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Abstract. The urokinase-type plasminogen activator (uPA) system plays a 

significant role in the invasion and metastasis of cancer cells. The present study 

was conducted to investigate natural product compounds as inhibitors and hit 

molecules of uPA using in-silico analysis. A pharmacophore model was built to 

screen the Indonesian Herbal Database (HerbalDB) to obtain inhibitors of different 

scaffolds. Based on the molecular docking score, four ligands were selected as 

potential uPA inhibitors. Subsequently, the stability of the ligand-uPA complex 

was analyzed using molecular dynamics (MD) simulation. An RMSD graph of the 

backbone protein and the RMSF values of the amino acid residues were also 

determined. In addition, the MM-PBSA method was applied to calculate the free 

binding energy. According to the results, Model_3, characterized by aromatic 

rings 23 (F1 and F2), cationic H-bond donor (F3), and metal ligator (F4) features, 

had an adequate goodness-of-hit score (GH). The four top-ranked ligands, 

isorhamnetin, rhamnetin, quercetin, and kaempferol, showed higher docking 

scores compared to the others. This study confirmed that isorhamnetin, rhamnetin, 

and kaempferol build stable complexes with uPA with lower binding energy than 

quercetin. 

Keywords: anti-cancer; flavonoids; in-silico study; isorhamnetin; kaempferol; 
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1 Introduction 

Urokinase-type plasminogen activator (uPA) belongs to the serine protease class 

of enzymes, which play a significant role in the regulation of physiological and 

pathological processes. Furthermore, uPA cleaves the proenzyme/zymogen 

plasminogen to form active enzyme plasmin and degrades the extracellular matrix 

(ECM) as well as the basement membranes, directly or indirectly, by activating 

pro matrix metalloproteinases (pro-MMPs) and promoting cancer cell metastasis 

as well as invasion [1,2]. uPA is constructed by a C-terminal (≈ 30-kDa) serine 
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protease domain (SPD) and an N-terminal (≈25-kDa) A-chain, which consist of 

a growth factor domain and a kringle domain. From the Serin Protease Domain 

(SPD) of uPA, the active site of Ser-195 is replaced by residues of Ala, namely 

Lys71, Arg78, Lys82, Lys90, Arg120, and Lys124 [3].  

In cancer treatment, a selective inhibitor of uPA can have therapeutic value [2]. 

Para-substituted benzamidine derivatives, 4-chloro- and 4-trifluoro-methyl-

phenylguanidines (Figure 1) as well as amiloride have been recognized as 

potential uPA inhibitors, albeit of low potency [4].  

 

                          (a)                          (b) (c) 

Figure 1 The structure of previous compounds as uPA inhibitors: 4-

trifluoro-methyl-phenylguanidines (a), and 4-chloro-methylphenyl-

guanidine (b), amiloride (c). 

With considerable progress in the field of cancer therapy, synthetic medicines 

have become more prevalent, despite the relatively fewer side effects and 

minimal toxicity of natural compounds [5]. In chemoprevention, natural 

compounds provide the benefits of safety, efficacy, ready availability, 

affordability as well as the potential to overcome resistance to other traditional 

therapies and anticancer drugs [6]. Natural flavonoids with hydroxyl functional 

groups and O-glycosylation have been even reported for several different 

properties, including antioxidant, antitumor, influenza virus neuraminidase 

inhibition, aldehyde oxidase inhibition, immunomodulatory as well as 

antitubercular activities [7].  

In drug development, computer-aided drug design is applied to develop 

simulation and calculation models. The method used in drug design is either 

structure-based or ligand-based to facilitate the determination of drug candidates. 

In this study, the pharmacophore model was used to screen the HerbalDB 

medicinal plant database, which comprises of 1412 ligands (Biomedical 

Computation     and     Drug     Design     Laboratory,     Universitas Indonesia)  
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[8]. The selected ligands were docked into the binding pocket of uPA by 

employing the Molecular Operating Environment (MOE) software. In addition, 

the Protein-Ligand Interaction Profiler (PLIP) web service 

(https://projects.biotec.tu-dresden.de/plip-web/plip) was applied to visualize the 

molecular interaction between the flavonoids and the amino acid residues of uPA 

[9]. Doxorubicin, a known uPA inhibitor, was used as the standard. As the first 

clinically used anthracycline, doxorubicin is derived from pigment of the 

Streptomyces peucetius bacterium. This natural compound is used to treat cancers 

of various types of tissue [10]. Doxorubicin is associated with regulating tumor 

cell survival and apoptosis with TF/FVIIa expression. This complex transforms 

FX into the serine protease FXa. Besides the proteases FVIIa and FXa, other 

proteases, such as plasmin, uPA, and tPA, also mediate tissue remodeling [11]. 

In the present research, Groningen MAchine for Chemical Simulation 

(GROMACS), a molecular simulation method that uses the messaging passing 

interface (MPI), was applied to obtain the final accurate receptor-ligand complex 

[12]. The best two ligands in terms of docking score were further evaluated using 

MD simulation. In evaluating the simulation, equilibration was monitored and 

confirmed by examining the stability of the system’s temperature, pressure, 

density, and potential energy as well as the root mean square deviation (RMSD) 

of the backbone atoms. Subsequently, the binding energies of the two compounds 

were calculated using MM-PBSA [13].   

2 Materials and Methods 

2.1 Structure-based Pharmacophore Modeling and Virtual 

Screening 

Several uPA X-ray complexes are documented in the Protein Data Bank (PDB): 

1OWD, 1OWE, 1SQO, 1SQT, 1SQA, 1CFL, 1EJN, 1OWH, 1OWK, 1OWJ, 

1U6Q, 1YWH, 2OW8, and 1C5X with high resolution [2,14]. PDB ID 1OWE, 

1OWH, and 1C5x have resolution < 2Å. PDB ID 1C5X was used to build the 

pharmacophore model. ESI, a native ligand of 1C5X, features a metal ligator 

besides an aromatic ring and a donor hydrogen. The native ligand of 4-

iodobenzo[β]thiophene-2-carboxamidine (ESI) was preprocessed with hydrogen-

added Gasteiger partial charges and energy minimization using the Merck 

molecular force field 94x (MMFF94x). The MOE Pharmacophore Query Editor 

was applied to create queries, where six default Ph4 schemes define the 

annotation of each ligand in the search database (PCH, PCH_All, PPCH, 

PPCH_All, PCHD, CHD). The structural features in molecules using the Ph4 

concept is recognized at the receptor site and thus is responsible for their 

biological activity [14]. A total of 40 active and 1200 inactive compounds were 

obtained from Dekois 2.0 as a testing set to validate the pharmacophore model. 
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The calculated validation parameters, such as total hits (Ht), active hits (Ha), % 

yield of actives, % ratio of actives, enrichment factor (E), and goodness-of-hit 

score (GH), were determined to investigate the pharmacophore model [15].  

All the compounds from the HerbalDB database were submitted to the Pharmit 

server (http://pharmit.csb.pitt.edu) for virtual screening of large compound 

databases using pharmacophores, molecular shapes, and energy minimization 

[16]. Pharmit uses the Volumetric Aligned Molecular Shapes search method, 

which uses inclusive and exclusive constraints. Compounds were filtered using 

Lipinski’s rule of five (RO5) by screening for molecular weight < 500, LogP < 

5, number of rotating bonds (n-ROTB) < 10, number of H-bond donors < 5, 

number of H-bond acceptors < 10, PSA < 140, number of aromatic groups < 3 

[17]. The enrichment factor (EF) and goodness-of-hit score (GH) values were 

computed to evaluate the structure-based pharmacophore model score ranges 

from 0 to 1 (null model to ideal model), which is very good when it is higher than 

0.7 [18].  

2.2 Molecular Docking 

The structure of the 1C5X protein crystal with ESI native ligand in the B chain 

structure was imported into the MOE 2009.10 software, minimizing the energy 

and 3D protonating by removing solvent molecules (water). The DUDE dataset, 

containing 162 active and 9,840 decoy compounds, was used to evaluate the 

docking method (http://dude.docking.org) [19]. Docking simulation was 

performed using the placement-scoring parameters while retaining all 10 default 

poses. Meanwhile, the performance was evaluated by calculating the enrichment 

factor at 1% as well as the area under the receiver operating characteristics curve 

(AUC) of each placement-scoring parameter. The maximum attainable value was 

100, where AUC = 0.5 conforms to random discrimination between actives and 

decoys. A value close to 1.0 represents the ideal case, where the known true 

actives are ranked ahead of the decoys. In addition, Screening Explorer, a web-

based interactive application, was used. It supports the scoring functions and aids 

the selection of active compounds in drug discovery [20]. The best Indonesian 

natural product compounds were determined based on the Gibbs free energy 

value (ΔGbind) and molecular interaction with the binding site of uPA.  

2.3 Molecular Dynamics (MD) and MM-PBSA Calculation 

The protein-ligand complex structure of uPA and the candidate compound was 

prepared for MD simulation using Gromacs 6.3 software with an AMBER99SB-

ILDN forcefield, while the topology and ligand parameters were selected using 

ACPYPE. Furthermore, the TIP3P water model was selected for solvating 

complexes. The simulation preparation comprised of a minimization step, 310 K 

temperature, pressure equilibration, and simulation with a 2fs time step, while the 
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final MD calculations were performed at 100 ns. The MD simulations were 

examined based on RMSD as well as RMSF and the binding energies were 

calculated using MM-PBSA because this has been shown to be an efficient and 

reliable method to evaluate protein-ligand binding interaction [12, 21]. Hydrogen 

bond analysis was generated using VMD. 

3 Result and Discussion 

The 3D structure of a protein with PDB ID 1C5X was used to study the active 

site of uPA with 4-iodobenzo[β]thiophene-2-carboxamidine (ESI) [20]. A total 

of 3 hydrogen bonds were discovered between -NH in the amidine ring and 

Asp189B as well as Gly219B [22].   

3.1 Structure-based Pharmacophore Modeling and Virtual 

Screening 

This study used a structure-based pharmacophore model, which relies on 

information about the target’s three-dimensional structure [23]. The active 

compounds from Dekois 2.0 were benzothiophene, indole, indoline, and 

quinoline. Figure 1 shows the features of Model_3, where the EF and GH 

pharmacophore model values were 2.48 and 0.723, respectively, indicating a 

rational virtual screening. Furthermore, these features represented essential 

interaction points of the inhibitor binding of uPA: (i) aromatic rings (F1 and F2), 

which connect to Cys191, Gln192, Ser195, and Trp215; (ii) a cationic H-bond 

donor (F3) corresponding to Asp189, Ser190, and Gly219; a metal ligator (F4) 

corresponding to Gly216 (Figure 2). Similarly, a 3D pharmacophore model is 

suitable for searching for bioactive molecules using virtual screening as well as 

to support medicinal chemistry in hit expansion and lead optimization [24].  

 

Figure 2 The pharmacophore features of a ligand (encoded as Model_3) in 

the uPA binding pocket (PDB ID 1C5X). The yellow color indicates the β-

sheet in the 3D structure of uPA. F1 and F2 represent the aromatic feature; 

F3 is the cationic H-bond donor; F4 is the metal ligator. 
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Subsequently, the Model_3 pharmacophore model was used as a query in 

screening the HerbalDB database. Molecular shape similarity is an applied 

method of structure-based virtual screening that is used to filter the number of 

database compounds [25]. These active sites are represented in the cationic H-

bond donor (F3). 

3.2 Structure-based Virtual Screening 

Screening of the HerbalDB database through the validated pharmacophore model 

of a uPA inhibitor yielded thirteen hit molecules mapped to Model_3. These 

compounds were: isorhamnetin, rhamnetin, quercetin, kaempferol, γ-

mangosteen, luteolin, baicalein, apigenin, acacetin, lumichrome, formononetin, 

and scopoletin. These were prepared for molecular docking. 

3.3 Molecular Docking 

An examination of the lowest RMSD pose showed the MOE’s accuracy in 

reproducing the conformation of small molecules observed in the protein-ligand 

complex [26]. According to the results, the smallest RMSD value in Alpha 

Triangle placement and Alpha HB score was 0.709, while the EF 1% value was 

61.74. An AUC value of 0.5 corresponds to a random ranking, while a value of 

1.0 represents a perfect score (all actives ranked above the decoys) [20,27]. The 

ROC curve represents sensitivity (proportion of true positives) as a function of 

specificity (proportion of false positives). Therefore, the area under the curve 

(AUC) value provides an objective measure of a classifier’s overall performance, 

where a value of 0.709 indicates a 70.9 % accuracy [28].  

A lower docking number indicates a more favorable position in the receptor-

binding site [29]. The molecular docking of thirteen hit molecules and the uPA 

protein involves ligand conformation as well as orientation (or posing) within a 

targeted binding site and comprises two main steps: prediction of multiple 

structural conformations in a binding pocket (pose) and scoring the pose to rank 

multiple solutions [30]. Subsequently, the chemical substances from the docking 

result are classified as flavonoids with anticancer activities [31]. 

Based on the docking score, the four hit molecules isorhamnetin, rhamnetin, 

quercetin, and kaempferol had the best docking scores compared to the others (-

129.64; -128.37; -120.98; -116,84 kcal/mol). Isorhamnetin and rhamnetin had 

higher docking scores than that of doxorubicin as positive control (-123.81 

kcal/mol). These two compounds are metabolites of quercetin and naturally 

occurring O-methylated flavonol. The methylation reaction increases the 

metabolic stability of flavonoids that have better bioavailability. This leads to 

better absorption and increases permeability across membranes [32]. Quercetin 

has been found to inhibit serine proteases (uPA) with an IC50 value of 7 μM [33]. 



 Pharmacophore Modeling, Docking, and Molecular 457 

 

The chemical structure of the four molecules was constructed by two benzene 

rings (A and B) as an aromatic ring and a hydrophobic region connected by a 

heterocyclic pyran ring (C) consisting of oxygen atoms as a metal ligator scaffold, 

as shown at Figure 3 [34].  

 
                                           (a)                                                (b) 

 
                                           (c)                                              (d) 

Figure 3 2D structure of the four best-docked flavonoids: (a) 

isorhamnetin; (b) rhamnetin; (c) quercetin; (d) kaempferol. The ligands 

were built using the MOE software. 

The ligands have interaction of hydrogen bonds with Asp189, Ser190, Ser195, 

and Gly219. The ligand-Ser195 complex is located at the surface-exposed 

reactive center loop (RCL) of the SPD of uPA [3]. The hydrogen bond in Ser190 

makes an additional bond at the S1 site by interaction with the hydroxyl side 

chain, which can provide increased affinity as an inhibitor. Isorhamnetin, 

quercetin, and kaempferol interact with Asp189. The side chain hydroxyl group 

in flavonoid as an inhibitor makes two hydrogen bonds, with the carboxylate of 

Asp189 and the carbonyl oxygen of Gly219 [22]. Isorhamnetin forms hydrogen 

interaction with Asp189 and Gly219, while rhamnetin has no interaction with 

Asp189. These differences make the inhibitor potency of isorhamnetin stronger 

than that of rhamnetin. Kaempferol had the highest docking score, because it has 

one hydroxyl group in the B ring. 
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The MD simulation is commonly applied to search the optimal structure of the 

initial structure under the current conditions. The RMSD profile takes as 

reference the first frame of the simulation, which is superimposed onto the rest 

of the frames. The RMSD values (i.e. the structural differences with respect to 

the reference frame) increased over the simulation time until the system reached 

a stable conformation [35]. The average RMSD value of the backbone atoms in 

isorhamnetin was 0.197, showing the smallest RMSD, i.e. greater stability, during 

the entire MD simulation. The increasing RMSD value indicates that the structure 

of the macromolecule enzymes started to open (unfold) and the ligand would look 

for the corresponding binding site or appropriate coordinate of the protein [36]. 

All fluctuations of the RMSD values of all ligands were under 3Å, which can be 

stated as stable conformation during the 100 ns of simulation (Figure 4).  

        

Figure 4 The backbone RMSD of the main protein atoms of each ligand 

for isorhamnetin, rhamnetin, quercetin, kaempferol, and doxorubicin, 

colored green, yellow, blue, orange, and purple, respectively. 

The RMSF value is the measure of the deviation between the atomic positions of 

each protein residue, indicating the difference between the fluctuations in the 

movement of each residue during the simulation. RMSF profiles are often 

employed to describe and compare the relative mobility of specific regions of the 

receptor. The higher RMSF values correspond to flexible loops, while their lower 

counterparts belong to transmembrane helices, where residues are stabilized by 

the secondary structure [37]. In the uPA-kaempferol complex, the Ser195 

residues showed lower RMSF (0.50 Å) than the rhamnetin complex (0.52 Å), and 

the quercetin complex (0.55 Å). In the residues of 189 and 190, the doxorubicin 

and isorhamnetin complexes showed higher RMSF values, i.e. 0.69 and 0.56 Å 

respectively. This shows that the residue of Ser195 is stabilized by the secondary 

structure (Figure 5). 
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Figure 5 Plot of RMSF residues during MD simulation for isorhamnetin, 

rhamnetin, quercetin, and kaempferol, indicated by green, yellow, blue, 

orange, and purple colors, respectively. 

3.4 Hydrogen Bond Interaction 

Hydrogen bond interactions play an essential role in preserving the secondary 

structures of protein [38]. For the ligand-uPA complexes in the MD simulation, 

the amino acid residues Tyr94, His99, Ser190, Gly216, Gly219 showed a 

hydrogen bond with the ligand. The MD simulation started from docking poses 

with similar orientations. The results demonstrated that the amino acid residue 

Ser190 is a crucial residue for uPA activity. The binding complex of isorhamnetin 

as observed in uPA involves H-bond interaction with the key residue of Ser190 

with a distance of 2.43 Å (strong hydrogen bond). In the formation of a hydrogen 

bond, the distance between the H and the acceptor (A) atoms must be smaller 

compared to the sum of their corresponding van der Waals radii [39]. The binding 

conformations of the final snapshot of rhamnetin, quercetin, kaempferol, and 

doxorubicin in the MD simulation revealed different H-bond interactions from 

the docking results (Figure 6). The difference from the MD simulation is that the 

transitions between folded and unfolded states can be obtained. 

The hydrogen bond occupancy is depicted in Table 1. Rhamnetin with a total of 

54 hydrogen bonds had the highest occupancy at 38.24%, where the hydrogen 

bond interacted with GLY219. A hydrogen occupancy of 27.45% was observed, 

where kaempferol plays a role as donor to Asp189, and 13.73% with Ser190, and 

it has a total of 53 hydrogen bonds. The total hydrogen bond and hydrogen bond 

occupancy determine the stability of the complex. Meanwhile isorhamnetin and 
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quercetin had occupancy less than 10%, and doxorubicin had no hydrogen bond 

occupancy. 

                                
                        a                                       b                                    c                             

                                                                                    
                                           d                                       e                          

Figure 6 The ligand-protein complexes in the Molecular Dynamics (MD) 

simulations at the final snapshots (100 ns). The ligands: isorhamnetin (a), 

rhamnetin (b), quercetin (c), kaempferol (d), and doxorubicin (e) are represented 

as sticks and the protein as wires.  

Table 1 The hydrogen bond occupancy. 

Ligand Donor Acceptor Occupancy (%) 

Rhamnetin RHA246-Side Gly219-Main 38.24 

Kaempferol KAE246-Side Asp189-Side 27.45 

 Ser190-Side KAE246-Side 13.73 

3.5 MM-PBSA 

Once the optimal conformation is reached, a balanced conformation is 

maintained, which is useful for the conformational selection of the MM-PBSA 

calculation of uPA’s binding free energy with all the compounds. The negative 

value of the ΔGbind at 310 K shows the energetically favorable binding affinity of 

the ligand to the protein [40]. In addition, the cumulative negative contribution 

of the van der Waals, electrostatic as well as non-polar solvation energy 

interaction with the uPA-complexes’ stability. Quercetin had a lower negative 

binding energy compared to isorhamnetin, rhamnetin as well as kaempferol and 

is therefore a promising agent modification for uPA inhibitors. The binding 

energy of uPA-rhamnetin was predicted as a substantial energy contribution with 

ΔGbind of -59.21 kcal/mol (Table 2). 
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Table 2 MM-PBSA free binding energy of uPA complexes. 

Compound 
∆Evdw 

(kJ/mol) 

∆Eele 

(kJ/mol) 

∆GPB 

(kJ/mol) 

∆GNP 

(kJ/mol) 

∆Gbind 

(kJ/mol) 

Isorhamnetin −154.81±0.14 −27.20±0,18 142.52±0.10 −14.61±0.00 −54.11±0.06 

Rhamnetin −155.32±0.29 −40.16±0.13 150.56±0.38 −14.43±0.02 −59.35±0.20 

Quercetin −136.08±0.10 −47.34±0.21 149.36±0.53 −13.36±0.03 −47.41±0.20 

Kaempferol  −138.97±0.51 −49.65±0.91 143.10±1.17 −13.12±0.03 −58.63±0.28 

Doxorubicin −118.43±0.08 −27.68±0.18  97.37±0.66 −12.06±0.03 −60.80±0.38 

4 Conclusion 

Structure-based pharmacophore modeling and virtual screening successfully 

identified several flavonols as new inhibitors of uPA. Four flavonols (quercetin, 

isorhamnetin, rhamnetin, and kaempferol) indicated good affinity, i.e. equal to 

that of doxorubicin, a known uPA inhibitor. Some important residues, known to 

play the role of serin protease, i.e. Asp189, Ser195, and Gly219, were visualized. 

The MD simulations proved that the complex between uPA-rhamnetin is the 

stablest and the hydrogen bonds involved in the ligand-protein interaction 

confirmed those of the molecular docking. Several hydrophobic interactions with 

Gln192 residue were also detected, which is predicted could stabilize the 

complex. This study adds more insight to the discovery of a novel plant-based 

uPA inhibitor. However, in-vitro and in-vivo studies are still required to further 

propose rhamnetin as uPA inhibitor. 
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