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Abstract

Atherosclerosis is a non-communicable disease (NCDs) which appears when the blood vessels in the
human body become thick and stiff. The symptoms range from chest pain, sudden numbness in the arms
or legs, temporary loss of vision in one eye, or even kidney failure, which may lead to death. Treatment in
cases with severe symptoms requires surgery, in which the number of doctors or hospitals is limited in some
countries, especially countries with low health levels. This article aims to propose a mathematical model to
understand the impact of limited hospital resources on the success of the control program of atherosclerosis
spreads. The model was constructed based on a deterministic model, where the hospitalization rate is defined as
a time-dependent saturated function concerning the number of infected individuals. The existence and stability
of all possible equilibrium points were shown analytically and numerically, along with the basic reproduction
number. Our analysis indicates that our model may exhibit various types of bifurcation phenomena, such as
forward bifurcation, backward bifurcation, or a forward bifurcation with hysteresis depending on the value of
hospitalization saturation parameter and the infection rate for treated infected individuals. These phenomenon
triggers a complex and tricky control program of atherosclerosis. A forward bifurcation with hysteresis causes a
possible condition of having more than one stable endemic equilibrium when the basic reproduction number is
larger than one, but close to one. The more significant value of hospitalization saturation rate or the infection
rate for treated infected individuals increases the possibility of the stable endemic equilibrium point even
though the disease-free equilibrium is stable. Furthermore, the Pontryagin Maximum Principle was used to
characterize the optimal control problem for our model. Based on the results of our analysis, we conclude that
atherosclerosis control interventions should prioritize prevention efforts over endemic reduction scenarios to
avoid high intervention costs. In addition, the government also needs to pay great attention to the availability
of hospital services for this disease to avoid the dynamic complexity of the spread of atherosclerosis in the
field.
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1. INTRODUCTION

Atherosclerosis is an inflammatory disease that can be occurred when the blood vessels carry oxygen
and nutrients to the rest of your body. It affects medium and large-sized arteries. The disease starts when
the blood vessels become thick and stiff that is normally called hardening of the arteries. In other words,
atherosclerosis is the accumulation process of fats, cholesterol and other elements in artery walls when people
get older. This is commonly called plaque. The accumulation of plaque makes it difficult for blood to flow
through your arteries, including around your heart, legs, and kidneys. Atheromatous plaques are appeared in
the inner layers of arteries. These plaques are formed when the deposition of small cholesterol crystals started
in the intima. After that the plaques are produced and bulged inside the arteries. Consequently, they reduce
the blood flow. The disease starts after births and it usually a silent process. Then, it will progress during
the person’s life. There are several factors for the progression of this disease: hypertension, hyperlipidemia,
diabetes mellitus, age, sex, smoking and life-style. Atherosclerosis is a common problem when people get
older. This health problem can be treated and many successful prevention options exist [1], [2], [3].

*Corresponding Author
Received November 20th, 2021, Revised December 8th, 2021, Accepted for publication December 22nd, 2021. Copyright ©2021

Published by Indonesian Biomathematical Society, e-ISSN: 2549-2896, DOI:10.5614/cbms.2021.4.2.4



126 Aldila, D., Islamilova, A., Khoshnaw, S.H.A., Handari, B.D. and Tasman, H.

Most symptoms of atherosclerosis cannot be showed until a blockage occurs. There are some common
symptoms: chest pain, pain in your leg, arm, and anywhere else that has a blocked artery, shortness of breath
and fatigue. Atherosclerosis can cause several health problems including heart attack and stroke. Therefore, it
is better to know the symptoms of both heart attack and stroke. They require immediate medical considerations
and preventions [4], [5].

Atherosclerosis can be diagnosed if there are symptoms of atherosclerosis. Doctors may perform a physical
exam and tests. This disease can also be treated. For example, changing lifestyle is a simple treatment in
order to decrease the amount of fat and cholesterol in your body. This is how sometimes called the first
line of treatment. Physical exercises are also effective treatments that may also use to improve the health of
your heart and blood vessels. For some difficult cases, it may need additional medical treatments, such as
medications or surgery. Medications can also help and work effectively to prevent atherosclerosis and use as
treatment for infected people [6]. According to the above explanation, we can see that the number of doctors
and the quality of the hospital is a crucial factor in determining the success of the atherosclerosis control
strategy.

Many authors have done theoretical modeling on atherosclerosis, especially to model the mechanisms of
chronic inflammation of artery walls [7], [8], [9]. Khatib et al. [7] use a reaction-diffusion model to understand
the chronic inflammation of blood vessel walls. Calvez et al. [8] made a numerical approach to understanding
atherosclerotic plaque formation. Silva et al. [9]continued this work using a Non-Newtonian Model of Blood
Flow to model atherosclerotic Plaque Formation in the human body. Although many mathematical models
have been introduced to understand atherosclerosis in the human body, not so many articles discuss the
spread of this disease at the level of population dynamics. Therefore, we propose a modified atherosclerosis
model from our previous work [10] by treating the hospitalization intervention as a saturated function. A
routine dynamical analysis shows that our proposed model may exhibit a forward bifurcation with hysteresis
or backward bifurcation at a basic reproduction number equal to one, depending on the value of the saturated
parameter of the hospitalization rate. An optimal control simulation was also conducted in this article to
perform some possible control strategies that may appear in a real-life situation.

2. THE MATHEMATICAL MODEL

We develop a mathematical model for atherosclerosis based on our previous work in [10], but changing the
treatment rate into a saturated function to accommodate the limitation of specialist doctor to conduct surgery
for infected individuals. We treat this control variable to treat the infected individual in the hospital as a time-
dependent variable such that we can find the best possible strategy to suppress the spread of atherosclerosis.
We divide human population based on their health status and their treatment, namely susceptible human (S),
Infected without treatment (I) and Infected undergo treatment (H). As one of the type of a Noncommu-
nicable disease (NCDs), atherosclerosis do not spread through direct contact. However, social, economics
and environmental condition hold an essential role in the way how these diseases spread among population.
Some researchers called the infection on NCDs using the term of : “socially transmitted conditions” (STCs),
which are urbanisation, industrialisation, and poverty, fast foods, alcohol and physical inactivity [11]. Hence,
we assume that atherosclerosis may spread through routine social interaction between infected individuals
and susceptible individuals. This approach is common to model the spread of Noncommunicable diseases
(NCDs) such as diabetes, cancer, and many more [12], [13], [14], [15]. The model differential equations are
given below:

dS

dt
= A− β1

SI

S + I +H
− µS,

dI

dt
= β1

SI

S + I +H
− u(t)

1 + bI
I + αH + β2

IH

S + I +H
− (γ + µ)I, (1)

dH

dt
=

u(t)

1 + bI
I − αH − β2

IH

S + I +H
− µH,

where A present the natural recruitment rate, β1 and β2 present the infection rate of I and H , respectively,
α as the progression rate, γ as death rate due to atherosclerosis, u as treatment rate, b as the half saturation
parameter, and µ as the natural death rate.
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Before we proceed to calculate the qualitative behavior regarding equilibrium points and the basic repro-
duction of the model, it is necessary to understand the basic properties of our proposed model. The following
theorems state these properties.

Theorem 2.1. Given the initial condition of System (1) as follows :

S(t = 0) > 0, I(t = 0) ≥ 0, H(t = 0) ≥ 0,

then the solution of S(t), I(t), and H(t) from System (1) is always non-negative for all t > 0.

Proof: For a non-negative initial condition, we have the following condition :

dS

dt

∣∣∣∣
S=0,I≥0,H≥0

= A > 0,

dI

dt

∣∣∣∣
S>0,I=0,H≥0

= αH ≥ 0,

dH

dt

∣∣∣∣
S>0,I≥0,H=0

=
u(t)

1 + bI
I ≥ 0.

It can be seen from the above calculation that the rates of S(t), I(t), and H(t) at the boundary of R3
+ is

always non-negative. Hence, we conclude that all the vector field direction goes inward from the boundary
planes. Therefore, whenever the initial condition of System (1) is non-negative, then the solution will always
be non-negative for all time t > 0.

Theorem 2.2. The solution of System (1) is bounded in the region

Ω =

{
(S, I,H) ∈ R3

+ : S + I +H ≤ A

µ

}
.

Proof: Sum up the left and right hand sides of system (1) gives us

d(S + I +H)

dt
=

dN

dt
= A− µ(S + I +H)− γI ≤ A− µN.

Solving dN
dt ≤ A− µN with respect to N(t) yield

0 ≤ N(t) ≤ A

µ
+N(0)e−µt,

where N(0) is a non-negative initial condition of the total population. Therefore, if the initial condition starts
from the inside area of the region Ω, then the solution will stay in Ω for t → ∞. On the other hand, if we
have the initial condition starts from the outside area of the region Ω, the solution will eventually tend to Ω
as t → ∞. Hence, the proof is complete.

The main contribution here is to reduce the number of infected individual I and H using an optimal
treatment rate u such that the cost of intervention can be as low as possible. This task shows minimizing the
following cost function

J (u, S, I,H) =

∫ T

0

(
ω1u

2 + ω2I + ω3H
)
dt, (2)

where ωi for i = 1, 2, 3 are the weight parameters, while T is the final simulation time.
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3. THE DYNAMICAL BEHAVIOUR OF THE MODEL

3.1. The equilibrium points and the basic reproduction number
To analyze the dynamical behaviour of our atherosclerosis model in System (1). We consider the treatment

variable as a constant parameter (u(t) = u). Hence, our model now takes the following form:

dS

dt
= A− β1

SI

S + I +H
− µS,

dI

dt
= β1

SI

S + I +H
− u

1 + bI
I + αH + β2

IH

S + I +H
− (γ + µ)I, (3)

dH

dt
=

u

1 + bI
I − αH − β2

IH

S + I +H
− µH.

The free atherosclerosis free-equilibrium point is given by

E1 = (S, I,H) =

(
A

µ
, 0, 0

)
, (4)

which represents a community without atherosclerosis. Using the next-generation matrix method [16], we
develop the basic reproduction number of our proposed model in System (3). In our case, the basic repro-
duction number presents the number of secondary cases of atherosclerosis due to one primary atherosclerosis
infection through social contact during his/her infection period in a completely susceptible population. Using
a similar approach as in [16], [17], [18], [19], [20] and references therein, the basic reproduction number
(R0) of our model is given by

R0 =
β1(µ+ α)

µ2 + (u+ α+ γ)µ+ αγ
, (5)

which is similar with our previous work in [10]. Using results in [21], we have the following theorems.

Theorem 3.1. The atherosclerosis free equilibrium point is locally asymptotically stable when R0 < 1 and
unstable when R0 > 1.

Theorem 3.1 represents a threshold such that community has a chance that atherosclerosis may dies out
from the population. In a model where a forward bifurcation is the only possible condition at R0 = 1, then
we will always has a free disease condition when R0 < 1. However, when a forward bifurcation is not
the only possible bifurcation phenomena, then it is possible that disease still persist even though the basic
reproduction number is already smaller than one. Our model shows this type of phenomena, which we will
discuss later.

Theorem 3.1 show the importance of the basic reproduction number in determining the condition to
guarantee the extinction of atherosclerosis from the population. Hence, it is important to know the be-
haviour of R0 with respect to each parameter in (5), especially with controllable parameters: β1, α, and
u. Since ∂R0

∂β1
= (µ+α)

µ2+(u+α+γ)µ+αγ > 0, we know that reducing the infection rate (reduce the social
interaction) will reduce R0 linearly. Similarly, since ∂R0

∂α = β1uµ
(µ2+(u+α+γ)µ+αγ)2 > 0, then the increases

of progression rate due to relapse of treated infected individual will increase R0. On the other hand, since
∂R0

∂u = − β1µ(µ+α)
(µ2+(u+α+γ)µ+αγ)2 < 0, then we know that increasing number of treatment rate for infected

individual will increase the chance of free atherosclerosis condition in the population.
Then, we analyze the existence of the other equilibrium points. The atherosclerosis endemic equilibrium

point of System (3) is given by

E2 = (S, I,H) = (S∗, I∗, H∗). (6)

with

S∗ =
A2

µ (β1I ∗ +A)
,

H∗ =
uAI ∗

(µβ2I ∗ +A (α+ µ)) (bI ∗ + 1)
.

(7)
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While I∗ is taken from a positive solution from the following equations:

f(I) = p (I)3 + q (I)2 + r (I) + s = 0, (8)

where p, q, r and s are expressed as follows:

p =b(γ + µ)(αγ β1 + γ µβ1 + γ µβ2)(v0 − 1),

q =γ2
(
µ2 + (u+ α+ γ)µ+ αγ

)
+Aµ b ((β1 + β2)µ+ γ β2) ,

+
(
2Aγ b (γ + µ) (α+ µ) +

(
γ2 (α+ µ) + µ (u+ µ+ α) γ +Abβ2µ

)
β1 + γ µβ2 (γ + µ)

)
,

(w0 − 1)

r =A (γ + µ) ((Ab+ β2)µ+Aα b) +
(
2A

(
µ2 + (u+ α+ γ)µ+ αγ

)
γ +Aβ1 (Ab (α+ µ) + µβ2)

)
,

(z0 − 1)

s =A2
(
µ2 + (u+ α+ γ)µ+ αγ

)
(1−R0).

and

v0 =
αγ2 + γ2µ+ µβ1β2

αγ β1 + γ µβ1 + γ µβ2
,

w0 =
2Aα bγ β1 +Aα bµβ1 + 2Abγ µβ1 +Abµ2β1 + γ µβ1β2 + µ2β1β2

2Aγ b (γ + µ) (α+ µ) + (γ2 (α+ µ) + µ (u+ µ+ α) γ +Abβ2µ)β1 + γ µβ2 (γ + µ)
,

z0 =
Aβ1

(
µ2 + (u+ α+ 2 γ)µ+ 2αγ

)
2Aγ (µ2 + (u+ α+ γ)µ+ αγ) +A (Ab (α+ µ) + µβ2)β1

.

The following theorem states the existence of at least one endemic equilibrium when R0 > 1.

Theorem 3.2. System (3) always has at least one endemic equilibrium when R0 > 1.

Proof: From the expression of p and s, it is clear that p > 0 ⇐⇒ β1 > β∗
1 = γ, and s < 0 ⇐⇒

R0 > 1 ⇐⇒ β1 > β∗∗
1 = γ + αµ+µ2+µu

µ+α . From this expression, it is easy to see that whenever R0 > 1,
then we always have p > 0 and s < 0.

When R0 = 1, then we have s = 0 which means that polynomial f(I) has exactly one zero root.
Furthermore, since p > 0, then we have that limI→∞ f(I) = ∞ and limI→−∞ f(I) = −∞. Hence, when
we have R0 > 1, then we have s < 0 which will shift f(I) downward. Hence, we have at least one positive
root of f(I) when R0 > 1.

Now, we analyze the possible existence of another positive equilibrium when R0 < 1. The following
theorem guarantee the existence of at least one atherosclerosis endemic equilibrium point when R0 < 1.

Theorem 3.3. System (3) has at least one endemic equilibrium when R0 < 1 if b > b∗ where

b∗ =
(u+ µ+ α)

(
µ2 + (u+ α+ γ)µ+ αγ

)
− µuβ2

Aαu+Aµu
. (9)

Proof: We prove this theorem using a gradient analysis of f(I) at I = 0 and R0 = 1. At first, we set p
as a function of R0 by setting β1 as the bifurcation parameter and substitute it to each coefficient of f(I).
Solving R0 with respect to β1, and substitute it to f(I), then we have each coefficient on f(I) as a function
of R0 as follows.

p(R0)I
3 + q(R0)I

2 + r(R0)I + s(R0) = 0.

Taking the implicit derivative of above equation with respect to R0, we have

∂p

∂R0
I3 + p(R0)3I

∂I

∂R0
+

∂q

∂R0
I2 + q(R0)2I

∂I

∂R0
+

∂r

∂R0
I + r(R0)

∂I

∂R0
+

∂s

∂R0
= 0.

Substitute I = 0 and R0 = 1 to above equation, and solve it with respect to ∂I
∂R0

gives us

∂I

∂R0
= A2

(
αγ + αµ+ γ µ+ µ2 + µu

) 1

r
,
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where r = − Aµ
µ+α

(
b(Aαu+Aµu) + µuβ2 − (u+ µ+ α)

(
µ2 + (u+ α+ γ)µ+ αγ

))
.

From above analysis, we know that f(I) will have at least one positive root when ∂I
∂R0

< 0 which
equivalent to a condition when r < 0. Therefore, we have that r < 0 if and only if

b > b∗ =
(u+ µ+ α)

(
µ2 + (u+ α+ γ)µ+ αγ

)
− µuβ2

Aαu+Aµu
.

Hence, the proof is complete.
From the expression of R0, we can see that R0 is not depend on β2 and b. However, Theorem 3.3 shows

us that these two parameters will determine a condition when an endemic equilibrium may still persist even
R0 < 1. Theorem 3.3 shows how b may trigger multiple endemic equilibriums if b > b∗. Using the same
formula, but choosing β2 as the critical parameter will give us a condition of multiple endemic equilibriums
depend on β2. To be precise, the critical value of β2 is given by

β∗
2 =

b(Aαu+Aµu)− (u+ µ+ α)
(
µ2 + (u+ α+ γ)µ+ αγ

)
µu

. (10)

Hence, if β2 > β∗
2 , then we will have at least one endemic equilibrium when R0 < 1. Therefore, reducing

the spread of atherosclerosis by only paying attention in reducing R0 without concerning to the number of
doctors (b) or secondary infection (β2) is not wise, since it may trigger a complex condition in the field.

Next, we use Descartes rules of sign to analyze the possible number of endemic equilibrium when R0 < 1
and R0 > 1. The result is given in Table 1. We can see that it is possible that we have two endemic
equilibriums when R0 < 1, or even three endemic equilibriums when R0 > 1.

Table 1: Possible number of positive roots of f(I).

Case p q r s R0 Change of sign Possible roots

1 + + + + R0 < 1 0 0

2 + + + - R0 > 1 1 1

3 + + - + R0 < 1 2 0 or 2

4 + + - - R0 > 1 1 1

5 + - + + R0 < 1 2 0 or 2

6 + - + - R0 > 1 3 1 or 3

7 + - - + R0 < 1 2 0 or 2

8 + - - - R0 > 1 1 1

From Theorem 3.2 and 3.3, our model suggests that atherosclerosis may still exist even though R0 is
already smaller than one. This result means that the basic reproduction number no longer can be the unique
indicator to determine whether atherosclerosis may still exist or dies out. Therefore, to analyze the qualitative
behaviour on the dynamic of System (3), we conduct our bifurcation analysis in the following section.

3.2. Existence of forward bifurcation with hysteresis

In this chapter, we analyze the bifurcation of System (3) using the well known Castillo-Song bifurcation
theorem [22] at R0 = 1. Let

S = x1, I = x2, H = x3,

dS

dt
= g1,

dI

dt
= g2,

dH

dt
= g3.
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Hence, System (3) becomes as follows:

g1 = A− β1
x1x2

x1 + x2 + x3
− µx1,

g2 = β1
x1x2

x1 + x2 + x3
− u

1 + bx2
x2 + αx3 + β2

x2x3

x1 + x2 + x3
− γx2 − µx2,

g3 =
u

1 + bx2
x2 − αx3 − β2

x2x3

x1 + x2 + x3
− µx3.

(11)

First, we have to check the existence of zero eigenvalue of linearized System (11) at R0 = 1 and E1 such that
we can use center-manifold theory to conduct further analysis. Therefore, let us choose β1 as the bifurcation
parameter. Solving R0 with respect to β1, we have

β1 = β†
1 =

(
αγ + αµ+ γ µ+ µ2 + µu

)
µ+ α

. (12)

Linearized System (11) at R0 = 1 and E1, we have

J |E1,β1
=


−µ −µ2+(−u−α−γ)µ−αγ

α+µ 0

0 − uα
α+µ α

0 u −α− µ

 . (13)

This matrix has three eigenvalues, i.e. λ1 = 0, λ2 = −µ and λ3 = −α2+2µα+uα+µ2

α+µ . Since we have simple
zero eigenvalue and the others are negative, then we can use center manifold theory to analyze the bifurcation
of our model. Then, we calculate the right and left eigenvectors respected to the zero eigenvalue. The right
eigenvectors of the zero eigenvalue, namely w⃗ = (w1, w2, w3) is given by

w1 = −
(
αγ + µα+ γµ+ µ2 + uµ

)
w3

µu
,

w2 =
(α+ µ)w3

u
,

w3 = 1.

On the other hand, the left eigenvector, namely v⃗ = (v1, v2, v3), is given by:

v1 = 0,

v2 =
(α+ µ) v3

α
,

v3 = 1.

Since v1 = 0, then we do not need to calculate the partial derivative of g1. Hence, the partial derivative
of g2 and g3 are given by:

∂2g2
∂x2

2

= −2

(
µ2 + (α+ γ + u)µ+ αγ

)
(α+ µ)x1

+ 2ub,

∂2g2
∂x2∂x3

=
∂2g2

∂x3∂x2
= −

(
µ2 + (α+ γ + u)µ+ αγ

)
(α+ µ)x1

+
β2

x1
,

∂2g2
∂x2∂β1

=
∂2g2

∂β1∂x2
= 1,

∂2g3
∂x2

2

= −2u b,
∂2g3

∂x2∂x3
=

∂2g3
∂x3∂x2

= −β2

x1
.

By using the formula of A and B in [22], we have

A =

3∑
k,i,j=1

vkwiwj
∂2gk

∂xi∂xj
(0, 0)

= 2
µ (α+ µ)

Au2α

(
u bAα+ u bAµ−

((
µ2 + (u+ α+ γ)µ+ αγ

)
(α+ µ+ u)

)
+ µuβ2

)
,
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and

B =

3∑
k,i=1

vkwi
∂2gk

∂xi∂β1
(0, 0),

= v2w2
∂2g2

∂x2∂β1
,

=

(
(α+ µ) v3

α

)(
(α+ µ)w3

u

)
(1) ,

=
(α+ µ)

2

αu
> 0,

It can be seen that B is always positive, while A can be positive or negative. Hence, the type of bifurcation
that may appear is depend on the sign of A as follows:

1) A > 0 if and only if

ubAα+ ubAµ+ µuβ2 >
(
µ2 + (u+ α+ γ)µ+ αγ

)
(α+ µ+ u) . (14)

2) A < 0 if and only if

ubAα+ ubAµ+ µuβ2 <
(
µ2 + (u+ α+ γ)µ+ αγ

)
(α+ µ+ u) . (15)

Based on above results, we have the following theorem.

Theorem 3.4. System (3) undergoes a forward bifurcation phenomena when b < b∗, and backward bifurcation
when b > b∗, where

b∗ =
(u+ µ+ α)

(
µ2 + (u+ α+ γ)µ+ αγ

)
− µuβ2

Aαu+Aµu
.

3.3. Numerical simulations on the type of bifurcation
To conduct numerical experiment on this section, we use the following parameter values: A = 1000

65×365 , α =

10−5, β2 = 0.2, γ = 10−3, u = 0.2, µ = 1
65×365 while β1 and b are various. Using these parameter values, we

have that R0 = 1 when β1 = 0.162. Furthermore, we have that b∗ in Theorem 3.4 is 0.025. The bifurcation
diagram of System (3) have shown in Figure 1 based on different value of b.

The first bifurcation type is a forward bifurcation as shown in Figure 1a, when we choose b = 10−4 < b∗.
We can see that we have the atherosclerosis free equilibrium is always stable when R0 < 1, and unstable
when R0 > 1. On the other hand, we only have one stable endemic equilibrium when R0 > 1, and no
endemic equilibrium otherwise. This means that, larger capacity of the hospital (smaller b) will reduce the
possibility of misinterpretation of endemics in the field, and atherosclerotic disease is easier to control.

When we choose b = 0.05 > b∗, then according to Theorem 3.4, we will have System (3) undergoes
a backward bifurcation at R0 = 1 as shown in Figure 1b. In this situation, it is still possible to reach a
disease free state when R0 < 1. However, it is also possible that the final condition when R0 < 1 will end
up in an endemic state depend on the initial condition of System (3). To be precise, we have two endemic
equilibriums when R0 < 1, one of them is stable and the other is unstable. When R0 > 1, we have a higher
values of the endemic equilibrium.

The last possible bifurcation type is the forward bifurcation with hysteresis. This condition is obtained
when the value of b is not significantly smaller than b∗, which in our case we take b = 2× 10−3 < b∗. As
we can see from Figure 1c, we have a complex situation around R0 = 1. When R0 > 1, but close to 1, we
have three endemic equilibriums, two of them are stable, while the other one is unstable. On the other hand,
when R0 < 1 but close to one, we have a similar qualitative result with a backward bifurcation, where we
have one stable endemic equilibrium and one unstable endemic equilibrium. This phenomena is not appears
often in epidemiological model. Readers can see [23] for further discussion about this idea.

From these numerical experiments, it can be concluded that controlling atherosclerosis is much more
difficult when there are limited health facilities, both hospitals and doctors, because the emergence of backward
bifurcation and forward bifurcation with hysteresis can trigger difficulties in predicting the final state in the
field. This is because the existence of the basic reproduction number is no longer the only indicator for the
endemicity of the proposed model.
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(a) Forward bifurcation (b) Backward bifurcation

(c) Forward bifurcation with hysteresis

Figure 1: Three types of possible bifurcation phenomena of atherosclerosis model in (3).

4. OPTIMAL CONTROL SIMULATION

In this section, we carry out a numerical characterization and simulation of the optimal control problem for
System (1) where the corresponding cost function is given by (2). We start by performing the characterization
of the optimal control problem using the Pontryagin Maximum Principle (PMP) [24], and followed with some
numerical experiments.

4.1. Characterization of the optimal control problem

As we mentioned before, we characterize our optimal control problem using the well-known Pontryagin’s
Maximum Principle (PMP) [24] to determine the optimality condition of treatment rate u(t). The Lagrangian
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of System (1) is defined as

L(S, I,H, u, λi, ωi) = ω1u
2 + ω2I + ω3H + λ1

dS

dt
+ λ2

dI

dt
+ λ3

dH

dt
,

= ω1u
2 + ω2I + ω3H . . .

+λ1

[
A− β1

SI

S + I +H
− µS

]
. . . (16)

+λ2

[
β1

SI

S + I +H
− u(t)

1 + bI
I + αH + β2

IH

S + I +H
− (γ + µ)I

]
. . .

+λ3

[
u(t)

1 + bI
I − αH − β2

IH

S + I +H
− µH

]
,

where λi for i = 1, 2, 3 are the adjoint variables for S, I, and H , respectively, while ωi for i = 1, 2, 3 are
the weight parameters.

The adjoint variables λ1, λ2 and λ3 satisfy the following conditions:

dλ1

dt
= −∂L

∂S
,

= β1I

(
I +H

(S + I +H)2

)
(λ1 − λ2) + µλ7,

dλ2

dt
= −∂L

∂I
,

= −ω2 + β1S

(
S +H

(S + I +H)2

)
(λ2 − λ1) + (µ+ γ)λ2 . . .

+

[
u

(1 + bI)2
− β2H

(
S +H

(S + I +H)2

)]
(λ3 − λ2), (17)

dλ3

dt
= − ∂L

∂H
,

= −ω3 + β1
SI

(S + I +H)2
(λ2 − λ1) + β2I

[(
S + I

(S + I +H)2

)
+ α

]
(λ3 − λ2) + µλ3,

with a transversality condition λi(T ) = 0 for i = 1, 2, 3. Solving ∂L
∂u = 0 with respect to u, we have

u =
1

2ω1

I

1 + bI
(λ2 − λ3).

Combining above u with associated lower bound umin and upper bound umax, we have the optimal control
of u∗ is given by

u∗ = min

{
umax,max

{
umin,

1

2ω1

I

1 + bI
(λ2 − λ3)

}}
. (18)

4.2. Numerical experiments
We use the Fourth-order of Runge-Kutta Method to solve our optimal control problem numerically. The

problem consists of the disease model in (1), cost function in (2), adjoint system in (17) with transversal
condition, and optimal condition in (18). Using an initial guess of u for all t ∈ [0, T ], we start our computation
by solving the atherosclerosis model in System (1) forward in time since we have initial condition of S, I, and
H are given. Next, we solve our adjoint system in (17) backward in time using the transversal condition. We
update our control in (18) using the previous numerical calculation on state and adjoint variables, and update
it until the convergence criteria is achieved. Please see [25], [26] for further examples of the implementation
of this numerical algorithm to solve the optimal control problem from the epidemiological models. To conduct
the numerical simulations, we use the following parameter values: A = 1000

65×365 , β1 = 0.2, β2 = 0.1, µ =
1

65×365 , b = 0.005, α = 0.0005, and γ = 0.0001 which give us R0 > 1 withoutcontrol implemented.



ATHEROSCLEROSIS MODEL 135

Figure 2: Optimal control simulations for scenario-1.

Figure 3: Optimal control simulations for scenario-2.

The first numerical simulation (scenario-1) conducted when the total number of infected individuals is only
10% from the population. The result is given in Figure 2. We can see that the control is given only for a
short time period in day 13 until day 24, and tends to zero rapidly in the next days. With this control profile,
we can see that the total number of infected individuals stop to increase at day-13, and continue to increase
as soon as the control intervention stopped. The cost function for this scenario is 1526, 72.

For the second scenario (scenario-2), we perform our numerical experiment with different initial values used
in scenario-1. In this scenario, we assume that 30% of total population is already infected by atherosclerosis.
The result is given in Figure 3. Due to the high number of infected individuals at the start of the simulation,
maximum intensity of control should be given for the first 18 days, before decreasing to zero the very next
day of simulation. Therefore, we can see that number of infected individuals can be suppressed early on,
before increasing again when the control disappears. The cost function for this simulation is 1663, 16. This
cost function is higher than scenario-1, since the control reaches its maximum effect sooner and lasts longer
in scenario-2. Therefore, we can conclude from these numerical experiments that giving control in a endemic
prevention (scenario-1) has a lower cost of intervention then for an endemic reduction scenario (scenario-2).
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5. CONCLUSIONS

This paper discussed the mathematical model of atherosclerosis with limited hospital resources. The
intervention of hospitalization takes place in the model to reduce the death rate of atherosclerosis. Disease-free
equilibrium and the basic reproduction number were found analytically, and we concluded that atherosclerosis
can be eliminated from the population when the basic reproduction number is less than one. Numerical results
show that it is possible to have a multiple endemic equilibrium when the basic reproduction number is less
than one (backward bifurcation), or larger than one (forward bifurcation with hysteresis), depending on the
saturation parameter of the hospitalization rate or the infection rate of treated infected individuals. These
results indicate that controlling atherosclerosis should consider not only the value of the basic reproduction
number, but also the quality of hospitalization intervention (maximum capacity of the hospital, availability
of the doctor, etc). Furthermore, some numerical experiments on the optimal control problem indicated that
the endemic prevention scenario is more easily (i.e. less costly) than the endemic reduction scenario.
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