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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00733666


Reliable Indoor Navigation on Humanoid Robots
using Vision-Based Localization

Thomas Moulard1, Pablo F. Alcantarilla2, Florent Lamiraux1, Olivier Stasse1, Frank Dellaert3

Abstract— Reliable localization on a humanoid robot is a
sine qua non condition to succeed in realizing complex robotics
scenarios. Before dealing with perturbations and online mod-
ification of the environment, one has to make sure that the
planned trajectory alone will be correctly followed. This paper
demonstrates that a control framework suited to humanoid
robots relying on a vision-based localization system can achieve
this goal. Our localization framework is based on a real-time
vision-based localization system that assumes that a pre-existing
3D map of the environment exists and allows to obtain accurate
results in complex robotics scenarios. By compensating for
execution errors such as drifts and robot model errors, the
HRP-2 robot is able to achieve high precision tasks.

Index Terms— Humanoid robots, Localization, Motion Plan-
ning, Robot Control, Stereo Vision

I. INTRODUCTION

In this paper, we consider the problem of real-time reliable
trajectory execution for humanoid robots. A precise localiza-
tion on a humanoid robot is both crucial to achieve reliable
trajectory execution and challenging due to humanoid robots
specific features. We propose a novel control architecture for
humanoid robots where the current localization is used by the
robot controller and planner trajectory. The objective of this
work is to localize the humanoid robot HRP-2 [13] while it
is navigating through an indoor environment.

Localization is crucial on a humanoid robot as its position
cannot be controlled directly. Legs motion are planned under
the assumption that all contacts will be perfect (i.e. no
friction) during the movement. This is not the case in practice
and leads to execution errors which cannot be ignored. More-
over, reactive control algorithms rely on simplified dynamics
models such as the Linear Inverted Pendulum model [12].
These imply a gap between the generated motion and the
executed one. Therefore, localization is necessary to ensure
a consistent robot behavior.

However, localization on a humanoid robot is challenging.
Mobile robots odometry can be computed using wheel en-
coders and give a reasonable hint on the current robot motion.
2D maps can also be used to simplify the navigation through
indoor environments. This is not the case on a legged robot
on which 3D localization is required and where no encoder
based reliable odometry exists. All these reasons make
localization a cornerstone of reliable trajectory execution
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on humanoid robots. To obtain an accurate localization of
the robot in the environment, we employ fast vision-based
localization techniques [2] that assume that a prior 3D map of
the environment exists. By means of visibility prediction [1]
a fast and robust data association between a large map of
3D points and perceived 2D features in the image can be
performed very efficiently yielding an accurate pose estimate
of the robot in the 3D map. This prior 3D map of the envi-
ronment can be generated by standard visual Simultaneous
Localization and Mapping (SLAM) techniques [6, 14].

Fig. 1. HRP-2 dropping a ball on a shelf after having navigated through
an indoor environment. Navigation followed by manipulation are typical
scenarios where walking drift can prevent a task from being accomplished.

In this article, the past results in vision processing on
humanoids robots are presented in Section II. Section III
details how the vision is linked to the robot controller via
our proposed control scheme. The vision-based localization
algorithm is described in Section IV. The experimental
results are discussed and compared to motion capture data in
Section V. Finally, conclusions and future work are described
in Section VI.



II. RELATED WORK

Cameras seem to be an appealing sensor for humanoid
robotics applications: they are small, cheap and light-weight
compared to other sensors such as laser scanners. Despite
of this, there have been only limited attempts at vision-
based localization for humanoid robots. Ozawa et al. [20]
proposed to use stereo visual odometry to create local 3D
maps for online footstep planning. The main drawback of this
approach is the drift created by the accumulation of errors
that typically occur in visual odometry systems [11].

Other past experiments where vision algorithms have been
used to construct navigation maps for humanoid robots
are [16, 17]. However, most of these works were focused
on the humanoid trajectory generation replanning problem.
In this paper, our approach is different: the objective is to
execute a planned trajectory without any online replanning.
The computation of a whole-body trajectory remains very
costly and do not meet the real-time requirements of small
robots such as Nao 1. Therefore, local trajectory deformation
is important to achieve high reactivity and to avoid unnec-
essary computations.

The work by Dune et al. [7] relies on visual servoing to
compute a center of mass reference velocity to control the
walking trajectory generation algorithm described in [10]. By
computing the foot placement online, one can control directly
the robot center of mass velocity on a 2D plane and get rid of
most of the complexity of the walking process. This approach
is extremely interesting, but unfortunately does not take into
account obstacles in the environment. Also, this algorithm is
not suited for trajectory tracking which is our objective. The
following works [8, 18] aim at allowing sudden changes in
the robot trajectory. Again, the objectives pursued by these
works and our work differ as they alter the initial plan to
react to changes in the environment.

Davison et al. [6] showed successful monocular SLAM
results for small indoor environments using the HRP-2
robot. This approach, known as MonoSLAM, is a monocular
Extended Kalman Filter (EKF) vision-based system, that
allows building a small map of sparse 3D points. However,
acceptable results were only obtained when the pattern
generator, the robot odometry and inertial sensing were fused
to aid the visual mapping into the EKF framework as it was
shown in [22]. The fusion of the information from different
sensors can reduce considerably the uncertainty in the camera
pose and the 3D map points involved in the EKF process,
yielding better localization and mapping results.

Despite of this, EKF-based approaches have important
drawbacks such as the limited number of 3D points that
can be tracked and divergence from the true solution due to
linearization errors. As shown in [23], nonlinear optimization
techniques such as bundle adjustment [19] are superior in
terms of accuracy to filtering based methods, and allow
tracking many hundreds of features between frames. In this
paper we use the framework described in [2], where a stereo
visual SLAM algorithm based on local bundle adjustment is

1http://www.aldebaran-robotics.com/en/

used to compute a 3D map of the robot’s environment. Then,
we use the prior 3D map for an efficient data association
obtaining a real-time accurate localization of the robot within
the 3D environment.

III. ROBOTICS FRAMEWORK FOR RELIABLE
TRAJECTORY EXECUTION

A. Notations

Before describing the robot architecture, let us introduce
the following notations:

SE(2) and SE(3) the Special Euclidian groups of dimen-
sion 2 and 3 denote rigid transformations in the 2D
and 3D Euclidian spaces respectively.

q̄(t) denotes the robot configuration in its configuration
space C̄ at time t. It is divided into a controllable
part q(t) ∈ C and the robot position x(t) ∈ SE(3).
The robot position is defined as the position of a
particular robot body. In this paper, we choose the
left ankle as the reference body used to compute the
robot position. q̇(t) describes the joint velocities.

xref(t) ∈ SE(3) is the robot planned trajectory.
x̂(t) ∈ SE(3) is the robot trajectory as perceived by the

localization system.
c(t) ∈ R2 and z(t) ∈ R2 are respectively the projection of

the robot center of mass on the floor (z = 0) and
the Zero Momentum Point position at time t.

γla(t) ∈ SE(3), γra(t) ∈ SE(3) denote respectively left an-
kle and right ankle trajectories.

θ(t) ∈ SE(6) is the estimated camera pose (translation and
rotation) at time t.

The set of trajectories γla, γra and c defines a complete
balanced walking movement and is denoted Γ. It can be
completed by an additional trajectory which defines the
upper-body configuration during the walk. Changes in the
upper-body posture do not impact the walking movement as
long as the center of mass trajectory is unchanged and the
induced angular momenta variations remain small. Therefore,
this article will not mention upper-body trajectory although
the final experiment contains arms and head movement.

B. Robotics Architecture

The proposed architecture can be divided in two parts:

1) The vision processing and localization components
which are responsible for acquiring data from the
robot’s stereo rig system, computing an estimation of
the camera pose and deducing the robot localization.

2) The control system which follows the planned trajec-
tory while closing the loop on the localization data.

These two systems are running on two different computers
embedded on the robot. They are composed of several
robotics components running simultaneously. Fig. 2 illus-
trates the complete robotics infrastructure. To communicate,
we rely heavily on both OpenHRP and ROS middlewares.



Fig. 2. Complete robotics framework overview. Let Ileft, Iright be re-
spectively the left and right camera images. Tcam, T̂cam respectively the
planned and estimated camera position. γ the concatenation of the left ankle,
right ankle, upper body and center of mass trajectories. γ′ the trajectories
reshaped by taking into account execution errors.

a) Vision-Based Localization: The vision system relies
on two Flea2 FireWire cameras. They have been set up
to grab monochrome images synchronously at 30 Hz. The
image resolution is 320 × 240. We use the two cameras
that are attached to the ears of the HRP-2 robot. These two
cameras have a baseline of approximately 14.4 cm and an
horizontal field of view of 90◦ for each of the cameras

Images are transmitted to the vision component. It is in
charge of image rectification and current camera pose com-
putation. This process is described in detail in Section IV.
During our experiments, the pose estimation rate was around
16 Hz.

b) Error Estimation: The error estimation component
computes δx ∈ SE(3), the transformation from the perceived
robot position to the planned robot position and is defined
at time t as:

δxt = xt.x̂
−1
t (1)

However, x̂−1t is not directly provided by the localization
which estimates the camera pose and not the robot pose. The
transformation from the camera to the left ankle (defining the
robot position) can be easily deduced from the control and is
not subject to significant execution errors as joint encoders
allow low-level reliable servoing.

Additionally, the control is used to help the camera pose
estimation. Indeed, to estimate a 3D pose, it is necessary
to estimate six parameters; three for the translation: x, y, z
and three for the rotation: roll, pitch, and yaw. Nevertheless,
we know for sure that the camera height z and two of
the three parameters of the rotation cannot drift nor have
significant execution errors while walking on a flat ground.
This explains why, in practice, only three parameters are
estimated using the vision components whereas the z, roll
and pitch parameters are known from the plan.

c) Closed-Loop Trajectory Following: To achieve walk-
ing and compute motor control, the task based control
framework described in [15] is used. One interesting feature
of this approach is that we can directly add tasks to follow
ankles and center of mass reference trajectories. The inverse
kinematics computation will then be implicitly realized by
the task resolution.

Regarding trajectory generation, we use the planner de-
scribed in [5] to generate the required reference trajectories.

Our control scheme adds a step which processes the
reference trajectories to compensate for execution errors
based on the error estimation.

Let us consider that at time t, the robot is on double
support (i.e. both feet on the ground) and that an estimation
of the execution error δx(t) is available. We have to alter the
trajectories of the left ankle, right ankle and center of mass
simultaneously while preserving robot balance. As we cannot
change a foot position while it is on contact with the floor,
we have to modify the trajectories during the two following
steps to be able to correct both feet trajectories. To do so,
we will sum each trajectory with a trajectory dependent third
order polynomial denoted by ∆la ∈ SE(3), ∆ra ∈ SE(3),
∆c ∈ R2:

γ′la(t) = ∆la(t).γ′la(t)

γ′ra(t) = ∆ra(t).γ′ra(t)

c′(t) = ∆c(t) + c(t)

(2)

Let t1 be the end of the next step and t2 the end of the second
next step. If the first step is realized with the left foot (i.e.
the right foot is the support foot). In Eq. 2, if ∆ provides
a correction from tstart to tend, we consider the following
constraints:

∆(t) =

{
0., if t≤ tstart

δx, if t≥ tend

∆̇(t1) = ∆̇(t2) = 0

(3)

The constraints expressed in Eq. 3 ensures us that the
correction is smooth: zero velocity at the beginning and end
of the correction and that the error is correctly compensated.
They are independent of the corrected trajectory (ankles or
center of mass). These four constraints fully determine the
four coefficients of the polynomial.

The starting and timing correction time depends on the
corrected trajectory:

center of mass (∆c(t)): tstart = t, tend = t1
left ankle (∆la(t)): tstart = t, tend = t1
right ankle (∆ra(t)): tstart = t1, tend = t2

The remaining issue is ensuring that the updated trajectory
will be balanced. A classical approach is using the Zero
Momentum Point (ZMP): this virtual point acts as a criterion
to determine whether a trajectory is balanced or not. If it lies
in the convex hull of the robot contact points all the time,
the trajectory is balanced, otherwise it is not. The ZMP is
defined as:

z = c +
1

m(c̈z + g)

(
0 −1 0
1 0 0

)
L̇− cz

c̈z + g
c̈ (4)



where cz is the height of the center of mass with respect
to the ground, m is the mass of the robot, g is the gravity
constant, c = (cx, cy) is the projection of the center mass of
the robot on the ground and L is the angular momentum of
the robot about the center of mass.

Solving this equation is time consuming as it is nonlinear
and requires dynamics computation. Under the asumption
that L and cz is constant in time [12], we can obtain the
follwing simplified linear model:

z = c− cz
g
.c̈ (5)

Considering r a polynomial depending only of z,
(Vx, Vy,Wx,Wy) free parameters used to constrain the initial
position and velocity of the center of mass, a general solution
of Eq. 5 is:

c(t) = cosh(

√
g

zc
.t).V + sinh(

√
g

zc
.t).W + r(t) (6)

Given the formulation in Eq. (6), it is possible to continu-
ously modify the center of mass trajectory to make it follow
z′(t) the corrected trajectory. This new trajectory can be
expressed as the sum of two polynomials:

c′(t) = cosh(

√
g

zc
.t).V + sinh(

√
g

zc
.t).W + r(t) + ∆(t)

(7)
It appears then that moving the center of mass final position
of δx is equivalent to moving the ZMP final position of δx
then solving the linear differential equation. As the flying
foot end position is transformed similarly, the ZMP will
stay in the convex hull contact points for any correction
value δx. The only limitations are feet velocities limits and
assumptions realized when using the simplified linear model.

To correct properly the robot trajectory, a correction of
about two to three cm every two steps is sufficient. In this
case, the simplified linear model is particularly well suited
as the dynamical effects of such changes are so low they can
be safely ignored.

When a correction is completely applied, i.e. t > t2, a
new correction is computed using the current estimation of
the execution error.

By combining vision-based localization, error estimation
and closed-loop trajectory following, our control framework
can reshape walking trajectories on the fly to reliably track
the planned trajectory. We will focus the discussion in the
next section on how to localize the camera precisely.

IV. VISION PROCESSING

Our computer vision module comprises two different
stages: first, a stereo visual SLAM module for building a
persistent 3D map of the environment and second a vision-
based localization framework with visibility prediction that
assumes that a prior 3D map of the environment is given.
Prior to any SLAM or localization processing, we correct
the distortion of the images and perform stereo rectifica-
tion. Stereo rectification simplifies considerably the stereo
correspondences problem and disparity maps can be easily

obtained with the rectified images. More details of the visual
SLAM and vision-based localization algorithms can be found
in [2]. In this section, we will briefly describe the main
components of our localization framework assuming that we
already have a prior 3D map of the environment. Given a
prior 3D map of the environment we can use the computed
map for fast and robust localization. In this context we
employ the visibility prediction technique described in [1, 2]
to perform an efficient data association between known 3D
points and detected 2D features.

Our localization framework is composed of two different
modules: initialization and a combination of vision-based
localization with visibility prediction and stereo visual odom-
etry.

A. Initialization and Re-Localization

At this stage, the robot is lost and can be located in any
area of the map. Therefore, we need to find an initial camera
pose to start the vision-based localization algorithm. For
this purpose we detect 2D features in the new image using
the Harris corner detector [9] at different scale levels and
compute an appearance descriptor for each detected corner.
For this purpose, we compute the appearance descriptors of
the detected 2D features in the new image and match this set
of descriptors against the set of descriptors from the list of
stored keyframes from the prior 3D reconstruction. Similar
to Speeded Up Robust Features (SURF) [3], for a detected
feature at a certain scale, we compute a unitary descriptor
vector of dimension 16 in order to speed up the descriptor
computation. We use the upright version of the descriptors
(no invariance to rotation) since upright descriptors perform
better in scenarios where the camera only rotates around its
vertical axis, which is often the case for humanoid robots,
and are also faster to compute than its rotation invariant
counterpart.

In the matching process between the camera frame and
the list of keyframes, we perform a RANSAC [4] procedure
forcing epipolar geometry constraints. We recover the camera
pose from the stored keyframe that obtains the highest ratio
of inliers. If this ratio is lower than a certain threshold, we do
not initialize the localization algorithm until the robot moves
into a known area yielding a higher ratio.

B. Localization

Given a prior map of 3D points and perceived 2D features
in the image, the problem to solve is the estimation of the
camera pose with respect to the world coordinate frame.
Once the system has a good initialization, the vision-based
localization system works through the following steps:

1) While the robot is moving, the stereo pair acquires a
new set of images which are rectified. Then, from the
rectified images, a disparity map is computed.

2) A set of image features Zt = {zt,1 . . . zt,n} is detected
by Harris corner detector only for the left image.
Then, a feature descriptor is computed for each of the
detected features.



3) Then, by using the visibility prediction algorithm, a
promising subset of highly visible 3D map points is
chosen and re-projected onto the image plane based on
the estimated previous camera pose θt−1 and known
camera parameters.

4) Afterwards, a set of putative matches Ct is formed
where the i-th putative match Ct,i is a pair {zt,k, xj}
which comprises a detected feature zk and a map
element xj . A putative match is created when the
Euclidean distance between the appearance descriptors
of a detected feature and a re-projected map element
is lower than a certain threshold.

5) Finally, we solve the pose estimation problem mini-
mizing the following cost error function, given the set
of putative matches Ct:

arg min
R,t

m∑
i=1

‖zi −K (R ·xi + t)‖2 (8)

where zi = (uL, vL) is the 2D image location of a feature
in the left camera, xi represents the coordinates of a 3D
point in the global coordinate frame, K is the left camera
calibration matrix, and R and t are respectively the rotation
and the translation of the left camera with respect to the
global coordinate frame. The pose estimation problem is
formulated as a nonlinear least squares procedure using the
Levenberg-Marquardt algorithm. The set of putative matches
may contain outliers, therefore RANSAC is used in order to
obtain a robust model free of outliers.

There can be some frames where the pose estimation
problem cannot be solved efficiently since we may have
textureless areas or slightly different viewpoints from the
ones captured at the mapping sequence. For those situations,
we employ stereo visual odometry to update the pose of the
robot with respect to the map coordinate frame. Notice here
that our system does not suffer from the typical drift of visual
odometry systems, since in the next frame the system will
try to localize with respect to the prior 3D map. When the
number of consecutive frames where the pose estimation fails
is higher than a fixed threshold (e.g. 100 frames), we declare
that the tracking is lost and start a re-localization process.

V. EXPERIMENTAL RESULTS

A. Experimental Setup
The experiment demonstrates that by localizing the robot

while walking, HRP-2 can reach a goal position indepen-
dently of the execution errors. In the chosen scenario, the
robot must drop a ball on a shelf after walking 2 m. A
more precise description of the scenario is depicted by Fig. 4.
Empirically, we estimated the HRP-2 mean drift to be around
one cm per step. Considering that 32 steps are required to
reach the goal without hitting the obstacles, the usual drift
would prevent the task from being accomplished. The camera
trajectory estimated by the localization algorithm is validated
using motion capture data. Markers have been placed on both
the robot head and left ankle to provide ground truth.

Finally, the camera position is given by the algorithm
described in detail in the previous sections. The localization

Fig. 3. The HRP-2 robot drops a ball on a shelf while localizing itself
using vision based localization.

Fig. 4. Experimental setup description (top view). The dotted line displays
the robot waist trajectory.

module has been running at a mean rate of 16Hz dur-
ing the experiments. The vision computer running the vi-
sion based localization node is a Intel R©CoreTM 2 CPU
T7200 @ 2.00GHz with 2Gb. of RAM.

During the experiments, the robot sometimes failed to drop
the ball properly. It was either due to a bad initialization
which sometimes lead to localization failure or to robot flexi-
bility. Indeed, the shelves is quite narrow and the robot ankles



passive joints were generating hands movements which were
causing collisions, even though the robot localization is
precise enough. It would be interesting in a future work to
not only localize the robot with respect to an absolute frame
but also switch to a task-based localization at the end to
correct the hand trajectory and avoid collisions.

On our platform, the vision localization module returned
a pose at around 16 Hz. On the opposite, the HRP-2 robot
uses a control loop at 200 Hz. To preserve real-time, the real-
time component was communicating the robot configuration
asynchronously at around 75 Hz. The error estimation com-
ponents was running at a mean rate of 10 Hz. As a correction
is added every two steps, it was not useful to evaluate the
error at a higher frequency.

B. Comparison to Motion Capture Data

Fig. 5 contains the camera position estimated by the
motion capture system and by the localization algorithm.
The mean error is 0.2 m in translation. Drop in the algorithm
precision can occur when the robot enters a part of the map
which is not dense enough or where the environment does not
incorporate enough texture to detect enough interest points.
It happens in our scenario near the end when the camera is
too close to the shelf to perceive its environment correctly.

The used motion capture system is a Motion Analysis
system relying on six Eagles and four Hawks cameras. It
provides an estimation of the camera position at 200 Hz with
a precision error of less than one cm.

Fig. 5. Camera position estimated by both the motion capture system and
the localization algorithm.

VI. FUTURE WORK AND CONCLUSIONS

In this article, we demonstrated that vision-based localiza-
tion allows humanoid robots to achieve complex tasks. By
integrating the vision algorithm into the control framework,
we have been able to gradually reshape the trajectory in order
to compensate for execution errors. This allowed the robot
to achieve complex tasks which would be difficult to realize
otherwise.

However, several intesresting additions remain to be in-
tegrated. First, the local trajectory modifications are not
checked to make sure that no auto-collision occurs. Cur-
rently, a conservative maximum correction (i.e. 2 cm every
two steps) is imposed for safety. By applying recent works
such as fast feasibility tests described by Perrin et al. [21], we
would be able to increase the maximum correction without
compromising the robot safety. Second, the HRP-2 robot
embeds an Inertial Measurement Unit which could be used
to estimate the robot chest attitude. It would definitely be
interesting to provide an initial estimation of the robot motion
to help the localization process. In addition, we are interested
in improving the capabilities of our visual SLAM and vision-
based localization systems towards the goal of long-term
localization to deal with possible changes in the environment.
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