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Abstract

The coronavirus disease 2019 (COVID-19) pandemic continues to spread aggressively worldwide, infecting
more than 170 million people with confirmed cases, including more than 3 million deaths. This pandemic is
increasingly exacerbating the burden on tropical and subtropical regions of the world due to the pre-existing
dengue fever, which has become endemic for a longer period in the same region. Co-circulation dengue and
COVID-19 cases have been found and confirmed in several countries. In this paper, a deterministic model
for the coendemic of COVID-19 and dengue is proposed. The basic reproduction ratio is obtained, which is
related to the four equilibria, disease-free, endemic-COVID-19, endemic-dengue, and coendemic equilibria.
Stability analysis is done for the first three equilibria. Furthermore, a condition for coexistence equilibrium is
obtained, which gives a condition for bifurcation analysis. Numerical simulations were carried out to obtain
a stable limit-cycle resulting from two Hopf bifurcation points with dengue transmission rate and COVID-
19 transmission rate as the bifurcation parameter, representing a stable periodic coexistence of dengue and
COVID-19 transmission. We identify the period of limit cycle decreases after reaching the maximum value.
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1. INTRODUCTION

Coronaviruses (CoVs) are large enveloped viruses with a single-stranded, unsegmented RNA genome that
is positive in sense. It has the largest genome of any RNA. Because CoVs are RNA viruses, they can easily
evolve through homologous and non-homologous mutation and recombination, allowing them to spread to a
wider range of hosts [1]. COVID-19 was first reported in December 2019 in Wuhan, China, and was declared
a pandemic by WHO on March 11, 2020, infecting around 170 million confirmed cases and resulting in over
3 million deaths [2],[3]. Thus, COVID-19 became a disease that emerged with a rapid increase in cases and
deaths since the first identification [4]. COVID-19 spreads from person to person via direct contact with
sneezing or coughing, or through contact with an infected person’s secretions. Therefore, the mechanism of
its spread is the same as that of a common cold virus or another influenza [5],[6]. COVID-19 pandemic is
a global public health emergency with potentially catastrophic consequences. This pandemic has impacted
the burden in tropical and subtropical regions of the world where dengue fever, caused by the dengue
virus (DENV), is already prevalent. Concerns have been raised about the similar clinical manifestations
of COVID-19 and dengue fever, particularly in dengue-endemic countries [7]. Coexistence of COVID-19
with other illnesses is not uncommon during the COVID-19 pandemic, and misdiagnosis is possible. These
problems are particularly prevalent in tropical regions where other infectious illnesses, such as dengue fever,
exhibit symptoms comparable to COVID-19[8][9]. In tropical countries, dengue is diagnosed by identifying
distinctive symptoms such as fever and test abnormalities such as thrombocytopenia and capillary leakage[10].
Serological assays are being utilized to confirm dengue virus infection at the moment. Nonetheless, the
resemblance in some symptoms between dengue and COVID-19, as well as the possibility of cross-reactions
in serological testing, might lead to difficulties in diagnosis and is an essential topic to address [11].

Dengue is a common infection in the tropic and subtropic areas that is caused by the dengue virus (DENV)
that transmitted by bite mosquitoes of Aedes Aegypty and Aedes albopictus. It is estimated that 400 million
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dengue infections occur each year, caused by four antigenically related but distinct viruses, DENV-1, DENV-
2, DENV-3, and DENV-4 [12]. Primary infection with one of the serotypes is usually not dangerous, even if
some people develop asymptoms [15]. Because there is no immunity, secondary infection by other serotypes
can be more severe and lead to life-threatening conditions such as Dengue Haemorrhagic Fever or Dengue
Shock Syndrome (DSS) [14]. In recent years, mathematical modeling has become an important tool for
understanding the epidemiology and dynamics of infectious diseases. Multi-strain dengue dynamics have
been modeled at the population level using extended (susceptible-infected-recovered) SIR-type models that
include immunological aspects of the disease such as temporary cross-immunity and ADE phenomenology
[15],[16]. Pongsumpun et al. [17] have studied a mathematical model of Dengue Hemorrhagic Fever (DHF)
transmission in a two-age structure in the human population, namely Juveniles class and adults class. Nuraini
et al. has studied dengue transmission models with two strains involving the role of immunity [18]. In addition,
they have also built a within-host model involving cells, viruses, and immunity [19].

Several investigations have found false-positive dengue serology findings in individuals with COVID-
19. Coinfection of COVID-19 and dengue have been found and confirmed in several countries, including
Argentina with 13 cases, Singapore with 2 cases and Indonesia with 1 case [20],[21],[22]. To simply explain
coinfection transmission and when it can occur, mathematical models with various assumptions have been
explored and evaluated, with a focus on evaluating the components that allow widespread transmission and
controlling for pathogen transmission [24]. We developed the Susceptible-Invected-Recovered model by
Kermack and McKendrick in 1927 [25]. One of the tools that facilitate the understanding of the spread
of infectious diseases is mathematical modeling. Several mathematical approaches to study the dengue
transmission, the COVID transmission and coinfection of COVID-19 and dengue dynamics which Nuraini et
al.[26] proposed a mathematical model of dengue internal transmission process, Samui et al.[27] proposed a
mathematical model for COVID-19 transmission dynamics with a case study of India, furthermore Masyeni
et al.[22] serological cross-reaction and co-infection of COVID-19 and dengue in Asia: experience from
Indonesia. Yang et al. [23] developed a mathematical model encompassing two subpopulations based on
different fatality rates in young (60 years old or less) and elder (60 years old or more) subpopulations, with
the goal of studying the effects of quarantine and further relaxation (release) on the CoVID-19 epidemic.
In this study, we propose a SIR-SI mathematical model for coendemic of COVID-19 and dengue in human
population that consist of susceptible human, infected dengue human, infected COVID-19 human, recovery
dengue human, recovery COVID-19 human, recovery COVID-19 and dengue.

In this model, we will discuss which parameters influence the coendemic occurrence of these two diseases.
Furthermore, we derive basic reproductive ratio (R0), which represent the endemic ratio of the disease during
period. The organization of the rest of this paper is as follows. In Section 2, we construct the mathematical
model of a coendemic COVID-19 and dengue. Section 3 presents analysis model. Meanwhile, in Section 4,
numerical simulations are proposed to explain the bifurcation, especially the Hopf bifurcation, the existence
of the limit cycle, and their period. Finally, Section 5 presents the conclusions

2. MODEL FORMULATION

Herein, we construct a mathematical model for coendemic of COVID-19 and dengue disease in a hu-
man population. In this case, the host population is divided into eight subpopulations; susceptible host
(Sh), infected dengue (Id), infected COVID-19 (Ic), infected dengue with COVID-19 immunity (Icd),
infected COVID-19 with dengue immunity (Idc), recovery for dengue (Rd), recovery for COVID-19 (Rc),
and recovery for dengue and COVID-19 (Rh). The total of host population is denoted by Nh, where
Nh = Sh+Id+Ic+Icd+Idc+Rd+Rc+Rh. While the population of vector is divided into two subpopulations
are susceptible vector Sv and infected vector Iv , where total population of vector is Nv = Sv+Iv . Susceptible
host Sh is assumed only infected by either COVID-19 or dengue. Subpopulation Rd and Rc are assumed
to get lifelong immunity to dengue but possible to be infected by COVID-19 and get lifelong immunity to
COVID-19 but possible to be infected by dengue, respectively. While R is a population with lifelong dengue
and COVID-19 immunity.
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Figure 1: Compartement diagram for coendemic of COVID-19 and dengue.

Based on the above, we construct system of non-linear which describing the dynamic of coendemic COVID-
19 and dengue disease, which is given by:

dŜh(t)

dt
= Ah − bh

Ŝh(t)Îv(t)

Nh(t)
− a

ˆSh(t)Îc(t)

N̂h(t)
− µhŜh(t),

dÎd(t)

dt
= bh

Ŝh(t)Îv(t)

N̂h(t)
− γdÎd(t)− µhÎd(t),

dR̂d(t)

dt
= γdÎd(t)− a

R̂d(t)Îc(t)

N̂h(t)
− µhR̂d(t),

dÎdc(t)

dt
= a

R̂d(t)Îc(t)

N̂h(t)
− γcÎdc(t)− µhÎdc(t),

dÎc(t)

dt
= a

Ŝh(t)Îc(t)

N̂h(t)
− γcÎc(t)− µhÎc(t),

dR̂c(t)

dt
= γcÎc(t)− bh

ˆRc(t)Îv(t)

N̂h(t)
− µhR̂c(t), (1)

dÎcd(t)

dt
= bh

R̂c(t)Îv(t)

N̂h(t)
− γdÎcd(t)− µhÎcd(t),

dR̂(t)

dt
= γdÎcd(t) + γcÎdc(t)− µhR̂(t),

dŜv(t)

dt
= Av − bv

Ŝv(t)

N̂h(t)
(Îd(t) + Îcd(t))− µvŜv(t),

dÎv(t)

dt
= bv

Ŝv(t)

N̂h(t)
(Îd(t) + Îcd(t))− µv Îv(t),

N̂h(t) = Ŝh(t) + Îd(t) + R̂d(t) + Îdc(t) + Îc(t) + R̂c(t) + Îcd(t) + R̂(t),

N̂v(t) = Ŝv(t) + Îv(t),

where all parameters are positive, dN̂h(t)
dt = Ah − µhN̂h(t), and dN̂v(t)

dt = Av − µvN̂v(t). To reduce the
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dimension of System (1), we normalize variables by subtituting S(t) = Ŝ(t)

N̂h(t)
, Id(t) = Îd(t)

N̂h(t)
, Rd(t) =

R̂d(t)

N̂h(t)
, Ic(t) =

Îc(t)

N̂h(t)
, Rc(t) =

R̂c(t)

N̂h(t)
. We assume that the total population N̂h(t) and N̂v is constant, so we

can represent Ah as µhN̂h(t) and Av as µvN̂v. Further, to reduce the dimension of equation System (1) we
normalize which are given as follow:

dSh(t)

dt
= µh − bhSh(t)Iv(t)− aSh(t)Ic(t)− µhSh(t),

dId(t)

dt
= bhSh(t)Iv(t)− γdId(t)− µhId(t),

dRd(t)

dt
= γdId(t)− aRd(t)Ic(t)− µhRd(t),

dIdc(t)

dt
= aRd(t)Ic(t)− γcIdc(t)− µhIdc(t),

dIc(t)

dt
= aSh(t)Ic(t)− γcIc(t)− µhIc(t), (2)

dRc(t)

dt
= γcIc(t)− bhRc(t)Iv(t)− µhRc(t),

dIcd(t)

dt
= bhRc(t)Iv(t)− γdIcd(t)− µhIcd(t),

dRh(t)

dt
= γdIcd(t) + γcIdc(t)− µhRh(t),

dSv(t)

dt
= µv − bvSv(t)(Id(t) + Icd(t))− µvSv(t),

dIv(t)

dt
= bvSv(t)(Id(t) + Icd(t))− µvIv(t),

where Nh = 1 and Nv=1. For the biological meaning, System (2) can be expressed as follow:

dX(t)

dt
= F(X(t)), (3)

where X(t) = (Sh(t), Id(t), Rd(t), Idc(t), Ic(t), Rc(t), Icd(t), Rh(t), Sv(t), Iv(t))
T and F : Ω→Ω , with

feasible region Ω = {X(t) ∈ R | 0 ≤ xi ≤ 1, i = 1, 2, ..., 10}. The most convenient analytical procedure to
state the positivity invariant is that investigating the euclidean dot product between outgoing normal vectors
to the hyperplane boundaries of the non-negative 210−hyperoctant of 10-dimensional Euclidean space and
the vector fields of the system along these boundaries. Since the non-positive result of such dot product at
all points lying on the coordinate hyperplanes exclude the origin, it will tell us that once the initial condition
is taken inside the 210−non negative hyperoctant, and if the trajectory touches any boundary afterward, then
the trajectory will either return into the interior of this hyperoctant or remain on the boundary for all time
and in the future. It follows that the region Ω is positively invariant of System (2). The Parameters used in
the model are described in Table 1.

3. ANALYSIS MODEL

In this section, we will discuss model analysis which includes: the basic reproductive ratio, the existence
of an equilibrium point and the stability requirements of each equilibrium point.

3.1. Disease-free equilibrium and basic reproductive ratio
The disease-free equilibirum points are steady state solution of the proposed System (2), where there is

no disease. We obtain the positive equilibirum human and mosquito population which we will denote by E0

and it is given by

E0 = (S0
h, I

0
d , R

0
d, I

0
dc, I

0
c , R

0
d, I

0
cd, R

0, S0
v , I

0
v ) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0).
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Table 1: Description parameters in System (2).

Parameter Description Unit Value Source

µh Host mortality rate 1
day

1
65×365

[28]
µv Vector mortality rate 1

day
1
14

[29]
a Transmission rate of COVID-19 infection 1

day
[0;1] Assumed

bh Transmission rate of Dengue infection from vector to host 1
day

[0;1] Assumed
bv Transmission rate of Dengue infection from host to vector 1

day
[0;1] Assumed

γd Recovery rate of infected dengue 1
day

1
10

Assumed
γc Recovery rate of infected COVID-19 1

day
1
14

Assumed

From the disease-free equilibirum, we use next generation matrix (NGM) to define the basic reproductive ratio
R0. The basic reproductive ratio is an average number of secondary infections caused by an infected individual
that enter to the fully susceptible population throughout the period of infection. To construct NGM, we only
notice the infected compartements Ihd, Ihdc, Ihc, Ihcd, Iv and we obtain the following transition Matrix V
and transition Matrix F follow

F =



0 0 0 0 bh

0 0 0 0 0

0 0 a 0 0

0 0 0 0 0

bv 0 0 bv 0


and V =



µh + γd 0 0 0 0

0 µh + γc 0 0 0

0 0 µh + γc 0 0

0 0 0 µh + γd 0

0 0 0 0 µv


.

We get next generation matrix as follow

NGM = FV−1 =



0 0 0 0 bh
µv

0 0 0 0 bh
µv

0 0 0 0 0

0 0 a
γc+µh

0 0

bv 0 0 bv 0


.

Using the method of Van den Driesche [30] and Diekmann [31], we know that R0 is calculated by finding
the spectral radius of NGM

R0 = max{R0d,R0c}, (4)

where

R0d =
bvbh

µv(γd + µh)
,R0c =

a

γc + µh
.

3.2. Stability analysis of disease-free equilibrium

The disease-free equilibrium point E0 represents the absence of disease spread in a population, both
COVID-19 and Dengue. Stability analysis at point E0 is given by finding that point on the Jacobian Matrix
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as follows

J(E0) =



−µh 0 0 0 −a 0 0 0 0 −bh
0 −(γd + µh) 0 0 0 0 0 0 0 bh
0 γd −µh 0 0 0 0 0 0 0
0 0 0 −(γc + µh) 0 0 0 0 0 0
0 0 0 0 a − (γc + µh) 0 0 0 0 0
0 0 0 0 γc −µh 0 0 0 0
0 0 0 0 0 0 −(γd + µh) 0 0 0
0 0 0 γc 0 0 γd −µh 0 0
0 −bv 0 0 0 0 −bv 0 −µv 0
0 bv 0 0 0 0 bv 0 0 −µv


and then, we have the characteristic equation of J(E0) is

P0(λ) =(λ+ µh)
4(λ+ µv)(λ+ γd + µh)(λ+ γc + µh)(λ+ (µh + γc)(1−R0c))

(λ2 + (µv + γd + µh)λ+ µv(γd + µh)(1−R0d) = 0.

The eigenvalue of λ on P0(λ) is negative when R0 < 1, so the equilibrium point of E0 is locally asymp-
totically stable. We deduce that the point E0 is locally asymptotically stable if R0 < 1 and a saddle point
where R0 > 1.

3.3. Boundary equilibrium

Boundary equilibrium or endemic equilibirum point of dengue is steady state solution of (2) where the
disease of dengue persists in the population. The endemic equilibirum point of dengue is given by

Ed = {S∗
h, I

∗
d , R

∗
d, 0, 0, 0, 0, 0, S

∗
v , I

∗
v} (5)

where

S∗
h =

R0dµh + bh
R0d(bh + µh)

, I∗hd =
µvµh(R0d − 1)

(bh + µh)bv
, R∗

hd =
µv(R0d − 1)γd
(bh + µh)bv

,

S∗
v =

(bh + µh)

(R0dµh + bh)
, I∗v =

(R0d − 1)µh

R0dµh + bh

and Ed exist if and only if R0d > 1.
The equilibrium Ec shows the diseases COVID-19 persists in the population with

Ec = (S∗∗
h , 0, 0, 0, I∗∗c , R∗∗

c , 0, 0, 1, 0). (6)

where
S∗∗
h =

1

R0c
, I∗∗c =

µh

a
(R0c − 1), R∗∗

c =
γc
a
(R0c − 1).

We obtain conditions for the existence of positive endemic equilibrium COVID-19 when R0c > 1.

3.4. Stability analysis of dengue boundary equilibrium

Further, we study now the stability of Ed. Endemic equilibrium of dengue Ed is locally asymptotically
stable when R0d > 1 and R0c <

bvµh−R0d(γd+µh)
bvµh−(γd+µh)

= 1+ (γd+µh)(1−R0d)
bvµh−(γd+µh)

. For more details, see appendix A.

3.5. Stability analysis of COVID-19 boundary equilibrium

Using the linearization method, the characteristic polynomial of the Jacobian Matrix at point E2 is given
as

Pc(λ) = (λ+ µh)
2(λ+ γc + µh)((γc + µh)λ+ µha)(λ+ µv)(λ+ γd + µh)

(m0λ
2 +m1λ+m2)(n0λ

2 + n1λ+ n2) = 0, (7)
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where
m0 = γc + µh,
m1 = aµh,
m2 = µh(γc + µh)

2(R0c − 1),
n0 = a(γc + µh),
n1 = a (γd + µh + µv) (γc + µh) ,
n2 = (γc + µh)µv (γd + µh) (R0cγc + µhR0c −R0cγc − µhR0c)

Based on Equation (7), we deduce that all eigenvalues are negative when R0c > 1 and R0d < R0c(γc+µh)
R0cγc+µh

=

1 + µh(R0c−1)
R0cγc+µh

. As a result, this condition reflects stability at the point Ec. The bifurcation diagram in the
plane-abh is shown in Figure 2 based on the stability conditions for the points Ed and Ec.

3.6. Coendemic equilibrium

In this section, we are interest to find coendemic equilibrium that all subpopulation are not zero. It is
shown implicitly by subpopulation Iv as follows

Eco = (S∗∗∗
h , I∗∗∗d , R∗∗∗

d , I∗∗∗dc , I∗∗∗c , R∗∗∗
c , I∗∗∗cd , R∗∗∗, S∗∗∗

v , I∗∗∗v ) (8)

where

S∗∗∗
h =

γc + µh

a
=

1

R0c
,

I∗∗∗d =
bh (γc + µh) I

∗∗∗
v

a (γd + µh)
,

R∗∗∗
d =

I ∗∗∗v bhγd (γc + µh)
2

a (γd + µh) (µha− bh (γc + µh) I ∗∗∗v )
,

I∗∗∗dc =
I∗∗∗v bhγd(µh (a− γc − µh)− bh (γc + µh) I

∗∗∗
v )

a(γd + µh)(µha− bh (γc + µh) I ∗∗∗v )
,

I∗∗∗c =
µh(a− γc − µh)

a(γc + µh)
− bh(µh + γc)I

∗∗∗
v

a(γc + µh)
,

R∗∗∗
c =

γc(µh (a− γc − µh)− bh (γc + µh) I
∗∗∗
v )

(I ∗∗∗v bh + µh) (γc + µh) a
,

I∗∗∗cd =
I∗∗∗v bhγc(µh (a− γc − µh)− bh (γc + µh) I

∗∗∗
v )

a(bh (γd + µh) (γc + µh) I ∗∗∗v + µh (γd + µh) (γc + µh))
,

R∗∗∗ =
Ivbhγcγd (γc + a+ µh) (µh (a− γc − µh)− bh (γc + µh) I

∗∗∗
v )

a (γd + µh) (γc + µh) (I ∗∗∗v bh + µh) (µha− bh (γc + µh) I ∗∗∗v )
,

S∗∗∗
v =

aµv (γd + µh) (γc + µh) (I
∗∗∗
v bh + µh)

bhbvµh (bh (γc + µh) I ∗∗∗v + aγc + γcµh + µh
2)
.

and and the polynomial subpopulation I∗∗∗v is

P (I∗∗∗v ) = q0(I
∗∗∗
v )2 + q1I

∗∗∗
v + q2 = 0, (9)

where
q0 = bh

2bvµh (γc + µh)µv ,
q1 = bhµv((γc + µh)(aµv(γd + µh)− bhbvµh(γc + µh) + bvµ

2
h(γc + µh) + abvγcµh),

q2 = µv(aµh
2µv (γd + µh)− bhbvµh

2 (γc + µh)− aγcµh (bhbv − µv (γd + µh))).
To see that the polynomial (P (I∗∗∗v )) has one positive root I∗∗∗v , observe q2 with q0 > 0, and then the
coefficient q2 is expressed as follows

q2 = µ2
vµh(γc + µh)(γd + µh)(µh(R0c −R0d)−R0cγc(R0d − 1)). (10)



ANALYSIS OF A COENDEMIC MODEL OF COVID-19 AND DENGUE DISEASE 145

When R0c > 1 and R0d > 1 + µh(R0c−1)
R0cγc+muh

, the Equation (10) becomes negative. Consider the following
form I∗∗∗c , which is rewritten as follow

I∗∗∗c =
µh

a
(R0c − 1)− bh

a
I∗∗∗v . (11)

The form I∗∗∗c is positive when I∗∗∗v < µh

bh
(R0c − 1) with a ̸= 0 and must be R0c > 1 for I∗∗∗v > 0.

This condition also applies to R∗∗∗
c > 0 and I∗∗∗cd > 0. Moreover, the existences of R∗∗∗

d , I∗∗∗dc , and R∗∗∗

are obtained when I∗∗∗v < µh

bh
R0c. Since µh

bh
(R0c − 1) < µh

bh
R0c, we can conclude that there is coexistence

of equilibrium points when R0c > 1,R0d > 1 + µh(R0c−1)
R0cγc+µh

, and 0 < I∗∗∗v < min{1, µh

bh
(R0c − 1) =

µhbv(R0c−1)
µvR0d(γd+µh)

}.
Based on the conditions of existence and stability of the point E0, E1, E2 and the existence of the

equilibrium coendemic E3, a bifurcation diagram in the plane-abh is given in Figure 2. For better visualization,
we use parameter bv = 0.1, γc = 1

21 , γd = 1
365 , µv = 1

14 in Figure 2(a). However, we also use parameter
values according to biological parameters with parameters bv = 0.1, γc =

1
21 , γd = 1

365∗70 , µv = 1
14 in Figure

2(b). Figure 2(b) has a very small area III, but Figure 2(b) will be used for bifurcation diagrams in the
numerical simulation session later according to its biological parameters.

(a) (b)

Figure 2: Diagram of existence of equilibrium E0, Ed, Ec, Eco and their stability with (a) bv = 0.05 (b) bv = 0.1

In Figure 2, there are six region of existence and stability equilibria:

I = {E0 exist and stable},
II = {E0 exist and unstable, Ec exist and stable},

III = {E0 exist and unstable, Ec exist and stable, Ed exist and unstable},
IV = {E0 exist and unstable, Ed exist and stable},
V = {E0 exist and unstable, Ec exist and unstable, Ed exist and stable},

V I = {E0 exist and unstable, Ec exist and unstable, Ed exist and unstable, Eco exist}.

4. NUMERICAL SIMULATION

In this session, numerical simulations are given to confirm the analytics that have been discussed in the
previous session. In addition, bifurcation diagrams are provided to explain the stability of coendemic points
which cannot be found analytically. First, we consider all parameter biology in Table 1 and also parameter
bv = 0.1. In Figure 3, we fix parameter a = 0.4 and we plot equilibrium Id and Ic at points Ec (in blue),
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Ed (in red) and Eco (in magenta) against parameter bh. This result is consistent with Figure 2(b), when we
set a = 0.4 and vary the parameter bh, then there are three regions that are traversed, namely region II (Ec

stable), region VI (existence of point Eco), and region V (Ed stable). In more detail, Figure 3(a) shows that
when bh < 0.07145652782 (condition Rd < 1), point Ec exists and is unstable, and point Ed and Eco do not
exist. Furthemore, when b∗h < bh < b∗∗∗∗∗h (see in Figure 3), point Ec is stable and point Ed is not stable.
An interesting thing happens when b∗∗∗∗∗h < bh < b∗∗h , there are two points, Ed and Eco. In this state, the
point Ed is unstable. In contrast to the point Eco, it is unstable when b∗∗∗h < bh < b∗∗∗∗h , and others are
stable under this condition. The stability of this Eco point is described in more detail in Figure 4.

(a) (b)

(c) (d)

Figure 3: Bifurcation diagram (a) and (c) equilibrium Id and Ic against parameter bh, respectively, (b) and (d) equilibrium
Id and Ic against parameter bh version zoom (a) and (c), respectively, for equilibria Ec (in blue), Ed (in red), and Eco

(in magenta). Stable equilibrium is marked solid curve and unstable equilibrium is denoted by dashed curve.

We use parameter bv = 0.1, γc = 1
21 , γd = 1

365∗70 , µv = 1
14 , a = 0.4 in Figure 4. Figure 4 describes

the change in the coendemic equilibrium value of I∗∗∗cd and I∗∗∗dc against parameter bh. We use Matcont
package in Matlab for simulating bifurcation diagram. In Figure 4, the unstable point has a pair of complex
eigenvalues, one of them positive real and non-zero imaginary part, and the others have negative real parts.
It is unstable when 0.257 < bh < 0.29. There are two Hopf bifurcation points where the real part is zero and
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the imaginary part is not zero, when bh = 0.257 and bh = 0.29. We denote these two points as H1 and H2,
respectively. When bh ∈ (0.257; 0.29), they are stable with a pair of complex eigenvalues that real part is
negative and the imaginary part is not zero, and the other is negative. Limit cycle exists and is stable when
0.257 < bh < 0.29. Figures 4(b) and 4(d) show equilibrium and amplitude when the limit cycle exists. The
maximum peak of the limit cycle is I∗∗∗dc = 8 ∗ 10−4 when bh = 0.258 and I∗∗∗cd = 13 ∗ 10−5 at the time of
bh = 0.26.

(a) (b)

(c) (d)

Figure 4: Bifurcation diagram for coexistence equilibrium (a) and (c) I∗∗∗dc and I∗∗∗cd against bh, respectively, (b) and
(d) diagram bifurcation zoom version with amplitude. The black dashed curve indicates the maximum and minimum of
the periodic solution of System (2). Point H1 and H2 label the first Hopf bifurcation and the second Hopf bifurcation.

Figure 4 shows that coendemic conditions exist when the dengue transmission rate from the vector to the
host is between 0.05 and 0.38. Coendemic conditions always exist for t → ∞ for the transmission rates of
bh ∈ (0.05; 0.257) and bh ∈ (0.29; 0.38) with a population size infected with dengue after recovering from
COVID-19 (population size of infected with COVID-19 after recovering from dengue) is constant. However,
at the time of bh ∈ (0.258; 0.29), the population sizes of Icd and Idc are not constant but have a period. This
condition provides an important warning to us that the maximum number of the infected population must be
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considered with the number of hospital facilities stock.
The amplitude in Figure 6 describes the difference between the maximum and minimum Icd and Idc when

a limit cycle exists. Increasing the amplitude indicates a large maximum and minimum distance. Figure 6
shows that the amplitude of Idc is greater than the amplitude of Icd. In Figure 5(a), when bh = 0.259, the
amplitude of Idc is 0.00078. This means 78

10000 of the total population and this number is high. This value is
quite large for the number of population who experience secondary infection with COVID-19 after recovering
from dengue. We also display the period of the limit cycle in Figure 5. The result is that the average period
is about 7-9 years. This time is long enough for one period of infection of one population.

(a) (b)

(c) (d)

Figure 5: Bifurcation diagram for coendemic equilibrium (a) and (b) I∗∗∗cd and I∗∗∗dc against parameter a, respectively,
and (b) and (d) diagram bifurcation zoom version with amplitude. The black dashed curve indicates the maximum and
minimum of the periodic solution of System (2).

In Figure 5, we set the parameter bv = 0.1, γc = 1
21 , γd = 1

365∗70 , µv = 1
14 , bh = 0.1. We also show

bifurcation diagram of the coendemic equilibrium point I∗∗∗cd and I∗∗∗dc against the parameter a. The existence
of a limit cycle between the two Hopf bifurcation points, H1 and H2, can also be found by varying parameter
a and they are in a = 0.414 (H1) and in a = 0.479 (H2), while others are stable. In contrast to Figure
4, Figure 5 shows that the maximum is greatest when it approaches H2. In Figure 4 and Figure 5, the
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maximum I∗∗∗dc is higher than the maximum Icd. It means that the number of the population of COVID-19
after recovering from dengue is always higher than the number of population infected with dengue after
recovering from COVID-19. Another interesting thing is shown in Figure 6. The period in Figure 6(a) is
higher with a variation of parameter bh than in Figure 6(b) (variation of parameter a). Figure 7 shows the
limit cycle (in red), and phase portrait with initial values from inside and outside the limit cycle (in blue).

(a) (b)

Figure 6: Amplitude and period solution periodic I∗∗∗cd and I∗∗∗dc with varied (a) parameter bh and (b) parameter a.

Figure 7: Phase portrait Icd against Idc with parameter bv = 0.1, γc = 1
21
, γd = 1

365∗70 , µv = 1
14
, bh = 0.258, a = 0.4.

5. CONCLUSION

In this paper, we have constructed a coendemic model describing transmission of two pathogens leading to a
coendemic phenomenon for dengue and COVID-19 disease. We divided the population into ten compartments:
susceptible, infected by dengue, infected by COVID-19, infected by COVID-19 in secondary infection,
infected by Dengue in secondary infection recovered from Dengue, recovered from Covid, and recovered
from two pathogens. Four equilibria are discussed: pathogen-free equilibrium, two boundary equilibria (single
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endemic Dengue, and single endemic COVID-19), and coendemic equilibrium. Basic reproductive ratio R0

is obtained, followed by the existence of the boundary equilibria when R0 > 1.
For the coendemic case, we use numerical simulation to determine its stability. Two Hopf bifurcations

are found in the coendemic point bifurcation diagram with respect to parameter bh. The existence of a limit
cycle is found between the two Hopf points. The limit cycle periods grow and reach the maximum value
and decrease as the coendemicrates increase. Beyond the second Hopf point, the coexistence equilibrium is
stable.
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APPENDIX A. STABILITY OF Ed

First, we evaluate point Ed in Matrix Jacobian and characteristic equation Pd(λ) is given by

Pd(λ) = (λ+ µh)
2
(λ+ µv)(λ+ γd + µh)(λ+ γc + µh)((bvµh + γdµv + µhµv)λ

+ bhbvµh + bvµh
2)(k1λ+ k2)(l1λ

3 + l2λ
2 + l3λ+ l4) = 0.

where
k1 = −bv (µh + bh)
k2 = aµv (γd + µh)− bhbv (γc + µh) + bvµh (a− γc − µh)

= (γc + µh)µhbv(R0c − 1)− (γc + µh)(γd + µh)(R0c −R0d)
l1 = (µh + bh) (γd + µh) (µh (µv + bv) + γdµv) ,
l2 = (2 bv + µv)µh

4 + ((3 bv + µv) bh + 3 γd (µv + bv))µh
3

+
(
bh

2bv +
(
(4 bv + 3µv) γd + (µv + bv)

2
)
bh + γd

2 (bv + 3µv)
)
µh

2

+γd
(
bh

2bv + ((bv + 3µv) γd + 2µv (µv + bv)) bh + µvγd
2
)
µh + bhµvγd

2 (µv + γd) ,
l3 = µhµv (γd + µh) (R0d − 1)

(
bvγdµh + 2 bvµh

2 + γd
2µv + 3 γdµvµh + µvµh

2
)
+ bvµh

4µv

+bvγdµh
3µv + γd

2µh
2µv

2 + γdµh
3µv

2 + bvµh(bh
2bvµh + bh

2γd
2 + 2 bh

2γdµh + bh
2γdµv

+bh
2µh

2 + bh
2µhµv + 2 bhγd

2µh + 4 bhγdµh
2 + 2 bhµh

3 + bhµh
2µv + γd

2µh
2 + 2 γdµh

3 + µh
4),

l4 = µh (γd + µh)
2
(µh (µv + bv) + γdµv) (µh + bh)µv (R0d − 1) .

Observe that l1, l2, l3, l4 > 0 when R0d > 1. Further, it can be seen that

l2l3 > (γd + µh)
3
(bvµh + γdµv + µhµv)

2
(µh + bh)

2
µhµv (R0d − 1) = l1l4.

Using Routh-Hurtwitz criteria, the roots of characteristic polynomial of Pd(λ) have negative real part when
R0d > 1 and R0c < bvµh−R0d(γd+µh)

bvµh−(γd+µh)
= 1 + (γd+µh)(1−R0d)

bvµh−(γd+µh)
. Therefore the endemic equilibrium Ed is

locally asymptotically stable.
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