., (Worboys 1998(b))), or (3) on the probability theory (e.g., 

(Burrough and Frank 1996, Pfoser et al. 2005)). For fuzzy models, some quantitative 

hypotheses should be set in order to define mathematical functions associated to the spatial 

objects with vague shapes. Furthermore, these approaches are expensive in implementation 

and they generally require an important effort to be manipulated by users (Clementini 2005).  

For lines, the shape vagueness cannot be only correlated to the boundary (i.e. the line's 

endpoints). In (Clementini and Di Felice 1997, Reis et al. 2006), two categories of lines with 

vague shapes are generally distinguished: lines with broad boundary and completely broad 

lines. Reis et al. (Reis et al. 2006) distinguish 77 topological relations between lines with 

broad boundary and 5 between completely broad ones. They apply the 9-Intersection model 

(Egenhofer and Herring 1990) on lines with vague shapes in order to identify their topological 

relations. Figure 4.1 shows two examples of topological relations between two lines with 

vague shapes according to (Hazarika and Cohn 2001). In Clementini (2002), Clementini 

(2005), Clementini explained that the line's interior can be also broad (or vague) and therefore 

it is important to distinguish between the notions of broad boundary and broad interior. This 

second approach is more expressive than Clementini and Di Felice (1997), Reis et al. (2006) 

model, because it allows to distinguish the case where only the line's interior is broad and not 

the boundary. By using the 9-Intersection model, Clementini (2005) distinguishes 146 

topological relations between two lines with vague shapes. He considers these lines as 

complex geometries composed by two-dimensional parts (for broad parts of the line) and 

one-dimensional parts (for certain parts). Therefore, the line's interior corresponds to the 

union of interiors of two-dimensional and one-dimensional parts (line's boundary is the union 

of boundary of one-dimensional and two-dimensional parts). Clementini (2005) distinguishes 

146 topological relations without any labelling or clustering process. This approach has two 

main limitations. First, the participation of each one of two-dimensional (uncertain parts of 

the line) and one-dimensional parts (certain parts of the lines) of lines in the topological 

relation is not described. In other words, the lines are defined as complex shapes without a 

formal distinction between their certain and uncertain parts. Second, this approach does not 
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allow the description of partial shape vagueness and the 146 topological relations are not 

labelled. 

 
 
 
 
 
 
 
 
 
 

Figure 4.1  Identification of topological relations between lines with vague shapes in (Reis et al. 2006) 
(with IL, BL and EL refer respectively to the interior, boundary and exterior of the lines involved) 

According to Clementini (2005), we agree about the importance of making the difference 

between the shape vagueness of an interior and that of a boundary. However, existing 

approches dealing with lines with vague shapes do not cover the cases where the boundary 

and/or interior of the line is partially vague. For example, figure 4.2 shows the trajectory of an 

historic explorer where the final destination is ill-known (i.e., only one of the endpoints is 

broad). The final destination is presented by a broad point which covers the set of the points, 

which can be the destination of the explorer. In the same way, only a part of the interior can 

be broad for an aircraft which traversed a turbulence area and that has not be detected by 

radars during this time period. In this paper, we aim to stress these different types and levels 

of shape vagueness in a new classification of lines with vague shapes. After that, an exact 

model is proposed in order to formally represent the lines with vague shapes. This 

formalization allows to overcome the limitations of existing works in terms of identification 

of the topological properties and relations between this type of lines. 

 
 

 

Figure 4.2  An example of a trajectory with vague shape of an historic explorer 

4.5 QMMDef model for lines with vague shapes 

4.5.1 Evaluation of shape vagueness for linear geometries 
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Line with vague shape 

Line with broad boundary Line with broad interior Completely broad line

A simple crisp line is a one-dimensional object type made up of an interior and a disconnected 

boundary (i.e. two endpoints). The endpoints represent the boundary of a crisp line, whereas 

the interior is the set of points connecting them. Shape vagueness can characterize the interior 

or the boundary of a given line. Consequently, the line’s boundary can be partially or 

completely broad while the interior remains well-defined; we then speak about lines with 

broad boundaries. In the same way, the interior can be partially or completely broad while 

the endpoints are well-defined; we speak about lines with partially and completely broad 

interior, respectively (figure 4.4). The extreme case of shape vagueness for lines arises when 

all of the line's topological invariants (i.e. the interior and the boundary) are broad (figure 

4.4). Thus, a completely broad line arises when it is not possible to sharply distinguish the 

line from its neighborhood. It is also possible to have a line with completely broad line with 

broad boundary where there is a vague indication about the endpoints (see examples in lower-

right cell of figure 4.4). In our categorization, we also consider a completely crisp line as a 

particular case of lines with vague shapes, for which both the interior and endpoints are well-

defined. According to Clementini (2005), shape vagueness of a line interior is always present 

even only endpoints are broad. In other words, a broad endpoint implies that there is a part of 

space where each point can be: the endpoint, in interior or in exterior of the line. Figure 4.4 

presents our general categorization of lines with vague shapes. A line with a vague shape can 

correspond to one or a combination of three basic object types:  lines with broad boundary, 

lines with broad interior or completely broad lines. In figure 4.3, the specification 

"overlapping" means that different types of shape vagueness can be combined in a same line 

at the same time. For example, it can have a broad boundary and a broad interior at the same 

time. 

 
 
 
 
 
 

Figure 4.3  Categorization of lines with vague shapes 

The different levels of shape vagueness for lines can be combined as presented in figure 

4.4. We use one pronoun and four adverbs to underline these levels: (1) none (for crisp lines), 

(2) weakly, (3) fairly, (4) strongly, and (5) completely. The term "weakly" indicates that one of 

the topological invariants is partially broad. The term "fairly" reflects either a complete shape 

vagueness of one of topological invariants or the case where the interior and boundary are 

Overlapping 
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partially broad at the same time. The term "strongly" specifies complete shape vagueness for 

one of the topological invariants and partial shape vagueness for the second one. Finally, the 

term "completely" is used to express total shape vagueness of the line's components. Figure 

4.4 shows a symmetrical matrix, in which the shape vagueness increases from "none" in the 

upper-left cell to "completely" in the lower-right cell through a progression including 

"weakly", "fairly," and "strongly".  

Line with 
vague 
shape 

Crisp interior Partially broad 
interior 

Completely broad 
interior 

Crisp 
boundary 

none weakly vague 
shape 

fairly vague shape 

Partially 
broad 
boundary 

weakly vague shape fairly vague 
shape 

strongly vague shape 

Completely 
broad 
boundary 

fairly vague shape strongly vague 
shape 

completely vague shape 

                : crisp endpoint                  : broad endpoint                     : crisp interior                        : broad interior 

Figure 4.4  Lines with vague shapes 
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• Example of a line with a weakly vague shape (e.g., only one broad endpoint)         :       

The Bermuda triangle is a region in the Atlantic Ocean where some aircrafts and surface 

vessels have disappeared. Fight 19 is the designation of five American fighters which 

disappeared in this triangle on December 9, 1945. The five fighters left Naval Air Station of 

Lauderdale for a patrol. Their plan is to fly over the south east coast before landing in Florida. 

However, communication was interrupted when they enter into Bermuda Triangle. Then, only 

the start point (i.e. Naval Air Station of Lauderdale) and a part of the trajectory’s interior are 

well-known before the communication interruption. The final endpoint is broad because the 

trajectory can have any shape inside the triangle. This situation can be modeled through a line 

with weakly vague shape. 

• Example of a line with a weakly vague shape with two crisp endpoints                   : 

We suppose that an aircraft disappeared for some time from radar screens because it traversed 

a turbulence area. After that, the communication returns to normal and the engine arrives at its 

destination. In this case, the aircraft trajectory is composed of two crisp endpoints. However, 

the interior is partially broad because the trajectory can take any unpredictable shape inside 

the turbulence zone. The trajectory of the aircraft can also be represented as a line with a 

weakly vague shape. 

This approach is called the QMMDef model, because different levels of shape vagueness 

can be distinguished by using a set of adverbs (i.e., a qualitative approach). Furthermore, the 

level of shape vagueness of a given line is deduced from the difference between its minimal 

extent and its maximal extent. Hereafter, we present the formal definition of a line with a 

vague shape in the QMMDef model.  

4.5.2 Definition of lines with vague shapes 

In the QMMDef model, a line with a vague shape is typically composed of two-dimensional 

parts that correspond to the vague parts of the line and one-dimensional parts that refer to the 

crisp parts of the line. We define the maximal extent of a line with a vague shape as a crisp 

complex geometry resulting from the union of the one-dimensional and two-dimensional 

parts. The interior of maximal extent corresponds to the union of interiors of one-dimensional 

parts and those of two-dimensional parts. In the same way, the boundary of the maximal 



 131 

extent is the union of boundaries of one-dimensional parts and those of two-dimensional 

parts. The maximal extent cannot be empty. 

The minimal extent corresponds only to the crisp parts of the line involved (i.e., one-

dimensional parts and well-defined endpoints). The minimal extent is also a crisp geometry 

and it is a subset of the maximal extent. It can be empty if the line is completely broad. The 

minimal and maximal extents are not mutually exclusive; i.e. Lmin ⊆  Lmax.  

A line with a vague shape geometrically (but not semantically) refers to the maximal extent 

Lmax. Lmin and Lmax are crisp geometries. Lmax can include two-dimensional parts as well as 

one-dimensional parts. However, Lmin includes only one-dimensional parts and well-defined 

endpoints of the line. The interpretation of shape vagueness of each part of the maximal 

extent Lmax is made with regards to the related object represented by the line with a vague 

shape. Then, Lmax is semantically different from the line itself; i.e. Lmax cannot have a 

definition and a semantic independently of the line involved. The notion of maximal extent is 

distinguished from the minimal extent in order to distinguish the crisp parts of the line from 

the broad ones.  

The notions of broad boundaries and broad interiors are proper to the line with a vague 

shape. For a line with a broad boundary, each point inside the broad boundary may be an 

endpoint, inside the interior or outside the line. The latter property proves that a point of the 

broad boundary cannot be outside the broad interior. Then, the concept of broad interior 

includes that of the broad bounadry. A broad interior is always present, even if the shape 

vagueness concerns only the endpoints (i.e. broad interior and broad boundary are not 

mutually exclusive). In other words, a point of the broad boundary is also a point of the broad 

interior at the same time.  

For the maximal extent as well as for the minimal extent of a line with a vague shape, the 

interior can b e disconnected. The boundary can be also disconnected. Figure 4.5 shows 

different cases of decomposition of topological invariants composing extents of lines with 

vague shapes. We should denote that these different representations of lines with vague 

shapes correspond to a set of pictograms. In other words, these representations are not based 

on a mathematical model that allows to consider the error component of spatial data as in 

(Chrisman 1991). In Figure 4.5, the semantic difference between a line with a vague shape 

and its maximal extent is stressed by drawing linear boundaries for broad parts of the 

maximal extent. Such boundaries show that the maximal extent is a crisp complex geometry 
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where we can distinguish the interiors and boundaries of its subparts as presented in the next 

figure.  
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Figure 4.5  Topological invariants according to the line shape vagueness 

More formally, a lineL
~

with vague shape is composed by a maximal extentmax

~
L and a 

minimal extent min

~
L . The minimal extent corresponds to the one-dimensional parts and well-

defined endpoints of the line. The maximal extent refers to the spatial extent of the line when 

the shape vagueness is considered. The maximal extent includes the minimal extent and the 

difference between them corresponds to the shape vagueness of the line. In our approach, we 

focus on the definition of the topological invariants for the maximal extentmax

~
L and the 

minimal one min

~
L . For each one, we distinguish an interior and a boundary that can be empty 

according to the configuration of the line (figure 4.5). From a point-set topology view point, a 

simple line with a vague shape should verify the following conditions: 

1- Each one-dimensional part of the simple line with a vague shape is connected. 

2- Each one-dimensional part of the simple line with a vague shape is not self-

intersecting. 

3- Each one-dimensional part of the simple line with a vague shape does not form a loop. 
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4- If the endpoints are broad, they do not overlap with each other.  

The three first conditions are those defined for a crisp line in the general point-set 

topology. Then, we apply these conditions to each linear part of the line with a vague shape. 

The last condition is defined to eliminate any risk of a self-intersection or loop configurations. 

Figure 4.6 shows some cases of lines that are invalid according to our model. 

 

 
   Non-regular interior of maximal extent     Self-intersecting line     The line forms a loop 
 
 
 
                  The endpoints can be identical 

Figure 4.6 Examples of invalid lines 

In the next section, we propose a qualitative approach to identify topological relations of 

between lines with vague shapes. This approach is called the Qualitative Min-Max model for 

Topological Relations (QMMTR for short) between lines with vague shapes and it is based on 

the QMMDef  model presented above. 

4.6 QMM Topological Relationships between lines with vague 

shapes 

4.6.1   Extending of CBM method 

In general, two models have been used for specifying topological relations between lines with 

vague shapes: the 9-Intersection model (Egenhofer and Herring 1990) and the CBM method 

(Clementini 1995). In the 9-Intersection model, topological relations between two spatial 

objects are defined in terms of nine intersections between their topological invariants 

(interiors, boundaries and exteriors). This approach has been extended to simple regions with 

broad boundaries in (e.g. Clementini and Di Felice 1997, Tang 2004, Bejaoui et al. 2008) as 

well as for lines with vague shapes (e.g. Clementini 2005, Reis et al. 2006). In the case of 

lines, the 9-Intersection model generally distinguishes a high number of topological relations 

either for crisp lines or for lines with vague shapes (Clementini 2005). In absence of any 

clustering method, the 9-Intersection model becomes useless because users cannot intuitively 

distinguish all of possible topological relations between lines with vague shapes. For example, 
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33 relations are possible between two simple crisp lines and 77 between two lines with broad 

boundary (Reis et al. 2006). In (Clementini 2005), 146 topological relations are distinguished 

computationally by using 9-Intersection matrices.  

However, the CBM method (Clementini and Di Felice 1995) proposes five high-level 

operators (touch, in, cross, overlap and disjoint) in addition to the interior and boundary 

operators. Clementini and Di Felice (1995) proved that this approach is more expressive than 

the 9-Intersection model. Furthermore, each relationship identified by the 9-Intersection 

model can be classified into one of the five clusters associated to the five high-level operators 

of CBM. The main advantages of this approach are its expressivity and simplicity in 

identifying topological relations. CBM method was extended for regions and lines with broad 

boundaries (Clementini 2002). In this paper, we adapt the CBM method to our model of lines 

with vague shapes. More specifically, we propose an additional operator called ext_min that 

we use to extract the minimal extent of the line. This operator allows to underline the 

participation of one-dimensional parts in a topological relation. Furthermore, new topological 

operators are suggested in order to improve the expressivity of the approach regarding the 

specification of topological relationships between lines with vague shapes. cross_min and 

overlap_min are respective specializations of Overlap and Cross. These new operators can be 

applied between minimal extents of lines involved. The extension of CBM method provides 

the set of topological operators of QMMTR to identify the topological relations between lines 

with vague shapes (cf., Section 4.6). In the next definitions, the formal definitions of basic 

and new operators are presented and some examples are given in figure 4.7. We assume that 

O1 and O2 are two lines with vague shapes:  

• Definition 1: touch  

( 21 ,, OtouchO ) � )()( 2121 ∅≠∩∩∅=∩ OOOO oo  

• Definition 2: in 

( 21 ,, OinO ) � )( 121 OOO =∩  

• Definition 3: Disjoint 

      ( 21 ,, OinO ) � )( 21 ∅=∩ OO  

• Definition 4: cross_min (arises between ext_min(O1) and ext_min(O2) where 

dim(ext_min(O1))=1 and dim(ext_min(O2))=1) 

 ( 21 min,_, OcrossO )�   ))min(_)min(_)min(_(( 121 OextOextOext ≠∩                                          

)))min(_)min(_)min(_( 121 OextOextOext ≠∩∩                                                     
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      )0)(dim( 21 =∩∩ °° OO  

• Definition 5: cross (arises between a line with a vague shape and the minimal extent 

of another one, example O1 and ext_min(O2) where dim(ext_min(O2))=1) 

          ( 21 ,, OcrossO ) � ( 21 min,_, OcrossO )  

                             ))min(_)min(_((( 221 OextOextO ≠∩∪  

                             ))min(_)min(_( 121 OextOOext ≠∩∩  

                 ))1)(dim( 21 =∩∩ °° OO  

• Definition 6: overlap_min arises between ext_min(O1) and ext_min(O2) where 

dim(ext_min(O1))=1 and dim(ext_min(O2))=1) 

( 21 min,_, OoverlapO )� )1)(dim( 21 =∩ °° OO                         

                ))min(_)min(_)min(_( 121 OextOextOext ≠∩∩                                              

    ))min(_)min(_)min(_( 221 OextOextOext ≠∩∩  

• Definition 7: overlap 

                ( 21 ,, OoverlapO ) � ( 21 min,_, OoverlapO )  

                                 )(( 221 OOO ≠∩∪  

                                 )( 121 OOO ≠∩∩  

                     ))2)(dim( 21 =∩∩ °° OO  
 

 
 
 
 
 

 

Figure 4.7 Examples of cross_min and overlap_min relations 

Additionally, we look for highlighting the dimension of an intersection resulting from a 

touch relation. In essence, 0-dim_touch and 1-dim_touch are specializations of the touch 

operator; they are used to specify whether the dimension of an intersection in a touch relation 

is a point or a line. In the same way, the CBM method does not explicitly distinguish the 

Covered by relation as in the 9-Intersection model. In this work, we consider it as a 

specialization of the in relation; we call this relation in_touch(b) (b is an operator to extract a 

line's boundary), because it requires that the boundary of the inner object touches that of outer 

one. in_disjoint(b) is another specialization of the in relation; it means that boundaries of the 

inner object and the outer one are disjoint. Figure 4.8 shows examples of these four relations.  

(a) cross_min relation (b) overlap_min relation 
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CBM relations

Disjoint Touch In Cross Overlap

0-dim_touch 1-dim_touch

in_touch(b) in_disjoint(b)

Cross_min Overlap_min

 
 
 
 
  
 

 
 
 
 
 

Figure 4.8 Examples of (a)  0-dim_touch relation, (b) 1-dim_touch relation, (c)  in-disjoint(b) relation 
and (d)  in-touch(b) relation 

 The relations 0-dim_touch, 1-dim_touch, in_touch(b), in_disjoint(b) are defined as follows: 

• Definition 8: 0-dim_touch 

( 21 ,dim_0, OtouchO − ) � )()( 2121 ∅≠∩∩∅=∩ OOOO oo  

                                                   )0)(dim( 21 =∩∩ OO  

• Definition 9: 1-dim_touch 

( 21 ,dim_1, OtouchO − ) � )()( 2121 ∅≠∩∩∅=∩ OOOO oo  

                                                  )1)(dim( 21 =∩∩ OO  

• Definition 10: in_touch(b) 

( 21 ),(_, ObtouchinO ) � )( 121 OOO =∩  

                                                       ))()(( 21 ∅≠∩∩ ObOb  

• Definition 11: in_disjoint(b) 

( 21 ),int(_, ObdisjoinO ) � )( 121 OOO =∩ ))()(( 21 ∅=∩∩ ObOb  

 

Figure 4.9 shows generalization/specialization relations between the topological operators in 

the QMMTR model applied for lines with vague shapes: 

 

 

 
 
 
 
 
 

Figure 4.9 Generalization/Specialization links between relations of the QMMTR model 

(a)0-dim_touch relation (b) 1-dim_touch relation (c)  in-disjoint(b) relation 

(d)  in-touch(b) relation 
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The topological operators of each level of the QMMTR model are mutually exclusive. This 

property is verified for the first level, which contains the following relations: Disjoint, Touch, 

In, Cross and Overlap. In the same way, Disjoint, 0-dim_touch, 1-dim_touch, in_touch(b), 

in_disjoint(b), Cross_min and Overlap_min are also mutually exclusive. In the next section, 

we explain how we use these operators to identify topological relations between lines with 

vague shapes. 

4.6.2 Principles of identification of topological relations in the QMM TR model 

We interpret the maximal extents of lines with vague shapes as composite geometries. It is 

composed by one-dimensional parts and two-dimensional ones. The minimal extent is a 

subset of the maximal one (i.e., it corresponds to one-dimensional parts and crisp points of the 

line). In fact, our methodology consists in identifying four specific topological relations 

between minimal and maximal extents of lines with vague shapes involved. For this purpose, 

we define a 4-Intersection matrix containing the following four topological sub-relations: 

R1( min
~
A , min

~
B ), R2( min

~
A , max

~
B ), R3( max

~
A , min

~
B ), and R4( max

~
A , max

~
B ) (see example in figure 4.10) 

(with A
~ andB

~  two lines with vague shapes). According to this idea, we should remind that the 

the structure of 4-Intersection matrix has been used by (Eegnhofer 1989) to identify 

topological relationships between crisp regions. In the present work, we propose a model 

based on the use of 4-Intersection matrices in the specific context of lines with vague shapes. 

These matrices are just containers; i.e. a formal representation of the topological relationships 

between lines with vague shapes involved. The method used to fill the matrices’ cells is 

different to that used in (Egenhofer 1989). In the present approach, the basic idea consists in 

using the extension of CBM method (i.e., the topological operators presented above in the 

QMMTR) to fill the four cells of the matrix. Then, the 4-Intersection matrix corresponds to the 

following representation:            

                                                                        min

~
B                   max

~
B  

     min
~
A  R1( min

~
A , min

~
B ), R2( min

~
A , max

~
B ) 

       max
~
A     R3( max

~
A , min

~
B ), R4( max

~
A , max

~
B ) 

 
Figure 4.10 shows the content of the matrix that describes a topological relation between two 

lines with vague shapesA
~ andB

~ .  
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Figure 4.10  Description of a topological relation between two lines with vague shapes: (a) visual 
content of the matrix, (b) formal identification of the relations between the minimal and maximal 

extents of the objects involved 

The content of the matrix corresponds to the four topological sub-relations between 

respective minimal and maximal extents of lines involved. Since the maximal extents 

geometrically (but not semantically) refer to the lines, we use the topological sub-relation 

between them R4( max
~
A , max

~
B ) (value of the down-right cell) in order to label the global 

topological relation. For example, if R4( max
~
A , max

~
B ) is Cross, we consider that one of the lines 

with vague shapes globally Crosses the other. If R4( max
~
A , max

~
B ) is Contains, we consider that 

the global topological relation is Contains. In the example of figure 4.10, A~  globally 

CrossesB~ .   

4.7 Clustering of topological relations between lines with vague 

shapes 

4.7.1 Principles 

In this work, topological relationships between lines with vague shapes are specified through 

the topological operators defined in the QMMTR model (cf., section 4.6) that we apply 

                                 min

~
B                            max

~
B  

min

~
A    Disjoint ( min

~
A , min

~
B ), Disjoint ( min

~
A , max

~
B ) 

max

~
A   Cross ( max

~
A , min

~
B ),   Cross ( max

~
A , max

~
B ) 

(a) 

(b) 

A
~  

B
~  

 A
~  

B
~  
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between minimal and maximal extents of involved lines. Eleven topological operators can be 

used to specify these sub-relations. These operators allow to describe any topological relation 

between two lines with vague shapes. However, it is very difficult to enumerate all of possible 

relations, because the shapes of such composite objects are unpredictable. It is also not 

realistic to find a name for each one of possible relations, and therefore the user will have 

difficulty to choose the appropriate operator in order to express a spatial query or a 

topological integrity constraint. For this purpose, the clustering of topological relations into 

larger groups may be a pertinent alternative followed by previous works such as (e.g. 

Clementini and Di Felice 1997, Mark and Egenhofer 1994). 

In this paper, we use the content of the proposed 4-Intersection matrix in order to classify 

the topological relations. Five basic clusters are distinguished: DISJOINT, IN, CROSS, 

OVERLAP and TOUCH. Each cluster contains all of the topological relations for which at 

least one of the four sub-relations has the same name as the cluster. A topological relation 

becomes possible if it appears at least once in the matrix. This possibility increases according 

to the number of similar sub-relations. For example, a Cross topological relation in which 

Cross ( max
~
A , max

~
B ) and Cross ( min

~
A , min

~
B ) is stronger than another where only Cross 

( max
~
A , max

~
B ). In order to distinguish these different levels of a relation's membership, we use 

four adverbs to evaluate the vagueness of a topological relation: (1) completely, (2) strongly, 

(3) fairly, and (4) weakly. A topological relation belongs to one cluster completely when the 

four sub-relations are identical.  It belongs to one cluster strongly when only three sub-

relations have the same name as the cluster. The level termed fairly contains all relations for 

which two sub-relations have the same name as the cluster. Finally, the level called weakly 

contains the relations for which only one sub-relation has the same name as the cluster.  For 

example, figure 4.11 shows a topological relation that belongs to the following clusters: 

DISJOINT, TOUCH, and IN. Nevertheless, it belongs to the IN cluster more strongly than to 

the DISJOINT and COVERS clusters. By using our adverbial approach, we can conclude that 

the topological relation is fairly IN, weakly DISJOINT, and weakly TOUCH. 

 
                                        
 

 

 

 

Figure 4.11 Example of clustering of a topological relation 

Disjoint 

In_touch(b) 0-dim_Touch 

In  TOUCH 

IN 

DISJOINT 
A
~  B

~  weakly 

 
weakly 

fairly 
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Figure 4.12 presents examples of relations that belong to different levels of CONTAINS and 

DISJOINT clusters, respectively, according to the contents of their correspondent matrices.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4.12 Evaluation of topological relationship strength 

4.7.2   Overlapping clusters 

The main result of this clustering process is a hierarchical classification of the topological 

relations (figure 4.13). The top level is made up of five basic clusters (DISJOINT, TOUCH, 

IN, CROSS, OVERLAP) that each contains typically four levels: completely, strongly, fairly, 

and weakly. The resulting 32 sub-clusters overlap each other because a topological relation 

can belongs to different levels of 1, 2, 3, or 4 clusters at the same time. Figure 4.13 shows the 

structure of this hierarchical classification. The bottom level includes all of possible cases that 

can occur between two lines with vague shapes. 

 
 
  
 
 

     
 
 
 
 
 
 
 
 

Figure 4.13 A hierarchical classification of the topological relations between lines with vague shapes 
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4.8 Specification of topological integrity constraints and spatial 

queries for lines with vague shapes 

The simplicity and expressivity of the CBM method (Clementini and Di Felice 1995, 

Clementini 2002, Clementini 2005) can be inherited by the QMMTR especially with a 

qualitative classification of topological relations between lines with vague shapes. Then, this 

approach can provide necessary conceptual tools in order to formally express topological 

integrity constraints for lines with vague shapes. A topological integrity constraint is a rule 

that insure that a topological property of an object or a topological relation is not violated. 

These constraints are used to insure the consistency of a spatial database (Frank 2001). For 

example, we assume that a spatial database stores the geometries of some protected animals' 

trajectories and that shape vagueness is considered in this database. A topological integrity 

constraint can be defined in order to say that ‘Different trajectories of one species in one 

season should not be completely or strongly Disjoint'. This constraint can be formally 

expressed by integrating new spatial operators (e.g., completely Disjoint, weakly Covers, etc.) 

in a formal constraint language such as the Object Constraint Language (OCL) (Pinet et al. 

2007). The database storing the trajectories is consistent only whether the topological 

relations between the different trajectories do not belong to the following subclusters: 

completely or strongly Disjoint. This constraint can be expressed through Spatial OCL as 

follows: 

  

Example 1 : Context Trajectory inv:  

    Trajectory.allInstances � forAll  (a, b| a<>b implies not 

    (strongly DISJOINT(a,b) or  completely DISJOINT(a,b))); 

In the same way, the QMM model can be integrated in a spatial database system. Indeed, 

the SQL language can be extended in order to express spatial queries involving lines with 

vague shapes based on the qualitative information given by the user regarding their 

topological relation. In this section, we suppose that we integrated our spatial model in a 

relational engine in order to give an example of its possible use in spatial queries involving 

lines with vague shapes. In the next query example, the user would select the animals' 

trajectories that weakly Overlap or weakly Meet each other. According to our approach, this 

query can be expressed as follows: 
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       Example 2: Select A.geometry, B. geometry From Trajectories A, Trajectories B   

                                      Where A.trajectories_id<> B.trajectories_id AND 

                                       vague_Relate (A.geometry, B.geometry, weakly Meet) OR  

                   vague_Relate (A.geometry, B.geometry, weakly Overlap) 

4.9 Conclusion  

Shape vagueness has been thoughtfully studied for regions (notably in (Burrough and Frank 

1996, Cohn and Gotts 1996, Dilo 2006, Erwig and Schneider 1997, Roy and Stell 2001, Tang 

2004, Zhan and Lin 2003)). However, shape vagueness of lines has been generally considered 

more complicated to model than regions. Some approaches (Clementini and Di Felice 1997, 

Clementini 2002, Clementini 2005, Reis et al. 2006) was interested in modeling lines with 

vague shapes and their topological relations. The main limitation of these approaches is that 

they do not make the distinction between different types and levels of shape vagueness of 

lines (i.e. partial shape vagueness, complete shape vagueness, partial broad interior, and 

partial broad interior, etc.). In this paper, we proposed a new geometric model called QMM 

model composed by two sub-models: (1) the QMMDef model and QMMTR model. The 

QMMDef model proposes an expressive taxonomy of lines with vague shapes and their formal 

definitions. In the proposed taxonomy, we made the distinction between the shape vagueness 

of the interior of a given line from that arising in its boundary. The line interior can be 

partially or completely broad independently of the boundary, and vice versa. We identified 

four levels of shape vagueness for lines according to the crispness, partial broadness and 

complete broadness of the interior and/or boundary: (1) weakly, (2) fairly, (3) strongly and (4) 

completely. Generally, we defined a line with a vague shape as a minimal extent composed 

only by one-dimensional parts of the line and a maximal extent that additionally includes the 

two-dimensional or broad parts. Topological relations between lines with vague shapes are 

then identified through an extension of the CBM method (Clementini and Di Felice 1995) that 

we integrate into the QMMTR model and apply for sub-relations between minimal and 

maximal extents of involved lines. After that, we proposed a 4-Intesersection matrix to 

describe these four sub-relations and classify topological relations between lines with vague 

shapes. A topological relation can belong with different strengths (i.e., weakly, fairly, 

strongly, and completely) to one or multiple of the following basic clusters: DISJOINT, IN, 

CROSS, OVERLAP and TOUCH. This adverbial approach can provide the basis of an 
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extension of a constraint language to express topological integrity constraints involving lines 

with vague shapes. Finally, the main perspective of this work is to extend our model to the 

composite lines with vague shapes. 
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5.1 Résumé de l’article 

L’intégration des bases de données spatiales peut être basée sur l'analyse de leur qualité 

interne. Cette analyse justifie la sélection d’une base de données référence contenant les 

meilleures (dans le sens de la qualité interne) géométries qui peuvent représenter les objets 

dans une base de données finale. Toutefois, cette approche n'est pas toujours possible, en 

particulier lorsque des éléments de qualité sont mal décrits au niveau des bases de données 

sources. Dans cet article, nous nous sommes intéressés à un cas particulier de l'intégration de 

bases de données spatiales visant à fusionner (1) des représentations géométriques 

hétérogènes stockées dans des sources différentes pour lesquelles (2) la qualité interne est 

mal-décrite. Dans ce cas, une approche commune consiste à supposer que toutes les 

géométries sources d’un objet contribuent d’une façon égale dans sa géométrie finale. Par 

conséquent, un objet spatial peut avoir une géométrie finale de forme vague (par exemple, 
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régions ayant des frontières larges) lorsqu’il y a une différence entre l'union et l'intersection 

de ses géométries sources. Dans cet article, nous adressons le problème du vague topologique 

que nous définissons comme l’incertitude par rapport à la relation topologique appropriée 

entre les géométries finales. Ces relations topologiques sont généralement différentes de 

celles définies dans les bases de données sources car le vague de forme doit être pris en 

compte. L’objectif de cet article est de réduire le vague par rapport aux relations topologiques 

entre les géométries finales. Dans notre approche, nous énumérons les relations topologiques 

possibles et proposons différentes stratégies pour les vérifier. 

5.2 Abstract   

The integration of multiple spatial databases takes into account the analysis of their spatial 

data quality. This comparison leads to select or to generate the best geometries to be loaded 

in the final database. Such a process is a challenge when the elements of spatial data quality 

are poorly described in the data sources. In this case, a common approach consists of 

assuming that all the crisp source geometries of each object contribute, in an equal way, to 

produce the final geometric representation. Then, a spatial object may be represented through 

a geometry with a vague shape (e.g. region with a broad boundary) in the final database. The 

shape vagueness results from the difference between crisp source geometries. In addition, for 

a same pair of objects, the topological relationships between their final geometry cannot be 

deduced from those defined between their former crisp geometries in the original data 

sources. Therefore, we address the problem of topological relationships vagueness, i.e. the 

uncertainty about the appropriate topological relationships between the final geometries. This 

paper aims at reducing the topological relationships vagueness in a given final database. We 

analyze which topological relationships are possible, and propose different strategies to 

manage them.  

5.3   Introduction 

Spatial data integration is a complex problem that can be defined, addressed and resolved 

differently according to different needs. In (Shibasaki et al. 1994, Ziegler and Dittrich 2004), 

spatial data integration aims at combining data stored in different sources in order to produce 
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a more complete final database with respect to the areas, epochs or themes to be covered. In 

(Uitermark et al. 2005), the integration of multiple spatial databases consists of establishing 

the relationships between corresponding instances in different spatial databases representing 

the same geographic space. It can be also used to (1) load a multi-representation spatial 

database (Laurini 1996, Megrin 1996), (2) reuse the data in another context (Breunig and 

Perkhoff 1992), (3) improve the completeness and non-redundancy of an existing database 

(Nyerges 1989), and so on. It is also possible to distinguish vertical integration (integrating 

spatial data describing different themes in the same location) from horizontal integration 

(integrating spatial data describing the same theme but in different locations) (Poulliot 2005). 

In the context of decision-support systems, spatial data integration is often a necessary 

process to load spatial data warehouses (Malinowski and Zimányi 2005, Bédard et al. 2007, 

Sboui et al. 2007). According to Franklin (1992), 80% of data have a spatial component. 

When a spatial data warehouse is modelled and implemented with a hypercube structure, this 

property of data is exploited in order to improve the data analysis by providing the geometric 

navigation in a spatial dimension. A spatial dimension includes different geometric levels 

which are organised in a hierarchy. The members of each level of analysis can involve 

geometries loaded from different source databases selected in an integration process. In this 

work, we deal with a special case of the vertical integration; i.e. where the same spatial 

objects are represented with heterogeneous redundant geometries measured at the same epoch 

but using different specifications for different data sources. Then, we assume that the final 

geometries resulted from the integration may be loaded into the spatial dimensions of a spatial 

data warehouse (with a hypercube structure) and provide vague shapes for the members of a 

hierarchy level.   

 The internal quality of a spatial database refers to the respect of the specifications defined 

by the data producer, and generally includes the following elements: (1) data actuality, (2) 

geometric and thematic accuracies, (4) lineage (i.e. genealogy of data), (5) logical 

consistency (i.e. thematic, geometric, temporal, topological, and structural coherencies of 

data; generally controlled with integrity constraints) and (6) completeness (Devillers and 

Jeansoulin 2005, Mostafavi et al. 2004). An internal quality analysis involves the comparison 

of these quality elements to the theoretical specifications or the nominal ground (David and 

Fasquel 1997). Multiple spatial databases can be integrated based on a comparison of their 

respective internal quality. According to Devogel (1997), the integration process requires the 

selection of a source database as a reference. The geometries of these sources are used to 
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control the integration of the geometries coming from the other sources. Then, if a source 

geometry does not occur inside a matching area, it is not considered in the final geometry of 

the spatial object involved. The reference database is selected based on the internal quality 

analysis. In the final database, the topological relationships between spatial objects are 

defined according to the reference database. This is the most desirable case amongst those we 

can meet for spatial data integration.  

Unfortunately, the internal quality is not always well-described. Therefore, a comparison 

between the available source databases cannot usually support the selection of one reference. 

Let's assume that a set of spatial objects is given, each having different geometries in different 

sources, and that the spatial data quality of each object is poorly described, then no clear 

conclusion can be drawn from such a situation. In this case, one possibility is to consider that 

the available source geometries of each spatial object contribute in an equal way to its final 

geometry. Then, the spatial intersection of the source geometries of a given object provides 

the subpart where a consensus has been found. In addition, the spatial union of these same 

geometric representations provides the exhaustive area where the object might be found. If the 

difference between the intersection and union is non-empty, then the object shape can be 

considered as vague since only a subpart was agreed upon (i.e. the result of the spatial 

intersection). In other words, by using only the knowledge provided by the data sources, it is 

not possible to be certain about the object shape; however, it is possible to deduce the 

complete or partial vagueness of this shape. Regions with broad boundaries such as forest 

stands and lines with broad interiors such as canoe routes between two piers are examples 

among several of objects with vague shapes. A database designer may use this type of 

geometries to integrate heterogeneous redundant geometries in order to improve the data 

reliability, especially in a data feeding process. For example, the management of the wood 

industry in a given forest should consider the broad boundaries of forest stands (i.e. it is an 

oversimplification of the reality to surround a forest stand by a linear boundary), to decrease 

the risks of wrong analyses and decisions. In Figure 1, we assume that a spatial object A is 

represented by three heterogeneous geometries in three different databases, respectively. The 

final geometry resulted from the integration of the source geometries of A is a region with a 

broad boundary. The broad boundary refers to the difference between the union and 

intersection of source geometries. Then, the decision-maker takes account of broad boundary 

in order to get the most appropriate decision. For example, if A refers to a forest stand, he can 

adjust the production of wood inside the broad boundary according to the available data. 
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Figure 5.1 Example of the integration of three heterogeneous geometries representing the same object 

In the source databases, topological relationships happen between well-defined shapes can 

be controlled by topological integrity constraints (Pinet et al. 2007). Such control allows one 

to make sure the quality of data is on par with the specifications. Topological (integrity) 

constraints are an important class of integrity constraints for such spatial databases. They refer 

to a set of rules defined at the conceptual level in order to reduce the topological 

inconsistencies in spatial databases (e.g. roads and buildings should be Disjoint) (Cockcroft 

1997, Normand 1999, Servigne et al. 2000). These constraints can be specified by using 

specific languages such as the Object Constraint Language (OCL) (Waremer and Kleppe 

1998, Pinet et al. 2007). 

The heterogeneity of partly or totally redundant source geometries and the poor description 

of their internal quality entail a shape vagueness and may produce an uncertainty concerning 

the topological relationships between objects of the final database. In the final database, the 

shape vagueness must be taken into account in order to define the topological integrity 

constraints properly. An adequate model of topological relationships is necessary and an 

adapted method is needed to characterize them in a given situation. The characterization of 

such relationships can be also useful for the specification of spatial queries.  

In this paper, we address the problem of topological relationships vagueness, which we 

define as the uncertainty about the appropriate topological relationship between possibly 

vague shapes resulting from the integration of multi-source redundant data. These 

relationships are generally different from those occurring in the source databases, because 

they involve shape vagueness. The main objective is to reduce this topological relationships 

vagueness when specifying the topological integrity constraints for a given final database (e.g. 

a warehouse). We propose a model to define this vagueness and an approach to characterize 

the possible topological relationships between the geometries resulting from the integration 

process. We apply these concepts to the case where the final database is a spatial data 

Representation of A in a source Sn 

           In S1 

           In S2 

           In S3 
Integration of the 
source geometries 

Region with a broad 
boundary resulted from 

integration 
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warehouse (with. a hypercube structure) and where the final geometries are loaded in one 

hierarchy level of a spatial dimension (for the details of hypercube structures in spatial data 

warehousing, we refer the readers to (Bédard and Han 2008)). In this context, we assume that 

the semantic heterogeneities have been resolved and only the appropriate intra-level 

topological relationships need to be specified in the final constraints. In the same way, we 

assume that no integrity constraints are defined between geometries belonging to different 

hierarchy levels. We do not deal with the topological relationships between child and parent 

members in a spatial dimension hierarchy.  

The paper is organised as follows. In Section 5.4, we refer to some works related to the 

topic of geometric heterogeneities in spatial data integration and the use of specific spatial 

models to represent the shape vagueness. In Section 5.5, we explain the problem studied in 

this paper. Section 5.6 presents the spatial model to merge heterogeneous redundant 

geometries that represent a given spatial object. Section 5.7 describes our approach to analyze 

possible topological relationships between geometries with vague shapes resulting from the 

integration process. We propose two strategies to reduce the topological relationships 

vagueness: (1) modifying the final geometries in order to completely respect topological 

relationships (i.e. using topological operators for objects with well-defined shapes, such as 

those defined in the 9-Intersection model (Egenhofer and Herring 1990)) or (2) using an 

adverbial approach to partially characterize these relationships. Section 5.8 presents an 

example of reducing the vagueness of intra-level topological relationships in a spatial data 

warehouse. Finally, Section 5.9 presents the conclusions and some perspectives of this work. 

5.4 Previous works  

5.4.1   Geometric heterogeneities in spatial data integration 

In spatial databases, the values of geometric attributes can be observed and measured in 

different ways (Mowrer 1999). This property of geometric data allows room for more than 

one value and could entail some difficulty when heterogeneous geometries for a same object 

need to be integrated (Devogel 1997). Figure 2 presents three examples of spatial objects with 

heterogeneous redundant representations in source databases. Figure 5.2(a) shows a set of 

points, each one of them being an heterogeneous redundant representation measured at the 
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same epoch for the same spatial object (e.g. a fire hydrant). In the same way, Figure 5.2(b) 

and Figure 5.2(c) show the same thing for lines and regions that can represent objects such as 

a river and a lake, respectively.  

 
 
        
                             (a)                                 (b)                                     (c) 

 

Figure 5.2 Example of redundant heterogeneous representations: (a) 5 representations of the same 0-D 
object, (b) 3 representations of the same 1-D object, (c) 2 representations of the same 2-D object 

  
The principal function used to merge source crisp geometries is the overlay method (Frank 

1987, Demirkesen and Schaffrin 1996, Harvey and Vauglin 1996). This approach consists in 

identifying features in different data sources intended to represent a same world object before 

merging them into a final geometric representation. The overlay method assumes that one 

data source (called reference) has a higher quality then the other available data sources. The 

nodes of a geometry belonging to A should remain fixed. A tolerance error termed tolerance 

match is associated to the geometries of A in order to consider the geometries of the other 

sources within this tolerance in the integration process. In other words, if a feature FS 

belonging to a data source S is within the match tolerance of a feature FA belonging to the 

reference A, then each node of FS should be moved to an existing or newly created node of FA 

(Ware and Jones 1998).  

The overlay approach requires that the internal quality is well described in the data sources 

in order to select a reference among them. Then, a final geometry with a possibly vague shape 

may result from the integration of source geometries (Shepherd 1992). Accordingly, some 

approaches use specific spatial models in order to represent inherent shape vagueness of 

several spatial objects such as inundation areas or pollution zones (Clementini and Di Felice 

1997, Cohn and Gotts 1996, Erwig and Schneider 1997, Tang 2004, Bejaoui et al. 2008) 

(Section 5.4.2). These models can be also used to represent final geometries with vague 

shapes resulted from the integration of redundant and heterogeneous geometries. 

Nevertheless, the specification of topological integrity constraints involving these geometries 

is still an open question since it is required to consider the shape vagueness. Spaccapietra and 

Parent (1991) suggested choosing the least constrained database as a reference. This approach 

can be efficient when the least constrained database has also the highest quality. Rodriguez 

(2005) proposed to disable any constraints when different topological relationships are 
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possible for geometries resulted from the integration process. For example, figure 5.3 shows 

two spatial objects that are represented differently in two data sources A and B. Three 

topological relationships are possible between final geometries: Overlap, Meet, Disjoint. The 

topological inconsistencies in the final database are increased. 

 
 
 
 
 
 
 
 
 

 
 

Figure 5.3. Possible topological relationships for final geometries 

5.4.2 Formal specification of objects with vague shapes and their topological 

relationships  

Two categories of models are generally used to deal with spatial vagueness. In the first 

category, crisp spatial concepts are transferred and extended to formally express the spatial 

vagueness: we speak about exact models (Clementini and Di Felice 1997, Cohn and Gotts 

1996, Erwig and Schneider 1997, Tang 2004). In the second category, three principal 

mathematical theories are generally used: (1) the models based on Fuzzy Logic (Zadeh 1965) 

(e.g. Dilo 2006) which can be used to represent continuous phenomena such as temperature, 

(2) the models based on Rough Sets (e.g. Worboys 1998) which represent spatial objects with 

vague shapes as a pair of approximations (upper approximation, lower approximation) and 

(3) the models based on probability theory (e.g. Burrough and Frank 1996, Pfoser et al. 2005) 

which are primarily used to model position errors. A literature review on specification of 

spatial objects with vague shapes and their topological relationships has been realized in 

Section 2.3. 
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5.5   Problem Statement 

In the integration process, the topological relationships vagueness increases when the 

available source geometries of each spatial object are heterogeneous (measured using 

different methods which not give the same results) and the internal quality is ill described in 

source databases. In this case, geometric heterogeneities entail shape vagueness for the final 

geometries whenever the difference between the union and intersection of available source 

geometries is non-empty. The topological relationships between final geometries should be 

redefined to take into account their possible shape vagueness.  

Let A and B be two spatial objects with heterogeneous geometries (A1, B1) and (A2, B2) in 

two source databases S1 and S2 respectively. The final geometries of A and B can be 

represented by two regions with broad boundaries. A broad boundary refers to the difference 

between the union and intersection of the source geometries (i.e. (UA, IA) for A and (UB, IB) for 

B). For example, assume that the geometries of A and B are Disjoint in both sources (Figure 

5.4). It appears that the Disjoint relationship is partially respected in the final database 

because it holds for the intersections (IA, IB), whereas the unions (UA, UB) meet each other.  

 
     
 
 
 
 
 
 

 

Figure 5.4. Example of topological relationships vagueness 

From this perspective, there is a need for a specific spatial model to represent the shape 

vagueness and to compute the topological relationships between final geometries. Therefore, 

the primary existing exact models (Cohn and Gotts 1996, Clementini and Di Felice 1997, 

Erwig and Schneider 1997, Tang 2004, Reis et al. 2006) show some limitations. Most of these 

models cannot formally represent objects with partially vague shapes, such as a lake with 

rocky banks on one side and swamp banks on the other. For example, regions with partially 

broad boundaries are considered invalid because the connectedness condition is violated (i.e. 

the boundary should be broad everywhere around the region interior). However, it is 

important to consider this type of regions, as they can result from integration when the 
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difference between the union and intersection of source geometries is non-empty on some 

locations and empty on other ones. The spatial model proposed by Bejaoui et al. (2008) can 

be used to define regions of this type and their topological relationships (Section 5.6).     

In this paper, we address the problem of characterizing the topological relationships 

vagueness for final geometries resulting from the integration process. Our aim is to answer 

the following questions:  

4- How is it possible to represent a region with a broad boundary that results from 

merging the heterogeneous polygons representing a given spatial object in different 

source databases?  

5- How can we deduce the possible topological relationships between final geometries 

from the relationships defined in the data sources? The answer can help the 

specification of topological integrity constraints. 

6- Which strategies can be defined to reduce the topological relationships vagueness?  

5.6 Merging heterogeneous polygons through regions with broad 

boundaries 

The shape vagueness can characterise any geometric primitive (point, line or region). In this 

paper, we focus our investigation on the regions. For other geometric primitives, we suggest 

the following references (Clementini 2005, Bejaoui et al. 2008). The present section presents 

the spatial model for regions with broad boundaries defined in (Bejaoui et al. 2008). This 

model is not a contribution of the present paper. However, it is one of the primary elements 

on which our proposed approach is based. The definition of a region with a broad boundary is 

adapted to the geometric heterogeneity problem and semantically different from that proposed 

in (Bejaoui et al. 2008) (cf. Section 5.6.1). For that reasons, we present the spatial model in a 

separate section, in order to facilitate understanding of the remainder of the paper.  

5.6.1 Regions with broad boundaries resulting from integration 

In spatial data integration, a region with a broad boundary may result from geometric 

heterogeneities of the sources' geometries of the object involved. It corresponds to the 

difference between the union and intersection of the source geometries. The intersection refers 
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to the minimal extent of the object, whereas the union refers to its maximal extent. Figure 5.5 

represents an example of a region with a broad boundary resulting from the integration of two 

heterogeneous source geometries of the same spatial object A at the same epoch. The final 

geometry of this object corresponds to a region where the minimal extent is covered by the 

maximal one. In this example, the boundary of the minimal extent is partially superposed on 

the boundary of the maximal one. Then, the region has a partially broad boundary. 

 

 

 
 
 
 
 
 
 

Figure 5.5. Region with a partially broad boundary in spatial data integration 

We consider a region with a broad boundary A
~  resulted from the integration of 

heterogeneous geometries of the same object at the same epoch. It is made up of two crisp 

sub-regions: a maximal extent max
~
A (i.e. the union of source representations), and a minimal 

extent min
~
A  (i.e. the intersection of source representations) where Equal7( max

~
A , min

~
A ) or 

Contains( max
~
A , min

~
A ) or Covers( max

~
A , min

~
A ) (Figure 5.5). In this definition, we assume that the 

source geometries should intersect each other (i.e. an isolated geometry cannot be considered 

in the integration process). In other words, we do not deal with the case where there is no 

intersection between source geometries, because we consider that they do not represent the 

same object if they represent the geometry for the same time. The boundary of A
~  can be 

completely crisp (or not at all broad) when the difference between the union (maximal extent) 

and the intersection (minimal extent) of the source geometries (i.e. identical geometries in all 

source databases) is empty. In another case, the boundary is partially broad when the 

intersection and union are different only in some locations. In this case, the union of source 

geometries covers their intersection. Finally, the third possibility is a region with a completely 

broad boundary. In other words, the union of source geometries contains their intersection. In 

Figure 5.6, we present an example of each of these three cases. 

 

                                                 
7 The spatial relations (i.e. Equal, Contains, Covers) used in this definition are those defined in (Egenhofer and 
Herring 1990). 
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Figure 5.6. Regions with broad boundaries 

The consideration of all the available geometries in the integration result increases the 

shape vagueness of the final geometry. However, it decreases the uncertainty about the 

possible shape vagueness (or the meta-uncertainty (Bédard 1987)) of the spatial object 

involved. The user has a reliable idea of the data imperfection despite the fact that he does not 

have the well-defined shapes that would be obtained by a simplification of the reality nor well 

described quality information. One can make an analogy between this approach and the 

computation of an error ellipse in geodesy (Chrisman 1991). An error ellipse provides an area 

of a probable position around the true position of a point (its uncertainty) along with a 

percentage of probability for this point to be within this area (meta-uncertainty). This 

percentage increases according to a parameter C that defines the size and orientation of the 

ellipse. For example, there is a 38 per cent chance that the true position will fall within a 

standard error ellipse (i.e. C=1). Similarly, there is a 90 per cent chance that the true position 

fall within an ellipse defined by C=4.6. Then, increasing the error ellipse radius improves the 

spatial accuracy (or exactness) whereas it decreases the data precision, and in both cases the 

meta-uncertainty is known (38%, 90%). The user manipulates the data with better accuracy 

despite the more limited precision.     

5.6.2 Topological relationships between regions with broad boundaries 

In this paper, we defined the result of integration of heterogeneous source polygons 

representing as a region with a broad boundary. In order to specify their topological 
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relationships, we use the QMMTopological Relationships model for regions with broad boundaries 

defined in (Bejaoui et al. 2008) (cf. section 3.7). 

5.7 Controlling the validity of topological relationships in spatial 

data integration 

5.7.1 The different situations  

Let's consider a spatial object represented by heterogeneous and redundant crisp geometries 

stored in different data sources with different specifications. The final geometry of this object 

displays shape vagueness if there is a difference between the intersection and union of the 

source geometries. The source geometries contribute equally to the final geometry of the 

object while the comparison of their quality does not allow the selection of a reference 

geometry. Then, we speak about a non-distinctive internal quality. In this case, the topological 

relationships vagueness can be reduced when the source topological relationships are 

identical. The impossible relationships may be deduced despite the shape vagueness of the 

final geometries. For example, let’s assume that the geometries of two spatial objects A and B 

are respectively disjoint in two data sources. Then the intersections of the source geometries 

of A and the source geometries of B are necessarily disjoint. Contains is an inconsistent 

relationship between the final geometries of A and B. In this paper, we consider only the 

situation where the internal quality is non-distinctive and the topological relationships in the 

data sources are identical. We also study the problem of topological relationships vagueness 

only for spatial objects represented by polygons. The same methodology can be used to 

address such a problem for objects represented by lines and points.  

Considering that internal quality of sources can be distinctive or non-distinctive and that 

topological relationships in sources can be identical or different, there exist four situations 

that can be studied (Table 5.1).  Only the second situation (the grey cell) is explored in the 

present work.  
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In the following, we assume that the source geometries are topologically consistent in their 

respective data sources (i.e. the topological relationships specified in the integrity constraints 

are respected). Then, we explore the topological relationships to be respected by the final 

geometries resulting from the integration process. Two points of view are considered in the 

following study: (1) modifying the topological relationships and keeping the shapes of final 

geometries invariant, (2) keeping the source topological relationships invariant and modifying 

the final geometries.  

5.7.2 Characterizing the possible topological relationships for the final 

geometries when a same topological relationship is specified in the 

sources 

We assume that the final geometry of a given object is a region with a broad boundary. 

Likewise, we assume that the same topological relationships are specified for a same set of 

objects. The main objective of this section is to characterize the possible topological 

relationship between the final geometries. 

In the cases studied below, we suppose that an object A has n heterogeneous source 

geometries 1A , 2A ,.. and nA  in the sources S1, S2, .., Sn, respectively. In the same way, an 

object B has n heterogeneous source geometries1B , 2B ,.., and nB  in S1, S2, .., and Sn, 

respectively. Then, we consider separately the different cases of the topological relationships 

that can arise in the data sources (i.e. Disjoint, Contains, Inside, Covers, Covered by, Meet 

and Overlap). In Figures 5.10-5.14, we represent only two heterogeneous redundant 

geometries for A and B in order to improve the paper readability. These examples can be 

easily extended to any other number of sources. 

We term IA and IB the intersection of 1A , 2A ,.. and nA  and that of 1B , 2B ,.. and nB , 

respectively. In the same way, we term UA  and UB the union of 1A , 2A ,.. and nA  and that of  

Table 5.1 potential cases of topological relationship in different 
sources 

 Distinctive internal quality  Non-distinctive 
internal quality 

Identical topological 
relationships in the 
sources 

Non-Studied Studied 

Different topological 
relationships in the 
sources 

Non-Studied Non-Studied 
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1B , 2B ,.. and nB , respectively. The demonstrations of the possible relationships between the 

intersections (IA, IB) and between the unions (UA, UB) are presented in Appendix 3.  These 
demonstrations concern the eight cases of topological relationships that can arise in the data 
sources.  

� Disjoint 

In each source database, the geometries of spatial objects A and B have the same topological 

relationship: they are Disjoint. Then, IA and IB are certainly Disjoint. Otherwise, the 

topological relationship is not respected in one data source at least. For UA and UB, one of the 

following relationships is possible: Disjoint, Meet or Overlap (see the demonstrations in 

Appendix 3). A union can contain points that do not belong to all of the source geometries. 

Therefore, whether the unions overlap or meet each other, the Disjoint relation is still possible 

between the objects involved. The maximal topological consistency is obtained when Disjoint 

(IA, IB) and Disjoint (UA, UB), because then the source topological relationship is respected 

despite the shape vagueness. Finally, we conclude that the final geometries should conform to 

the restrictions of the next matrix: 

 
 
 
 
 
 
 

In the matrix presented above, no restrictions are imposed for UA/IB  and IA/UB; this 

situation is marked by “--" in the corresponding cells of the matrix. Figure 5.10 shows an 

example illustrating this case with two heterogeneous geometries of two spatial objects A and 

B. In S1 and S2, the geometries of A and B are disjoint. In this example, regions with broad 

boundaries RA and RB are resulted from the integration process to represent A and B in the 

final database. In RA and RB, the intersections IA and IB are Disjoint. The unions UA and UB are 

also Disjoint. Then, we conclude that these final geometries are topologically consistent.  

 
     
 
 
 
 
 
 

 

Figure 5.10. Integration example where the topological relationship defined in source databases is 
Disjoint 
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� Contains/Inside 

In the data sources, the geometry of A contains that of B. Then, relationship between 

intersections IA and IB is necessarily Contains. Likewise, UA contains UB. Consequently, the 

topological relationship (i.e. Contains/Inside) holds despite the shape vagueness. The final 

geometries are consistent while the source geometries involved in the integration respect the 

topological relationship Contains/Inside (see the demonstrations in Appendix 3). Hence, we 

say that Contains and Inside are invariant topological relationships. They are still invariant 

despite the heterogeneity of the source geometries. For these relationships, the final 

geometries should conform to the restrictions of one of the following matrices: 

• For Contains (A, B) 
 
 
 
 
 
 

• For Inside (A, B) 
 
 
 
 
 
 
 

Figure 5.11 shows an example of two heterogeneous geometric representations of two 

spatial objects A and B, where A1 contains B1 and A2 contains B2. Then IA contains IB and UA 

contains UB.  

 
     
 
 
 
 
 
 
 

Figure 5.11. Integration example where the topological relationship in the data source is Contains 
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In the data sources, we assume that the geometry of A covers that of B. The intersection of 
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latter case, the intersections between the boundaries of source geometries of the objects A and 

B do not arise in the same location in the different data sources. The relationship between 

intersections cannot be different to Contains or Covers (see the demonstrations in Appendix 

3). 

The union UA should always cover UB. The maximal topological consistency is obtained 

when Covers (IA, IB) and Covers (UA, UB) because the topological relationship is respected 

despite the shape vagueness. The same conclusions may be made to Covered by: {Covered by 

or Inside} between the intersections (IA, IB) and Covered by between the unions (UA, UB). 

Covers and Covered by are also two invariant topological relationships for the unions. 

Finally, the final geometries should conform to the restrictions of one of the following 

matrices: 

• Covers (A, B) 
 

 
 
 
 
 
 

• Covered by (A, B) 
 

 
 
 
 
 

Figure 5.12 shows an example two spatial objects A and B that are represented in two 

different data sources S1 and S2. In S1 and S2, the representations of A and B are respectively 

related by the following relationships: Covers (A1, B1) and Covers (A2, B2). For the final 

geometries, we have Covers (IA, IB) and Covers (UA, UB).   

 
     
 
 
 
 
 
 
 
 

Figure 5.12. Integration example where the topological relationship defined in the sources is Covers 
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� Overlap 

In the data sources, the geometry of A and that of B overlap each other. In the final 

geometries, one of the following relationships may arise between the intersections IA and IB: 

Disjoint, Meet or Overlap. However, the unions UA and UB should overlap each other. When 

the Overlap relationship does not occur in the same location for all the source geometries, this 

part of the interior cannot appear in the intersections. In the latter case, the Overlap 

relationship is still possible between the objects involved while the relationship between the 

intersections IA and IB is Meet or Disjoint (see the demonstrations in Appendix 3). The 

maximal topological consistency is obtained when Overlap (IA, IB) and Overlap (UA, UB), i.e. 

the topological relationship is preserved despite the shape vagueness. Finally, the final 

geometries should conform to the restrictions of the following matrix: 

 

 
 
 
 
 
 

Figure 5.13 shows an example of two heterogeneous geometric representations of two 

spatial objects A and B. In S1 and S2, the respective geometries of A and B overlap each other. 

After the integration, the intersections IA and IB overlap each other. In the same way, the 

relationship between the unions UA and UB is Overlap.  

 
     
 
 
 
 
 
 

 
 

Figure 5.13. Integration example where the topological relationship defined in the sources is Overlap 
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meet each other while the intersections IA and IB meet each other. Otherwise, the source 

geometries of A and B do not respect the topological relationship in one data source at least 

(see the demonstrations in Appendix 3).  

When the intersections IA and IB are Disjoint, the unions UA and UB should overlap or meet 

each other. The latter case occurs when the source geometries of A and B do not meet each 

other in the same locations. A maximal topological consistency is obtained when Meet (IA, IB) 

and Meet (UA, UB), because the topological relationship is preserved despite the shape 

vagueness. Finally, the final geometries should conform to the restrictions of one of the 

following matrices: 

• Meet(IA, IB): 
 

 
 
 
 
 
 

• Disjoint(IA, IB) 
 
 
 
 
 

 

Figure 5.14 shows two spatial objects A and B where the geometry of A meets that of B in 

each data source. In this example, the intersections IA and IB are Disjoint even though the 

unions UA and UB overlap each other. The final geometries with vague shapes are 

topologically valid because they satisfy the specifications of the second matrix presented 

above: Disjoint (IA, IB) and Overlap (UA, UB). 

 
     
 
 
 
 
 
 
 
 

Figure 5.14. Integration example where the topological relationship defined in the sources is Meet  
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5.7.3 Strategies to reduce the vagueness of topological relationships  

5.7.3.1 Principles of the strategies 

In this paper, we propose two strategies to reduce the vagueness about the topological 
relationships in a final database:  

1) Choosing the best extents of objects involved and modifying them if they violate the 
topological relationship defined in the sources. The final geometries are modified to 
be crisp (or well-defined). 

2) Using final geometries with vague shapes and apply an adverbial approach to 
stress the partial respect of the topological relationship.  

The geometric modifications of final geometries aims at forcing them to respect the 

topological relationships defined in the data sources. Such a strategy may be used when the 

topological relationships are more important to the final users than the objects’ shapes 

involved. For example, it is sometimes required to prevent an overlap relationship between 

the forest stands in spite of their broad boundaries. The principles of geometric modifications 

are proposed and discussed in (Ubeda and Egenhofer 1997). For example, it is possible to 

retain only the relationship between intersections of the source geometric representations even 

though the unions may violate the source topological relationship, and vice versa. In the case 

of the Disjoint relationship (Section 5.7.2), the intersections of the objects involved are 

usually Disjoint. Consequently, the intersections give rise to consistent final geometries of the 

objects involved.  

The second strategy retains the final geometries and uses topological operators adapted to 

regions with broad boundaries, as defined in (Bejaoui et al. 2008). This strategy considers the 

intersection as the minimal extent of the object and the union as its maximal extent. Then, a 

given topological relationship is partially respected, because only the impossible relationships 

(based on the source geometries and the topological relationships defined in the sources) are 

forbidden. For example, if the source geometries are Disjoint, then it is impossible to have a 

Contains relationship between the intersections or between the unions (Section 5.7.2).  

5.7.3.2 First strategy: modifying the final geometries 

The modification of geometries is an important issue that has been thoroughly studied in 

several works on the spatial data conflation (e.g. Saalfled 1993, Rodriguez 2005, Casado 

2006) and the control of spatial databases consistency (e.g. Ubeda and Egenhofer 1997). In 

this section, pragmatic examples are provided in order to illustrate several possible ways to 

modify a final geometry resulted from an integration process. The goal of this modification is 
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to force the verification of a topological relationship in a final database and to reduce the 

vagueness of topological relationship due to geometric heterogeneities.   

In (Ubeda and Egenhofer 1997), two types of geometric modifications are proposed in 

order to correct topological relationship violations: moving and reshaping. Moving an object 

A consists of translating it in one of five main directions: along the X axis, along the Y axis, 

perpendicular to B (a second object), parallel to B, and along A. Moving an object can be used 

to change its relative position according to another object while preserving its area. Reshaping 

an object A consists of deforming its original geometry. According to Ubeda and Engenhofer 

(1997), reshaping refers to move one or several parts of A’s geometry and leaving another 

part unchanged. In this context, it is important to note that both the original and reshaped 

geometries are crisp, simple and connected. Reshaping an object aims to modify its shape in 

order to force the topological relationship between the two objects involved without changing 

their relations with other objects of the database.  

When the spatial data quality is poorly described, the integration process can produce two 

geometries for each integrated spatial object: (1) the intersection and (2) union of the source 

geometries. The goal of this section is to apply geometric modifications on the intersections 

and/or unions of source geometries in order to force a given topological relationship. 

The intersection refers to the parts that exist in all of its source geometries while the unions 

integrate all of the points that belong to any of the source geometries. It is less risky to choose 

the intersections if we assume that all of the source geometries have a poor accuracy 

(Rodriguez 2005). However, the unions can be selected when we assume that all of the source 

geometries are incomplete (i.e. they do not include all of points that they should). The unions 

become more reliable geometric representations than the intersections. In other cases, the 

union may be more appropriate than the intersection for the first object involved, whereas the 

intersection is better for the second object.  

Our approach is to choose the best extent among the union and intersection of source 

geometries of each spatial object. Then, depending on whether the source topological 

relationship is preserved or not, two principal methods are proposed: (1) preserving the shapes 

of the best extents or (2) changing them (i.e. moving and/or reshaping). The goal of the first 

method is to leave the shapes of the best extents of the objects unchanged when the 

topological relationship is respected. The second method aims to modify these extents in 

order to insure the topological relationship specified in the sources. In Figures 5.15a-5.15e, 
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we consider that two sources are available and we apply the methods presented above on the 

different cases for the topological relationship (i.e. Disjoint, Contains, Inside, Covers, 

Covered by, Overlap, or Meet). According to Section 5.7.2, we look for the most appropriate 

method to respect the topological relationship. The goal is to force the best extents selected 

(i.e. intersections, unions or intersection – union) to respect this relationship. 

Source topological relationship : Disjoint 
The topological relationship is violated Best extents 
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The topological 

relationship is respected Moving one of the best 
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Reshaping one of the best 
extents 
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Figure 5.15a. Strategies for forcing a topological relationship in spatial data integration  

(case of Disjoint) 
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Source topological relationship : Contains/Inside 
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Figure 5.15b. Strategies for forcing a topological relationship in spatial data integration  

(case of Contains/Inside) 
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Source topological relationship : Covers/Covered by 
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Figure 5.15c. Strategies for forcing a topological relationship in spatial data integration  

(case of Covers/Covered by) 
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Source topological relationship : Overlap 
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Figure 5.15d. Strategies for forcing a topological relationship in spatial data integration 

(case of Overlap) 
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Source topological relationship : Meet 
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Figure 5.15e. Strategies for forcing a topological relationship in spatial data integration 

(case of Meet) 
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are valid if the specifications of the related matrices are satisfied (cf. Section 5.7.2). For 

example, if the source geometries are Disjoint, then their respective intersections are 

necessarily Disjoint. In order to express this specification, we propose using the topological 

relationships introduced in (Bejaoui et al. 2008). This adverbial approach reduces the 

topological relationships vagueness because the topological relationship defined in the source 

databases is partially respected, and impossible configurations are forbidden. Figure 5.16 

shows how the topological relationships are redefined for final geometries with vague shapes. 

Topological relation 
displayed in the 
source databases 
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geometries resulting 
from integration 

Topological integrity constraint defined for 
the final geometries 
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A fairly Inside B / Inside(IA,IB) and Inside(UA, 
UB) 
 

Covers/ Covered by  For Covers:  
(A weakly Covers B / Contains(IA,IB) and 
Covers(UA,UB)) or (A fairly Covers B / 
Covers(IA,IB) and Covers(UA,UB)) 
 
For Covered by: 
(A weakly Covered by B / Inside(IA,IB) and 
Covered by(UA,UB)) or (A fairly Covered by B 
/ Covered by(IA,IB) and Covered by(UA,UB)) 
 

Overlap   (A weakly Overlap B / R(IA,IB)= {Disjoint, 
Meet} and Overlap(UA,UB)) or (A fairly 
Overlap B / Overlap(IA,IB) and 
Overlap(UA,UB)) 
 

Meet  (A weakly Meet B / R(IA,IB)= {Disjoint, Meet} 
and Overlap(UA,UB)) or (A weakly Meet B / 
Disjoint(IA,IB) and Meet(UA,UB)) or (A fairly 
Meet B / Meet(IA,IB) and Meet(UA,UB)) 
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5.8 Example of reducing the intra-level topological relationships 

vagueness in a spatial data warehouse 

In the present example, we consider the case of population density transitions from the urban 

zones to rural ones. The urban-rural classification may be based on the population density, 

which often decreases progressively from the urban zones to rural ones. Generally, the urban 

planners are appointed to estimate the boundary of the urban zones. An urban zone can have 

heterogeneous geometries in different databases when the estimates are made by different 

experts. Therefore, it is not reliable to surround an urban zone using a linear boundary. 

Nonetheless, these spatial objects are falsely represented as regions with crisp boundaries that 

replace the real broad boundaries.  

In this example, a spatial data warehouse (with a cube structure) is required to support a 

decision-making process in the domain of urbanism. Figure 5.17 shows a star schema of the 

spatial data warehouse. The fact table is connected to three dimensions. The spatial dimension 

is made up of four hierarchy levels: Building_group, Urban_zone, Region, Country. The 

temporal dimension contains three hierarchy levels: Year, Five_years, Twenty_years. The last 

dimension is called Taxe_Category and it is composed of one hierarchy level that describes 

the categories of required taxes (e.g. provincial, federal, property tax, house tax, etc). Only 

one measure, called required_taxes, is considered in this spatial data cube.  

 

 

 

 

 

 

 

 

 

Figure 5.17. The star schema of a spatial data warehouse in the domain of urban planning 

In this example, the urban zones are loaded from different data sources. For an urban zone 

A, we assume that the intersection between its source geometries is non-empty. The 

integration of source geometries of A generates a final geometry with a vague shape. We are 
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interested in specifying final topological integrity constraints for geometries stored at the 

Urban_zone level of the spatial dimension.  

We remind the hypotheses made in this example. First, the same topological relationships 

between urban zones are specified in the different data sources. Second, semantic 

heterogeneities are not considered in our specification of final constraints. Finally, we do not 

deal with inter-levels topological relationships.  

Figure 5.18 shows an example of two urban zones A and B that are disjoint in their 

respective sources S1, S2, and S3 but are represented by heterogeneous crisp geometries in each 

one. The same topological relationship is specified in the topological integrity constraints 

defined in the data sources: “the geometries of two different urban zones should be disjoint”. 

The final geometries are regions with broad boundaries that overlap each other (the unions UA 

and UB overlap each other, whereas the intersections IA and IB are disjoint).  

 

 

 

 

 

 

 

 

Figure 5.18. Integration of the heterogeneous source geometries of an urban zone 

The source topological integrity constraints cannot be completely respected by the final 

geometries with vague shapes. Therefore, we use the two strategies defined above to reduce 
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Bejaoui et al. 2008). 
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                  Context Urban_zone inv:  
                                 Urban_zone.allInstances � forAll  (a, b| a<>b implies DISJOINT(a,b));   
                               

� Using the second strategy (an adverbial approach to express final topological 

integrity constraints): 

In this strategy, we consider that the shapes of objects are more relevant than the topological 

relationships in the decision-making process. In other words, decision-makers need to take 

into account the shape vagueness of urban zones in order to improve the quality of their 

decisions by considering the uncertainty of input data. Nonetheless, the vagueness of the 

topological relationships can be reduced by preventing impossible relationships between the 

final geometries. For this purpose, we use the second strategy.  

According to the constraints defined in the data sources, the intersections should be disjoint 

at least. Then we use the topological operators “weakly Disjoint” and “completely Disjoint” to 

express this specification (see the first case in Figure 5.16). The unions should be Disjoint, 

Overlap or Meet each other. Otherwise, the final geometries are invalid and cannot be 

accepted in the spatial dimension. The final constraint is expressed as follows:  

       Context Urban_zone inv:  
                     Urban_zone.allInstances � forAll  (a, b| a<>b implies (weakly Disjoint(a,b)/   
                    (Disjoint(Ia,Ib) and R(Ua,Ub)={Overlap, Meet})) OR (completely Disjoint(a,b)/  
                    (Disjoint(Ia,Ib) and Disjoint(Ua,Ub)))); 

5.9 Conclusion 

In spatial data integration, the spatial data quality can be used to compare the data sources in 

order to deal with geometric heterogeneities. When the data quality is distinctive, one data 

source can be selected as a reference in order to apply an overlay method and generate crisp 

geometries from the integration process. Otherwise, the spatial data integration consists of 

merging all of the source geometries that contribute equally in the final geometry of a given 

spatial object. In the latter case, the final geometries may be geometries with vague shapes 

(e.g. regions with broad boundaries) when there is a difference between the union and 

intersection of source geometries. The topological relationships between final geometries 

should be redefined in order to take into account their shape vagueness. In this paper, we 

studied the problem of topological relationships vagueness, defined as the uncertainty about 

the appropriate topological relationship between the final geometries. The main objective is to 
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reduce the topological relationships vagueness between the final geometries. Table 1 

explained the scope of this work. We limited our study to the case where the same topological 

relationship is specified in the source for the objects involved and where the data quality is 

not distinctive. For the other cases, additional investigations are required to deal with 

topological relationships vagueness.   

This paper provides three main contributions. First, a model for objects with vague shapes 

(Bejaoui et al. 2008) has been reused to merge all the source geometries of a given object 

when the internal quality analysis is non-distinctive. Second, we have studied the valid 

topological relationships between the final geometries resulted from an integration process 

considering the case where the same topological relationship is found in the data sources. For 

each of the eight topological relationships (Egenhofer and Herring 1990) that can arise in the 

data sources, we studied which topological relationships can occur between the respective 

unions and intersections of the source geometries of objects involved. We proposed patterns 

of matrices to verify the validity of relationships between final geometries with vague shapes 

(cf. Section 5.7.2). Third, we proposed two main strategies to reduce the topological 

relationships vagueness: (1) choosing the best extents of objects involved and modifying them 

if they violate a given topological relationship, (2) preserving the final geometries with vague 

shapes and using an adverbial approach to stress the partial satisfaction of a given 

topological relationship. The first strategy can be used when the topological relationships are 

considered more important than the shapes of objects involved to meet the users’ needs. The 

second strategy aims to preserve the possible vague shapes of final geometries and to partially 

satisfy the source topological relationships. These strategies were tested in an example of a 

spatial data warehouse (with a cube structure) in the domain of urbanism.  

According to Malinowski and Zimányi (2005), topological relationships between hierarchy 

levels have been the focus of many works (e.g. Tryfona and Egenhofer 1997). However, 

neither the shape vagueness of the geometries involved in these relationships nor their 

implications in computing of measure aggregations were considered (Pedersen and Tryfona 

2001, Jensen et al. 2004). In the future researches, we aim at studying these problems using 

the contributions of the present work. 

A code generator could be also proposed and implemented. Such a generator could 

produce triggers or SQL queries from OCL constraints in order to check the validity of data in 

the data warehouses. The generated code will be used to control if the data comply with the 

topological conditions of the constraints. In order to reach this goal, a specific extension of 
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the existing code generator OCL2SQL could be considered for data warehouses (Pinet et al. 

2007). 
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6.1 Résumé de l’article  

Dans les bases de données spatiales, les contraintes topologiques d'intégrité contrôlent les 

propriétés topologiques des objets spatiaux ainsi que la validité de leurs relations 

topologiques. Ces contraintes peuvent être exprimées en utilisant des langages formels tels 

que l’extension spatiale d’OCL (acronyme d’Object Constraint Language). OCL spatial 

permet l'expression des contraintes topologiques impliquant les objets spatiaux ayant des 

formes bien définis. Cependant, ce langage ne fournit pas les éléments de syntaxe requis pour 

exprimer des contraintes topologiques impliquant les objets spatiaux ayant des formes vagues 

(ex. régions ayant des frontières larges). Le vague de forme requiert des opérateurs 
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topologiques appropriés (ex. fortement disjoint, faiblement adjacent) pour désigner les 

relations valides entre ce type d’objets. Cet article adresse le problème de manque des 

éléments de syntaxe pour exprimer des contraintes topologiques impliquant des régions ayant 

des frontières larges. Nous proposons une extension d’OCL spatial basée sur notre modèle 

géométrique pour des objets ayant des formes vagues et une approche adverbiale pour des 

relations topologiques entre des régions ayant des frontières larges. Cette extension a été 

validée sur un exemple d’une base de données stockant des informations sur les épandages 

agricoles. 

6.2 Abstract 

Topological integrity constraints control the topological properties of spatial objects and the 

validity of their topological relationships in spatial databases. These constraints can be 

specified by using formal languages such as the spatial extension of the Object Constraint 

Language (OCL). Spatial OCL allows the expression of topological integrity constraints 

involving crisp spatial objects. However, topological integrity constraints involving spatial 

objects with vague shapes (e.g., regions with broad boundaries) are not supported by this 

language. Shape vagueness requires using appropriate topological operators (e.g., strongly 

Disjoint, fairly Meet) to specify valid relations between these objects; otherwise, the 

constraints cannot be respected. This paper addresses the problem of the lack of terminology 

to express topological integrity constraints involving regions with broad boundaries. We 

propose an extension of Spatial OCL based on the QMM model for objects with vague shapes 

and an adverbial approach for topological relations between regions with broad boundaries. 

This extension of Spatial OCL is then tested on a database storing data related to agricultural 

spreading.  

6.3 Introduction 

Integrity constraints are well-know techniques to guarantee the consistency of the data. 

According to Altman (1994), integrity constraints are rules that are dependent on a problem 

domain, and they must be held to be true for all meaningful states of information systems. The 

modeling of integrity constraints in a conceptual data model may be viewed as a 
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representation of a set of business rules for the information system. The satisfaction of these 

constraints tends to guarantee the consistency and quality of data. 

In geographical databases, the spatial integrity constraints are required to control the 

topological properties of geometries, the semantic aspects (e.g., a house has one floor at 

least), and topological relations (e.g., cultural parcels should be disjoint or adjacent) in 

addition to basic constraints (e.g., domain constraints) (Frank 2001, Souris 2006). The formal 

specification of these integrity constraints requires using an unambiguous language adapted to 

geographical databases. A spatial database-oriented language should allow the specification of 

both alphanumeric and spatial constraints (Duboisset et al. 2005). 

The work of (Demuth and Hussmann 1999, Demuth et al. 2001) proposed to make use of 

the Object Constraint Language (OCL) (Warner and Kleppe 1999) to model alphanumerical 

database integrity constraints. OCL provides a framework to define constraints on UML class 

diagrams. This language has several advantages. First, it allows a declarative expression of 

constraints. Second, it is based on UML which is commonly used in the information system 

and software engineering domains. Third, it can be interpreted by code engines/compilers to 

generate integrity checking mechanisms automatically. Some tools allow producing code in 

different languages (Java, C#, SQL, etc) from specifications of constraints expressed in OCL 

(Klasse 2005). For instance, different tools can produce SQL code (Demuth 2005, Demuth et 

al. 2004). The produced SQL queries can be used to check if a database verifies the 

constraints or to forbid inserting data that do not verify a constraint. 

A recent extension of OCL called “Spatial OCL” has been proposed to model complex 

spatial integrity constraints (Hasenohr and Pinet 2006, Pinet et al. 2007). Currently, Spatial 

OCL cannot be used to define topological constraints involving objects with vague shapes. 

However, the shapes of many spatial objects are inherently vague (Bejaoui et al. 2008, 

Burrough and Frank 1996, Clementini and Di Felice 1997, Cohn and Gotts 1996, Dilo 2006, 

Reis et al. 2006, Tang 2004). This is the case of regions with broad boundaries (e.g. forest 

stand, pollution zone, valley or lake). In this paper, we propose a formalism based on Spatial 

OCL to model integrity constraints involving topological relations in databases storing vague 

objects. More precisely, we focus on regions with broad boundaries and we integrate the 

recent Qualitative Min-Max model (QMM) (Bejaoui et al. 2008) into Spatial OCL. In this 

model, a region with a broad boundary is composed of crisp and vague parts. The advantage 

of QMM is its capacity to represent regions with partially broad boundaries. The QMM is also 

very expressive in terms of topological relationships. 242 topological relationships have been 
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distinguished between two regions with broad boundaries. An intuitive method based on 

adverbs is proposed in (Bejaoui et al. 2008) to term the relationships. This makes QMM 

adapted to query or constraint languages. 

The paper is organized as follows. In section 2, we briefly review the concept of objects 

with vague shapes and we present the QMM model. In section 3, we review related works on 

the specification of spatial integrity constraints involving topological relationships. These 

constraints are termed topological (integrity) constraints in the present paper. In section 4, we 

introduce our extension of Spatial OCL. Section 5 presents a case study inspired of a spatial 

database storing information about agricultural spreading activities. Some spatial objects in 

this database could be represented by vague shapes. Their topological constraints are 

expressed using the proposed extension of Spatial OCL. Section 6 focuses on the 

implementation of the approach and Section 7 presents the conclusions of our work. 

6.4 Objects with vague shapes in QMM model 

6.4.1   Categorization of spatial objects with vague shapes 

According to Erwig and Schneider (1997) and Hazarika et al. (2001), shape vagueness refers 

to the difficulty of distinguishing the shape of one object from its neighborhood. It is an 

intrinsic property of an object that has a spatial extent in a known position but does not have a 

well-defined shape (e.g., a pollution zone, a lake, a forest stand, etc.). According to the QMM 

model defined in Bejaoui et al. (2008) (cf. Chapter 3), we distinguish three basic types of 

spatial objects with vague shapes: broad points, lines with vague shapes (i.e., lines with broad 

boundaries, lines with broad interiors or broad lines), and regions with broad boundaries. 

Figure 6.1 shows an example of each one of these types of objects. A region has a vague 

shape when it is surrounded by a broad boundary instead of a sharp one (Figure 6.1(c)); we 

refer to these as regions with broad boundaries (e.g., a pollution zone). A line has a vague 

shape when its boundary (endpoints) and/or its interior are broad (Figure 6.1(b); e.g., the 

itinerary of an historic explorer). For lines, we make a distinction between broad interior and 

broad boundary as we consider them specializations of linear shape vagueness (cf. Chapter 

4). This distinction is also useful for points because a point does not have a boundary; it is 

only composed of an interior. The shape of a given point corresponds to the elementary space 
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portion, which refers to its interior (Figure 6.1(a)). A broad point arises when there is a 

difficulty to distinguish the punctual object from its neighborhood (e.g., a mountain peak). 

Principles of QMM model can be retrieved in Section 3.6. The original version of this section 

has been modified to reduce redundancy and improve the readability of the thesis manuscript.  

 
 
 
 

Figure 6.1 Examples of objects with vague shapes 

6.4.2 Regions with broad boundaries and their topological relations 

In this paper, we define a region with a broad boundary according to the QMM model. A 

region with a broad boundary is then composed by two crisp sub-regions: (1) a maximal 

extent Amax (i.e., the representation of the region when the boundary is considered as far as 

possible) and (2) a minimal extent Amin (i.e., the representation of the region when the 

boundary is considered as close as possible). These two extents should are related by one of 

the following topological relations: Equal8( Amin, Amax) or Contains(Amin, Amax) or Covers(Amin, 

Amax) (Figure 6.2). The broad boundary refers to the difference between these two extents. 

This difference may include area everywhere around the minimal extent (i.e., regions with 

completely broad boundaries), may include area in some locations but not others around the 

minimal extent (i.e., regions with partially broad boundaries) or empty everywhere around the 

minimal extent (i.e., regions with no broad boundaries, or crisp regions). In figure 6.2(b), we 

present an example of a region with a partially broad boundary. The boundary is partially 

broad because the difference between the maximal extent and the minimal one is empty in 

some locations. Figures 6.2(a) and 6.2(c), represent an example of a crisp region and another 

one of a region with a completely broad boundary, respectively. 

 
 
 
 
 
 

 

Figure 6.2 Regions with broad boundaries 

                                                 
8 The spatial relations (i.e., Equal, Contains, Covers) used in this definition are those defined in (Egenhofer and 
Herring 1990). 

(a) A broad point (b) A line with a vague shape (c) A region with a broad boundary  

(a) A crisp region (b) A region with a 
partially broad boundary  

Minimal extent = Maximal extent 

(c) A region with a 
completely broad boundary 

Minimal extent 
 Maximal extent 

Minimal extent  

Maximal extent  
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In this paper, the QMMTopological relations for regions with broad boundaries (cf. section 3.7) 

has been used to identify topological relationships between spatial objects concerned by a 

topological integrity constraint. 

6.5 Specification of topological integrity constraints in spatial 

databases 

Topological (integrity) constraints are defined as rules, which control the validity of 

topological relations between objects in spatial databases. They may be also viewed as spatio-

semantic constraints, in the sense given by Bejaoui et al. (2007) and Salehi et al. (2007). In 

this Section, we study the formal expression of topological constraints.   

6.5.1   OCL  

The Object Constraint Language (OCL) is a subset of the well-known Unified Modeling 

Language (UML) that allows specifying constraints over entities representing concepts from 

the application domain (Warner and Kleppe 1999, OMG 2007). OCL constraints are defined 

on UML diagrams. OCL was first developed by a group of IBM’s scientists around 1995 

during a business modeling project. It was influenced by Syntropy that is an object-oriented 

modeling language that makes heavy use of mathematical concepts (Cook and Daniel 1994). 

OCL is supported by the Object Management Group and its role is important in the Model 

Driven Architecture approach (Kleppe and Warner 2003). OCL is used to specify invariants, 

i.e. conditions that "must be true for all instances of a class at any time" (Schmid et al. 2002). 

In the context of databases, an important advantage of OCL is due the fact that constraints are 

expressed in declarative manner at a conceptual level. OCL integrates notations close to a 

spoken language to express constraints. It is easier for database users to express the integrity 

constraints using OCL than SQL. 

OCL provides a platform-independent and generic method to model constraints. It can be 

interpreted by compilers to generate code automatically. Some tools allow producing integrity 

checking mechanisms in different languages (Java, C#, SQL, etc) from specifications of 

constraints expressed in OCL (Klasse 2005). For example, OCL2SQL can generate SQL code 

from OCL constraints (Demuth and Hussmann 1999, Demuth et al. 2001, Demuth et al. 2004, 
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Demuth 2005). The produced code can be used to check if a database verifies the constraints 

or to forbid inserting data that do not verify a constraint (Demuth and Hussmann 1999, 

Demuth et al. 2001).  

Let us consider a class Agricultural_Parcel in a spatial database. The declaration of the 

class is Agricultural_Parcel(id: Integer, shape: Region, surface_area: Real). Some of these 

parcels may have no spatial representation stored in the database. In this case, the value of the 

attribute shape is equal to NULL. The following OCL constraint models that the surface area 

of a parcel is greater than 0 if a spatial representation is available for this parcel: 

context Agricultural_Parcel inv: 

self.shape�notEmpty() implies self.surface_area > 0 

In OCL constraints, self always represents an instance of a class. This class is specified in 

"context". An OCL constraint defines a condition that must be true for each instance of the 

class, i.e. for each value of self. Thus the above constraint specifies a condition that must be 

true for each instance of Agricultural_Parcel; self.shape and self.surface_area are attributes of 

self. The OCL function notEmpty() returns true if self.shape has a value and false otherwise. 

The operator “implies” corresponds to the logical implication. 

6.5.2   Spatial OCL 

Some tools and methods have been proposed to model visually spatial integrity constraints 

(Cockcroft 1997, Cockroft 1998, Servigne et al. 2000, Borges et al. 2001, Cockroft 2001, 

Cockcroft 2004, Parent et al. 2006, Raffaeta et al. 2008); their goal is to enable end-users to 

specify simple constraints thanks to specific GUI and different visual representations. They 

provide very interesting possibilities to end-users but they cannot be used to model complex 

constraints (e.g., topological constraints depending on complex conditions (Kang et al. 

2004)). 

In order to define complex spatial integrity constraints, Kang et al. (2004), Duboisset et al. 

(2005) and Pinet et al. (2007) proposed an extension of OCL meta–model. This extension 

called Spatial OCL adds geographic basic types (i.e., point, line, and region) into the OCL 

meta-model - see Figure 6.3. These spatial types are generalized through an abstract type 

called BasicGeoType. Topological constraints between simple regions can be expressed 

through Spatial OCL; this language integrates spatial functions based on Egenhofer's 
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relationships between simple regions into OCL. The general syntax of these Spatial OCL 

functions is: 

(A) .EgenhoferTopologicalRelation (B) : Boolean  

Thus, EgenhoferTopologicalRelation can be: disjoint, contains, inside, equal, meet, covers, 

coveredBy, overlap. A and B are the parameters of the functions, i.e. the two simple regions to 

compare. These operations return true or false depending on whether the topological relation 

between A and B is true or false. The following example of Spatial OCL constraint illustrates 

the use of the proposed functions. 

Let Road and Building be two classes; these two classes have a shape attribute. The 

topological constraint « buildings and roads should not overlap each other » is specified as 

follows in Spatial OCL: 

context Road inv: 

Building.allInstances() �forAll( b|  

     self.shape .disjoint (b.shape)  or    

     self.shape .meet     (b.shape) ) 

 

In OCL, the function C.allInstances() returns a collection that contains all the 

instances of a class C. Consequently, Building.allInstances() returns a collection 

that contains all the instances of the Building class. The OCL operation forAll corresponds 

to the universal quantifier. In the constraint, self is an instance of Road class, i.e. an 

instance of the context. The semantics of the constraint is “For each instance self in Road 

and for each instance b in Building, the shapes of b and self must be disconnected or must 

meet each other.” 

RegionLinePoint

BasicGeoTypeBooleanStringRealInteger

OCLBasicType

 

Figure 6.3 Extension of the meta–model of OCL proposed in (Kang et al. 2004).  
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6.6 Adverbial spatial OCL for Objects with vague shapes (AOCL OVS) 

As seen in previous sections, the shapes of RBB are more complex than those of crisp ones 

and their topological relations should be identified differently. Then, topological constraints 

cannot be specified in the same way as for crisp regions. Additional OCL extensions are 

required to deal with topological constraints for RBB. For example, how can we express a 

topological constraint, which specifies that “two zones should be completely disjoint or fairly 

meet each other”? We need more tolerant topological functions than those currently used in 

Spatial OCL.  

Hereafter, we propose an extension of the Spatial OCL in order to support the formal 

expression of topological constraints between RBB. We call this extension Adverbial spatial 

OCL for Objects with vague shapes (AOCLOVS for short). For that, we integrate the 

specifications of QMM spatial model defined for objects with vague shapes into the meta–

model of Spatial OCL. Moreover, we integrate our adverbial approach into a set of new 

functions of Spatial OCL in order to express the strength of topological relations specified in 

a constraint.  

We propose to distinguish two abstract subclasses of geometries generalized by 

BasicGeoType in the meta-model of Spatial OCL: a type for Objects with vague shapes 

(OVSType) and another one for Objects with Crisp Shapes (OCSType). OVSType is a 

generalization of three basic types of objects with vague shapes: broad point, line with a 

vague shape and region with a broad boundary. These additional geometric basic types are 

defined according to the QMM model. Then, a RBB is composed by two crisp polygons (i.e., 

this relation is expressed through aggregations between the object type Region with a broad 

boundary and the object type Region), which respectively represent the minimal extent and 

the maximal extent of the object. Figure 6.4 shows a general extension of the Spatial OCL 

meta–model, which covers three basic types of objects with vague shapes. Hereafter, we focus 

on topological constraints for only regions with broad boundaries. 
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minimal extent

*

2

maximal extent

*

2

OVSType OCSType

RegionLinePoint

BasicGeoType

Broad point Line with vague shape Region with broad boundary

 

Figure 6.4 Extension of the meta–model of Spatial OCL  

As presented in Section 2.2., the qualitative approach of the QMM model permits to model 

a relation between RBB by an Egenhofer’s relation associated to an adverb (weakly, fairly, 

strongly, completely). The proposed Spatial OCL extension introduces new topological 

functions adapted to RBB. The general syntax of these new Spatial OCL functions is: 

(A) .Adverb_EgenhoferTopologicalRelation (B) : Boolean  

Thus, EgenhoferTopologicalRelation can be: disjoint, contains, inside, equal, meet, covers, 

coveredBy, overlap. Adverb can be weakly, fairly, strongly, completely. A and B are the 

parameters of the functions, i.e. the two objects having the Region with broad boundary type. 

These functions return true or false depending on whether the topological relation between A 

and B is true or false.  

Note that an object having the Region with broad boundary type is considered valid when 

it verifies the next conditions: 

- Each one of the minimal extent and maximal extent verifies the closeness and 

connectedness conditions of a simple crisp region. 

- The minimal and maximal extents of a region with a broad boundary are related 

by one of the following topological relations: Contains (max, min), Covers (max, min) 

or Equal (max, min) (cf. section 2.2). 

These last conditions are the invariants of the spatial model. We call these invariants meta-

constraints, which control the validity of RBB. 
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6.7 Example in agricultural spreading activities 

To illustrate the practical use of our extension of Spatial OCL, we introduce a case study 

related to an environmental information system for the traceability of agricultural spreading 

activities. Agricultural spreading activities consist of putting an organic substance on or into 

the soil in order to improve its agricultural productivity. In France, this activity is strictly 

controlled by public organizations, because the substances used in spreading may be 

dangerous for ecological systems whether they are not reasonably applied (Pinet et al. 2007, 

Pinet et al. 2009). The quantities and types of substances allowed in agricultural spreading 

activities depend on several criteria such as the parcel emplacement and soil type.  
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Figure 6.5 Example of RBB deduction – in the present case the exact surface area is greater than the 
surface area of the drawn shape 

In France, the farmers should declare the areas to be spread (i.e. the spreading parcels) 

thanks to a Web-based tool (i.e., they declare an outline for the geographical area to be 

spread). These data are stored into a national spatial database (Pinet et al. 2007, Pinet et al. 

2009). In practice, the farmers use the Web-based tool to input a numeric value indicating the 

surface areas of parcels before approximately drawing their respective geometries on a map 

through a GIS-based interface. The surface areas indicated by farmers are generally calculated 

thanks to expertise of land parcels. While declared surface areas are considered exact, the 

geometries drawn by farmers only provide approximate information about the location of 

spreading. The surface areas of drawn geometries are also computed by a GIS-based tool. 
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They are generally different from those declared by farmers. It could be possible to deduce a 

spreading parcel with a broad boundary (i.e., a RBB) from the drawn geometry and the surface 

area indicated by farmers. The crisp part of this RBB is the zone where spreading is 

considered as certain, and its vague part is the zone where spreading is uncertain. The surface 

area of the RBB should be equal to the declared surface area. Figure 6.5 provides an example 

of produced RBB. 

A spreading parcel may include several capacity zones, which correspond to subparts of 

the parcel where the spreading is allowed with conditions (e.g., preserve the soil quality). The 

approximate geometry of capacity zones is also drawn by farmers thanks to the Web-based 

application; consequently they can be also represented by RBB. A spreading perimeter is an 

area that includes all the parcels of a farm. Figure 6.6 shows a spreading parcel and a capacity 

zone both represented by RBB. 

A Spreading perimeter

Spreading Parcel

Capacity
Zone

 

Figure 6.6 Spreading perimeter, spreading parcel, and capacity zone 

Figure 6.7 presents the conceptual model of our example. The class Parcel refers to 

spreading parcels. A parcel is described by an identifier, a declared surface area, a surface 

area computed from the drawn geometry (Draw_area) and a RBB. Capacity zones are also 

represented by RBB.  



 193 

capacity_zone

1 1..*

parcel

1

*

SpreadingPerimeter

Capacity_zone
Parcel

Comment

Label

Area

Department_num

Id_Perimeter

Capacity

Id_Zone

Vague_geometry

Drawn_area

Declared_area

Id_Parcel

Vague_geometry

 

Figure 6.7 Conceptual model 

6.7.1   Formal expression of constraints  

We present a set of spatial constraints expressed in AOCLOVS. They mainly concern the 

spreading parcels and their capacity zones.  

Constraint 1:  

The spreading parcels of farmers should be disjoint or meet each other. In the present 

example, a parcel is represented by an object with a vague shape. The topological relation 

between two vague parcels is valid, when it belongs to one of the following relations:  

- completely Disjoint (i.e., occurs when both minimal and maximal extents are disjoint, 

respectively),  

- completely Meet (i.e., occurs when both minimal and maximal extents meet each 

other, respectively),  

- strongly Disjoint and weakly Meet (i.e., occurs when maximal extents meet each other 

whereas minimal extents are disjoint, respectively), or  

- fairly Disjoint and fairly Meet (i.e., occurs when maximal extents meet each other, 

minimal extents are disjoint and one of the minimal extents meets one the maximal 

extents).  

The context of this topological constraint is the class Parcel. The constraint is formally 

expressed as follows:  

 

0 
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Context Parcel inv: 

Parcel.allInstances() � forAll  (b| self<>b implies  
self.vague_geo  .completely_Meet      (b.vague_geo) or  
self.vague_geo  .completely_Disjoint (b.vague_geo) or  
(self.vague_geo .strongly_Disjoint     (b.vague_geo) and  
self.vague_geo  .weakly_Meet            (b.vague_geo)) or  
(self.vague_geo .fairly_Disjoint         (b.vague_geo) and  
self.vague_geo  .fairly_Meet              (b.vague_geo))) 

Constraint 2:  

A spreading parcel is composed by one or several capacity zones. The geometry of a 

capacity zone is drawn by the farmer after drawing the parcel's geometry. A capacity zone is 

then inside, covered by or equal to the drawn geometry of the parcel involved. The relations 

that should be respected between the respective RBB of a parcel and each one of its capacity 

zones, are: completely Contains, completely Covers, (strongly Contains and weakly Covers), 

(strongly Contains and weakly Overlap), (fairly Contains and fairly Covers), (fairly Contains 

and weakly Covers and weakly Overlap), (strongly Covers and weakly Contains), (fairly 

Contains and fairly Covers) or (strongly Covers and weakly Overlap). The constraint can be 

specified declaratively as follows: 

Context Parcel inv: 

self.vague_geo� forAll (b| self.capacity_zone � exists(d|  
(b.vague_geo .completely_Contains (d.vague_geo)) or  
(b.vague_geo .completely_Covers     (d.vague_geo)) or  
(b.vague_geo .strongly_Contains     (d.vague_geo) and  
b.vague_geo  .weakly_Covers           (d.vague_geo)) or  
(b.vague_geo .strongly_Contains     (d.vague_geo) and  
b.vague_geo  .weakly_Overlap         (d.vague_geo)) or  
(b.vague_geo .fairly_Contains         (d.vague_geo) and  
b.vague_geo  .fairly_Covers             (d.vague_geo)) or  
(b.vague_geo .fairly_Contains         (d.vague_geo) and  
b.vague_geo  .weakly_Covers           (d.vague_geo) and  
b.vague_geo  .weakly_Overlap         (d. vague_geo)) or  
(b.vague_geo .strongly_Covers        (d.vague_geo)  and  
b.vague_geo  .weakly_Contains       (d.vague_geo)) or  
(b.vague_geo .fairly_Contains         (d.vague_geo)  and  
b.vague_geo  .fairly_Covers             (d.vague_geo)) or  
(b.vague_geo .strongly_Covers        (d.vague_geo)  and  
b.vague_geo  .weakly_Overlap         (d.vague_geo)))) 

The OCL operation exists expresses the existential quantifier. The subexpression 

self.capacity_zone returns a collection that contains all the capacity zones associated to the 

parcel self. 
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Constraint 3:  

Inside a spreading parcel, two different capacity zones should verify one of the following 

relations: completely Disjoint, completely Meet, (strongly Disjoint and weakly Meet) or (fairly 

Disjoint and fairly Meet). The context of this topological constraint is the class 

Capacity_zone. The constraint is then formally expressed as follows: 

Context Capacity_zone inv: 

Capacity_zone.allInstances()  
� forAll  (a | a<>self and a.parcel=self.parcel implies  
a.vague_geo  .completely_Meet      (self.vague_geo)  or  
a.vague_geo  .completely_Disjoint (self.vague_geo)  or  
(a.vague_geo .strongly_Disjoint     (self.vague_geo) and  
a.vague_geo  .weakly_Meet            (self.vague_geo)) or  
(a.vague_geo .fairly_Disjoint     (self.vague_geo) and  
a.vague_geo  .fairly_Meet         (self.vague_geo))) 
 
The subexpression self.parcel returns the parcel associated to the capacity zone self. 

Constraint 4: 

Let P be a spreading perimeter composed by N spread parcels. The sum of areas of minimal 

extents of spread parcels is inferior or equal to the area of P. However, the sum of areas of 

maximal extents of spreading parcels is superior or equal to the declared area of P. The 

constraint is expressed as follows: 

Context SpreadingPerimeter inv: 

self.parcel.vague_geo.minimal_extent.area�sum()≤ self.area and 
self.parcel.vague_geo.maximal_extent.area�sum()≥ self.area  

The subexpression self.parcel.vague_geo.minimal_extent.area � sum() provides the sum 

of areas of minimal extents of parcels belonging to the spreading perimeter involved (i.e., this 

function makes the same thing for maximal extents of capacity zones in one spread parcel). 

6.7.2   Implementation of AOCL OVS  

We developed a prototype to automatically generate SQL queries from the AOCLOVS 

expressions. More precisely, we extended OCL2SQL developed by TU Dresden University. 

This tool has been extended by Duboisset et al. (2005) and Pinet et al. (2007) to express the 

topological constraints involving crisp regions. The code generator is a Java application. The 

constraints are defined on an UML class diagram that is stored in an xmi file. They are written 

using AOCLOVS. Our extension of OCL2SQL translates these constraints in Oracle SQL using 
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new topological operators implemented in the database. Each topological operator defined in 

the QMM model is implemented as a SQL spatial operator that refers to a PL-SQL function. 

The PL-SQL function verifies if the concerned relationship is respected by the geometries of 

objects involved. For example, the AOCLOVS operation completely_Disjoint 

corresponds to a SQL operation (that has the same name) implemented by a specific PL-SQL 

functions.  

All  the RBB of a same database are stored in a single table termed VAGUE_GEO. The 

other tables of the database can have an attribute called vague_geo that references the primary 

key of VAGUE_GEO. The attribute geo_max has the type MDSYS.SDO_Geometry and stores 

the maximal extent of the object. The attribute geo_min is used to store the minimal extent. 

When a topological operator (e.g. ‘completely Disjoint’) is executed for two given objects, a 

PL-SQL function compares their minimal (geo_min) and maximal (geo_max) extents. The 

SQL expression below shows the definition of the VAGUE_GEO table. 

 
Create table VAGUE_GEO 
( PK_VG  NUMBER(10) primary key 
, GEO_MAX MDSYS.SDO_Geometry 
, GEO_MIN MDSYS.SDO_Geometry 
); 
 

To illustrate the generation of SQL code we introduce an example concerning pollution 

zones. The SQL expression below shows the definition of the POLLUTION_ZONES table. 

The attribute geometry_pk_vg is the foreign key that references VAGUE_GEO.pk_vg. 

Create table POLLUTION_ZONES 
( PK_PZ   NUMBER(10) primary key 
, DESCRIPTION  VARCHAR2 
, GEOMETRY_PK_VG NUMBER(10) 
); 
 
The constraint 5 models that two pollution zones should be strongly disjoint.  
 
Constraint 5: 
 
Context Pollution_zones inv: 
 
Parcel.allInstances()�forAll  (b| self<>b implies self.vague_geo .strongly_Disjoint (b.vague_geo) 
 

The SQL query generated by OCL2SQL for this constraint is presented below. This query 

selects all the rows that violate the AOCLOVS constraint. Thus this SQL query can be executed 

by the users of a spatial database in order to retrieve possible inconsistencies.  
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Select * from OV_Pollution_Zone SELF 
Where not (not exists ( (select PK_ PZ from Pollution_Zone) minus 
        Select PK_ PZ from Pollution_Zone SELF2  Where (SELF.PK_PZ = SELF2.PK_PZ) OR  
            stronglyDisjoint((select PK_VG from VAGUE_GEO                                                            
                 Where PK_VG IN (Select GEOMETRY_PK_VG From  
                                                                Pollution_Zone where PK_PZ = SELF2.PK_PZ)), 
                                                                (Select PK_VG from VAGUE_GEO Where PK_VG in  
                                                                (Select GEOMETRY_PK_VG From Pollution_Zone  
                                                                Where PK_PZ = SELF2.PK_PZ)) , VAGUE_GEO)=0 )); 
 

Figure 6.8 schematizes the architecture of the extension of OCL2SQL, which covers 

topological constraints involving regions with broad boundaries. This Figure is adapted from 

(Duboisset et al. 2005). Other platforms (MySQL, SQL Server, etc.) could be considered in 

the future. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.8 Architecture of the application used to check the OCL constraints (this figure is adapted 
from (Duboisset et al. 2005)) 

6.8   Conclusion 

Controlling topological constraints is an important aspect of the spatial data quality. Visual 

tools and methods proposed in (Cockroft 1997, Cockroft 1998, Servigne et al. 2000, Borges et 

al. 2001, Cockroft 2001, Cockroft 2004, Parent et al. 2006, Raffaeta et al. 2008) enable end-

users to easily specify simple constraints but they cannot be used to model complex spatial 

constraints (e.g., topological constraints depending on complex conditions (Kang et al. 2004). 

As presented in (Duboisset et al. 2005, Pinet et al. 2007), complex topological constraints can 
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be expressed through Spatial OCL which integrates the Egenhofer’s relations. This language 

provides easiness in the specification of formal constraints in UML class diagrams.  

However, Spatial OCL assumes that objects are represented using crisp geometries 

whereas they can have vague shapes (e.g. a pollution zone, the itinerary of an historic 

explorer, etc.). Spatial OCL lacks syntactical tools to express the topological constraints for 

objects with vague shapes. In this paper, we addressed the problem of the formal specification 

of topological constraints for regions with broad boundaries. It contributes in two main 

directions.  

First, the meta-model of Spatial OCL has been extended in order to consider new object 

types covering spatial objects with vague shapes. We proposed a new abstract type called 

OVSType (Object with Vague Shape Type), which can be specialized into: broad point, line 

with a vague shape, and region with a broad boundary. The adverbial approach for 

topological relations presented in (Bejaoui et al. 2008) has been integrated into Spatial OCL; 

new topological functions are proposed in this language. We called this extension Adverbial 

spatial OCL for Objects with Vague Shapes (AOCLOVS).  

Second, AOCLOVS has been implemented into OCL2SQL. This extension allows 

generating Oracle SQL code from AOCLOVS constraints. The generated SQL queries control 

the consistency of spatial databases. These queries are executed by the database 

administrators to detect possible inconsistencies. The main objective of this AOCLOVS 

implementation was to show the feasibility of our approach. Some constraints of the case 

study presented in Section 5 have been used to experiment our extension. These constraints 

principally concern spreading parcels and their capacity zones both represented by regions 

with broad boundaries. 

In future, we will generalize our framework in order to specify topological relations 

between different objects with vague shapes (i.e., broad points, lines with vague shapes, and 

regions with broad boundaries). We will also study the specification of topological constraints 

involving complex regions with vague shapes (i.e. regions with several kernels, regions 

composed by several sub-regions with broad boundaries, etc.).  

The syntax of AOCLOVS could be also simplified by grouping the adverbs that concern the 

same topological relations. For instance, the following constraint:  

“self.vague_geo .strongly_Disjoint (b.vague_geo) or  
self.vague_geo  .weakly_Disjoint   (b.vague_geo)” 

 
It could be expressed more directly as follows: 
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“self.vague_geo .{strongly|weakly}Disjoint (b.vague_geo)”  

 
In this case, it is needed to introduce additional OCL operators in order to group adverbs. 
 

Visual methods (extended to 
RBB) ; used for the modelling

of simple constraints

OCL2SQL editor + AOCLOVS
extension; used for the modelling

of complex constraints

constraints in AOCLOVS

code generation (OCL2SQL)

SQL queries

code generation

constraints edition

 
Figure 6.9 Combination of different tools to generate the SQL code 

AOCLOVS and the extension of OCL2SQL are intended to computer scientists. This 

approach can be used jointly with other existing methods to specify the spatial constraints. 

For example, the simple constraints could be specified with user-oriented methods such as 

those presented in (Cockroft 1997, Cockroft 1998, Servigne et al. 2000, Borges et al. 2001, 

Cockroft 2001, Cockroft 2004, Parent et al. 2006, Raffaeta et al. 2008) before being 

translated into AOCLOVS expressions. The user-oriented methods are very efficient to visually 

and easily model simple constraints. Complex constraints may be directly specified using 

AOCLOVS. For that purpose, the user-oriented methods should be preliminary extended. They 

should cover the RBB and generate AOCLOVS constraints .Figure 6.9 illustrates this solution. 

It could be also possible to generate triggers (with OCL2SQL) that are executed 

automatically with each update of the databases (Demuth and Hussmann 1999, Demuth et al. 

2001). Difficulties of performances may be observed in the case of large spatial databases. In 

our opinion, optimizing the generated code requires an in-depth study.  
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Chapter 7: Conclusions and discussion 

The shape vagueness is considered as an inherent property of some spatial objects such as 

lakes, pollution zones, forest stands, etc. This type of imperfection can also result from 

merging heterogeneous and crisp redundant geometries that describe the same spatial object 

in different source databases.  

The representation of spatial objects with vague shapes requires using specific spatial 

models in order to stress the vagueness of topological invariants such as broad boundaries for 

regions. This thesis proposes a general approach to represent spatial objects with partially or 

totally vague shapes and their topological relationships (Chapters 3 and 4). The spatial model 

is also used to study the topological relationships vagueness that arises between geometries 

with vague shapes that result from an integration process (Chapter 5). Then, it is integrated 

into the Spatial Object Constraint Language (Chapter 6) in order to express topological 

constraints involving regions with broad boundaries.  

7.1 Contributions 

The main contributions of this research work are presented in four papers which refer to 

Chapters 3, 4, 5 and 6 of this thesis.  

Chapter 3 proposes an exact spatial model to represent spatial objects with vague shapes. 

Three basic types of spatial objects with vague shapes have been defined: broad point, line 

with a vague shape (i.e., lines with broad boundaries, lines with broad interiors or broad 
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lines), and region with a broad boundary. In the proposed model, the shape vagueness relates 

to the difference between the certain and uncertain knowledge about the appropriate shape of 

a given spatial object. From this perspective, an object with a vague shape is defined as a 

minimal extent min
~
A (the object geometry including space points that certainly belong to the 

object) and a maximal extentmax
~
A (includes space points that possibly belong to the object) 

that respect some topological conditions. The difference between the minimal extent and 

maximal one can be empty (objects with well-defined shapes), empty in some locations and 

non-empty in some others (objects with partially vague shapes) or non-empty everywhere 

(objects with completely vague shapes). The advantage of this model is that spatial objects 

with partially vague shapes are represented whereas they are considered as invalid in the 

existing models of (e.g. Clementini and Di Felice 1997, Tang 2004, Reis et al. 2006). Then, 

the topological relationships between spatial objects with vague shapes are identified using a 

4-Intersection matrix that enumerates four sub-relations: R1 ( min
~
A , min

~
B ), R2 ( min

~
A , max

~
B ), R3 

( max
~
A , min

~
B ), and R4 ( max

~
A , max

~
B ). We distinguished 242 relations between regions with broad 

boundaries (cf. appendix 1). In order to retain our propositions useful in practice, we classify 

these topological relationships into eight basic clusters using the contents of their respective 

matrices. We use four adverbs strengths to describe the membership to a given cluster: 

completely, strongly, fairly, and weakly. This model is termed Qualitative Min-Max (QMM) 

model. 

Chapter 4 focused on the shape vagueness of lines and the identification of their topological 

relationships. Then, two components of the QMM model are proposed: (1) the QMMDef 

model and QMMTR model. The QMMDef model proposes an expressive taxonomy of lines 

with vague shapes and their formal definitions. In this taxonomy, we make the distinction 

between the shape vagueness of the interior and boundary of a given line. For each 

topological invariant, shape vagueness can be partial or total. The line boundary can be 

partially or completely broad while the boundary remains well-defined, and vice versa. We 

identify four levels of shape vagueness for lines according to the crispness, partial broadness 

and complete broadness of the interior and/or boundary: weakly, fairly, strongly and 

completely. In this chapter, lines are defined according to the principles of the QMM model 

set in Chapter 3. We define a line with a vague shape as a minimal extent composed by only 

one-dimensional parts and a maximal extent that additionally includes two-dimensional (or 

broad) parts. The topological relationships between lines with vague shapes are then 

identified through an extension of the CBM method (Clementini and Di Felice 1995) that we 
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integrate into the QMMTR model and apply to compute the sub-relations between minimal and 

maximal extents of the lines involved. Then, a 4-Intesersection matrix is proposed to describe 

these four sub-relations and to classify the topological relationships between lines with vague 

shapes. 

In Chapter 5, we are interested in a vertical integration where heterogeneous and redundant 

crisp geometries that represent the same object, in different data sources, are intended to be 

integrated and loaded in a final database. In this study, we assume that the data quality is 

poorly described in the data sources and can be used neither to choose geometries with best 

quality nor to identify the appropriate topological relationships in the final database. 

Geometries with vague shapes can then result from the integration because source geometries 

are heterogeneous and contribute in an equal way in the final geometry of a given object. 

Consequently, for a same set of objects, the topological relationships between their final 

geometries cannot be identified to those defined for crisp geometries in the data sources. 

Therefore, we address the problem of topological relationships vagueness, i.e. the uncertainty 

about the appropriate topological relationships between the final geometries. Accordingly, we 

aim at reducing the topological relationships vagueness in a given final database. For this 

purpose, Chapter 5 contributes in two main directions. First, heterogeneous and redundant 

crisp geometries that represent a given same object, in different source databases, are merged 

using the QMM model for regions with broad boundaries. The broad boundaries of final 

regions result from the difference between the union and intersection of the source geometries 

involved. Second, we propose a method to deduce the valid topological relationships between 

them. In this method, we assume that the same topological relationship is defined between the 

objects involved in source databases. This assumption is required to allow the reasoning about 

topological relationships between the final geometries of the same collection of objects in the 

final database. For example, let’s assume that the geometries of two spatial objects A and B 

are respectively disjoint in two data sources. Then the intersections of the source geometries 

of A and the source geometries of B are necessarily disjoint. Contains is an inconsistent 

relationship between the final geometries of A and B. Then, for each topological relationship 

of the 9-Intersection model (Egenhofer and Herring 1990), we define patterns of matrices that 

specify the valid relationships between the unions and intersections of the source geometries 

of objects involved, respectively (section 5.7.1). The patterns matrices are used to reduce the 

topological relationships vagueness through two main strategies: (1) choosing the best extents 

of concerned objects and modifying them whether they violate the recommended topological 
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relation, (2) preserving the geometries with vague shapes and using an adverbial approach to 

stress the partial respect of a given topological relation. The first strategy can be used when 

the topological relationships are considered as more important than the shapes of objects to 

meet the users’ needs. The second strategy is more appropriate to preserve possible vague 

shapes of final geometries that partially respect source topological relationships.  

The results obtained in Chapter 5 can be very useful to deal with geometric heterogeneities 

in the context of spatial data warehouses (especially those with a hypercube structure). The 

spatial dimension of a spatial data warehouse is generally loaded from different sources that 

have different specifications. Our approach proposes to represent the final geometry of a 

given spatial object using geometries with vague shapes while the source crisp geometries are 

heterogeneous and have a same quality level.  Such approach allows the decision-maker to 

distinguish between the certain and uncertain data and to consider the shape vagueness in his 

decision. An example of a spatial data warehouse in the urban planning domain is presented 

to illustrate the contributions of chapter 5. 

Chapter 6 proposes an extension of Spatial OCL for regions with broad boundaries and 

their topological relationships. First, we extend the meta-model of Spatial OCL in order to 

consider new geometric types covering objects with vague shapes. Then, the geometry of an 

object with a vague shape is defined as a new abstract type called OVSType (Object with a 

vague shape Type), which can be specialized into broad point, line with a vague shape, and 

region with a broad boundary. Second, the topological constraints involving regions with 

broad boundaries are specified using the QMM model defined in Chapter 3. We integrate 

forty new topological operators as additional keywords of Spatial OCL. These topological 

operators refer to the forty clusters distinguished in the QMM model for regions with broad 

boundaries. We term this extension Adverbial spatial OCL for Objects with vague shapes 

(AOCLOVS for short). Third, we integrate AOCLOVS in the constraint editor OCL2SQL 

(Duboisset 2007). Then, the SQL query that implements a topological constraint (in the 

physical level of the database) can be automatically generated from the AOCLOVS expression. 

An example of agricultural spreading database is presented in order to show the possibilities 

to express topological constraints involving regions with broad boundaries. This example has 

been inspired from the existing application called SIGEMO used to control the traceability of 

agricultural spreading activities in France (Soulignac et al. 2005).  
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7.2 Discussion 

This thesis provides a general qualitative approach to deal with spatial objects with vague 

shapes and their topological relationships. We propose this approach in the context of 

controlling topological consistency of such objects and of their topological relationships. The 

general hypothesis made in this work is: it is possible to provide an approach that supports 

the specification of topological integrity constraints involving spatial objects with vague 

shapes and of their topological relationships, both in transactional spatial databases and 

in spatial data warehouses. This hypothesis requires a specific spatial model to represent 

different levels of shape vagueness and evaluate the vagueness of a topological relationship. 

Therefore, we proposed an adverbial approach to express the topological constraints involving 

regions with broad boundaries using an extension of Spatial OCL. We think that the general 

hypothesis has been verified in this thesis work. 

The QMM model is principally inspired from the Egg-Yolk model (Cohn and Gotts 1996). 

However, there are some fundamental differences between our model and that defined in 

(Cohn and Gotts 1996). First, the sub-relations described in the 4-Intersection matrix of the 

Egg-Yolk theory (Cohn and Gotts 1996) are those defined in the RCC-5 model (Randell and 

Cohn 1989, Cohn et al. 1997) whereas we use those defined in the 9-Intersection model 

(Egenhofer and Herring 1990). In addition, the same methodology is used to identify 

topological relationships between objects with vague shapes. However, our definitions of this 

type of objects are substantially different because they are based on the point-set topology. 

Then, points and lines are also considered as basic crisp spatial object types. Moreover, the 

concept of 'broad boundary' is not redefined in our model as it is done in most of existing 

exact models. In our approach, shape vagueness of a given object refers to the difference 

between its minimal extent and maximal one. Finally, the topological relationships are 

organised into a hierarchical classification based on the content of their respective matrices. 

This classification is the basis of an adverbial approach that we use to specify the topological 

constraints between regions with broad boundaries. 

In (Clementini and Di Felice 1997), the notion of broad boundary has been used to replace 

linear (or well-defined) boundary. According to Clementini and Di Felice (1997), 44 

topological relations are distinguished between two regions with broad boundaries using an 

extension of the 9-Intersection model (Egenhofer and Herring 1990). These relations have 

classified into 17 clusters and organised into a conceptual neighborhood graph that shows 
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their similarity degrees (Clementini and Di Felice 1997). The main advantage of this approach 

is the ability to support a coarser spatial reasoning involving regions with broad boundaries. 

However, it becomes more difficult to use this model when the needs are more specific. 

Furthermore, the identification of a broad boundary as a two-dimensional topological 

invariant requires respecting the consistency conditions related to closeness and 

connectedness. Tang (2004) decomposed the broad boundary into the boundary's interior and 

boundary's boundary. He distinguished 152 topological relationships presented as variants of 

the 44 ones defined in (Clementini and Di Felice 1997). Nonetheless, many topological 

relationships cannot be identified because there is no distinction between the boundaries of 

minimal extent and those of the maximal extent. Moreover, spatial objects with partially vague 

shapes such as regions with partially broad boundaries cannot be presented in existing exact 

models. In this thesis, we resolved this problem by considering a simple region with a broad 

boundary as a general concept that can be specialized into: regions with none broad boundary 

(or crisp regions in fuzzy approaches terminology), regions with a partially broad boundary 

and regions with a completely broad boundary.  

With regards to the principal exact models (Clementini and Di Felice 1997, Cohn and 

Gotts 1996, Erwig and Schneider 1997, Tang 2004), we made the distinction between the 

partial shape vagueness and complete shape vagueness to deal with two main problems: an 

ontological problem and a modeling one. The ontological problem occurs because “shape 

vagueness” is generally considered as a "binary imperfection" (an object shape can be well-

defined or vague). However, spatial objects can be characterized by different levels of shape 

vagueness that can be easily computed in fuzzy models by using a quantitative approach. In 

this thesis, the shape vagueness levels are categorized using a qualitative approach because 

we believe that “shape vagueness” is a qualitative problem. In this context, we denote that the 

computation of shape vagueness provide coarse values contrary to evaluation based on fuzzy 

models. Different levels of shape vagueness are qualitatively distinguished using a set of 

adverbs (completely, weakly, fairly, etc.). We do not claim that exact models are better than 

fuzzy ones, because the needs are not identical and therefore the direct comparison is not 

appropriate.  

The modeling problem refers to the difficulty of existing exact models (notably 

(Clementini and Di Felice 1997, Cohn and Gotts 1996, Erwig and Schneider 1997, Tang 

2004)) to represent spatial objects with partially vague shapes and their topological 

relationships. For example, a region can have well-defined boundaries on one side and broad 
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ones on the other side at the same time. In this work, we made the distinction between the 

regions with partially broad boundaries and those with completely broad boundary. 

Topological relationships between regions with broad boundaries have been classified into 

eight overlapping basic clusters. This adverbial classification supports the specification of 

topological constraints involving spatial objects with vague shapes. Nonetheless, it is 

important to denote that the QMM model is not able to quantify the gradual change inside the 

maximal extent in the same way as the fuzzy approaches done in (Zhan 1997, Schneider 

2001, Du et al. 2005, Dilo 2006, Verstraete et al. 2007).  

7.3 Future researches 

This thesis provides a qualitative approach to represent spatial objects with vague shapes and 

reduce their topological relationship vagueness. This sets a starting point for future research 

projects that we present in the next paragraphs: 

• Modeling complex spatial objects with vague shapes and their topological 

relationships  

In this thesis, we studied shape vagueness for simple objects types: simple regions, 

simple lines and simple points. In the practice, complex spatial objects may also have 

vague shapes such regions with broad boundaries and holes, regions with several 

cores, regions composed by disjoint uncertain sub-regions, lines with several start 

broad points, etc. Currently, the QMM model does not cover this type of objects and 

their topological relationships. Studying this type of objects requires additional 

investigations that exceed the objectives of this thesis. Extending the present approach 

to model the complex objects with vague shapes is one of our future researches. Our 

methodology consists in generalizing the principles of the QMM model for complex 

objects with vague shapes by verifying appropriate conditions for each component of 

the object’s shape involved.  

• Considering topological relationships between objects with vague shapes and 

different dimensions  

Topological relationships studied in this research are those between spatial objects 

with vague shapes having the same dimension. We studied relationships between 

simple regions with broad boundaries as well as those between lines with vague 
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shapes. We also showed that our approach can be applied for objects with different 

dimensions such as topological relationships between a region with a broad boundary 

and a line with a partially vague shape. However, additional investigations are 

required to study specificities of these relationships and to propose a method to 

classify them. 

• Studying the temporal vagueness 

In many applications such as the management of forest stands, the temporal 

information is generally required in order to follow the existence of spatial objects and 

their geometric evolution. Temporal data may be vague, difficult to be collected and 

represented. For example, the birthday of an historic person and the construction 

period of a monument are often poorly known. Dyreson and Snodgrass (1993) 

distinguished four sources that affect the perfection about the dimension (i.e. an 

interval or an instant) of a time event as well as its location on the time axis: 

granularity, dating techniques, future planning and unknown/imprecise time events. 

The temporal vagueness has been studied in several works (e.g. (Dreyson and 

Snodgrass 1993, Pfoser and Tryfona 2001)). One perspective of the present work is to 

extend the QMM model in order to represent time events with vague temporal 

dimensions and/or vague locations. We are specifically interested in the partial 

temporal vagueness. For example, a time period can be bounded by a vague start time 

point on one side and a well-defined final one on the other side. We are also interested 

in the identification of topological relationships between vague temporal primitives 

using the same qualitative approach defined in the context of spatial objects with 

vague shapes. We look for an adverbial approach that can help to express topological 

constraints involving spatio-temporal objects with vague shapes and/or vague 

temporalities.  

• Considering vagueness in the definition of topological relationships  

In spatial databases, a topological relationship has a definition given by the spatial 

model (e.g. the 9-Intersection model) or by the model-maker. A topological 

relationship has also an extension that refers to its instance for two spatial objects 

stored in the database. In this thesis, we studied the vagueness of a topological 

relationship because it depends on the shape vagueness of objects involved. However, 

the definition can also be vague while the shapes of spatial objects involved remain 

well-defined. For example, it is possible to define a topological relationship called 
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“weakly meet” that can arise between two crisp objects. In this case, objects weakly 

meet each other if the intersection between their boundaries occurs in three points at 

most. A vague topological relationship can be also associated to a quantitative 

function which returns its strength according to the definition and not to the shape 

vagueness of objects involved. In our future researches, we aims at studying this type 

of vagueness for topological relationships such as the metric (e.g. far, close) and 

directional (e.g. in the north of, in the south of) relationships.    

• Coupling quantitative and qualitative approaches 

Qualitative approaches are generally simple to be used and provide a coarse evaluation 

of vagueness. These approaches can be the base of an intuitive interface to 

communicate the vagueness to the users of spatial databases and GIS. However, the 

quantitative approaches provide a fine computation of vagueness using specific 

mathematical theories such as Fuzzy Logic (Zadeh 1965) or Rough sets (Pawlak 

1994). For example, they can model the gradual changes of shape vagueness inside a 

broad boundary. We think that it is possible to couple these approaches in only one 

framework where the qualitative aspects are placed at its high level and quantitative 

ones in the bottom level. For example, it is possible to implement vagueness adverbs 

(e.g weakly, fairly) by using fuzzy sets in a lower level. The user may have the choice 

to use the qualitative approach or to drill-down in the vagueness detail by using the 

values provided by the membership functions. Such a framework provides the easiness 

of qualitative approaches and the precision of quantitative ones. 

• Considering the shape and semantic vagueness in topological relationships between 

different level of a spatial dimension in a spatial data warehouse 

In Chapter 5, we studied topological relationships vagueness at the level of final 

geometries with vague shapes resulted from the integration of heterogeneous and 

redundant source geometries. In spatial data warehouses, final geometries can be 

stored in different hierarchy levels (e.g. country, region, county) of a spatial 

dimension. One perspective of the present work is to consider the topological inter-

levels relationships vagueness that can arise between the final geometries belonging to 

different hierarchy levels of the spatial dimension. In this context, the topological 

relationships vagueness affects the measure aggregations. For example, how to 

compute the required taxes for a given object with a vague shape that is partially 

contained in different members belonging to the immediately higher hierarchy level? 
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According to Malinowski and Zimányi (2005), the topological relationships between 

hierarchy levels are the focus of several works such as (Tryfona and Egenhofer 1997). 

However, neither the shape vagueness of geometries which can be involved in these 

relationships nor their implications on the computation of measure aggregations are 

considered (Pedersen and Tryfona 2001, Jensen et al. 2004).  

• Extending AOCLOVS to support the specification of other types of spatial objects 

with vague shapes  

AOCLOVS provides syntactic tools to express the topological constraints involving 

regions with broad boundaries. In our future researches, we look for extending this 

language in order to express the constraints involving lines with vague shapes, spatial 

objects with vague shapes having different dimensions as well as objects with 

complex vague shapes. We think that the same adverbial approach can be used to 

express the strength of topological relationships between these types of objects. 

However, these relationships will be termed by considering the type of objects 

involved.  

• Testing the approach in other domains and for other uses 

In the future researches, we aim at testing the present approach in other domains such 

land cover/land use, urbanism, forestry, pollution, climatic changes, erosion of 

beaches, etc. The same spatial model may be used to represent the shape vagueness of 

spatial objects in these domains. In the same way, we preview to develop a framework 

in order to express spatial queries for objects with vague shapes and their topological 

relationships (see example in section 3.9). This framework can be easily implemented 

using the existing prototype OCL2SQL where the spatial SQL queries are 

automatically generated.    

7.4 General conclusion 

According to the general objective set in the beginning of this work, we develop a spatial 

model that supports different types of objects with different levels of shape vagueness. The 

vagueness of topological relationships is stressed using a set of adverbs that are integrated in 

an existing integrity constraint language. This language is Spatial OCL that we have extended 

to support the specification of topological integrity constraints on objects with vague shapes 
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in a transactional database. The proposed approach is also used to deal with the problem of 

topological relationships vagueness in the context of a vertical integration with redundant 

source geometries. In the latter case, we propose two strategies to reduce the uncertainty 

about the appropriate topological relationships between final geometries resulting from an 

integration process, both based on the same spatial model proposed in the first phase. Then, 

the spatial model has been integrated in an existing DBMS and the constraint language is 

easily implemented in an existing editor of integrity constraints OCL2SQL.  

Nevertheless, it is important to denote that the proposed approach is not perfect; i.e. it does 

not resolve all the problems related to the modeling of spatial objects with vague shapes. The 

first problem is that the shape vagueness cannot be directly computed through a measurement 

device. Some computational functions (such as that we applied to deduce the broad boundary 

for the spreading agricultural parcels) should be applied on the initial data in order to deduce 

the shape vagueness. The computation of shape vagueness should be preceded by a strong 

study to build required functions that correctly use the input data to meet the need of 

computing vagueness. Otherwise, the shape vagueness is wrongly computed and serious risks 

of a degradation of spatial data quality could appear. Our approach does not provide a 

solution to this problem since we assume that the appropriate functions to compute vagueness 

are defined.  

The present approach is also developed in the context of a feature-oriented view of spatial 

phenomena. In other words, the space is coarsely subdivided into three parts: a first one that 

certainly belongs to the object, a second that may belong to the object and a third that is 

certainly outside the object. However, an extension (coupling with a quantitative approach) of 

the approach is required to provide a fine computation of shape vagueness using a field-

oriented view of space. In the latter case, the fuzzy and probabilistic models are more 

advantageous.  

Furthermore, the number of topological operators (forty) used to express the topological 

relationships between regions with broad boundaries, in our approach, is high with regards to 

the most of existing GIS and spatial DBMS that generally propose eight topological operators 

at most to express the same relationships between crisp regions. Additional investigations are 

then required to allow an implementation in existing software intended to meet different 

needs of users with different skills. In addition, the proposed approach can be used to deal 

with topological relationships vagueness in a specific case of integration where different 

hypotheses have been set to identify the possible topological relationships between 
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geometries resulting from integration. Consequently, the problem of topological relationships 

vagueness remains an open question for other types of integration and should be studied 

regarding the specificities of each one. Finally, we conclude that the present thesis leads to 

address many complex problems that require several projects and a real research community 

to be resolved.          
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Appendix 1: 242 topological relations between regions with broad 

boundaries and required rules to deduce them 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

17 
 
 
 

18 19 20 

21 22 23 24 

25 26 27 28 

29 30 31 32 

33 34 35 36 

37 
 
 
 

38 39 40 
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Contains Contains 

Equal 

Contains 

Contains Contains 

Overlap Contains 

Contains Contains 

Covers Inside 

Contains Contains 

Inside 

Meet 

Contains Contains 

Inside Meet 

Contains Contains 

Meet Meet 

Contains Contains 

Overlap Meet 

Contains Contains 

Covered by 

Disjoint 

Contains Contains 

Covered by Disjoint 

Contains Contains 

Meet Disjoint 

Contains Contains 

Disjoint 

Disjoint 

Contains Contains 

Overlap Covers 

Contains Contains 

Inside 
Covers 

Contains Contains 

Overlap Covers 

Contains Contains 

Covers 

Disjoint 

Disjoint Disjoint 

Disjoint Contains 

Contains Contains 

Inside Contains 

Contains Contains 

Covered by 

Contains 

Contains Contains 

Contains 

Disjoint 

Contains Contains 

Inside 

Equal 

Contains Contains 

Equal 

Covers 

Contains Contains 

Equal Overlap 

Contains Contains 

Overlap Overlap 

Contains Contains 

Inside 

Equal 

Contains Contains 

Inside Equal 

Equal Covers 

Covered by Equal 

Equal Contains 

Inside Contains 

   Equal Contains 

Inside 

Inside 

 Equal Contains 

 Inside Meet 

Equal Contains 

Inside 

Contains 

Equal Contains 

Covered by 
Meet 

Equal Covers 

Inside Meet 

Equal Contains 

Covered by Meet 

Equal Covers 

Covered by 

Covers 

Contains Contains 

Covered by Covers 

Contains Contains 

Inside 
Inside 

Contains Contains 

Covered by 

Equal 

Contains Contains 

Covered by 

Overlap 

Contains Contains 

Covered by Inside 

 Equal Covers 

 Inside 
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41 42 43 44 

45 46 47 48 

49 50 51 52 

53 54 55 56 

57 58 59 60 
 
 
 

61 
 
 
 
 

62 63 64 

65 66 67 68 

69 70 71 72 

73 74 75 76  

77 
 
 
 
 

78 79 80 

81 82 83 84 

Disjoint 

Equal Contains 

Covered by 

Overlap 

Equal Contains 

Covered by Overlap 

Equal Covers 

Covered by Overlap 

Equal Contains 

Inside 

Covers 

Equal Covers 

Covered by Covered by 

Equal Covers 

Covered by Covered by 

    Equal Contains 

   Inside Covers 

Equal Contains 

Inside 
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Covers Contains 

Covers Contains 

Covers Contains 

Equal Contains 
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Inside Inside 

Covers Covers 
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Overlap 

Disjoint 

Equal Covers 
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Covered by Disjoint 
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Overlap 

Equal Covers 
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Covered by 
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Covers Covers 

Meet Disjoint 

Covers Contains 

Inside Meet 

Covers Contains 

Meet 

Disjoint 

Covers Contains 

Covered by Disjoint 

Covers Covers 

Covered by Disjoint 

Covers Contains 

Overlap Disjoint 

Covers Covers 
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Disjoint 

Covers Covers 

Meet Disjoint 

Covers Covers 

Overlap Disjoint 

Covers Contains 

Disjoint 

Equal 

Covers Contains 

Covered by Disjoint 

Covers Contains 

Meet 

Meet 

Covers Contains 

Covered by Meet 

Covers Covers 

Covered by Meet 

Covers Contains 

Overlap 

Meet 

Covers Covers 

Overlap 

Disjoint 

Covers Contains 

Disjoint 

Covers 

Covers Covers 

Equal Covers 

Covers Covers 

Covers Covers 
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Inside Covers 
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Covered by Equal 
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85 86 87 88 

89 90 91 92 

93 94 95 96 

97 
 
 
 

98 99 100 

101 102 103 104 

105 106 107 108 

109 110 111 112 

113 114 115 116 

117 
 
 
 

118 119 120 

121 122 123 124 

125 126 127 128 

129 130 131 132 

Covers 

Covers Contains 

Covered by Covers 

Covers Covers 

Overlap 
Covered by 

Covers Contains 

Inside 

Covered by 

Covers Covers 

Covered by Covered by 

Covers Covers 

Inside Covers 

Covers Contains 

Equal Overlap 

Covers Covers 

Covered by 

Overlap 

Covers Contains 

Covered by Covered by 

Covers Contains 

Covered by Overlap 

Covers Contains 

Overlap 

Overlap 

Covers Covers 

Overlap Overlap 

Covers Covers 

Inside Inside 

Covered by Covers 

Inside 

Covers 

Covers Contains 

Overlap 

Overlap 

Covers Contains 

Inside 

Contains 

Covered by Contains 

Covered by 

Meet 

Covered by Contains 

Inside Meet 

Covered by Covers 

Inside Meet 

Covered by Covers 

Covered by 

Meet 

Covered by Overlap 

Inside Meet 

Covered by Contains 

Covered by Meet 

Covered by Meet 

Covered by Meet 

Covered by Overlap 

Covered by 

Meet 

Covered by Meet 

Inside Disjoint 

Covered by Covers 

Inside Disjoint 

Covered by Covers 

Covered by 

Disjoint 

Covered by Overlap 

Inside Disjoint 

Covered by Contains 

Covered by Disjoint 

Covered by Disjoint 

Covered by Disjoint 

Covered by Meet 

Covered by 

Inside 

Covered by Equal 

Inside Inside 

Covered by Contains 

Inside Contains 

Covered by Contains 

Inside 

Inside 

Covered by Overlap 

Inside 

Disjoint 

Covered by Contains 

Inside 

Equal 

Covered by Covers 

Covered by 

Equal 

Covered by Contains 

Inside Covered by 

Covered by Covered by 

Covered by Covered by 

Covered by Contains 

Inside 

Covered by 

Covered by Covers 

Covered by Overlap 

Covered by Contains 

Covered by Covered by 

Covered by Equal 

Covered by Covered by 

Covered by Covers 

Inside 

Disjoint 

Covered by Overlap 

Covered by Disjoint 

Covered by Disjoint 

Inside Equal 

Covered by Covers 

Inside 

Disjoint 

Covered by Meet 

Inside 

Inside 

Covered by Covered by 

Inside 
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133 134 135 136 

137 
 
 
 

138 139 140 

141 142 143 144 

145 146 147 148 

149 150 151 152 

153 154 155 156 

157 
 
 
 
 

158 159 160 

161 162 163 164 

165 166 167 168 

169 170 171 172 

173 174 175 176 

177 
 
 
 

178 179 180 

Covered by 

Covered by Overlap 

Covered by  Covers 

Covered by Contains 

Inside Covers 

Covered by Covers 

Covered by 

Overlap 

Covered by Covers 

Covered by Overlap 

Covered by Contains 

Inside 

Covered by 

Covered by Overlap 

Inside 

Overlap 

Covered by Covers 

Inside 

Equal 

Inside Equal 

Inside Covered by 

Inside Equal 

Inside Equal 

Inside Covers 

Inside Overlap 

Inside Overlap 

Inside 

Disjoint 

Meet Disjoint 

Disjoint Disjoint 

Meet Disjoint 

Meet Disjoint 

Meet Meet 

Disjoint 

Meet 

Meet Meet 

Meet Contains 

Overlap Contains 

Inside Contains 

Overlap Contains 

Overlap Contains 

Overlap Contains 

Covered by 

Overlap 

Inside Contains 

Inside 

Covers 

Covered by Contains 

Covered by Covered by 

Covered by Equal 

Inside 

Covers 

Covered by Covers 

Inside Overlap 

Covered by Overlap 

Inside Overlap 

Covered by Overlap 

Covered by 

Equal 

Inside Contains 

Inside Inside 

Inside Contains 

Inside Inside 

Inside Covers 

Inside Inside 

Inside Equal 

Inside 

Inside 

Inside Overlap 

Inside Inside 

Inside Inside 

Inside Inside 

Inside Covered by 

Inside Contains 

Inside Contains 

Inside 

Meet 

Inside Contains 

Inside Meet 

Inside Meet 

Inside Meet 

Inside Overlap 

Inside Meet 

Inside Covers 

Inside 

Overlap 

Inside Covers 

Inside Disjoint 

Inside Covers 

Inside Disjoint 

Inside Disjoint 

Inside Disjoint 

Inside Contains 

Inside 

Disjoint 

Inside Meet 

Inside Disjoint 

Inside Overlap 

Inside Covered by 

Inside Contains 

Inside Covered by 

Inside Overlap 

Inside 

Covers 

Inside Covers 

Inside Covers 

Inside Contains 

Inside Covered by 

Inside Covers 

Inside Covered by 

Inside Covered by 

Inside 
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181 182 183 184 

185 186 187 188 

189 190 191 192 

193 194 195 196 

197 
 
 
 

198 199 200 

201 202 203 204 

205 206 207 208 

209 210 211 212 

213 214 215 216 

217 
 

218 219 220 

221 222 223 224 

Meet 

Overlap Covers 

Inside Meet 

Overlap Covers 

Covered by Meet 

Overlap Overlap 

Inside 

Meet 

Overlap Contains 

Overlap Meet 

Overlap Overlap 

Overlap Meet 

Overlap Overlap 

Covered by Meet 

Overlap Covers 

Overlap 

Disjoint 

Overlap Covers 

Inside Disjoint 

Overlap Contains 

Covered by Disjoint 

Overlap Covers 

Covered by 

Disjoint 

Overlap Overlap 

Inside Disjoint 

Overlap Contains 

Overlap Disjoint 

Overlap Overlap 

Overlap Disjoint 

Overlap Overlap 

Covered by 

Meet 

Overlap Contains 

Covered by 

Disjoint 

Overlap Contains 

Inside 

Disjoint 

Overlap Overlap 

Meet 

Disjoint 

Overlap Meet 

Overlap 
Disjoint 

Overlap Meet 

Disjoint 
Disjoint 

Overlap Meet 

Meet 

Disjoint 

Overlap Disjoint 

Inside Disjoint 

Overlap Contains 

Disjoint Disjoint 

Overlap Covers 

Disjoint Disjoint 

Overlap Disjoint 

Covered by 

Disjoint 

Overlap Meet 

Inside Disjoint 

Overlap Covers 

Meet Disjoint 

Overlap Meet 

Covered by 

Disjoint 

Overlap Disjoint 

Disjoint 
Covers 

Overlap Contains 

Inside Covers 

Overlap Contains 

Covered by Covers 

Overlap Covers 

Covered by 

Disjoint 

Overlap Covers 

Overlap Disjoint 

Overlap Overlap 

Disjoint Disjoint 

Overlap Disjoint 

Overlap 

Disjoint 

Overlap Contains 

Meet 

Covered by 

Overlap Overlap 

Covered by Covers 

Overlap Contains 

Overlap Covers 

Overlap Covers 

Overlap Covers 

Overlap Contains 

Covered by 

Disjoint 

Overlap Disjoint 

Meet 

Inside 

Overlap Contains 

Inside Inside 

Overlap Overlap 

Inside Inside 

Overlap Covers 

Inside Meet 

Overlap Contains 

Inside 
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225 226 227 228 

229 230 231 232 

233 234 235 236 

237 
 
 
 

238 239 240 

241 242   

 
 

 

 

 

 

 

 

Covered by 

Overlap Covers 

Inside Covered by 

Overlap Covers 

Inside Covered by 

Overlap Covers 

Covered by 

Covered by 

Overlap Overlap 

Inside Equal 

Overlap Contains 

Inside 

Overlap 

Overlap Contains 

Covered by 

Covered by 

Overlap Contains 

Inside 

Equal 

Overlap Covers 

Covered by 

Equal 

Overlap Covers 

Inside 

Overlap 

Overlap Covers 

Covered by Overlap 

Overlap Overlap 

Inside 

Overlap 

Overlap Overlap 

Overlap Overlap 

Overlap Contains 

Overlap 

Equal 

Overlap Contains 

Covered by 

Overlap 

Overlap Covers 

Overlap Overlap 

Overlap Contains 

Inside 

Overlap 

Overlap Covers 

Inside Overlap 

Overlap Overlap 

Covered by 



 223 

Appendix 2: Rules of consistency 

Table A2.1 Required rules for topological relations between regions with broad boundaries 

Rule 1: Let A
~

 and B
~

 are two simple regions with broad 

boundaries, if Disjoint ( max

~
A , max

~
B ) then  

              Disjoint ( min

~
A , min

~
B ). 

 

                      min

~
B                  max

~
B  

min

~
A   D ( min

~
A , min

~
B )             -- 

max

~
A      --                       D ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Disjoint ( max

~
A , max

~
B ). Now, we suppose that  R 

( min

~
A , min

~
B ) ≠ Disjoint. In this case, the relation between minimal extent min

~
A  and maximal extent max

~
A  of a region 

with a broad boundary A
~

 or that between max

~
B  and min

~
B does not correspond to Contains, Covers, Equal.  Thus, there 

is a contradiction with definition 1. 

Rule 2:  Let A
~

 and B
~

 two regions with broad 

boundaries, if Meet ( max

~
A , max

~
B ) then 

R( min

~
A , min

~
B )∈{ D, M}. 

 

                           min

~
B                             max

~
B  

min

~
A      R( min

~
A , min

~
B )∈{ D, M}              -- 

max

~
A                      --                           M ( max

~
A , max

~
B ) 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Meet ( max

~
A , max

~
B ). Now, we suppose that 

R( min

~
A , min

~
B ) ∉{ Disjoint, Meet}. In this case, relation between minimal extent min

~
A  and maximal extent max

~
A , R’ 

( max

~
A , min

~
A ) or that between max

~
B  and min

~
B , R’’ ( max

~
B , min

~
B ) does not correspond to Contains, Covers, Equal. Thus, 

there is a contradiction with definition 1. 

Rule 3: Let A
~

 and B
~

 two regions with broad boundaries, if 

Contains ( max

~
A , max

~
B ) then Contains ( max

~
A , min

~
B ), and vice 

versa. 
 

                       min

~
B                     max

~
B  

min

~
A                 --                            -- 

max

~
A     C ( max

~
A , min

~
B )      C ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Contains ( max

~
A , max

~
B ). According to definition 

1, any region with a broad boundary A
~

 should respect the principal following condition: Equal( max

~
A , min

~
A ), 

Contains( max

~
A , min

~
A ) or Covers( max

~
A , min

~
A ). Moreover, Contains is a transitive topological relation: Contains (A,B) 

and Contains(B,C)�Contains(A,C). Then, since Contains ( max

~
A , max

~
B ) and R ( max

~
B , min

~
B ) = {Contains, Covers, 

Equal} then Contains ( max

~
A , min

~
B ) and vice versa. 

Rule 4: Let A
~

 and B
~

 two regions with broad 

boundaries, if Covers ( max

~
A , max

~
B ) then R ( max

~
A , min

~
B ) 

∈  {Contains, Covers}, and vice versa. 
 

                  min

~
B                                     max

~
B  

min

~
A             --                                           -- 

max

~
A  R( max

~
A , min

~
B )∈{ C, CV}     C ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Covers ( max

~
A , max

~
B ). According to definition 1, 

any region with a broad boundary A
~

 should respect the principal following condition: Equal( max

~
A , min

~
A ), 

Contains( max

~
A , min

~
A ) or Covers( max

~
A , min

~
A ). Contains is a transitive topological relation: if Contains(A,B) and 

Contains(B,C) � Conatins(A,C). Then, if Contains ( max

~
B , min

~
B ) then Contains ( max

~
A , min

~
B ) else if R 

( max

~
B , min

~
B )∈{ Covers, Equal} then Covers ( max

~
A , min

~
B ) else if Covers( max

~
B , min

~
B )  then R ( max

~
A , min

~
B ) ∈  
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{ Contains, Covers} and vice versa. 

Rule 5: Let A
~

 and B
~

 two regions with broad 

boundaries, if Equal ( max

~
A , max

~
B ) then R ( max

~
A , min

~
B ) 

∈  {Contains, Covers} and R ( max

~
B , min

~
A )∈{ Inside, 

Covered by}, and vice versa. 

                      min

~
B                                    max

~
B  

min

~
A                  --                    R ( max

~
B , min

~
A )∈{ I, CVB} 

max

~
A  R ( max

~
A , min

~
B ) ∈{ C, CV}     E ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Equal ( max

~
A , max

~
B ). According to definition 1, 

any region with a broad boundary A
~

 should respect the principal following condition: Equal( max

~
A , min

~
A ), 

Contains( max

~
A , min

~
A ) or Covers( max

~
A , min

~
A ). In this case, we don’t consider Equal( max

~
A , min

~
A ) because the 

topological relation becomes between crisp regions thoughtfully studied in other works (e.g, Egenhofer and Herring 
1990). Equal and Contains are transitive topological relations: Equal(A,B) and Equal(B,C) � Equal(A,C), 

Contains(A,B) and Contains(B,C) � Contains(A,C). Then, if Equal( max

~
A , max

~
B ) and Contains( max

~
B , min

~
B ) then 

Contains( max

~
A , min

~
B ) (1) else if Covers( max

~
B , min

~
B ) then Covers( max

~
A , min

~
B ) (2). Then, (1) and (2) implies that R 

( max

~
A , min

~
B )∈{ Contains, Covers} and  R ( max

~
B , min

~
A )∈{ Inside, Covered by}.  

Rule 6: Let A
~

 and B
~

 two regions with broad 

boundaries, if Contains ( max

~
A , max

~
B ) and Contains 

( min

~
A , min

~
B ) then R ( min

~
A , max

~
B )∉{ Meet, Equal}, and 

vice versa. 
 

                     min

~
B                              max

~
B  

min

~
A     C( min

~
A , min

~
B )      R ( min

~
A , max

~
B )∉{ D, M} 

max

~
A               --                         C ( max

~
A , max

~
B )               

    

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Contains ( max

~
A , max

~
B ) and Contains ( min

~
A , 

min

~
B ). According to definition 1, we have Equal( max

~
A , min

~
A ), Contains( max

~
A , min

~
A ) or Covers( max

~
A , min

~
A ). We 

suppose now that Disjoint ( min

~
A , max

~
B ) or Meet ( min

~
A , max

~
B ) (1). By considering definition 1 and Contains 

( max

~
A , max

~
B ), since R ( max

~
B , min

~
B ){ Contains, Covers, Equal} then Contains ( max

~
A , min

~
B ) (2). In addition, since 

Contains ( min

~
A , min

~
B ) and (1) then R ( max

~
B , min

~
B )∉{ Contains, Covers, Equal}. Thus, there is a contradiction with 

definition 1. 

Rule 7: Let A
~

 and B
~

 two regions with broad boundaries, if 

Contains ( max

~
A , max

~
B ) and Inside( min

~
A , min

~
B )  then Inside 

( min

~
A , max

~
B ), and vice versa.   

                  min

~
B                      max

~
B  

min

~
A    I ( min

~
A , min

~
B )      I ( min

~
A , max

~
B ) 

max

~
A                   --            C ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Contains ( max

~
A , max

~
B ) and Inside( min

~
A , min

~
B ). 

We suppose now that R ( min

~
A , max

~
B ) ∉{ Inside} (1). By considering definition 1 and Contains ( max

~
A , max

~
B ), since R 

( max

~
B , min

~
B )∈{ Contains, Covers, Equal} and Inside ( min

~
A , min

~
B ) then Inside ( min

~
A , max

~
B ) (2). Thus, there is 

contradiction among (1) and (2). 

Rule 8: Let A
~

 and B
~

 two simple regions with broad 

boundaries, if Contains ( max

~
A , max

~
B ) and 

Meet( min

~
A , min

~
B )  then R ( min

~
A , max

~
B )∉{ Contains, 

Equal, Covers, Disjoint}, and vice versa. 

                    min

~
B                            max

~
B  

min

~
A   M( min

~
A , min

~
B )     R ( min

~
A , max

~
B )∉{ C, E, CV, D}           

max

~
A           --                             C( max

~
A , max

~
B ) 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Contains ( max

~
A , max

~
B ) and Meet ( min

~
A , min

~
B ) 

(1). We suppose now that R ( min

~
A , max

~
B ) ∈{ Contains, Equal, Covers, Disjoint} (2). By considering definition 1 and 

Contains ( max

~
A , max

~
B ), if Contains ( min

~
A , max

~
B ) then there is a contradiction because R ( max

~
B , min

~
B )∈{ Contains, 
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Covers, Equal} and (1). If Equal ( min

~
A , max

~
B ) then there is a contradiction because R ( max

~
B , min

~
B )∈{ Contains, 

Covers, Equal} and (1). If Covers( min

~
A , max

~
B ) then R ( max

~
B , min

~
B )∉{ Contains, Covers, Equal}or (1) is false. Finally, 

if Disjoint ( min

~
A , max

~
B ) then there is a contradiction because R ( max

~
B , min

~
B )∈{ Contains, Covers, Equal} and (1).  

Thus, (2) cannot be true. 

Rule 9: Let A
~

 and B
~

 two regions with broad boundaries, if 

Contains ( max

~
A , max

~
B ) and Covers( min

~
A , min

~
B ) then R 

( min

~
A , max

~
B )∉{ Meet, Disjoint}, and vice versa.  

              min

~
B                                 max

~
B  

min

~
A   CV( min

~
A , min

~
B )     R ( min

~
A , max

~
B )∉{ M, D}           

max

~
A           --                          C ( max

~
A , max

~
B ) 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Contains( max

~
A , max

~
B ) and 

Covers( min

~
A , min

~
B ). We suppose now that Disjoint ( min

~
A , max

~
B ) or Meet ( min

~
A , max

~
B ) (1). By considering definition 

1 and Contains( max

~
A , max

~
B ), since R ( max

~
B , min

~
B )∈{ Contains, Covers, Equal} then Contains ( max

~
A , min

~
B ) (2). In 

addition, since Covers ( min

~
A , min

~
B ) and (1) then R ( max

~
B , min

~
B ) ∉{ Contains, Covers, Equal}. Thus, there is a 

contradiction with definition 1. 

Rule 10: Let A
~

 and B
~

 two regions with broad 

boundaries, if Contains ( max

~
A , max

~
B ) and Equal 

( min

~
A , min

~
B ) then R ( min

~
A , max

~
B )∉{ Contains, 

Covers, Disjoint, Meet, Overlap}, and vice versa.  

    min

~
B                           max

~
B  

min

~
A  E ( min

~
A , min

~
B )     R ( min

~
A , max

~
B )∉{ C, CV, D, M, O}           

max

~
A                  --                      C ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Contains ( max

~
A , max

~
B ) and Equal ( min

~
A , 

min

~
B ) (1). We suppose now that R ( min

~
A , max

~
B )∈{ Contains, Covers, Disjoint, Meet, Overlap} (2). If (2) then R 

( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By considering definition 1 and (1), there is a contradiction 

and (2) cannot be true. 

Rule 11: Let A
~

 and B
~

 two regions with broad 

boundaries, if Contains ( max

~
A , max

~
B ) and Covered by 

( min

~
A , min

~
B ) then R ( min

~
A , max

~
B )∈{ Covered by, 

Inside}, and vice versa.  

                      min

~
B                             max

~
B  

 min

~
A      CVB ( min

~
A , min

~
B )    R ( min

~
A , max

~
B )∈{ CVB, I}    

 max

~
A             --                           C ( max

~
A , max

~
B )  

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Contains ( max

~
A , max

~
B ) and Covered by ( min

~
A , 

min

~
B ) (1). We suppose now that R ( min

~
A , max

~
B )∉{ Covered by, Inside} then R ( min

~
A , max

~
B )∈{ Contains, Covers, 

Disjoint, Meet, Overlap, Equal} (2). If (2) then R ( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By 

considering definition 1 and (1), there is a contradiction and (2) cannot be true. 

Rule 12: Let A
~

 and B
~

 two regions with broad 

boundaries, if Contains( max

~
A , max

~
B ) and 

Overlap( min

~
A , min

~
B )  then R ( min

~
A , max

~
B )∈  

{ Covered by, Inside, Overlap}, and vice versa.  

                        min

~
B                                max

~
B  

min

~
A      O( min

~
A , min

~
B )      R ( min

~
A , max

~
B ) ∈{ CVB, I, O}           

 max

~
A             --                            C( max

~
A , max

~
B )  

 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Contains( max

~
A , max

~
B ) and Overlap ( min

~
A , 

min

~
B ) (1). We suppose now that R ( min

~
A , max

~
B )∈{ Contains, Covers, Disjoint, Meet, Equal} (2). If (2) then R 

( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By considering definition 1 and (1), there is a contradiction 

and (2) cannot be true. 
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Rule 13: Let A
~

 and B
~

 two regions with broad boundaries, if 

Covers ( max

~
A , max

~
B ) and Contains( min

~
A , min

~
B )  then R 

( min

~
A , max

~
B )∉{ Disjoint, Meet}, and vice versa.  

                   min

~
B                               max

~
B  

min

~
A    C( min

~
A , min

~
B )      R ( min

~
A , max

~
B )∉{ D, M}          

max

~
A             --                        CV ( max

~
A , max

~
B )                                  

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Covers ( max

~
A , max

~
B ) and Contains 

( min

~
A , min

~
B ) (1). We suppose now that Disjoint ( min

~
A , max

~
B ) or Meet ( min

~
A , max

~
B ) (2). If (2) then R 

( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By considering definition 1 and (1), there is a contradiction 

and (2) cannot be true. 

Rule 14: Let A
~

 and B
~

 two regions with broad boundaries, if 

Covers ( max

~
A , max

~
B ) and Inside( min

~
A , min

~
B ) then 

Inside( min

~
A , max

~
B ), and vice versa. 

                    min

~
B                     max

~
B  

 min

~
A      I ( min

~
A , min

~
B )        I ( min

~
A , max

~
B )           

 max

~
A                    --              CV ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Covers ( max

~
A , max

~
B ) and Inside ( min

~
A , min

~
B ). 

We suppose now that R ( min

~
A , max

~
B ) ∉  { Inside} (1). Additionally, Inside is a transitive relation: Inside(A,B) and 

Inside(B,C) � Inside(A,C) (2). By considering definition 1 and (2), since R ( max

~
B , min

~
B )∈{ Contains, Covers, Equal} 

and Inside ( min

~
A , min

~
B ) then Inside ( min

~
A , max

~
B ) (2). Thus, (1) cannot be true. 

Rule 15: Let A
~

 and B
~

 two simple regions with 

broad boundaries, if Covers ( max

~
A , max

~
B ) and 

R( min

~
A , min

~
B )∈ { Disjoint, Meet}  then R 

( min

~
A , max

~
B )∉ { Contains, Covers, Disjoint, 

Equal}, and vice versa. 

                    min

~
B                                 max

~
B  

min

~
A  R( min

~
A , min

~
B )∈ { D, M}    R( min

~
A , max

~
B )∉ { C,CV,D, E}          

max

~
A                    --                                CV ( max

~
A , max

~
B ) 

 
                

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Covers ( max

~
A , max

~
B ) and 

R( min

~
A , min

~
B )∈ { Disjoint,Meet} (1). We suppose now that R ( min

~
A , max

~
B )∈ { Contains, Covers, Disjoint, Equal} (2). 

If (2) then R ( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By considering definition 1 and (1), there is a 

contradiction and (2) cannot be true. 

Rule 16: Let A
~

 and B
~

 two simple regions with 

broad boundaries, if Covers ( max

~
A , max

~
B ) and 

R( min

~
A , min

~
B )∈ { Equal, Covered by} then 

R( min

~
A , max

~
B )∈ { Covered by, Inside}, and vice 

versa. 

                            min

~
B                                       max

~
B  

min

~
A  R ( min

~
A , min

~
B )∈ { E, CVB}     R ( min

~
A , max

~
B )∈ { CVB, I}           

max

~
A               --                                           CV ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Covers( max

~
A , max

~
B ) and R 

( min

~
A , max

~
B )∈ { Equal, Covered by} (1). We suppose now that R ( min

~
A , max

~
B )∉ { Covered by, Inside} (2). If (2) then R 

( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By considering definition 1 and (1), there is a contradiction 

and (2) cannot be true. 

Rule 17: Let A
~

 and B
~

 two simple regions with broad 

boundaries, if Covers ( max

~
A , max

~
B ) and Overlap ( min

~
A , 

min

~
B ) then R( min

~
A , max

~
B )∈ { Covered by, Inside, 

Overlap}, and vice versa. 

                               min

~
B                          max

~
B  

min

~
A    O ( min

~
A , min

~
B )       R( min

~
A , max

~
B )∈ { CVB, I, O}          

 max

~
A              --                              CV ( max

~
A , max

~
B ) 
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Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Covers ( max

~
A , max

~
B ) and Overlap ( min

~
A , 

min

~
B ) (1). We suppose now that R ( min

~
A , max

~
B )∉{ Covered by, Inside, Overlap} (2). If (2) then R 

( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By considering definition 1 and (1), there is a contradiction 

and (2) cannot be true. 

Rule 18: Let A
~

 and B
~

 two simple regions with broad 

boundaries, if Meet ( max

~
A , max

~
B ) and Meet ( min

~
A , min

~
B ) then 

Meet( min

~
A , max

~
B ) and Meet( max

~
A , min

~
B ), and vice versa. 

                       min

~
B                   max

~
B  

min

~
A    M ( min

~
A , min

~
B )    M ( min

~
A , max

~
B )           

max

~
A    M ( max

~
A , min

~
B )      M ( max

~
A , max

~
B ) 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Meet ( max

~
A , max

~
B ) and Meet ( min

~
A , min

~
B ) (1). 

We suppose now that R ( min

~
A , max

~
B ) ≠ Meet (2) and R ( max

~
A , min

~
B ) ≠ Meet (3). If (2) then R 

( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. Thus, (2) cannot be true. In the same way, if (3) then there is a 

contradiction because R ( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By considering definition 1 and (1), 

there is a contradiction and (3) cannot be true. 

Rule 19: Let A
~

 and B
~

 two simple regions with broad 

boundaries, if Meet ( max

~
A , max

~
B ) and Disjoint 

( min

~
A , min

~
B ) then R( min

~
A , max

~
B )∈{ Meet, Disjoint} and 

R( max

~
A , min

~
B )∈{ Meet, Disjoint}, and vice versa. 

                     min

~
B                                max

~
B  

 min

~
A        D ( min

~
A , min

~
B )         R( min

~
A , max

~
B )∈{ M, D}           

 max

~
A   R( max

~
A , min

~
B )∈{ M, D}      M ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Meet ( max

~
A , max

~
B ) and Disjoint ( min

~
A , min

~
B ) 

(1). We suppose now that R ( min

~
A , max

~
B )∉{ Meet, Disjoint} (2) and R ( max

~
A , min

~
B )∉{ Meet, Disjoint} (3). If (2) then 

there R ( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By considering definition 1 and (1), there is a 

contradiction and (2) cannot be true. In the same way, if (3) then R ( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is 

false. By considering definition 1 and (1), there is a contradiction and (3) cannot be true. 

Rule 20 : Let A
~

 and B
~

 two simple regions with broad 

boundaries, if Overlap ( max

~
A , max

~
B ) then R 

( max

~
A , min

~
B )∉{ Equal, Inside, Covered by}, and vice 

versa. 

                             min

~
B                                      max

~
B  

min

~
A                        --                                           --           

max

~
A    R ( max

~
A , min

~
B )∉{ E, I, CVB}     O ( max

~
A , max

~
B )                          

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Overlap ( max

~
A , max

~
B ). According to definition 

1, any region with a broad boundary A
~

 should respect the principal following condition: Equal( max

~
A , min

~
A ), 

Contains( max

~
A , min

~
A ) or Covers( max

~
A , min

~
A ) (1). We suppose now that R ( max

~
A , min

~
B )∈{ Equal, Inside, Covered 

by} (2). By considering definition 1, if (1) and (2) then R ( max

~
B , min

~
B )∉{ Contains, Covers, Equal}. Thus, there is a 

contradiction with definition 1. 

Rule 21: Let A
~

 and B
~

 two simple regions with broad 

boundaries, if Overlap ( max

~
A , max

~
B ) and Contains 

( min

~
A , min

~
B ) then R ( min

~
A , max

~
B ) ∈{ Overlap, Inside, 

Covered by} and Contains( max

~
A , min

~
B ), and  vice versa. 

                   min

~
B                            max

~
B  

min

~
A   C ( min

~
A , min

~
B )    R ( min

~
A , max

~
B )∈{ O, I, CVB }       

max

~
A   C ( max

~
A , min

~
B )             O ( max

~
A , max

~
B )                   

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Overlap ( max

~
A , max

~
B ) and Contains 

( min

~
A , min

~
B ) (1). We suppose now that R ( min

~
A , max

~
B )∉{ Overlap, Inside, Covered by}  (2) and R 
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( max

~
A , min

~
B ) ≠ Contains (3). By considering definition 1 and Contains( min

~
A , min

~
B ), if (2) then R 

( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. Thus, (2) cannot be true because there is a contradiction. In 

the same way, if (3) then R ( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By considering definition 1 and 

Contains( min

~
A , min

~
B ), (3) cannot be true because there is also a contradiction. 

Rule 22 : Let A
~

 and B
~

 two simple regions 

with broad boundaries, if Overlap ( max

~
A , max

~
B ) 

and  

              R ( min

~
A , min

~
B )∈{ Overlap, Meet} then  

              R( min

~
A , max

~
B )∈{ Overlap, Inside, 

Covered by} and R( max

~
A , min

~
B )∈{ Overlap, 

Covers, Contains}, and  vice versa. 

                                        min

~
B                                        max

~
B  

  min

~
A   R ( min

~
A , min

~
B )∈{ O, M}   R ( min

~
A , max

~
B )∈{ O, I, CVB}      

  max

~
A   R ( max

~
A , min

~
B )∈{ O, CV, C}          O ( max

~
A , max

~
B ) 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Overlap ( max

~
A , max

~
B ) and R ( min

~
A , 

min

~
B )∈{ Overlap, Meet} (1). We suppose now that R ( min

~
A , max

~
B )∉{ Overlap, Inside, Covered by} (2) 

R( max

~
A , min

~
B )∉{ Overlap, Covers, Contains} (3). If (2) then R ( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is 

false. By considering definition 1, there is a contradiction and (2) cannot be true. In the same way, if (3) then R 

( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By considering definition 1, there is contradiction and (3) 

cannot be true. 

Rule 23: Let A
~

 and B
~

 two simple regions with broad 

boundaries, if Overlap ( max

~
A , max

~
B ) and Equal ( min

~
A , 

min

~
B ) then R ( min

~
A , max

~
B )∈{ Overlap, Inside, Covered 

by} and R( max

~
A , min

~
B )∈{ Overlap, Covers, Contains}, 

and  vice versa. 

                        min

~
B                                max

~
B  

min

~
A       E( min

~
A , min

~
B )      R ( max

~
A , min

~
B )∈{  I, CVB }      

max

~
A   R( max

~
A , min

~
B )∈{ CV, C}        O( max

~
A , max

~
B ) 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Overlap ( max

~
A , max

~
B ) and Equal ( min

~
A , min

~
B ) 

(1). We suppose now that R( min

~
A , max

~
B )∉{ Inside, Covered by} (2) R( max

~
A , min

~
B )∉{ Covers, Contains} (3). If (2) 

then R ( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By considering definition 1 and Equal ( min

~
A , min

~
B ), 

there is contradiction and (2) cannot be true. In the same way, if (3) then R ( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or 

(1) is false. By considering definition 1 and Equal ( min

~
A , min

~
B ),  (3) cannot be true because there is also a 

contradiction. 

Rule 24: Let A
~

 and B
~

 two simple regions with broad 

boundaries, if Overlap ( max

~
A , max

~
B ) and Inside ( min

~
A , 

min

~
B ) then R ( min

~
A , max

~
B ) ∈{ Inside} and 

( max

~
A , min

~
B )∈{  Contains, Covers, Overlap}, and vice 

versa. 

                       min

~
B                                      max

~
B  

min

~
A          I ( min

~
A , min

~
B )                   I ( max

~
A , min

~
B )       

max

~
A   R( max

~
A , min

~
B )∈{ C, CV, O}    O ( max

~
A , max

~
B ) 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Overlap ( max

~
A , max

~
B ) and Inside ( min

~
A , min

~
B ) 

(1). We suppose now that R ( min

~
A , max

~
B )∉{ Inside}(2) R( max

~
A , min

~
B )∉{ Contains, Covers, Overlap} (3). If (2) then R 

( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By considering definition, there is a contradiction and (2) 

cannot be true. In the same way, if (3) then R ( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By considering 

definition 1, (3) cannot be true because there is also a contradiction. 
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Rule 25: Let A
~

 and B
~

 two simple regions with broad 

boundaries, if Overlap ( max

~
A , max

~
B ) and Covers 

( min

~
A , min

~
B ) then R ( min

~
A , max

~
B ) ∈{ Inside, Covered 

by, Overlap} and R( max

~
A , min

~
B )∈{ Covers, Contains}, 

and  vice versa. 

                        min

~
B                                      max

~
B  

min

~
A        CV ( min

~
A , min

~
B )   R ( min

~
A , max

~
B ) ∈{ I, CVB, O}      

max

~
A   R( max

~
A , min

~
B )∈{ CV, C}     O ( max

~
A , max

~
B )                           

 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Overlap ( max

~
A , max

~
B ) and Covers 

( min

~
A , min

~
B ) (1). We suppose now that R ( min

~
A , max

~
B )∉{ Inside, Covered by, Overlap} (2) R( max

~
A , min

~
B )∉{ Covers, 

Contains} (3). If (2) then R ( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By considering definition 1 and 

(1),  (2) cannot be true because there is a contradiction. In the same way, if (3) then R ( max

~
B , min

~
B )∉{ Contains, 

Covers, Equal} or (1) is false. By considering definition 1 and (1), (3) cannot be true because there is also a 
contradiction. 

Rule 26: Let A
~

 and B
~

 two simple regions with broad 

boundaries, if Overlap( max

~
A , max

~
B ) and 

Disjoint( min

~
A , min

~
B ) then R ( min

~
A , max

~
B )∉{ Equal, 

Contains, Covers} and R( max

~
A , min

~
B )∉{ Equal, 

Covered by, Inside}, and  vice versa. 

                         min

~
B                                  max

~
B  

min

~
A           D ( min

~
A , min

~
B )     R ( min

~
A , max

~
B )∉{ E, C, CV}        

max

~
A   R( max

~
A , min

~
B )∉{ E, CVB, I}   O ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Overlap ( max

~
A , max

~
B ) and Disjoint 

( min

~
A , min

~
B ) (1). We suppose now that R ( min

~
A , max

~
B )∉{ Equal,Contains,Covers} (2) R( max

~
A , min

~
B )∉{ Equal, 

Covered by, Inside} (3). If (2) then R ( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By considering 

definition 1 and (1), (2) cannot be true because there is a contradiction. In the same way, if (3) then R 

( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By considering definition 1 and (1), (3) cannot be true because 

there is also a contradiction. 

Rule 27: Let A
~

 and B
~

 two simple regions with 

broad boundaries, if Overlap ( max

~
A , max

~
B ) and  

              Covered by ( min

~
A , min

~
B ) then R 

( min

~
A , max

~
B )∈{ Inside, Covered by} and 

R( max

~
A , min

~
B )∈{ Covers, Contains, Overlap}, 

and  vice versa.                        

                         min

~
B                                           max

~
B  

min

~
A     CVB ( min

~
A , min

~
B )            R ( min

~
A , max

~
B ) ∈{ I,CVB}       

max

~
A   R( max

~
A , min

~
B )∈{ CV, C, O}        O ( max

~
A , max

~
B ) 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Overlap ( max

~
A , max

~
B ) and Covered by 

( min

~
A , min

~
B ) (1). We suppose now that R ( min

~
A , max

~
B )∉{ Inside, Covered by} (2) R( max

~
A , min

~
B )∉{ Covers, 

Contains, Overlap} (3). If (2) then R ( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By considering definition 

1 and (1), (2) cannot be true because there is a contradiction. In the same way, if (3) then R ( max

~
B , min

~
B )∉{ Contains, 

Covers, Equal} or (1) is false. By considering definition 1 and (1), (3) cannot be true because there is also a 
contradiction. 

Rule 28: Let A
~

 and B
~

 two simple regions with broad 

boundaries, if Contains ( max

~
A , max

~
B ) and 

Disjoint( min

~
A , min

~
B ) then R 

( min

~
A , max

~
B )∉{ Contains, Covers, Equal} and 

Contains( max

~
A , min

~
B ), and  vice versa. 

                       min

~
B                                      max

~
B  

   min

~
A    D ( min

~
A , min

~
B )         R ( min

~
A , max

~
B )∉{ C, CV,E}      

   max

~
A    C( max

~
A , min

~
B )                         C ( max

~
A , max

~
B ) 
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Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Contains ( max

~
A , max

~
B ) and Disjoint ( min

~
A , 

min

~
B ) (1). We suppose now that R( min

~
A , max

~
B )∈{ Contains, Covers, Equal} (2) and R( max

~
A , min

~
B )∉{ Contains} (3). 

If (2) then R ( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By considering definition 1 and (1), (2) cannot be 

true because there is a contradiction. In the same way, if (3) then R ( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is 

false. By considering definition 1 and (1), (3) cannot be true because there is also a contradiction. 

Rule 29: Let A
~

 and B
~

 two simple regions with 

broad boundaries, if Covers ( max

~
A , max

~
B ) and 

Covers ( min

~
A , min

~
B ) then R 

( min

~
A , max

~
B )∈{ Inside, Covered by, Equal, 

Overlap, Covers} and R( max

~
A , min

~
B )∈{ Covers, 

Contains}, and  vice versa.                       

                   min

~
B                                        max

~
B  

min

~
A   CV ( min

~
A , min

~
B )    R ( min

~
A , max

~
B ) ∈{ CVB, O, E, CV, I}      

max

~
A   R( max

~
A , min

~
B )∈{ CV, C}        CV( max

~
A , max

~
B ) 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Covers ( max

~
A , max

~
B ) and Covers ( min

~
A , min

~
B ) 

(1). We suppose now that R ( min

~
A , max

~
B )∉{ Covered by, Overlap, Equal, Covers, Inside} (2) 

R( max

~
A , min

~
B )∉{ Covers, Contains} (3). If (2) then R ( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By 

considering definition 1 and (1), (2) cannot be true because there is a contradiction. In the same way, if (3) then R 

( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. By considering definition 1 and (1), (3) cannot be true because 

there is also a contradiction. 

Rule 30: Let A
~

 and B
~

 two simple regions with 
broad boundaries, if Ru1e 29 and   

              Covers( min

~
A , max

~
B ) Then 

R( max

~
A , min

~
B )∈{ Covers}, and  vice versa. 

                        min

~
B                                     max

~
B  

   min

~
A         CV( min

~
A , min

~
B )               CV ( min

~
A , max

~
B ) 

   max

~
A   R( max

~
A , min

~
B )∈{ CV}           CV ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Rule 29  and R ( min

~
A , max

~
B ) ∈{ Covers} (1). 

We suppose now that R( max

~
A , min

~
B )∉{ Covers}  (2). By considering definition 1 and (1), if (2) then R 

( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is false. Thus, (2) cannot be true because there is a contradiction. 

Rule 31: Let A
~

 and B
~

 two simple regions with broad 

boundaries, if Ru1e 29 and R ( min

~
A , max

~
B )∈{ Inside}   then 

R( max

~
A , min

~
B )∈{ Contains}, and  vice versa. 

                        min

~
B                         max

~
B  

min

~
A   CV ( min

~
A , min

~
B )      R ( min

~
A , max

~
B ) ∈{ I}       

max

~
A   R( max

~
A , min

~
B )∈{ C}     CV ( max

~
A , max

~
B ) 

 

Proof: Let A
~

 and B
~

 two simple regions with broad boundaries where Rule 29 and R ( min

~
A , max

~
B ) ∈{ Inside} (1). We 

suppose now that R( max

~
A , min

~
B )∉{ Contains} (2). If (2) then R ( max

~
B , min

~
B )∉{ Contains, Covers, Equal} or (1) is 

false. By considering definition 1 and (1), (2) cannot be true because there is a contradiction. 
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Appendix 3:  Demonstrations of the possible topological 

relationships between regions with broad boundaries resulted from 

an integration process 

In this appendix, we prove the results obtained in Section 5.7. For the next proofs, we use the 
following terminology: 
 

Let 1A∂ the boundary of 1A , 1
°A  its interior and 1A  its closure  

       2A∂ the boundary of 2A , 2
°A its interior and 2A its closure 

       nA∂ the boundary of nA , nA°  its interior and nA its closure 

       1B∂ the boundary of 1B , 1
°B  its interior and 1B  its closure  

       2B∂ the boundary of 2B , 2
°B  its interior and 2B  its closure 

       nB∂ the boundary of nB , nB°  its interior and nB  its closure 

 
A3.1 Disjoint 
 
Let Disjoint( 1A , 1B ), Disjoint( 2A , 2B ),..and Disjoint( nA , nB ) with 1A , 2A ,.. and nA  the 

available heterogeneous of A and 1B , 2B ,.. and nB  the available heterogeneous 

representations of B. According to Section 5.7, the final geometries should conform to the 
specifications of the next matrix: 
 
 
 
 
 
 
 

- Disjoint (IA, IB) 
 
In order to prove that Disjoint(IA, IB), we should demonstrate that 
( 1A ∩ 2A ..∩ nA ) ∩ ( 1B ∩ 2B … ∩ nB )=∅  

 
(1)∀  x ∈( 1A ∩ 2A ..∩ nA ), we have x ∈ 1A , x ∈ 2A ,.. and x ∈ nA . 

Is-it possible for x to be an element of (1B ∩ 2B … ∩ nB )? 

  
(2) If x ∈ 1B  then, there is a contradiction because 1A ∩ 1B  =∅   

(3) If x ∈ 2B  then, there is a contradiction because 2A ∩ 2B  =∅   

(4) If x ∈ nB  then, there is a contradiction because nA ∩ nB  =∅  

 
(5) According to (2), (3) and (4), x ∉( 1B ∩ 2B … ∩ nB )   

Disjoint (IA, IB) 

 {Disjoint, Meet, Overlap} (UA,UB)                 -- 

-- 
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Finally, (1) and (5) means that (1A ∩ 2A ..∩ nA ) ∩ ( 1B ∩ 2B … ∩ nB )=∅  and so 

Disjoint(( 1A ∩ 2A ..∩ nA ), ( 1B ∩ 2B … ∩ nB ))  that we write Disjoint (IA, IB) (I for 

intersection). In addition, (1) and (5) show that (1A ∪ 2A ..∪ nA ) ⊄ ( 1B ∪ 2B … ∪ nB ) 

because ( 1A ∩ 2A ..∩ nA ) ⊄  ( 1A ∪ 2A ..∪ nA ) and ( 1A ∩ 2A ..∩ nA ) ⊄ ( 1B ∪ 2B … ∪ nB )   

 
 

- {Disjoint, Meet, Overlap}( UA,UB) 
        

� For Overlap (UA,UB), we should prove that  

      if (( 1
°A ∩ ( 1

°B ∪ 2
°B … ∪ nB° )) ∪ ( 2

°A       

     ∩ ( 1
°B ∪ 2

°B … ∪ nB° ))..∪ ( nA° ∩ ( 1
°B ∪ 2

°B … ∪ nB° ))) ≠ ∅  then  

     (( 1
°A ∪ 2

°A ..∪ nA° ) ∩ ( 1
°B ∪ 2

°B … ∪ nB° )) ≠ ∅ . 
 

 Let x ∈ ( 1
°A ∩ ( 1

°B ∪ 2
°B … ∪ nB° )) ∪ ( 2

°A ∩ ( 1
°B ∪ 2

°B … ∪ nB° )).. 

         ∪ ( nA° ∩ ( 1
°B ∪ 2

°B … ∪ nB° ))), we have x ∈ ( 1
°B ∪ 2

°B … ∪ nB° )   
 

 (1) If 1
°A ∩ ( 1

°B ∪ 2
°B … ∪ nB° )= ∅  then (x ∈ ( 2

°A  ∩ ( 1
°B ∪ 2

°B … ∪ nB° )   

        ..∪ ( nA° ∩ ( 1
°B ∪ 2

°B … ∪ nB° ))) else there is a contradiction. Indeed, x ∈ 2
°A  

        or x∈ 3
°A or,.., x ∈ nA°                    

 

 (2) If  2
°A  ∩ ( 1

°B ∪ 2
°B … ∪ nB° )= ∅  then (x ∈ ( 1

°A ∩ ( 1
°B ∪ 2

°B … ∪ nB° )   

        ..∪ ( nA° ∩ ( 1
°B ∪ 2

°B … ∪ nB° ))) else there is a contradiction. x ∈ 1
°A  

        or x∈ 3
°A or,.., x ∈ nA°  

 

 (3) If nA° ∩ ( 1
°B ∪ 2

°B … ∪ nB° )= ∅  then (x ∈( 1
°A ∩ ( 1

°B ∪ 2
°B … ∪ nB° ) ∪ ( 2

°A   

      ∩ ( 1
°B ∪ 2

°B … ∪ nB° ) ..∪ ( 1−°
nA ∩ ( 1

°B ∪ 2
°B … ∪  nB° ))) 

      else there is a contradiction. x ∈ 1
°A or x∈ 2

°A or .. x ∈ 1−°
nA .     

 

      (1), (2) and (3) mean that x ∈ ( 1
°A ∪ 2

°A ..∪ nA° ) .    

      (( 1
°A ∪ 2

°A ..∪ nA° ) ∩ ( 1
°B ∪ 2

°B … ∪ nB° )) ≠ ∅  and so  
     Overlap(( 1A ∪ 2A ..∪ nA ),  ( 1B ∪ 2B … ∪ nB )) that we write Overlap (UA,UB). 

 
� For Meet (UA,UB):  a Meet relationship is possible between unions if there is only 

intersection between their boundaries, we suppose that interiors does not intersect so 
we should prove that  

        if (( 1A∂ ∩ ( 1B∂ ∪ 2B∂ … ∪ nB∂ )) ∪ ( 2A∂ ∩ ( 1B∂ ∪ 2B∂ … ∪ 2B∂ ))..∪ (  

        nA∂ ∩ ( 1B∂ ∪ 2B∂ … ∪ nB∂ ))) ≠ ∅  then  

        (( 1A∂ ∪ 2A∂ ..∪ nA∂ ) ∩ (( 1B∂ ∪ 2B∂ … ∪ nB∂ ))) ≠ ∅  

 
      Let x ∈ ( 1A∂ ∩ ( 1B∂ ∪ 2B∂ … ∪ nB∂ )) ∪ ( 2A∂  ∩ ( 1B∂ ∪ 2B∂ … ∪ nB∂ ))..∪ (      

     nA∂ ∩ ( 1B∂ ∪ 2B∂ … ∪ nB∂ ))), we have x ∈ ( 1B∂ ∪ 2B∂ … ∪ nB∂ )   
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(1) If 1A∂ ∩ ( 1B∂ ∪ 2B∂ … ∪ nB∂ )= ∅  then (x ∈ ( 2A∂  ∩ ( 1B∂ ∪ 2B∂ … ∪ nB∂ )   

      ..∪ ( nA∂ ∩ ( 1B∂ ∪ 2B∂ … ∪ nB∂ ))) else there is a contradiction. Indeed, x  

      ∈ 2A∂ or x ∈ 3A∂ or, .., x ∈ nA∂ . 

 
(2) If  2A∂  ∩ ( 1B∂ ∪ 2B∂ … ∪ nB∂ )= ∅  then (x ∈ ( 1A∂ ∩ ( 1B∂ ∪ 2B∂ … ∪ nB∂ )   

  ..∪ ( nA∂ ∩ ( 1B∂ ∪ 2B∂ … ∪ nB∂ ))) else there is a contradiction. x ∈ 1A∂ or x ∈ 3A∂ or, .., 

      x ∈ nA∂ . 

 
(3) If  nA∂  ∩ ( 1B∂ ∪ 2B∂ … ∪ nB∂ )= ∅  then (x ∈( 1A∂ ∩ ( 1B∂ ∪ 2B∂ … ∪ nB∂ ) ∪ ( 2A∂      

      ∩ ( 1B∂ ∪ 2B∂ … ∪ nB∂ ) ..∪ ( 1−∂ nA ∩ ( 1B∂ ∪ 2B∂ … ∪ nB∂ ))) 

      else there is a contradiction. x ∈ 1A∂ or x ∈ 2A∂  or, .., x ∈ 1−∂ nA  

 
     (1), (2) and (3) mean that x ∈ ( 1A∂ ∪ 2A∂  ..∪ nA∂ ) .  

          Indeed, (( 1A∂ ∪ 2A∂  ..∪ nA∂ ) ∩ ( 1B∂ ∪ 2B∂ … ∪ nB∂ )) ≠ ∅  and so  

     Meet(( 1A ∪ 2A ..∪ nA ),  ( 1B ∪ 2B … ∪ nB )) that we write Meet (UA,UB). 

 
 
� For Disjoint (UA,UB), a Disjoint relation is possible between unions if there is no 

intersection respectively between their boundaries and interiors, we should prove that  
If 

(( 1
°A ∩ ( 1

°B ∪ 2
°B … ∪ nB° )) ∪ ( 2

°A ∩ ( 1
°B ∪ 2

°B … ∪ nB° ))..∪ ( nA° ∩ ( 1
°B ∪

2
°B … ∪ nB° )))=∅  and (( 1A∂ ∩ ( 1B∂ ∪ 2B∂ … ∪ 2B∂ )) ∪ ( 2A∂  

∩ ( 1B∂ ∪ 2B∂ … ∪ 2B∂ ))..∪ ( nA∂ ∩ ( 1B∂ ∪ 2B∂ … ∪ 2B∂ )))=∅    then 

(( 1A ∪ 2A ..∪ nA ) ∩ ( 1B ∪ 2B … ∪ nB )) =∅  

 

   (1)   Let x ∈ ( 1
°B ∪ 2

°B … ∪ nB° ), then 

           If x ∈ 1
°A , there is a contradiction because 1°A ∩ ( 1

°B ∪ 2
°B … ∪ nB° )=∅   

           If x ∈ 2
°A , there is a contradiction because 2°A ∩ ( 1

°B ∪ 2
°B … ∪ nB° )=∅  

           If x ∈ nA° , there is a contradiction because nA° ∩ ( 1
°B ∪ 2

°B … ∪ nB° )=∅  
 

           Indeed, x ∉( 1
°A ∪ 2

°A ..∪ nA° ) and so                    

           (( 1
°A ∪ 2

°A ..∪ nA° ) ∩ ( 1
°B ∪ 2

°B … ∪ nB° ))=∅   
 
           Let y ( 1B∂ ∪ 2B∂ … ∪ nB∂ ), then 

           If y ∈ 1A∂ , there is a contradiction because nA∂ ∩ ( 1B∂ ∪ 2B∂ … ∪ nB∂ )=∅   

           If y ∈ 2A∂ , there is a contradiction because 2A∂ ∩ ( 1B∂ ∪ 2B∂ … ∪ nB∂ )=∅  

           If y ∈ nA∂ , there is a contradiction because nA∂ ∩ ( 1B∂ ∪ 2B∂ … ∪ nB∂ )=∅  

            
   (2)   Indeed, y ∉( 1A∂ ∪ 2A∂ ..∪ nA∂ ) and so                    

           (( 1A∂ ∪ 2A∂ ..∪ nA∂ ) ∩ ( 1B∂ ∪ 2B∂ … ∪ nB∂ ))=∅  (6) 
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           (1) and (2) mean that ((1A ∪ 2A ..∪ nA ) ∩ ( 1B ∪ 2B … ∪ nB )) =∅  and so Disjoint  

           (( 1A ∪ 2A ..∪ nA ),  ( 1B ∪ 2B … ∪ nB )) that we write Disjoint (UA,UB). 

 
A3.2 Contains/Inside 
 
Let Contains( 1A , 1B ), Contains( 2A , 2B ),..and Contains( nA , nB ) with 1A , 2A ,.. and nA  the 

available heterogeneous of A and 1B , 2B ,.. and nB  the available heterogeneous 

representations of B. Then, we have 1B ⊂ 1A , 2B ⊂ 2A ,.. and nB ⊂ nA . The final geometries 

should conform to the specifications of one of the next matrices: 
 
                  � For Contains (A, B) 
 
 
 
 
 
 
                  � For Inside (A, B) 
 
 
 
 
 
 
 
 

- Contains (IA, IB) 
In order to prove that Contains(IA, IB), we should demonstrate that (1B ∩ 2B … ∩ nB ) ⊂  

( 1A ∩ 2A ..∩ nA ) 

 
∀  x ∈( 1B ∩ 2B … ∩ nB ), we have x ∈ 1B , x ∈ 2B ,.. and x ∈ nB   

 
(1) If x ∉ 1A  then, there is a contradiction because 1B ⊂ 1A  

(2) If x ∉ 2A  then, there is a contradiction because 2B ⊂ 2A  

(3) If x ∉ nA  then, there is a contradiction because nB ⊂ nA  

 
(1), (2) and (3) mean x ∈ 1A , x ∈ 2A  and x ∈ nA ; so x ∈( 1A ∩ 2A ..∩ nA ). Indeed,  

( 1B ∩ 2B … ∩ nB ) ⊂ ( 1A ∩ 2A ..∩ nA ). 

 
Finally, we have the intersection of the closures of A's representations contains that of B's 
representations. Then, we can conclude Contains(( 1A ∩ 2A ..∩ nA ), ( 1B ∩ 2B … ∩ nB ))  that 

we write Contains (IA, IB). 
 
 
 

Contains (IA, IB) 

         Contains (UA,UB)                 -- 

          -- 

Inside (IA, IB) 

             Inside (UA,UB)                 -- 

             -- 

IA 

UA 

IA 

IB UB 

UA 

IB UB 
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- Contains (UA,UB) 
In order to prove that Contains(UA,UB), we should demonstrate that (1B ∪ 2B … ∪ nB ) ⊂  

( 1A ∪ 2A ..∪ nA ) 

 
∀  x ∈( 1B ∪ 2B … ∪ nB ), we have x ∈ 1B , x ∈ 2B ,.. or x ∈ nB . In addition, we have 

1B ⊂ 1A , 2B ⊂ 2A ,.. and nB ⊂ nA  

 
(1) If x ∉ 1A  then x ∈ 2B ..or x ∈ nB , else there is a contradiction because 1B ⊂ 1A   

(2) If x ∉ 2A  then x ∈ 1B ..or x ∈ nB , else there is a contradiction because 2B ⊂ 2A  

(3) If x ∉ nA  then x ∈ 1B  or x ∈ 2B , else there is a contradiction because nB ⊂ nA  

 
(1), (2) and (3) mean x ∈ 1A , x ∈ 2A  or x ∈ nA ; so x ( 1A ∪ 2A ..∪ nA ) Indeed,  

( 1B ∪ 2B … ∪ nB ) ⊂ ( 1A ∪ 2A ..∪ nA ). 

 
Finally, we have the union of the closures of A's representations contains that of B's 
representations. Then, we can conclude Contains (( 1A ∪ 2A ...∪ nA ), ( 1B ∪ 2B … ∪ nB )) 

that we write Contains (UA,UB).  
 
A3.3 Covers/Covered by 
 
Let Covers( 1A , 1B ), Covers( 2A , 2B ),..and Covers( nA , nB ) with 1A , 2A ,.. and nA  the 

available heterogeneous of A and 1B , 2B ,.. and nB  the available heterogeneous 

representations of B. Then, we have 1
°B ⊂ 1

°A , 2
°B ⊂ 2

°A ,.. and nB° ⊂ nA° (1). In addition, 
we have 1A∂ ∩ 1B∂ = 11BA∂ ∅≠ , 2A∂ ∩ 2B∂ = 22BA∂ ∅≠ ,.. and nA∂ ∩ nB∂ = nBAn∂ ∅≠ .  

According to Section 5.7, the final geometries should conform to the specifications of the next 
matrix: 
                  � For Covers (A, B) 
 
 
 
 
 
 
                  � For Covered by (A, B)    

 
 
 
 
 
 
 
 
 
 
 

{Covers, Contains} (I, I) 

      Covers (UA,UB)                 -- 

-- 

IB UB 

{Covered by, Inside} (IA, IB) 

      Covered by (UA,UB)                 -- 

-- IA 

UA 

IB UB 
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- Covers (UA,UB) 

In order to prove that Covers(UA,UB), we should demonstrate that (1°B ∪ 2
°B … ∪ nB° ) ⊂  

( 1
°A ∪ 2

°A ..∪ nA° ) and ( 1A∂ ∪ 2A∂ ..∪ nA∂ ) ∩ ( 1B∂ ∪ 2B∂ ..∪ nB∂ ) ∅≠ . 

 

(1)∀  x ∈ ( 1
°B ∪ 2

°B … ∪ nB° ), we have x ∈ 1
°B , x ∈ 2

°B ,.. or x ∈ nB°  
 

If x ∉ 1
°A  then x ∈ 2

°B ..or x ∈ nB° , else there is a contradiction because 1
°B ⊂ 1

°A   

If x ∉ 2
°A  then x ∈ 1

°B ..or x ∈ nB° , else there is a contradiction because 2
°B ⊂ 2

°A  

If x ∉ nA°  then x ∈ 1
°B  or x ∈ 2

°B , else there is a contradiction because nB° ⊂ nA°   
  

(2) Indeed, x ∈ 1
°A  or x ∈ 2

°A ..or x ∈ nA°  and so x ∈( 1
°A ∪ 2

°A ..∪ nA° ) 

Because (1), (2) means that (1°B ∪ 2
°B … ∪ nB° ) ⊂  ( 1

°A ∪ 2
°A ..∪ nA° ). 

 
∀  x/ x∈ ( 1B∂ ∪ 2B∂ ..∪ nB∂ ) and x∈ 11BA∂ or x∈ 22BA∂ ..or x∈ nBAn∂ , we have x ∈ 1B∂ , x 

∈ 2B∂ ,.. or x ∈ nB∂ . 

 
If x ∈ 1B∂  then x ∈ 1A∂ , else there is a contradiction because 1A∂ ∩ 1B∂ = 11BA∂ ∅≠  

If x ∈ 2B∂  then x ∈ 2A∂ , else there is a contradiction because 2A∂ ∩ 2B∂ = 22BA∂ ∅≠  

If x ∈ nB∂  then x ∈ nA∂  else there is a contradiction because nA∂ ∩ nB∂ = nBAn∂ ∅≠  

 
Indeed, x ∈( 1A∂ ∪ 2A∂ ..∪ nA∂ ) and so ( 1A∂ ∪ 2A∂ ..∪ nA∂ ) ∩ ( 1B∂ ∪ 2B∂ ..∪ nB∂ ) ∅≠ (3) 
 
Finally, (1), (2) and (3) mean that Covers (( 1A ∪ 2A ...∪ nA ), ( 1B ∪ 2B … ∪ nB )) that we 

write Covers (UA,UB). 
 

- {Contains, Covers}( IA, IB) 
 

� Contains(IA, IB) 
 

In order to prove that Contains (IA, IB), we should demonstrate that (1°B ∩ 2
°B … ∩ nB° ) ⊂  

( 1
°A ∩ 2

°A ..∩ nA° ) and  ( 1A∂ ∩ 2A∂ ..∩ nA∂ ) ∩ ( 1B∂ ∩ 2B∂ ..∩ nB∂ )=∅ .   

 
∀  x/ x∈ ( 1B∂ ∩ 2B∂ ..∩ nB∂ ) but x∉ 11BA∂ and x∉ 22BA∂ ..and x∉ nBAn∂ , we have x ∈ 1B∂ , x 

∈ 2B∂ ,.. and x ∈ nB∂ . 

 
If x ∈ 1B∂  then x ∈ 1A∂ , else there is a contradiction because x ∉ 11BA∂  

If x ∈ 2B∂  then x ∈ 2A∂ , else there is a contradiction because x ∉ 22BA∂  

If x ∈ nB∂  then x ∈ nA∂  else there is a contradiction because x ∉ nBAn∂  

 
Indeed, x ∉ 1A∂ , x ∉ 2A∂ ,.. and x ∉ nA∂ ; so x ∉ ( 1A∂ ∩ 2A∂ ..∩ nA∂ ). Then, 

( 1A∂ ∩ 2A∂ ..∩ nA∂ ) ∩ ( 1B∂ ∩ 2B∂ ..∩ nB∂ )=∅  (1) 
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Now, ∀  x/ x∈ ( 1
°B ∩ 2

°B … ∩ nB° ), we have x ∈ 1
°B , x ∈ 2

°B ,… and x ∈ nB° .  
 

If x ∉ 1
°A  there is a contradiction because1°B ⊂ 1

°A  

If x ∉ 2
°A  there is a contradiction because 2°B ⊂ 2

°A  

If x ∉ nA°  there is a contradiction because nB° ⊂ nA°  
 

Indeed, x ∈ ( 1
°A ∩ 2

°A ..∩ nA° ); and so ( 1
°B ∩ 2

°B … ∩ nB° ) ⊂  ( 1
°A ∩ 2

°A ..∩ nA° ) (2) 
 
(1) and (2) mean that Contains (( 1A ∩ 2A ...∩ nA ), ( 1B ∩ 2B … ∩ nB )), that we write 

Contains (IA, IB).  
 

� Covers(IA, IB) 
 

In order to prove that Covers (IA, IB), we should demonstrate that (1°B ∩ 2
°B … ∩ nB° ) ⊂  

( 1
°A ∩ 2

°A ..∩ nA° ) and  ( 1A∂ ∩ 2A∂ ..∩ nA∂ ) ∩ ( 1B∂ ∩ 2B∂ ..∩ nB∂ ) ∅≠ .   

 

With (2), we have ( 1
°B ∩ 2

°B … ∩ nB° ) ⊂  ( 1
°A ∩ 2

°A ..∩ nA° ). 
 
Now,∀  x/ x∈ ( 1B∂ ∩ 2B∂ ..∩ nB∂ ) and x∈ 11BA∂ and x∈ 22BA∂ ..and x∈ nBAn∂ , we have x 

∈ 1B∂ , x ∈ 2B∂ ,.. and x ∈ nB∂ . 

 
If x ∉ 1A∂ , else there is a contradiction because x ∈ 11BA∂  

If x ∉ 2A∂ , else there is a contradiction because x ∈ 22BA∂  

If x ∉ nA∂  else there is a contradiction because x ∈ nBAn∂  

 
Indeed, x ∈ 1A∂ , x ∈ 2A∂ ,.. and x ∈ nA∂ ; so x ∈ ( 1A∂ ∩ 2A∂ ..∩ nA∂ ). Then, 

( 1A∂ ∩ 2A∂ ..∩ nA∂ ) ∩ ( 1B∂ ∩ 2B∂ ..∩ nB∂ )=∅  (3) 
 
(2) and (3) mean that Covers (( 1A ∩ 2A ...∩ nA ), ( 1B ∩ 2B … ∩ nB )), that we write 

Covers(IA, IB). 
 
A3.4 Overlap 
 
Let Overlap( 1A , 1B ), Overlap( 2A , 2B ),..and Overlap( nA , nB ) with 1A , 2A ,.. and nA  the 

available heterogeneous of A and 1B , 2B ,.. and nB  the available heterogeneous 

representations of B. Then, we have 1
°B ∩ 1

°A ∅≠ , 2
°B ∩ 2

°A ∅≠ ,.. and nB° ∩ nA° ∅≠ . 
In addition, we have 1A∂ ∩ 1B∂ = 11BA∂ ∅≠ , 2A∂ ∩ 2B∂ = 22BA∂ ∅≠ ,.. and 

nA∂ ∩ nB∂ = nBAn∂ ∅≠ .  According to Section 5.7, the final geometries should conform to 

the specifications of the next matrix: 
 
 
 
 

{Overlap, Meet, Disjoint} (IA, IB) 

Overlap (UA,UB)                 -- 

   -- 
IA 

UA 

IB UB 
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- {Overlap, Meet, Disjoint}( IA,IB) 
 
In this case, we should prove that the relationship R(IA,IB) ≠ {Contains, Inside, Covers, 
Covered by}.  

 
� R≠ Contains(IA, IB) 

 

In order to prove that Contains (IA, IB), we should demonstrate that (1°B ∩ 2
°B … ∩ nB° ) ⊄  

( 1
°A ∩ 2

°A ..∩ nA° )   
 

Let x/ x∉ ( 1
°B ∩ 2

°B … ∩ nB° ) and x ∈ ( 1
°B ∪ 2

°B … ∪ nB° ), then x ∈ 1
°B or x∈ 1

°B or .. x 

∈ nB°   
 

(1) If x ∉ 1
°B , then x ∉ 1

°A , else there is a contradiction because1°B ∩ 1
°A ∅≠  

(2) If x ∉ 2
°B  then x ∉ 2

°A , else there is a contradiction because2°B ∩ 2
°A ∅≠  

(3) If x ∉ nB°  then x ∉ nA°  there is a contradiction because nB° ∩ nA° ∅≠  
 

(1), (2) et (3) show that if x∉ ( 1
°B ∩ 2

°B … ∩ nB° ) then x∉ ( 1
°A ∩ 2

°A ..∩ nA° ). 

Consequently, ( 1
°B ∩ 2

°B … ∩ nB° ) ⊄  ( 1
°A ∩ 2

°A ..∩ nA° ).  
 
In conclusion, R≠ Contains(IA, IB). The same demonstration may be made for R≠ Inside(IA, 

IB), i.e. it is required to demonstrate that (1°A ∩ 2
°A ..∩ nA° ) ⊄ ( 1

°B ∩ 2
°B … ∩ nB° ).  

 
Since the interior of the first intersection IA (or IB) cannot be inside the second intersection IB 
(or IA). It is possible to conclude that Covers and Covered by are also impossible  

 
- For Overlap (UA, UB) we should prove that  

   

if (( 1
°A ∩ ( 1

°B ∪ 2
°B … ∪ nB° )) ∪ ( 2

°A       

     ∩ ( 1
°B ∪ 2

°B … ∪ nB° ))..∪ ( nA° ∩ ( 1
°B ∪ 2

°B … ∪ nB° ))) ≠ ∅  then  

     (( 1
°A ∪ 2

°A ..∪ nA° ) ∩ ( 1
°B ∪ 2

°B … ∪ nB° )) ≠ ∅ . 
 

 Let x ∈ ( 1
°A ∩ ( 1

°B ∪ 2
°B … ∪ nB° )) ∪ ( 2

°A ∩ ( 1
°B ∪ 2

°B … ∪ nB° )).. 

         ∪ ( nA° ∩ ( 1
°B ∪ 2

°B … ∪ nB° ))), we have x ∈ ( 1
°B ∪ 2

°B … ∪ nB° )   
 

 (1) If 1
°A ∩ ( 1

°B ∪ 2
°B … ∪ nB° )= ∅  then (x ∈ ( 2

°A  ∩ ( 1
°B ∪ 2

°B … ∪ nB° )   

        ..∪ ( nA° ∩ ( 1
°B ∪ 2

°B … ∪ nB° ))) else there is a contradiction. Indeed, x ∈ 2
°A  

        or x∈ 3
°A or,.., x ∈ nA°                    

 

 (2) If  2
°A  ∩ ( 1

°B ∪ 2
°B … ∪ nB° )= ∅  then (x ∈ ( 1

°A ∩ ( 1
°B ∪ 2

°B … ∪ nB° )   

        ..∪ ( nA° ∩ ( 1
°B ∪ 2

°B … ∪ nB° ))) else there is a contradiction. x ∈ 1
°A  

        or x∈ 3
°A or,.., x ∈ nA°  
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 (3) If nA° ∩ ( 1
°B ∪ 2

°B … ∪ nB° )= ∅  then (x ∈( 1
°A ∩ ( 1

°B ∪ 2
°B … ∪ nB° ) ∪ ( 2

°A   

      ∩ ( 1
°B ∪ 2

°B … ∪ nB° ) ..∪ ( 1−°
nA ∩ ( 1

°B ∪ 2
°B … ∪  nB° ))) 

      else there is a contradiction. x ∈ 1
°A or x∈ 2

°A or .. x ∈ 1−°
nA .     

 

      (1), (2) and (3) mean that x ∈ ( 1
°A ∪ 2

°A ..∪ nA° ) .    

      (( 1
°A ∪ 2

°A ..∪ nA° ) ∩ ( 1
°B ∪ 2

°B … ∪ nB° )) ≠ ∅  and so  
     Overlap(( 1A ∪ 2A ..∪ nA ),  ( 1B ∪ 2B … ∪ nB )) that we write Overlap (UA,UB). 

 
A3.5 Meet 
 
In this case, we assume that Meet( 1A , 1B ), Meet( 2A , 2B ),..and Meet( nA , nB ) with 1A , 2A ,.. 

and nA  the available heterogeneous of A and 1B , 2B ,.. and nB  the available heterogeneous 

representations of B. Then, we have 1
°B ∩ 1

°A ∅= , 2
°B ∩ 2

°A ∅= ,.. and nB° ∩ nA° ∅= . 
In addition, we have 1A∂ ∩ 1B∂ = 11BA∂ ∅≠ , 2A∂ ∩ 2B∂ = 22BA∂ ∅≠ ,.. and 

nA∂ ∩ nB∂ = nBAn∂ ∅≠ .  According to Section 5.7, the final geometries should conform to 

the specifications of the next matrices: 
 

� Meet(IA, IB): 
 

 
 
 
 
 
 

� Disjoint(IA, IB) 
 
 
 
 
 

 

 
The demonstrations of Meet (IA, IB) and Disjoint (IA, IB) are identical to those presented in the 
Overlap case (see Section A3.4 of the appendix).  
 
The demonstrations of Overlap(UA,UB) and Meet(UA,UB) are identical to those presented in the 
Disjoint case (see Section A3.1 of the appendix) 
 
 
 
 
 
 
 
 
 

    Meet (IA, IB) 

  {Overlap, Meet} (UA,UB)                 -- 

-- 

Disjoint (IA, IB) 

 {Overlap, Meet} (UA,UB)                 -- 

-- 

IA 

IB UB 

UA 

IA 

IB UB 

UA 
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Appendix 4: Extrait de la convention de cotutelle 

                            

 
 
 
                                   CONVENTION DE COTUTELLE DE THÈSE 

 

PRÉAMBULE  
 
Conformément aux dispositions et modalités arrêtées dans la «Convention-cadre de cotutelle de 
thèse» signée entre la CPU, la CDEFI et la CREPUQ le 18 octobre 1996, et mise à jour en mars 
1997, 
 
LA PRÉSENTE CONVENTION EST CONCLUE ENTRE : 
 
L’établissement français : l’Université  Blaise Pascal 

représenté par son président, M. Pascal Albert ODOUARD 

ET 

Le Centre National du Machinisme Agricole du Génie Rural, des Eaux et des Forêts,  
Etablissement Public à caractère Scientifique et Technologique (EPST), 
désigné ci-après par “ Cemagref ”, 
ayant son siège, parc de Tourvoie, 92160 Antony, France 
représenté par son Directeur Régional de Clermont Ferrand, Monsieur Didier Mechineau, 
agissant au nom et pour le compte du Directeur Général du Cemagref, 

ET 

L’Université Laval représentée par le vice-doyen de la Faculté des études supérieures, 
Monsieur Gérard Charlet, qui agit à titre de représentant de la vice-rectrice aux études. 

 
Elle concerne : 
 
Mme ou M. Lotfi Bejaoui 
Née ou né le 17-10-1981 

De nationalité Tunisienne  
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MODALITÉS ADMINISTRATIVES  
 
ARTICLE 1 - Inscription  
 
(Le doctorant s’inscrit obligatoirement, simultanément à temps complet dans les deux 
établissements.) 
 
� Le doctorant est inscrit : 
 
1)  à  l’Université Blaise Pascal  
 au doctorat, spécialité sciences pour l’ingénieur 
 à compter de la rentrée universitaire  2005-2006 

ET 

2) à l’Université Laval, programme de doctorat  en sciences géomatiques 
 à compter de la session    hiver 2006 
 
� Droits d’inscription et de scolarité 
 
 Le doctorant ne paiera les droits d’inscription et de scolarité que dans un seul des deux 

établissements partenaires, à savoir dans l’établissement universitaire où il effectue son 
séjour d’études et de recherche, comme convenu ci-après par année ou par session(s) : 

 
 - 1re année ou session(s)    12 mois à l’université Laval :      H-06, E-06, A-06 
    
 - 2e année ou session(s) 18 mois à l’université Blaise Pascal :   H-07, E-07, A-07, H-08 

   
 - 3e année ou session(s) 6 mois à l’université Laval :     E-08, A-08 

   
 
 
ARTICLE 2 - Scolarité et thèse 
 
� Le sujet de thèse déposé par le doctorant est : 
 

 « Spécification de contraintes d’intégrité spatio-temporelles : application à la 
modélisation des systèmes d’information agri environnementaux » 
  
� La durée prévisionnelle de la scolarité et des travaux de recherche du doctorant est 

normalement de trois ans.  Elle pourra être prolongée par avenant avec l’accord des deux 
établissements, sur proposition conjointe des deux directeurs de thèse. 

 
� Le doctorant effectue sa scolarité et ses travaux de recherche en alternance entre les 

deux établissements, par périodes déterminées d’un commun accord entre les deux 
directeurs de thèse selon les modalités prévisionnelles suivantes : 

 
 - périodes prévisionnelles dans l’établissement français : 
 Janvier 2007- Juin 2008 
 

- périodes prévisionnelles à l’Université Laval : 
 Les sessions d’hiver, d’été, d’automne 2006 et celles d’été et d’automne 2008  



 243 

Lors de son séjour en France, le doctorant M. Lotfi Bejaoui aura un bureau au sein de l'Unité 
de Recherche Technologies et Systèmes d'information pour les agrosystèmes, du Cemagref de 
Clermont Ferrand et bénéficiera de l'ensemble des moyens de travail (notamment 
informatiques et documentaires) de cette Unité. 
 
Lors de son séjour au Canada, le doctorant M. Lotfi Bejaoui aura un bureau au sein du 
Département des Sciences géomatiques et pourra accéder aux équipements de la Chaire 
CRSNG de recherche industrielle en bases de données géospatiales, localisée au Centre de 
recherche en géomatique de l'Université Laval. 
 
� La protection du sujet de thèse ainsi que la publication, l’exploitation et la protection 

des résultats de recherche issus des travaux de recherche du doctorant dans les deux 
établissements seront assujetties à la réglementation en vigueur et assurées conformément 
aux procédures de chaque pays engagé dans la cotutelle. 

 

 Lorsque nécessaire, les dispositions relatives à la protection des droits de propriété 
intellectuelle feront l’objet d’une annexe particulière à la présente convention. 

 
 
ARTICLE 3 - Couverture sociale et responsabilité civile 
 
MODALITÉS PÉDAGOGIQUES  
 
ARTICLE 4 - Directeurs de thèse 
 
Le doctorant effectue sa scolarité et ses travaux de recherche sous la responsabilité conjointe 
d’une directrice ou d’un directeur de thèse en France et d’une directrice ou d’un directeur de 
thèse à l’Université Laval, les deux personnes ayant déjà établi une collaboration : 
 
- à l’Université Blaise Pascal, le directeur de thèse est : 
 

 Monsieur Michel Schneider 

 
- à l’Université Laval, le directeur de thèse est : 
 

 Monsieur Yvan Bédard 
 
 Les deux directeurs de thèse s’engagent à exercer pleinement la fonction de tuteur 

auprès de la doctorante ou du doctorant. Ils exercent conjointement les compétences 
attribuées en France et à l’Université Laval à une directrice ou à un directeur de thèse. 

 
ARTICLE 5 - Déroulement de la scolarité 
 
� Activités pédagogiques de la doctorante ou du doctorant 
 (préciser les cours, séminaires, etc., dans chacun des établissements) 

Dans l’établissement français : 
 
       2 modules "Sciences Pour l'Ingénieur" de 15 heures au choix.  
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 À l’Université Laval : 
 
 La géomatique et ses référentiels (SCG-66672) (scolarité probatoire), SIG et analyse 
spatiale (SCG-66673) (scolarité probatoire), Séminaire (SCG-60430), Recherche préliminaire 
(SCG-65825), Examen de doctorat (SCG-65912), Conception de bases de données SIG (SCG-
64738), Réalisation d’application en SIG (SCG-64739). 
 
� Examen de doctorat 
 

 Après concertation entre les deux directeurs de thèse, et compte tenu des acquis du 
doctorant validés lors de sa scolarité antérieure, la préparation et le contenu de l’examen de 
doctorat québécois sont adaptés comme suit dans le respect des objectifs du programme ou 
de la formation 

 
 L’examen de doctorat sera conforme à la procédure en vigueur au programme de doctorat 

en sciences géomatiques à la faculté de foresterie de de géomatique  de l’Université Laval. 
 
ARTICLE 6 - Soutenance 
 
� La thèse donne lieu à une soutenance unique, reconnue par les deux établissements. 
�  L’admission à la soutenance de thèse est décidé sur avis conjoint des directeurs de thèse, et 

fait intervenir une évaluation par au moins deux rapporteurs, extérieurs à l’établissement de 
soutenance. Les rapporteurs sont désignés conjointement par les deux établissements 
concernés. 

 
� Le jury de soutenance est composé de scientifiques désignés à parité par les deux 

établissements partenaires. Il comprend obligatoirement les deux directeurs de thèse 
auxquels s’ajoute au moins un professeur de chacun des deux établissements partenaires. 
S’y ajoute aussi au minimum, dans le respect de la procédure d’évaluation de l’Université 
Laval, une examinatrice ou un examinateur externe aux deux établissements. 

 
� Autres aspects 
 

• Le doctorant soutiendra sa thèse au     Québec      à l’Université Laval. 
 

• La soutenance devrait avoir lieu en   Décembre 2008 . 

 - La thèse sera rédigée et soutenue en langue Française. 

 - Le résumé de la thèse sera rédigé et présenté en langue Française. 

 
N.B. La doctorante ou le doctorant est tenu de rédiger soit la thèse, soit le résumé, en langue française; il est 

tenu de soutenir la thèse ou de présenter le résumé oral en langue française. Pour toute autre précision 
quant à la rédaction de la thèse et à la soutenance, veuillez consulter le guide intitulé « Le mémoire et la 
thèse : de la rédaction à la diplomation », qui est accessible en ligne à l’adresse suivante : 
www.fes.ulaval.ca <http://www.fes.ulaval.ca>. 

 
 
ARTICLE 7 - Délivrance des deux diplômes 
 
Sur avis favorable du jury de soutenance, 
l’établissement français :  l’Université Blaise Pascal 
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s’engage à conférer à Monsieur Lotfi Bejaoui 

le grade de docteur et à lui délivrer le diplôme correspondant. 
 
ET 
 
l’Université Laval s’engage à conférer à Monsieur Lotfi Bejaoui 
le grade de Ph.D. et à lui délivrer le diplôme correspondant. 
 
 
Le libellé de chaque diplôme fera mention de la collaboration de l’établissement partenaire 
ainsi que de la cotutelle. 
 
ARTICLE 8 - Dépôt, signalement et reproduction de la thèse 
 
Dans chaque pays, ils seront effectués selon la réglementation en vigueur, en particulier celle 
de l’Université Laval. 
 

SIGNATURES 
 

 
 

  

              Le doctorant 
              Monsieur  Lotfi Bejaoui 

 Date 

 

Pour l’établissement français 
 
 
 
 

  

Le directeur de thèse 
Monsieur Michel Schneider 

 Date 

 
 
 

  

Directeur régional de Clermont Ferrand - Cemagref 
Monsieur Didier Mechineau 

 Date 

 
 

  
 
 
 

Le responsable de l’école doctorale 
Monsieur Philippe Mahey 

 Date 

 
 
 

  

Le président 
Monsieur Pascal Albert Odouard 

 Date 
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Pour l’Université Laval  
 

 
 

  

     Le directeur de thèse 
  Monsieur Yvan Bédard 

 Date 

   
 
 

  

Le directeur du programme de doctorat 
Monsieur Jean-Jacques Chevalier 

 Date 

 

 
 

  

Le vice doyen de la Faculté des études supérieures 
Monsieur Gérard Charlet 

 Date 
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