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Abstract. In the present work, the equations of motion of a thin orthotropic 

nanoplate were obtained based on the new modified couple stress theory and the 

third-order shear deformation plate theory. The nanoplate was considered as a 

size-dependent orthotropic plate. The governing equations were derived using the 

dynamic version of Hamilton’s principle and natural boundary conditions were 

formulated. An analytical solution in the form of a double Fourier series was 

obtained for a simply supported rectangular nanoplate. The eigenvalue problem 

was set and solved. It was analytically shown that the displacements of the median 

surface points in the plane of the plate do not depend on the material length scale 

parameters in the same directions; these in-plane directional displacements depend 

on the material length scale parameter in the out-of-plane direction only. On the 

other hand, the out-of-plane directional displacement depends on the length scale 

parameter in the plane directions only. The cross-section rotation angles depend 

on all length scale parameters. It was shown that the size-dependent parameters 

only have a noticeable effect on the deformed state of the plate if their order is not 

less than the order (plate height)-1. 

Keywords: complex system; free vibrations; microplate; nanoplate; new modified couple 

stress theory; size-dependent plate; third-order plate theory. 

1 Introduction 

At present, the development of new theories and methods for adapting classical 

theories to the study of objects such as size-dependent and functionally graded 

micro- and nanoplates, shells, and beams is still relevant. This interest is due to 

the potentially wide field of application of such objects. 

Such micro- and nano-objects can be a part of high precision measuring devices. 

For example, they can be sensing elements that act as very high frequency 

resonators [1]. Yang, et al. [2] describes the resonator for inertial mass sensing 

with proved 7 zg resolution. The authors claim that it is potentially possible to 

sense intact electrically neutral macromolecules with single-Dalton (1 amu) 
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resolution. Verbridge, et al. [3] presents silicon nitride string resonators with 

cross-sectional dimensions on a scale of 100 nm. The resonators have a quality 

factor as high as 207,000 and a surface to volume ratio greater than 6000 nm-1. 

Some practical advantages offered by these nanostrings for mass sensing are also 

discussed in [3]. A microactuator for rapid manipulation of discrete microdroplets 

(0.7-1.0 ml) is presented in Pollack, et al. [4]. Although currently, tip and micro- 

and nano-cantilever sensors used in atomic force microscopy and scanning probe 

microscopy have the largest market share in the nanosensor market, interdigitated 

(lab-on-a-chip) sensors have the next largest market share [5]. Lab-on-a-chip 

sensors can have components both in the form of nanobeams and in the form of 

nanoplates. Like beam resonators, non-linear vibrations of nanoplates can be used 

for high-resolution mass identification [6]. 

The development of theories of dynamics of nano or size dependent micro beams 

remains attractive for scientists, and many studies have been devoted to nano- 

and microbeams, for example, [7-11]. The development of theories for the study 

of properties of nanoplates and their behavior is now also a relevant problem. 

Mechanical and thermal properties of composite graphene nanoplates were 

studied experimentally and mathematically in [12]. The finite element approach 

for static and free vibration analysis of axisymmetric circular nanoscale plates is 

discussed in [13]. Eringen’s nonlocal elasticity theory and the nonlocal Euler-

Bernoulli beam theory were used in [14] for vibration analysis of double 

nanobeam systems embedded in an elastic medium. 

Many theories of the static and dynamic behavior of nanoplates have already been 

developed and some theories are still under development [15-18]. The nonlocal 

continuum model for the biaxial buckling analysis of composite nanoplates with 

shape memory alloy nanowires is presented in [19]. To date, interesting 

theoretical and practical results have been obtained in the field of theories of 

couple stresses and strain gradients. A unified size-dependent plate model 

according to the nonlocal strain gradient and the modified couple stress theories 

for the vibration analysis of rectangular magneto-electro-thermo-elastic 

nanoplates is proposed in [20]. The modified couple stress theory for laminated 

micro-nano plates was developed by Wanji Chen and Xiaopeng Li in [21]. This 

theory is not the only non-classical theory where some additional material 

constants, namely material length scale parameters, were added. The length scale 

parameters, which can have a different meaning based on different theories of 

micro- and nanostructure objects, as well as the number of length scale 

parameters can be different in different theories. One more popular theory that 

uses length scale parameters is Eringen’s nonlocal elasticity theory [22]. For 

example, Eringen’s nonlocal elasticity theory and Kirchhoff plate theory were 

used in [23] for vibration analysis of a double-layered orthotropic nanoplate 

system. The strain gradient elasticity theory allows us to take into account the 
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influence of all strain gradients on the stress-strain state at the point of the nano- 

and micro-object. Great contributions to the development of this theory as applied 

to nano and micro-objects were made in [27-29]. A size-dependent plate model 

for analysis of the bending, buckling, and free vibration problems of functionally 

graded microplates resting on an elastic foundation was developed in [30] based 

on the strain gradient elasticity theory and a refined shear deformation theory. A 

size-dependent composite cylindrical nano shell reinforced with graphene 

platelets was considered in [31]. The governing equations and boundary 

conditions were developed in considering the effects of functionally graded 

graphene-reinforced composites (FG-GRCs) and the thermal as well as the size 

effect on resonance frequencies, thermal buckling, and dynamic deflections of 

the FG-GRC’s nanoshell. A non-polynomial shear deformation theory with four 

variables was developed and assessed for a hygro-thermo-mechanical response 

of laminated composite plates in [32]. A size-dependent model for shear 

deformable laminated micro-nano plates based on couple stress theory has been 

proposed in [33]. In the modified couple stress theory for anisotropic elasticity, 

in contrast to most other theories, three parameters of the material length scale 

are involved. These parameters can be treated as a measurement of the sizes of 

impurities or defects in microstructures. In other words, impurities in the 

microstructure can be considered as orthotropic materials and then this model can 

be used to solve anisotropic problems. The main distinction between nonlocal 

theories and classical ones is that the nonlocal continuum mechanic means that 

the stress at a certain point is a function of the strains of all points in a continuum, 

and this inner interconnection is expressed through some material parameters 

[34]. From this point of view, the modified couple stress theory is a nonlocal 

elasticity theory, as it allows considering static and dynamics deformations of the 

plate, the so-called size-dependent parameters, which can express extremely 

important characteristics of composite materials, materials with nano 

reinforcement, etc. The use of modified couple stress theory and couple stress 

theory for nano and microplates, shells, and beams was considered in for example 

[35] and [37]. In most works, the displacement field of the plate was described as 

either a classical theory or a first-order theory of laminate or composite plates 

[38-40]. In many cases, the use of such theories is valid, for example, if the plate 

does not function as a high-frequency resonator. In other cases, the use of high-

order theories should be considered. The use of high-order plate deformation 

theories allows us to understand the plate’s kinematics better. Also, high-order 

theories allow not to use shift correction coefficients, which are necessary for 

low-order plate deformation theories, for example, Mindlin’s theory. The 

disadvantage of high-order shear deformation theories of plates is that they lead 

to more complex systems of differential equations, the analytical or numerical 

solution of which can cause difficulties. In [42], an analytical solution for the 

deflection of an isotropic microplate was constructed using the modified couple 

stress theory and the third-order theory of plate deformation. 
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In the present work, a nanoplate was considered as an orthotropic size-dependent 

thin plate described by the third-order plate theory. In the case of simply 

supported nanoplates, the analytical solution was obtained based on the Navier 

solution. As shown above, almost all authors use the modified couple stress 

theory in combination with low-order plate deformation theories. At present, no 

work has been done on the derivation of the analytical equations of motion for 

orthotropic nano- or micro-plates using the modified couple stress theory of pair 

stresses and the high-order deformation theories simultaneously. 

2 Analytical Solution 

2.1 Theoretical Formulations 

Let us consider an orthotropic size-dependent plate of uniform thickness h (see 

Figure 1) and uniform density ρ0. The distributed force is applied at the top of the 

plate (x3 = –h/2). The coordinate system is shown in Figure 1. The origin of the 

coordinate system is located at the left corner of the nanoplate’s midplane.  

The expressions for the displacement field (u1,u2, u3) in accordance with third-

order plate theory [26] are: 

𝑢1(𝑡, 𝑥1, 𝑥2, 𝑥3) = 𝑢0(𝑡, 𝑥1, 𝑥2) + 𝑥3𝜙1(𝑡, 𝑥1, 𝑥2)

−
4

3ℎ2
𝑥3
3 (𝜙1(𝑡, 𝑥1, 𝑥2) +

𝜕𝑤0(𝑡, 𝑥1, 𝑥2)

𝜕𝑥1
) 

𝑢2(𝑡, 𝑥1, 𝑥2, 𝑥3) = 𝑣0(𝑡, 𝑥1, 𝑥2) + 𝑥3𝜙2(𝑡, 𝑥1, 𝑥2)

−
4

3ℎ2
𝑥3
3 (𝜙2(𝑡, 𝑥1, 𝑥2) +

𝜕𝑤0(𝑡, 𝑥1, 𝑥2)

𝜕𝑥2
) 

𝑢3(𝑡, 𝑥1, 𝑥2, 𝑥3) = 𝑤0(𝑡, 𝑥1, 𝑥2) 

(1) 

Figure 1 Rectangular nanoplate. 
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where (𝑢0, 𝑣0, 𝑤0) are the displacement components of a midplane’s point along 

the (𝑥1, 𝑥2, 𝑥3) coordinate axis, 𝜙1 and 𝜙2 are the rotation angles of the transverse 

section about the X2- and X1-axes, respectively.  

Let us introduce into consideration new dimensionless variables: 

𝑢𝑖 =
𝑢𝑖
ℎ
, 𝑥𝑖 =

𝑥𝑖
ℎ
, 𝐿𝑖 =

𝐿𝑖
ℎ
, ℎ = 1,  𝑖 = 1,2,3 (2) 

Then, Eq. (1) can be rewritten as follows: 

𝑢1(𝑡, 𝑥1, 𝑥2, 𝑥3) = 𝑢0(𝑡, 𝑥1, 𝑥2) + 𝜙1(𝑡, 𝑥1, 𝑥2)

−
4

3
𝑥3
3 (𝜙1(𝑡, 𝑥1, 𝑥2) +

𝜕𝑤0(𝑡, 𝑥1, 𝑥2)

𝜕𝑥1
) 

𝑢2(𝑡, 𝑥1, 𝑥2, 𝑥3) = 𝑣0(𝑡, 𝑥1, 𝑥2) + 𝜙2(𝑡, 𝑥1, 𝑥2)

−
4

3
𝑥3
3 (𝜙2(𝑡, 𝑥1, 𝑥2) +

𝜕𝑤0(𝑡, 𝑥1, 𝑥2)

𝜕𝑥2
) 

𝑢3(𝑡, 𝑥1, 𝑥2, 𝑥3) = 𝑤0(𝑡, 𝑥1, 𝑥2) 

 

Or in short form:  

𝑢1 = 𝑢0 + 𝑥3𝜙1 −
4

3
𝑥3
3
(𝜙1 +𝑤0,1)

𝑢2 = 𝑣0 + 𝑥3𝜙2 −
4

3
𝑥3
3
(𝜙2 +𝑤0,2)

𝑢3 = 𝑤0

 (3) 

where 𝑤0,𝑖 =
𝜕𝑤0(𝑡,𝑥1,𝑥2)

𝜕𝑥𝑖
.  

2.2 The Constitutive Relations 

According to the new modified couple stress theory [21], the constitutive 

relations have the following form: 

𝜎𝑖𝑗 = �̃�𝑖𝑗𝑘𝑙 휀𝑘𝑙  (4a) 

𝑚𝑖𝑗 = 𝑙𝑖
2𝐺𝑖𝜒𝑖𝑗 + 𝑙𝑗

2𝐺𝑗𝜒𝑗𝑖 (4b) 

휀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) (4b) 

𝜒𝑖𝑗 = 𝜔𝑖,𝑗 (4d) 
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𝜔𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘,𝑗 (4e) 

where, 𝑙𝑖 = the material length scale parameter, subscript 𝑖 means the direction of 

the shapes and arrangements of the impurities or defects; �̃�𝑖𝑗𝑘𝑙, 𝐺𝑖 = elasticity 

constants; 𝜎, 휀 = stress and strain tensors; 𝜒-curvature (rotation gradient) tensor; 

m = the couple stress moment tensor; 𝑢 = displacement; 𝑒 = the permutation 

symbol (the Levi-Civita symbol). As it follows from the considered expressions, 

three material length scale parameters that can express the influence of the inner 

structure heterogeneity on the plate deformation are introduced into the modified 

couple stress theory for anisotropic elasticity. Obviously, 𝜎𝑖𝑗, 휀𝑖𝑗, 𝑚𝑖𝑗 are 

symmetric. In the modified pair stress theory for isotropic materials, 𝜒𝑖𝑗 is 

symmetric. In contrast, in the modified pair stress theory for anisotropic or 

orthotropic materials, 𝜒𝑖𝑗 is nonsymmetric. 

The relations Eq. (4) can be transformed with respect to the variables Eq. (2): 

휀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) =

1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) = 휀𝑖𝑗 

𝜎𝑖𝑗 = �̃�𝑖𝑗𝑘𝑙 휀𝑘𝑙 = �̃�𝑖𝑗𝑘𝑙 휀𝑘𝑙 = 𝜎𝑖𝑗 

𝜔𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘,𝑗 =

1

2
𝑒𝑖𝑗𝑘𝑢𝑘,𝑗 = 𝜔𝑖 

𝜒𝑖𝑗 = 𝜔𝑖,𝑗 

𝑚𝑖𝑗 = 𝜉𝑖𝜒𝑖𝑗 + 𝜉𝑗𝜒𝑗𝑖 = ℎ𝜉𝑖𝜒𝑖𝑗 + ℎ𝜉𝑗𝜒𝑗𝑖 = ℎ𝑚𝑖𝑗  

(5) 

where 𝜉𝑖 = 𝑙𝑖
2𝐺𝑖. 

2.3 Principle of Virtual Displacement 

The variation of strain energy 𝑈 in region 𝑉 occupied by the elastically deformed 

material is written as follows: 

𝛿𝑈 = 𝛿𝑈𝜎 + 𝛿𝑈𝜒  (6) 

where 𝑈𝜎 = the variation of the ‘classical’ part of the strain energy, 𝑈𝜒 = the 

variation of the size-dependent part of the strain energy: 

 
𝛿𝑈𝜎 = ∫ 𝜎𝑖𝑗𝛿휀𝑖𝑗𝑑𝑉𝑉

= ℎ3 ∫ 𝜎𝑖𝑗𝛿휀𝑖𝑗𝑑𝑉𝑉
= ℎ3𝛿𝑈𝜎

𝛿𝑈𝜒 = ∫ 𝑚𝑖𝑗𝛿𝜒𝑖𝑗𝑑𝑉𝑉
= ℎ5 ∫ 𝑚𝑖𝑗𝛿𝜒𝑖𝑗𝑑𝑉𝑉

= ℎ5𝛿𝑈𝜒
 

The variation of work done by the external forces applied to area 𝛺 is: 
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𝛿𝑊 = ∫𝑞𝛿𝑤0𝑑𝛺
𝛺

= ℎ3∫𝑞𝛿𝑤0𝑑𝛺
𝛺

= ℎ3𝛿𝑊 (7) 

The variation of kinetic energy K can be written as: 

𝛿𝐾 = ∫𝜌0�̇�𝑖𝛿�̇�𝑖𝑑𝑉
𝑉

= ℎ5∫𝜌0�̇̅�𝑖𝛿�̇̅�𝑖𝑑𝑉
𝑉

= ℎ5𝛿𝐾 (8) 

The expression of the dynamic version of the principle of virtual displacements 

is: 

∫ [𝛿𝑈 − 𝛿𝐾 − 𝛿𝑊]
𝑡2

𝑡1

𝑑𝑡 = ∫ [𝛿𝑈𝜎 + 𝛿𝑈𝜒 − 𝛿𝐾 − 𝛿𝑊]
𝑡2

𝑡1

𝑑𝑡 = 0 (9) 

Expression Eq. (9) with respect to the dimensionless variables defined by Eq. (2) 

and because of Eqs. (6)-(8): 

∫ [𝛿𝑈𝜎 + ℎ
2𝛿𝑈𝜒 − ℎ

2𝛿𝐾 − 𝛿𝑊]
𝑡2

𝑡1

𝑑𝑡 = 0 (10) 

2.4 Governing Equations 

In what follows, we will work with the dimensionless variables defined by Eq. 

(2) and the relations using these variables. The line above the symbols will be 

omitted for brevity. The components of the strain tensor can be written as the 

vector: 

휀 = (휀1 휀2 𝛾12 𝛾23 𝛾13)𝑇

= (휀11 휀22 2휀12 2휀23 2휀13)
𝑇

 
(11) 

where 휀𝑖𝑗 are defined by Eq. (4c). The following relations are obtained by 

substituting Eq. (1) and Eq. (2) into Eq. (3): 

휀 = 휀(0) + 𝑥3휀
(1) + 𝑥3

2휀(2) + 𝑥3
3휀(3) (12) 

where 

휀(0) =

(

 
 

𝑢0,1
𝑣0,2

𝑢0,2 + 𝑣0,1
𝑤0,2 + 𝜙2
𝑤0,1 + 𝜙1)

 
 
, 휀(1) =

(

 
 

𝜙1,1
𝜙2,2

𝜙1,2 + 𝜙2,1
0
0 )

 
 

 (13) 
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휀(2) = −4

(

 
 

0
0
0

𝑤0,2 + 𝜙2
𝑤0,1 + 𝜙1)

 
 
, 휀(3) = −

4

3

(

 
 

𝜙1,1 +𝑤0,11
𝜙2,2 +𝑤0,22

𝜙1,2 + 𝜙2,1 + 2𝑤0,12
0
0 )

 
 

 

 

For the 𝜒𝑖𝑗 and 𝑚𝑖𝑗 components, the following expression can be written: 

𝜒 = [

𝜒11
(2)
𝑥3
2 + 𝜒11

(0)
𝜒12
(2)
𝑥3
2 + 𝜒12

(0)
𝜒13
(1)
𝑥3

𝜒21
(2)𝑥3

2 + 𝜒21
(0) 𝜒22

(2)𝑥3
2 + 𝜒22

(0) 𝜒23
(1)𝑥3

𝜒31
(3)
𝑥3
3 + 𝑥3𝜒31

(1)
+ 𝜒31

(0)
𝜒32
(3)
𝑥3
3 + 𝑥3𝜒32

(1)
+ 𝜒32

(0)
𝜒33
(2)
𝑥3
2 + 𝜒33

(0)

] (14) 

𝑚11 = 2𝜉1𝜒11
(2)
𝑥3
2 + 2𝜉1𝜒11

(0)
, 

𝑚12 = 𝑚21 = (𝜉1𝜒12
(2) + 𝜉2𝜒21

(2))𝑥3
2 + 𝜉1𝜒12

(0) + 𝜉2𝜒21
(0), 

𝑚13 = 𝑚31 = 𝜉3𝜒31
(3)𝑥3

3 + (𝜉1𝜒13
(1) + 𝜉3𝜒31

(1))𝑥3 + 𝜉3𝜒31
(0), 

𝑚22 = 2𝜉2𝜒22
(2)𝑥3

2 + 2𝜉2𝜒22
(0), 

𝑚23 = 𝑚32 = 𝜉3𝜒32
(3)𝑥3

3 + (𝜉2𝜒23
(1) + 𝜉3𝜒32

(1))𝑥3 + 𝜉3𝜒32
(0), 

𝑚33 = 2𝜉3𝜒33
(2)𝑥3

2 + 2𝜉3𝜒33
(0)

 

 

where 

(

 
 
 
 

𝜒11
(0)

𝜒22
(0)

𝜒33
(0)

𝜒12
(0)

𝜒21
(0)
)

 
 
 
 

=
1

2

(

  
 

𝑤0,12 − 𝜙2,1
−𝑤0,12 + 𝜙1,2
𝜙2,1 − 𝜙1,2
𝑤0,22 − 𝜙2,2
−𝑤0,11 + 𝜙1,1)

  
 
,

(

 
 
 
 

𝜒11
(2)

𝜒22
(2)

𝜒33
(2)

𝜒12
(2)

𝜒21
(2)
)

 
 
 
 

= 2

(

  
 

𝑤0,12 +𝜙2,1
−𝑤0,12 − 𝜙1,2
−𝜙2,1 +𝜙1,2
𝑤0,22 +𝜙2,2
−𝑤0,11 − 𝜙1,1)

  
 
, 

(
𝜒31
(0)

𝜒32
(0)
) =

1

2
(
𝑣0,11 − 𝑢0,12
−𝑢0,22 + 𝑣0,12

) , (
𝜒13
(1)

𝜒23
(1)
) = 4(

𝑤0,2 + 𝜙2
−𝑤0,1 − 𝜙1

), 

(
𝜒31
(1)

𝜒32
(1)
) =

1

2
(
𝜙2,11 − 𝜙1,12
𝜙2,12 − 𝜙1,22

) , (
𝜒31
(3)

𝜒32
(3)
) =

2

3
(
𝜙1,12 − 𝜙2,11
𝜙1,22 − 𝜙2,12

) 

(15) 

Let us consider the Eq. (10), which with the line above the symbols omitted looks 

like this: 
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 ∫ [𝛿𝑈𝜎 + ℎ
2𝛿𝑈𝜒 − ℎ

2𝛿𝐾 − 𝛿𝑊]
𝑡2
𝑡1

𝑑𝑡 = 0 

The expressions for variations 𝛿𝑈𝜎, 𝛿𝑈𝜒, 𝛿𝐾, 𝛿𝑊 have the following form: 

𝛿𝑈𝜎 = ∫(𝜎11𝛿휀1 + 𝜎22𝛿휀2 + 𝜎12𝛿𝛾12 + 𝜎13𝛿𝛾13
𝑉

+ 𝜎23𝛿𝛾23) 𝑑𝑉 

𝛿𝑈𝜒 = ∫(
𝑉

𝑚11𝛿𝜒11 +𝑚22𝛿𝜒22 +𝑚33𝛿𝜒33

+𝑚12(𝛿𝜒12 + 𝛿𝜒21) + 𝑚13(𝛿𝜒13 + 𝛿𝜒31)
+ 𝑚23(𝛿𝜒23 + 𝛿𝜒32))𝑑𝑉 

𝛿𝐾 = ∫𝜌0(�̇�𝑖 𝛿 �̇�𝑖)𝑑𝑉
𝑉

 

𝛿𝑊 = ∫𝑞𝛿𝑤𝑑𝑥1𝑑𝛺
𝛺

 

(16) 

where 𝛺 = the smooth boundary curve of volume 𝑉 of the nanoplate. Considering 

expression Eqs. (5a)-(5e) and that the nanoplate has a rectangular shape, we can 

write the following expressions: 

𝛿𝑈𝜎 = ∫ [𝑁11𝛿휀1
(0) +𝑀11𝛿휀1

(1) + 𝑃11𝛿휀1
(3) +𝑁22𝛿휀2

(0)

𝛺

+𝑀22𝛿휀2
(1)
+ 𝑃22𝛿휀2

(3)
+𝑁12𝛿𝛾12

(0)
+𝑀12𝛿𝛾12

(1)

+ 𝑃12𝛿𝛾12
(3)

+𝑁13𝛿𝛾13
(0) − 𝑅13𝑐2𝛿𝛾13

(0) +𝑁23𝛿𝛾23
(0)

− 𝑅23𝑐2𝛿𝛾23
(0)
] 𝑑𝑥1𝑑𝑥2 

(17) 

ℎ2𝛿𝑈𝜒 = ∫ [𝑁11
𝜒
𝛿𝜒11

(0) + 𝑐2𝑅11
𝜒
𝛿𝜒11

(2) +𝑁22
𝜒
𝛿𝜒22

(0) + 𝑐2𝑅22
𝜒
𝛿𝜒22

(2)

𝛺

+𝑁33
𝜒
𝛿𝜒33

(0) +𝑐2𝑅33
𝜒
𝛿𝜒33

(2)

+𝑁12
𝜒
(𝛿𝜒12

(0) + 𝛿𝜒21
(0)) + 𝑐2𝑅12

𝜒
(𝛿𝜒12

(2) + 𝛿𝜒21
(2))

+ 𝑁13
𝜒
𝛿𝜒31

(0) +𝑀13
𝜒
𝛿𝜒31

(1) + 2𝑐2𝑀13
𝜒
𝛿𝜒13

(1)

− 𝑐1𝑃31
𝜒
𝛿𝜒31

(1) +𝑁23
𝜒
𝛿𝜒32

(0) +𝑀23
𝜒
𝛿𝜒32

(1)

− 2𝑐2𝑀23
𝜒
𝛿𝜒23

(1)
− 𝑐1𝑃32

𝜒
𝛿𝜒32

(1)]𝑑𝑥1𝑑𝑥2 

(18) 
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ℎ2𝛿𝐾 = ∫ [(𝐼0 �̇�0 + 𝐼1 �̇�1 − 𝑐1𝐼3 �̇�1)𝛿 �̇�0
𝛺

+ (𝐼1 �̇�0 + 𝐼2 �̇�1 − 𝑐1𝐼4 �̇�1)𝛿 �̇�1
+ 𝑐1(−𝐼3 �̇�0 − 𝐼4 �̇�1 + 𝑐1𝐼6 �̇�1)𝛿 �̇�1
+ (𝐼0 �̇�0 + 𝐼1 �̇�2 − 𝑐1𝐼3 �̇�2)𝛿 �̇�0
+ (𝐼1 �̇�0 + 𝐼2 �̇�2 − 𝑐1𝐼4 �̇�2)𝛿 �̇�2
+ 𝑐1(−𝐼3 �̇�0 − 𝐼4 �̇�2 + 𝑐1𝐼6 �̇�2)𝛿 �̇�2
+ 𝐼0 �̇�0 𝛿 �̇�0]𝑑𝑥1𝑑𝑥2 

(19) 

where 

 𝑁𝑖𝑗 = ∫ 𝜎𝑖𝑗𝑑𝑥3

1

2

−
1

2

, 𝑀𝑖𝑗 = ∫ 𝑥3𝜎𝑖𝑗𝑑𝑥3

1

2

−
1

2

, 𝑅𝑖𝑗 = ∫ 𝑥3
2𝜎𝑖𝑗𝑑𝑥3

1

2

−
1

2

,   

 𝑃𝑖𝑗 = ∫ 𝑥3
3𝜎𝑖𝑗𝑑𝑥3

1

2

−
1

2

, 𝑁𝑖𝑗
𝜒
= ℎ2 ∫ 𝑚𝑖𝑗𝑑𝑥3

1

2

−
1

2

, 𝑀𝑖𝑗
𝜒
= ℎ2 ∫ 𝑥3𝑚𝑖𝑗𝑑𝑥3

1

2

−
1

2

 

 𝑅𝑖𝑗
𝜒
= ℎ2 ∫ 𝑥3

2𝑚𝑖𝑗𝑑𝑥3

1

2

−
1

2

, 𝑃𝑖𝑗
𝜒
= ℎ2 ∫ 𝑥3

3𝑚𝑖𝑗𝑑𝑥3

1

2

−
1

2

, 𝐼𝑖 = ℎ
2 ∫ 𝜌0𝑥3

𝑖𝑑𝑥3

1

2

−
1

2

 

 𝜑1 = 𝜙1 +𝑤0,1          𝜑2 = 𝜙2 +𝑤0,2 

After substituting Eq. (3), Eqs. (5a)-(5e), Eqs. (17)-(19) into integration Eq. (12) 

by parts and collecting the coefficients for 𝛿𝑢0, 𝛿𝑣0, 𝛿𝑤0, 𝛿𝜙1, 𝛿𝜙2, the 

following system of equations of motion is obtained: 

𝛿𝑢0: 𝑁11,1 +𝑁12,2 +
1

2
𝑁32,22
𝜒

+
1

2
𝑁31,12
𝜒

= 𝐼0 �̈�0 + 𝐽1 �̈�1 − 𝑐1𝐼3 �̈�0,1 
(20) 

𝛿𝑣0: 𝑁22,2 +𝑁12,1 −
1

2
𝑁31,11
𝜒

−
1

2
𝑁32,12
𝜒

= 𝐼0 �̈�0 + 𝐽1 �̈�2 − 𝑐1𝐼3 �̈�0,2 
(21) 

𝛿𝑤0: (𝑁13 − 4𝑅13),1 + (𝑁23 − 4𝑅23),2
+  𝑐1(𝑃11,11 + 2𝑃12,12 + 𝑃22,22) + 𝐾12,11

𝜒

− 𝐾12,22
𝜒

− (𝐾11
𝜒
− 𝐾22

𝜒
)
,12
+ 4(𝑀13,2

𝜒
−𝑀23,1

𝜒
)

+ 𝑞

= 𝐼0 �̈�0 + 𝑐1𝐼3(�̈�0,1 + �̈�0,2)

+ 𝑐1𝐽4 (�̈�1,1 + �̈�2,2) − 𝑐1
2𝐼6(�̈�0,11 + �̈�0,22) 

(22) 
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𝛿𝜙1: (𝑀11 − 𝑐1𝑃11),1 + (𝑀12 − 𝑐1𝑃12),2 − (𝑁13 − 4𝑅13) − �̌�12,1
𝜒

+ (�̌�33
𝜒
− �̌�22

𝜒
)
,2
+
1

2
(𝑄23,22

𝜒
+ 𝑄13,12

𝜒
) + 4𝑀23

𝜒

= 𝐽1 �̈�0 + 𝐽1
2 �̈�1 − 𝑐1𝐽4 �̈�0,1 

(23) 

𝛿𝜙2: (𝑀22 − 𝑐1𝑃22),2 + (𝑀12 − 𝑐1𝑃12),1 − (𝑁23 − 𝑐2𝑅23)

+ (�̌�11
𝜒
− �̌�33

𝜒
)
,1
+ �̌�13,2

𝜒
−
1

2
(𝑄13,11

𝜒
+ 𝑄23,12

𝜒
)

− 4𝑀13
𝜒
= 𝐽1 �̈�0 + 𝐽1

2 �̈�2 − 𝑐1𝐽4 �̈�0,2 

(24) 

where 𝑐1 =
4

3
 ,𝐾𝑖𝑗

𝜒
= 2𝑅𝑖𝑗

𝜒
+
1

2
𝑁𝑖𝑗
𝜒

, �̌�𝑖𝑗
𝜒
= 2𝑅𝑖𝑗

𝜒
−
1

2
𝑁𝑖𝑗
𝜒

, 𝑄𝑖𝑗
𝜒
= 𝑀𝑖𝑗

𝜒
− 𝑐1𝑃𝑖𝑗

𝜒
,  

𝐽𝑖 = 𝐼𝑖 − 𝑐1𝐼𝑖+2. 

Natural boundary conditions can be obtained from the following relation: 

∫ [ℋ1𝛿𝑢0 +ℋ2𝛿𝑣0 −ℋ3
𝜕𝛿𝑢0
𝜕𝑥2

+ℋ3
𝜕𝛿𝑣0
𝜕𝑥1

+ℋ4𝛿𝑤0
𝜕𝛺

+ℋ5
𝜕𝛿𝑤0
𝜕𝑥1

+ℋ6
𝜕𝛿𝑤0
𝜕𝑥2

+ℋ7𝛿𝜙1 +ℋ8𝛿𝜙2

−ℋ9
𝜕𝛿𝜙1
𝜕𝑥2

+ℋ9
𝜕𝛿𝜙2
𝜕𝑥1

]𝑑𝛺 = 0 

(25) 

where 𝜕𝛺 = the piecewise smooth boundary curve of 𝛺, (𝑛1, 𝑛2) = the 

coordinates of the normal vector 𝑛 to 𝜕𝛺. 

ℋ1 = 𝑁11𝑛1 +𝑁12𝑛2 +
1

2
(𝑁31,1

𝜒
+𝑁32,2

𝜒
)𝑛2 (26a) 

ℋ2 = 𝑁12𝑛1 +𝑁22𝑛2 −
1

2
(𝑁31,1

𝜒
+𝑁32,2

𝜒
)𝑛1 (26b) 

ℋ3 =
1

2
(𝑁31

𝜒
𝑛1 +𝑁32

𝜒
𝑛2) (26c) 

ℋ4 = [𝑁13 − 4𝑅13 + 𝑐1(𝑃11,1 + 𝑃12,2) + (𝐾12,1
𝜒
− 𝐾11,2

𝜒
)

− 4𝑀23
𝜒
]𝑛1

+ [𝑁23 − 4𝑅23 + 𝑐1(𝑃22,2 + 𝑃12,1)

+ (𝐾22,1
𝜒
− 𝐾12,2

𝜒
) + 4𝑀13

𝜒
]𝑛2

− 𝑐1(𝐼3 �̈�0 + 𝐽4 �̈�1 − 𝑐1𝐼6 �̈�0,1)𝑛1
− 𝑐1(𝐼3 �̈�0 + 𝐽4 �̈�2 − 𝑐1𝐼6 �̈�0,2)𝑛2 

(26d) 
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ℋ5 = −(𝑐1𝑃11 + 𝐾12
𝜒
)𝑛1 − (𝑐1𝑃12 − 𝐾11

𝜒
)𝑛2 (26e) 

ℋ6 = −(𝑐1𝑃12 + 𝐾22
𝜒
)𝑛1 − (𝑐1𝑃22 − 𝐾12

𝜒
)𝑛2 (26f) 

ℋ7 = (𝑀11 − 𝑐1𝑃11)𝑛1 + (𝑀12 − 𝑐1𝑃12)𝑛2

+ (− �̌�12
𝜒
𝑛1 + (�̌�33

𝜒
− �̌�22

𝜒
)𝑛2

+ (𝑄23,2
𝜒

+ 𝑄13,1
𝜒
)𝑛2) 

(26g) 

ℋ8 = (𝑀22 − 𝑐1𝑃22)𝑛2 + (𝑀12 − 𝑐1𝑃12)𝑛1

+ ((�̌�11
𝜒
− �̌�33

𝜒
)𝑛1 + �̌�13

𝜒
𝑛2

− (𝑄13,1
𝜒

+𝑄23,2
𝜒
)𝑛1) 

(26h) 

ℋ9 =
1

2
(𝑄13

𝜒
𝑛1 +𝑄23

𝜒
𝑛2) (26i) 

2.5 Displacement Equations 

If the coordinate system is located as described in theoretical formulations (see 

Figure 1), some of 𝐼𝑖 and 𝐽𝑖 are equal to zero and the right parts of Eqs. (20)-(24) 

are simplified. Then, after substituting Eq. (3) into Eqs. (20)-(24), the following 

equations are obtained: 

ℎ2𝜌0 �̈�0 = 𝐶11𝑢0,11 + 𝐶44𝑢0,22 + (𝐶44 + 𝐶12)𝑣0,12 − 𝑘0𝑢0,2222
− 𝑘0𝑢0,1122 + 𝑘0𝑣0,1112 + 𝑘0𝑣0,1222 

(27a) 

ℎ2𝜌0 �̈�0 = (𝐶44 + 𝐶12)𝑢0,12 + 𝐶44𝑣0,11 + 𝐶22𝑣0,22 + 𝑘0𝑢0,1112
+ 𝑘0𝑢0,1222 − 𝑘0𝑣0,1111 − 𝑘0𝑣0,1122 

(27b) 

ℎ2𝜌0 �̈�0 − 5𝑏0 �̈�0,11 − 5𝑏0 �̈�0,22 + 16𝑏0 �̈�1,1 + 16𝑏0 �̈�2,2 − 𝑞

= 𝑔1𝑤0,1111 + 𝑔12𝑤0,1122 + 𝑔2𝑤0,2222
+ 4𝑘5𝑤0,11 + 4𝑘4𝑤0,22 + 4𝑘2𝜙1,111
+ 4𝑑2𝜙1,122 + 4𝑑1𝜙2,112 + 4𝑘3𝜙2,222
+ 4𝑘4𝜙2,2 + 5𝑘5𝜙1,1 

(27c) 

68𝑏0 �̈�1 − 16𝑏0 �̈�0,1
= −𝑘1𝜙1,2222 − 𝑘1𝜙1,1122 + 𝑘1𝜙2,1112
+ 𝑘1𝜙2,1222 + 𝑎2𝜙1,11 + 𝑎23𝜙1,22 + 𝑘6𝜙2,12
− 4𝑘5𝜙1 − 4𝑘2𝑤0,111 − 𝑏12𝑤0,122 − 4𝑘5𝑤0,1 

(27d) 
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68𝑏0 �̈�2 − 16𝑏0 �̈�0,2
= 𝑘1𝜙1,1112 + 𝑘1𝜙1,1222 − 𝑘1𝜙2,1111
− 𝑘1𝜙2,1122 + 𝑘6𝜙1,12 + 𝑎1𝜙2,22 + 𝑎13𝜙2,11
− 4𝑘4𝜙2 − 𝑏21𝑤0,112 − 𝑘3𝑤0,222 − 4𝑘4𝑤0,2 

(27e) 

where 

 �̃� = 𝐶12 + 2𝐶44;  𝜉𝑖𝑗 = 𝜉𝑖 + 𝜉𝑗;   𝑏0 =
1

1260
ℎ2𝜌0;  𝑘0 =

1

4
ℎ2𝜉3;   

 𝑘1 =
17

1260
ℎ2𝜉3;   𝑘2 =

1

315
𝐶11 +

1

20
𝜉2ℎ

2;   𝑘3 =
1

315
𝐶22 +

1

20
𝜉1ℎ

2;   

 𝑘4 =
2

15
𝐶55 +

1

3
𝜉1ℎ

2;   𝑘5 =
2

15
𝐶66 +

1

3
𝜉2ℎ

2;   𝑎1 =
17

315
𝐶22 +

2

15
𝜉1ℎ

2;   

 𝑘6 =
17

315
(𝐶12 + 𝐶44) −

2

15
𝜉3ℎ

2;   𝑎2 =
17

315
𝐶11 +

2

15
𝜉2ℎ

2;   

 𝑎𝑖𝑗 =
17

315
𝐶44 +

2

15
𝜉𝑖𝑗ℎ

2;   𝑏𝑖𝑗 =
4

315
�̃� −

1

3
𝜉𝑖ℎ

2 +
8

15
𝜉𝑗ℎ

2;   

 𝑔1 = −
1

252
𝐶11 −

7

15
𝜉2ℎ

2;   𝑔2 = −
1

252
𝐶22 −

7

15
𝜉1ℎ

2;     

 𝑔12 = −
1

126
�̃� −

7

15
𝜉12ℎ

2;  𝑑𝑖 =
1

315
�̃� +

1

20
𝜉𝑖ℎ

2.  

For orthotropic materials, elastic constants 𝐺𝑖 in expression Eqs. (4a)-(4e) and 

Eqs. (5a)-(5e) are expressed in terms of the shear modulus 𝐺𝑖𝑗 as follows [21]: 

 𝐺1 = 𝐺13, 𝐺2 = 𝐺23, 𝐺3 = 𝐺12. 

As can be seen from Eqs. (27a) and (27b), 𝑢0 and 𝑣0 depend on 𝜉3 and do not 

depend on 𝜉1 and 𝜉2. That means that 𝑢0 and 𝑣0 depend on the material length 

scale parameter 𝑙3 only. However, as follows from the Eq. (27c), the deflection 

𝑤0 does not contain coefficients with 𝜉3 and, accordingly, 𝑤0 does not depend 

on 𝑙3. Angles 𝜙1 and 𝜙2 depend on all length scale parameters 𝑙1, 𝑙2, 𝑙3 from Eqs. 

(27d) and (27e). 

2.6 Natural Boundary Conditions 

To obtain the natural boundary conditions from Eqs. (26a)-(26h), the coefficients 

of the virtual displacements and their derivatives on the boundary have to be 

collected. For this, we must express (𝛿𝑢0, 𝛿𝑣0,
𝜕𝛿𝑢0

𝜕𝑥2
,
𝜕𝛿𝑣0

𝜕𝑥1
), (𝛿𝑤0,

𝜕𝛿𝑤0

𝜕𝑥1
,
𝜕𝛿𝑤0

𝜕𝑥2
), 

(𝛿𝜙1, 𝛿𝜙2,
𝜕𝛿𝜙1

𝜕𝑥2
,
𝜕𝛿𝜙2

𝜕𝑥1
) in terms of (𝛿𝑢𝑛, 𝛿𝑢𝑠), (𝛿𝑤0, 𝛿𝑤0,𝑛, 𝛿𝑤0,𝑠), (𝛿𝜙𝑛 , 𝛿𝜙𝑠) 

respectively. 
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If the unit outward normal vector 𝑛 is oriented at an angle 𝛾 from the 𝑥-axis, then 

its direction cosines are 𝑛1 = 𝑐𝑜𝑠𝛾 and 𝑛2 = 𝑠𝑖𝑛𝛾. Hence, the transformation 

between the coordinate system (𝑛, 𝑠, 𝑟) and (𝑥1, 𝑥2, 𝑥3) is given by: 

 𝑒𝑥1 = cos(𝛾)𝑒𝑛 − sin(𝛾)𝑒𝑠; 𝑒𝑥2 = sin(𝛾)𝑒𝑛 + cos(𝛾)𝑒𝑠; 𝑒𝑥3 = 𝑒𝑟 

Therefore, the following expressions can be written: 

 𝑢0 = 𝑛1𝑢𝑛 − 𝑛2𝑢𝑠;   𝑢0,2 = 𝑛1𝑛2𝑢𝑛,𝑛 + 𝑛1
2𝑢𝑛,𝑠 − 𝑛2

2𝑢𝑠,𝑛 − 𝑛1𝑛2𝑢𝑠,𝑠 

 𝑣0 = 𝑛2𝑢𝑛 + 𝑛1𝑢𝑠;   𝑣0,1 = 𝑛1𝑛2𝑢𝑛,𝑛 − 𝑛2
2𝑢𝑛,𝑠 + 𝑛1

2𝑢𝑠,𝑛 − 𝑛1𝑛2𝑢𝑠,𝑠 

 𝑤0 = 𝑤0;   𝑤0,1 = 𝑛1𝑤0,𝑛 − 𝑛2𝑤0,𝑠;   𝑤0,2 = 𝑛2𝑤0,𝑛 + 𝑛1𝑤0,𝑠 

 𝜙1 = 𝑛1𝜙𝑛 − 𝑛2𝜙𝑠;   𝜙1,2 = 𝑛1𝑛2𝜙𝑛,𝑛 + 𝑛1
2𝜙𝑛,𝑠 − 𝑛2

2𝜙𝑠,𝑛 − 𝑛1𝑛2𝜙𝑠,𝑠 

 𝜙2 = 𝑛2𝜙𝑛 + 𝑛1𝜙𝑠;   𝜙2,1 = 𝑛1𝑛2𝜙𝑛,𝑛 − 𝑛2
2𝜙𝑛,𝑠 + 𝑛1

2𝜙𝑠,𝑛 − 𝑛1𝑛2𝜙𝑠,𝑠 

Now, we can rewrite the boundary expressions: 

∫ [𝑁𝑛𝑛𝛿𝑢𝑛 +𝑁𝑛𝑠𝛿𝑢𝑠 +𝑁𝑛𝑛
𝜒 𝜕𝛿𝑢𝑛

𝜕𝑠
+ 𝑁𝑛𝑠

𝜒 𝜕𝛿𝑢𝑠
𝜕𝑛

+ 𝑄𝑛𝛿𝑤0
𝜕𝛺

+ 𝑃𝑛𝑛
𝜕𝛿𝑤0
𝜕𝑛

+𝑃𝑛𝑠
𝜕𝛿𝑤0
𝜕𝑠

+ 𝛷𝑛𝑛𝛿𝜙𝑛 +𝛷𝑛𝑠𝛿𝜙𝑠

+𝛷𝑛𝑛
𝜒 𝜕𝛿𝜙𝑛

𝜕𝑠
+ 𝛷𝑛𝑠

𝜒 𝜕𝛿𝜙𝑠
𝜕𝑛

]  𝑑𝛺 = 0 

(29) 

where 

𝑄𝑛 = [𝑁13 − 4𝑅13 + 𝑐1(𝑃11,1 + 𝑃12,2) + (𝐾12,1
𝜒
− 𝐾11,2

𝜒
) − 4𝑀23

𝜒
]𝑛1

+ [𝑁23 − 4𝑅23 + 𝑐1(𝑃22,2 + 𝑃12,1) + (𝐾22,1
𝜒
−𝐾12,2

𝜒
)

+ 4𝑀13
𝜒
]𝑛2 − 𝑐1(𝐼3 �̈�0 + 𝐽4 �̈�1 − 𝑐1𝐼6 �̈�0,1)𝑛1 

{𝑁𝑛𝑛 𝑁𝑛𝑠 }
𝑇 = 𝑇1{𝑁11 𝑁22  𝑁12}

𝑇 −
1

2
𝑇2{𝑁31,1

𝜒
 𝑁32,2
𝜒
}
𝑇

 

{𝑁𝑛𝑛
𝜒
 𝑁𝑛𝑠
𝜒
}
𝑇
=
1

2
𝑇3{𝑁31

𝜒
  𝑁32

𝜒
}
𝑇
 

{𝑃𝑛𝑛  𝑃𝑛𝑠}
𝑇 = −𝑐1𝑇1{𝑃11  𝑃22  𝑃12} + 2𝑇4{𝑅11

𝜒
  𝑅22

𝜒
  𝑅12

𝜒
}
𝑇

+
1

2
𝑇4{𝑁11

𝜒
  𝑁22

𝜒
  𝑁12

𝜒
}
𝑇

 

{𝛷𝑛𝑛  𝛷𝑛𝑠}
𝑇 = 𝑇1{𝑄11  𝑄22  𝑄13}

𝑇 + 𝑇5{𝐾11
𝜒
  𝐾22

𝜒
  𝐾33

𝜒
  𝐾12

𝜒
  𝐾13

𝜒
}
𝑇

+
1

2
𝑇6{𝑄13,1 𝑄23,2}

𝑇
 

{𝛷𝑛𝑛
𝜒
  𝛷𝑛𝑠

𝜒
}
𝑇
= −𝑇3{𝛷31

𝜒
  𝛷32

𝜒
}
𝑇
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𝑇1 = (
𝑛1
2 𝑛2

2 2𝑛1𝑛2
−𝑛1𝑛2 𝑛1𝑛2 𝑛1

2 − 𝑛2
2) ;  𝑇2 = (

0 0
𝑛1
2 + 𝑛2

2 𝑛1
2 + 𝑛2

2) 

𝑇3 = (𝑛1
2 + 𝑛2

2) (
−𝑛1 −𝑛2
𝑛1 𝑛2

) ;  𝑇4 = (
𝑛1𝑛2 −𝑛1𝑛2 −(𝑛1

2 − 𝑛2
2)

−𝑛2
2 −𝑛1

2 2𝑛1𝑛2
) 

𝑇5 = (
𝑛1𝑛2 −𝑛1𝑛2 0 −𝑛1

2 −𝑛2
2

−𝑛2
2 −𝑛1

2 −(𝑛1
2 + 𝑛2

2) 𝑛1𝑛2 𝑛1𝑛2
) 

𝑇6 = (
2𝑛1𝑛2 0

𝑛1
2 + 𝑛2

2 −(𝑛1
2 + 𝑛2

2)
) 

Since the third-order theory has only six primary variables, we can apply 

integration by parts to Eq. (29) and reduce the number of primary variables: 

∫ [(𝑁𝑛𝑛 −
𝜕𝑁𝑛𝑛

𝜒

𝜕𝑠
)𝛿𝑢𝑛 + (𝑁𝑛𝑠 −

𝜕𝑁𝑛𝑠
𝜒

𝜕𝑛
)𝛿𝑢𝑠

𝜕𝛺

+ (𝑄𝑛 −
𝜕𝑃𝑛𝑠
𝜕𝑠
) 𝛿𝑤0 + 𝑃𝑛𝑛

𝜕𝛿𝑤0
𝜕𝑛

+ (𝛷𝑛𝑛 −
𝜕𝛷𝑛𝑛

𝜒

𝜕𝑠
)𝛿𝜙𝑛

+ (𝛷𝑛𝑠 −
𝜕𝛷𝑛𝑠

𝜒

𝜕𝑛
)𝛿𝜙𝑠] 𝑑𝛺 = 0 

(30) 

Thus, we have six primary variables: 

 𝛿𝑢𝑛 𝛿𝑢𝑠 𝛿𝑤0
𝜕𝛿𝑤0

𝜕𝑛
𝛿𝜙𝑛 𝛿𝜙𝑠 

And six secondary variables: 

 
𝑁𝑛𝑛 = 𝑁𝑛𝑛 −

𝜕𝑁𝑛𝑛
𝜒

𝜕𝑠
𝑁𝑛𝑠 = 𝑁𝑛𝑠 −

𝜕𝑁𝑛𝑠
𝜒

𝜕𝑛
𝑄𝑛 = 𝑄𝑛 −

𝜕𝑃𝑛𝑠

𝜕𝑠

𝑃𝑛𝑛 𝛷𝑛𝑛 = 𝛷𝑛𝑛 −
𝜕𝛷𝑛𝑛

𝜒

𝜕𝑠
𝛷𝑛𝑠 = 𝛷𝑛𝑠 −

𝜕𝛷𝑛𝑠
𝜒

𝜕𝑛

 

2.7 Navier Solutions for Simply Supported Size-Dependent Plates 

For simply supported size-dependent plates, an analytical solution can be 

obtained. The boundary conditions for simply supported size-dependent 

rectangular plates have the following form: 

𝑥1 = 0, 𝑥1 = 𝐿1:   𝑢0 = 𝑤0 = 𝜙2 = 0,  𝑁𝑥𝑥 = 𝛷𝑥𝑥 = 0 

𝑥2 = 0, 𝑥2 = 𝐿2:   𝑣0 = 𝑤0 = 𝜙1 = 0,  𝑁𝑦𝑦 = 𝛷𝑦𝑦 = 0 
(31) 

The expressions for 𝑁𝑥𝑥, 𝛷𝑥𝑥, 𝑁𝑦𝑦, 𝛷𝑦𝑦 have the following form: 
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𝑁𝑥𝑥 = 𝑁𝑛𝑛, 𝛷𝑥𝑥 = 𝛷𝑛𝑛 𝑤ℎ𝑒𝑛 𝑛1 = ±1, 𝑛2 = 0

𝑁𝑦𝑦 = 𝑁𝑛𝑛, 𝛷𝑦𝑦 = 𝛷𝑛𝑛 𝑤ℎ𝑒𝑛 𝑛1 = 0, 𝑛2 = ±1
 

We will seek a solution to system Eqs. (27a)-(27e) in the form of a double Fourier 

series: 

𝑢0 = ∑ ∑ 𝑈𝑛𝑚

∞

𝑚=1

∞

𝑛=1

(𝑡)𝑐𝑜𝑠(𝛼𝑛𝑥1)𝑠𝑖𝑛(𝛽𝑚𝑥2) (32a) 

𝑣0 = ∑ ∑ 𝑉𝑛𝑚

∞

𝑚=1

∞

𝑛=1

(𝑡)𝑠𝑖𝑛(𝛼𝑛𝑥1)𝑐𝑜𝑠(𝛽𝑚𝑥2) (32b) 

𝑤0 = ∑ ∑ 𝑊𝑛𝑚

∞

𝑚=1

∞

𝑛=1

(𝑡)𝑠𝑖𝑛(𝛼𝑛𝑥1)𝑠𝑖𝑛(𝛽𝑚𝑥2) (32c) 

𝜙1 = ∑ ∑ 𝛹

∞

𝑚=1

∞

𝑛=1

1𝑛𝑚(𝑡)𝑐𝑜𝑠(𝛼𝑛𝑥1)𝑠𝑖𝑛(𝛽𝑚𝑥2) (32d) 

𝜙2 = ∑ ∑ 𝛹

∞

𝑚=1

∞

𝑛=1

2𝑛𝑚(𝑡)𝑠𝑖𝑛(𝛼𝑛𝑥1)𝑐𝑜𝑠(𝛽𝑚𝑥2) (32e) 

𝛼𝑛 =
𝑛𝜋

𝐿1
, 𝛽𝑚 =

𝑚𝜋

𝐿2
  

The boundary conditions are automatically satisfied by function Eqs. (32a)-(32e). 

The distributed load 𝑞 must also be represented as a double Fourier series: 

𝑞 = ∑ ∑ 𝑄𝑛𝑚

∞

𝑚=1

∞

𝑛=1

(𝑡)𝑠𝑖𝑛(𝛼𝑛𝑥1)𝑠𝑖𝑛(𝛽𝑚𝑥2) (33) 

where 𝑄𝑛𝑚(𝑡) are calculated by the following formula: 

𝑄𝑛𝑚(𝑡) =
4

𝐿1𝐿2
∫ ∫ 𝑞

𝐿2

0

𝐿1

0

sin(𝛼𝑛𝑥1)sin(𝛽𝑚𝑥2)𝑑𝑥1𝑑𝑥2 

After substituting functions Eqs. (32a)-(32e), Eq. (33) into Eqs. (27a)-(27e), we 

obtain a linear system of equations: 

𝐴
𝜕2

𝜕𝑡2
𝑉 = −𝐼5×5𝑄 + 𝐵𝑉 (34) 
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where 𝑉 = (𝑈𝑛𝑚 𝑉𝑛𝑚 𝑊𝑛𝑚 𝛹1𝑛𝑚 𝛹2𝑛𝑚 )𝑇; 𝐼5×5 = identity matrix, 

𝑄 = (0 0 𝑄𝑛𝑚 0 0)
𝑇= the vector of external load. Nonzero components of the 

matrices 𝐴 and 𝐵 are determined by the following expressions: 

𝐴11 = 𝐴22 = 𝜌0ℎ
2, 𝐴33 =

𝜌0ℎ
2

252
(𝛼𝑛
2 + 𝛽𝑚

2 + 252), 

𝐴44 = 𝐴55 =
38

315
𝜌0ℎ

2, 𝐴43 = 𝐴34 = −
4

315
𝜌0ℎ

2𝛼𝑛, 

𝐴53 = 𝐴35 = −
4

315
𝜌0ℎ

2𝛽𝑚 

𝐵11 = −𝑘0𝛽𝑚
2 (𝛼𝑛

2 + 𝛽𝑚
2 ) − 𝐶11𝛼𝑛

2 − 𝐶44𝛽𝑚
2  

𝐵22 = −𝑘0𝛼𝑛
2(𝛼𝑛

2 + 𝛽𝑚
2 ) − 𝐶44𝛼𝑛

2 − 𝐶22𝛽𝑚
2  

𝐵33 = (𝑔1𝛼𝑛
2 − 4𝑘5)𝛼𝑛

2 + 𝑔12𝛼𝑛
2𝛽𝑚

2 + (𝑔2𝛽𝑚
2 − 4𝑘4)𝛽𝑚

2  

𝐵44 = −(𝛼𝑛
2 + 𝛽𝑚

2 )𝑘1𝛽𝑚
2 − (𝑎2𝛼𝑛

2 + 𝑎23𝛽𝑚
2 + 4𝑘5) 

𝐵55 = −(𝛼𝑛
2 + 𝛽𝑚

2 )𝑘1𝛼𝑛
2 − (𝑎13𝛼𝑛

2 + 𝑎1𝛽𝑚
2 + 4𝑘4) 

𝐵12 = 𝐵21 = 𝛼𝑛𝛽𝑚[𝑘0(𝛼𝑛
2 + 𝛽𝑚

2 ) − (𝐶12 + 𝐶44)] 

𝐵34 = 𝛼𝑛(4𝑘2𝛼𝑛
2 + 4𝑑2𝛽𝑚

2 − 4𝑘5) 

𝐵35 = 𝛽𝑚(4𝑑1𝛼𝑛
2 + 4𝑘3𝛽𝑚

2 − 4𝑘4) 

𝐵43 = 𝛼𝑛(4𝑘2𝛼𝑛
2 + 𝑏12𝛽𝑚

2 − 4𝑘5) 

𝐵45 = 𝐵54 = 𝛼𝑛𝛽𝑚(𝑘1𝛼𝑛
2 + 𝑘1𝛽𝑚

2 − 𝑘6) 

𝐵53 = 𝛽𝑚(𝑏21𝛼𝑛
2 + 𝑘3𝛽𝑚

2 − 4𝑘4) 

The system of equations Eq. (34) has a rather simple form and has an analytical 

solution. It should be noted that system Eq. (34) must be constructed and solved 

for all indices 𝑛 and 𝑚. 

2.8 Natural Frequencies and Free Vibration 

For free vibration, all loads must be set to zero. Periodic solutions can be assumed 

of the form: 

𝑈𝑛𝑚(𝑡) = 𝑈𝑛𝑚
0 (𝑡)𝑒𝑖𝜔𝑡    𝑉𝑛𝑚(𝑡) = 𝑉𝑛𝑚

0 (𝑡)𝑒𝑖𝜔𝑡      

𝑊𝑛𝑚(𝑡) = 𝑊𝑛𝑚
0 (𝑡)𝑒𝑖𝜔𝑡 

𝛹1𝑛𝑚(𝑡) = 𝛹1𝑛𝑚
0 (𝑡)𝑒𝑖𝜔𝑡    𝛹2𝑛𝑚(𝑡) = 𝛹2𝑛𝑚

0 (𝑡)𝑒𝑖𝜔𝑡 

(35) 

where 𝑖 = √−1, 𝜔 is the frequency of natural vibration. Then the eigenvalue 

problem for Eq. (34) has the form: 
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((−𝐵) − 𝜔𝑛𝑚
2 𝐴)𝑉(0) = 0 (36) 

where 𝑉(0) = (𝑈𝑛𝑚
0  𝑉𝑛𝑚

0  𝑊𝑛𝑚
0  𝛹1𝑛𝑚

0  𝛹2𝑛𝑚
0  )𝑇. The eigenvalue problem Eq. (37) 

must be set for all n and m. The eigenvalue problem Eq. (37) can be rewritten for 

dimensional variables. Then, the obtained expressions for the components of the 

matrices A and B can be compared with the expressions for the classical third-

order simple supported orthotropic plate given in [26]. The following eigenvalue 

problem can be stated for dimensional variables: 

(𝑆 − 𝜔𝑛𝑚
2 𝑀)𝑉(1) = 0 (37) 

where V(1) = vector of dimensional values, 𝑆 = 𝑆𝑐𝑙+𝑆𝑛𝑐𝑙 = the ‘classical’ and 

‘nonclassical’ parts. 𝑀 = 𝑀𝑐𝑙  as the kinetic energy does not include any size-

dependent parameters. Then, this matrix coincides with the ‘classical’ matrix. 

The matrices 𝑆𝑐𝑙 and 𝑀𝑐𝑙 coincide with the ‘classical’ matrices obtained by 

Reddy [26]. The expressions for non-zero components of 𝑀, 𝑆𝑐𝑙 , 𝑆𝑛𝑐𝑙 are given 

in Appendix A. 

3 Numerical Modeling 

3.1 Bending 

According to the results of the analysis of Eqs. (27a)-(27e) and their coefficients 

containing 𝜉𝑖 = 𝑙𝑖
2𝐺𝑖 , the parameters 𝑙𝑖 and 1 ℎ⁄  must have the same order. Thus, 

numerical simulation was done for the following values of size parameter 𝑙𝑖 : 0,
1 4ℎ⁄ , 1 2ℎ, 1 ℎ⁄⁄ . In the first step, the results obtained using the constructed 

solution were compared with the results of other authors. The results obtained in 

[41] for Mindlin square plates (first-order theory) and in [46] for Kirchhoff-Love 

plates and the modified strain gradient theory were taken as examples. The middle 

dimensionless displacement of a simply supported isotropic plate obtained using 

the constructed solution was compared with the results obtained in [46] based on 

the finite strip method. The results of the comparison are shown in Table 1. The 

material of the plate was epoxy (Ei = 1.44 GPa, νij = 0.38, ρ = 1.299∙103 kg/m3, 

and h = 17.6μm and L1 = 50h). 

As can be seen from Table 1, the obtained results correspond to [46] with 

acceptable error. 

Table 1 Dimensionless center deflection w0. 

 𝑳𝟏 𝑳𝟐⁄ = 𝟏 𝑳𝟏 𝑳𝟐⁄ = 𝟏. 𝟓 𝑳𝟏 𝑳𝟐⁄ = 𝟐 

[46] 0.0129 0.0242 0.0318 

Present 0.0120 0.0232 0.0317 
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The dimensionless center deflections w0 for different li, obtained using the 

constructed solution and results presented by Yekani et al. in [39] for Mindlin 

microplates with the modified couple stress theory; their comparison is shown in 

Table 2. The material of the plate was assumed to be isotropic and equal to Ei = 

1.44 GPa, νij = 0.3, ρ = 1.22∙103 kg/m3, and h = 17.6μm and L1 = L2= 20h [39]. 

Table 2 Dimensionless center deflections w0 for different li in comparison with 

results [39]. 

 li = 0h-1 li = 0.2h-1 li = 0.4h-1 li = 0.6h-1 li = 0.8h-1 li = 1h-1 

[39] 2.6676 2.4410 1.9460 1.4561 1.0785 0.8106 

Present 2.6487 2.3360 1.7254 1.2021 0.8440 0.6103 

Δ,% 0.7085 4.3015 11.3360 17.4438 21.7432 24.7101  

As can be seen from Table 2, the difference between the results was insignificant 

for li = 0 and this difference increased with increasing li up to 25% for li = 1h-1. 

This shows that the use of low-order plate deformation theories for modeling size-

dependent effects may be insufficient. 

In the second step, the influence of the size-dependent parameters on plate 

deflection was studied. A simulation was carried out for a nanoplate with the 

following physical parameters: ρ = 1840 kg/m3, h = 0.05 μm, L1 = 2 μm, L2 = 1 

μm, E1 = 20.4 GPa; E2 = 18.4 GPa, E3 = 15 GPa, G12 = 9.02 GPa; G23 = 8.4 GPa; 

G13 = 6.6 GPa, ν12 = 0.11, ν13 = 0.14, ν23 = 0.09. 

Figure 2 The distributed load as a double Fourier series, N = 40, M = 40. 
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The Fourier series Eqs. (32a)-(32e), Eq. (33) were limited to the values of N and 

M for n and m, respectively. The distributed load q as a double Fourier series Eq. 

(33) for N = 40, M = 40 is shown in Figure 2. As we can see from Figure 2, the 

double Fourier series can represent a uniform load well enough. 

The maximum plate deflection occurred in the plate’s center and was equal to 

5.0397∙10-9 m. According to numerical calculation in ANSYS with a 20-node 

hexahedron element that supported the third-order theory, the maximum plate’s 

deflection was 5.0823∙10-9 m (Figure 3). Thus, the difference between the solution 

in ANSYS and the present work was less than 0.8%. 

The result of modeling in dimensionless variables is shown in Figure 4. In Figure 

5, dimensionless deflections of the middle plane of the plate (x2 = L2/2) are shown. 

3.2 Free Vibration 

Natural frequencies of a simply supported orthotropic square microplate for 

different l3 are shown in Table 4 and the first five natural frequencies obtained in 

ANSYS are shown in Table 3. 

Table 3 The first five natural frequencies (MHz) of a simply supported 

orthotropic    square microplate obtained in ANSYS. 

Mode Frequency, MHz 

1 1.785 

2 2.336 

3 3.305 

4 4.556 

5 4.669 

6 5.077 

Figure 3 Deflection on the nanoplate. Result of the finite element analysis in ANSYS. 



 Analytical Solution for Bending and Free Vibrations 31 

 

These results correspond to the results of other authors, in which the natural 

frequency of the plate also increased with an increase in the value of li. It should 

be noted that the values of l1 and l2 do not affect the first natural frequency. 

Table 5 lists the first two natural frequencies anm of a simply supported isotropic 

square microplate with various values of side-to-thickness ratio L1/h = L2/h = L/h. 

The microplate was made of epoxy with the following material properties: E = 

1.44 GPa, ρ = 1220 Kg/m3, h = 3.52∙10-5m [41]. The calculated frequencies were 

compared with those calculated using the expressions reported by Thai et al. [41] 

for size-dependent functionally graded thick plates based on the Mindlin plate 

theory and the modified couple stress theory. For comparison, these expressions 

were adapted for thin plates without nonlinearity. 

Table 4 Natural frequencies of a simply supported orthotropic square microplate for 

different l3 . 

  
𝒏 = 𝟏, 
𝒎 = 𝟏 

𝒏 = 𝟐, 
𝒎 = 𝟏 

𝒏 = 𝟏, 
𝒎 = 𝟐 

𝒏 = 𝟑, 
𝒎 = 𝟏 

𝒏 = 𝟏, 
𝒎 = 𝟑 

𝑙3 = 0 𝑈𝑛𝑚
0  24.5899 46.9845 45.8241 60.4056 67.8134 

𝑉𝑛𝑚
0  36.4089 30.8675 66.2657 39.5176 97.4348 

𝑊𝑛𝑚
0  1.8347 2.9847 6.0927 4.8641 12.9882 

𝛹1𝑛𝑚
0  429.3768 429.8315 434.1927 383.8177 442.0127 

𝛹2𝑛𝑚
0  380.1515 381.5337 382.0927 430.5897 385.324 

       

𝑙3 = 0.5 ℎ
−1 𝑈𝑛𝑚

0  26.9187 46.991 55.6388 96.1344 60.4119 

𝑉𝑛𝑚
0  36.416 34.2557 66.2907 97.8944 46.3156 

𝑊𝑛𝑚
0  1.8347 2.9848 6.0929 12.9888 4.8644 

𝛹1𝑛𝑚
0  408.2234 398.1097 430.1253 440.7786 395.8134 

𝛹2𝑛𝑚
0  448.2819 465.1479 494.6417 599.3565 498.6406 

The solution presented here is in good agreement with the Navier solution 

presented in Ref. [41] for Mindlin plates and the modified couple stress theory. 

(a) (b) 

Figure 4 Dimensionless deflection of the plate, 𝒍𝟏 =
𝟏

𝟒𝒉
, 𝒍𝟐 = 𝟎: 

(a) isometric view (b) top view. 
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Comparing these results with those obtained above, we can say that the modified 

couple stress theory and the modified strain gradient theory can predict different 

trends for different order plate theories for nonzero values of size-dependent 

parameters. Therefore, further study of the limits of applicability of both theories 

is necessary. 

Table 5 Natural frequencies 𝜔𝑛𝑚 (𝑛 = 1, 𝑚 = 1), 𝑀𝐻𝑧, of a simply supported 

isotropic square microplate for different 𝐿1/ℎ = 𝐿2/ℎ = 𝐿/ℎ, 𝑙𝑖 = 0 . 

𝑳/𝒉  40 60 80 100 200 

First mode 
[41] 0.3284 0.2189 0.1642 0.1314 0.0657 

Current 0.3284 0.2189 0.1642 0.1314 0.0657 

Second mode 
[41] 0.5899 0.3932 0.2949 0.2359 0.1180 

Current 0.5899 0.3932 0.2949 0.2359 0.1180 

4 Conclusion 

In this study, the bending and free vibration behavior of a rectangular nanoplate 

was investigated by considering the new modified couple stress theory and third-

order shear deformation plate theory. The nanoplate was considered as a size-

dependent thin orthotropic plate. The equations of motion of the nanoplate were 

obtained using Hamilton’s principle. The natural boundary conditions were 

formulated 

An analytical solution of the equations of motion of a simply supported nanoplate 

was constructed. The eigenvalue problem for the simply supported nanoplate was 

formulated and solved. The unknown components of displacement and rotation 

vectors were represented as double trigonometric rows. The constructed solution 

was verified by comparing the calculated results with the results of numerical 

plate modeling, carried out in one of the well-known complexes of finite element 

modeling, and with results obtained by other authors for low-order models of 

plates and bars. The obtained results can be used to simulate the stress-strain state 

of the sensitive elements of nano sensors, which are nanoplates.  

(b) (a) 

Figure 5  Dimensionless deflection of the plate, x2 = L2/2: (a) 𝒍𝟏 = 𝒍,  𝒍𝟐 = 𝟎; 

(b) 𝒍𝟏 = 𝒍𝟐 = 𝒍. 𝟏 − 𝒍𝟏 = 𝟎; 𝟐 − 𝒍𝟏 = 𝟏 𝟒𝒉⁄ ; 𝟑 − 𝒍𝟏 = 𝟏 𝟐𝒉⁄ ; 𝟒 − 𝒍𝟏 = 𝟏 𝒉⁄ . 
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It was shown that the displacements of the median surface points in the direction 

of the x1 and x2 axis do not depend on the material length scale parameter in the 

same directions. These displacements depend on the material length scale 

parameter in the x3 direction only. However, the deflection w0 does not depend 

on l3. Angles ϕ1 and ϕ2 depend on all length scale parameters. It was analytically 

shown that the size-dependent parameters have a noticeable effect on the 

deformed state of the plate only if their order is not less than order 1/h. Since the 

modified couple stress theory and the modified strain gradient theory can predict 

different trends for different order plate theories for non-zero values of size-

dependent parameters, further study of the limits of applicability of both theories 

is necessary. 
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Appendix A 

𝑀1,1 = 𝑀2,2 = 𝜌ℎ;   𝑀3,3 =
𝜌ℎ((𝛼2 + 𝛽2)ℎ + 252)

252
;  𝑀4,4 = 𝑀5,5 =

17𝜌ℎ3

315
; 

𝑀3,4 = 𝑀4,3 = −
4𝜌𝛼ℎ3

315
;  𝑀3,5 = 𝑀5,3 = −

4𝜌𝛽ℎ3

315
;  

𝑆1,1
𝑐𝑙 = ℎ(𝐶4,4𝛽

2 + 𝐶1,1𝛼
2); 𝑆2,2

𝑐𝑙 = ℎ(𝐶2,2𝛽
2 + 𝐶4,4𝛼

2); 

𝑆1,2
𝑐𝑙 = 𝑆2,1

𝑐𝑙 = ℎ𝛽𝛼(𝐶1,2 + 𝐶4,4); 

𝑆3,3
𝑐𝑙 =

ℎ3 ⋅ (𝐶2,2 ⋅ 𝛽
4 + 𝐶1,1 ⋅ 𝛼4 + 2 ⋅ 𝛽2 ⋅ 𝛼2 ⋅ (𝐶1,2 + 2 ⋅ 𝐶4,4))

252

+
8 ⋅ ℎ ⋅ (𝐶5,5 ⋅ 𝛽

2 + 𝐶6,6 ⋅ 𝛼
2)

15
 

𝑆3,4
𝑐𝑙 =

8 ⋅ 𝐶6,6 ⋅ 𝛼 ⋅ ℎ

15
−
4 ⋅ 𝛼 ⋅ ℎ3 ⋅ ((𝐶12 + 2 ⋅ 𝐶4,4) ⋅ 𝛽

2 + 𝐶1,1 ⋅ 𝛼
2)

315
 

𝑆3,5
𝑐𝑙 =

8 ⋅ 𝐶5,5 ⋅ 𝛽 ⋅ ℎ

15
−
4 ⋅ 𝛽 ⋅ ℎ3 ⋅ (𝐶2,2 ⋅ 𝛽

2 + (𝐶1,2 + 2 ⋅ 𝐶4,4) ⋅ 𝛼
2)

315
 

𝑆4,4
𝑐𝑙 =

17 ⋅ ℎ3 ⋅ (𝐶4,4 ⋅ 𝛽
2 + 𝐶1,1 ⋅ 𝛼

2)

315
+
8 ⋅ 𝐶6,6 ⋅ ℎ

15
 

𝑆4,5
𝑐𝑙 =

17 ⋅ 𝛽 ⋅ 𝛼 ⋅ ℎ3 ⋅ (𝐶1,2 + 𝐶4,4)

315
;      𝑆5,5

𝑐𝑙 =
17 ⋅ ℎ3 ⋅ (𝐶2,2 ⋅ 𝛽

2 + 𝐶4,4 ⋅ 𝛼
2)

315
+
8 ⋅ 𝐶5,5 ⋅ ℎ

15
 

𝑆1,1
𝑛𝑐𝑙 =

𝛽2 ⋅ ℎ ⋅ (𝛽2 + 𝛼2) ⋅ 𝜉3
4

;       𝑆1,2
𝑛𝑐𝑙 = −

𝛽 ⋅ 𝛼 ⋅ ℎ ⋅ (𝛽2 + 𝛼2) ⋅ 𝜉3
4
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𝑆2,2
𝑛𝑐𝑙 =

𝛼2 ⋅ ℎ ⋅ (𝛽2 + 𝛼2) ⋅ 𝜉3
4

 

𝑆3,3
𝑛𝑐𝑙 = (−

𝛼2 ⋅ (−3 ⋅ ℎ2 ⋅ (𝛽2 − 𝛼2) + 20)

15 ⋅ ℎ
⋅ 𝜉2 −

𝛽2 ⋅ (7 ⋅ ℎ2 ⋅ (𝛽2 − 𝛼2) + 20)

15 ⋅ ℎ
⋅ 𝜉1

+ −
14 ⋅ 𝛽2 ⋅ 𝛼2 ⋅ ℎ ⋅ (𝜉1 + 𝜉2)

15
) 

𝑆3,4
𝑛𝑐𝑙 = −

2 ⋅ 𝛼 ⋅ (3 ⋅ 𝛼2 ⋅ ℎ2 − 10) ⋅ 𝜉2
15 ⋅ ℎ

;      𝑆3,5
𝑛𝑐𝑙 = −

2 ⋅ 𝛽 ⋅ (3 ⋅ 𝛽2 ⋅ ℎ2 − 10) ⋅ 𝜉1
15 ⋅ ℎ

 

𝑆4,3
𝑛𝑐𝑙 = (−

2 ⋅ 𝛼3 ⋅ ℎ

3
−
4 ⋅ 𝛼 ⋅ (2 ⋅ 𝛽2 ⋅ ℎ2 − 5)

15 ⋅ ℎ
) ⋅ 𝜉2 +

𝛽2 ⋅ 𝛼 ⋅ ℎ ⋅ 𝜉1
15

 

𝑆5,3
𝑛𝑐𝑙 = (−

 𝛽𝑎3 ⋅ ℎ

5
−
4 ⋅ 𝛽 ⋅ (2 ⋅ 𝛼2 ⋅ ℎ2 − 5)

15 ⋅ ℎ
) ⋅ 𝜉1 +

4 ⋅ 𝛽 ⋅ 𝛼2 ⋅ ℎ ⋅ 𝜉2
15

 

𝑆4,4
𝑛𝑐𝑙 =

2 ⋅ ℎ2 ⋅ (𝛽2 + 𝛼2) + 20

15 ⋅ ℎ
⋅ 𝜉2 +

𝛽2 ⋅ ℎ ⋅ (17 ⋅ ℎ2 ⋅ (𝛽2 + 𝛼2) + 168)

1260
⋅ 𝜉3 

𝑆5,5
𝑛𝑐𝑙 =

2 ⋅ ℎ2 ⋅ (𝛽2 + 𝛼2) + 20

15 ⋅ ℎ
⋅ 𝜉1 +

𝛼2 ⋅ ℎ ⋅ (17 ⋅ ℎ2 ⋅ (𝛽2 + 𝛼2) + 168)

1260
⋅ 𝜉3 

𝑆5,4
𝑛𝑐𝑙 = −

𝛽 ⋅ 𝛼 ⋅ ℎ ⋅ (17 ⋅ ℎ2 ⋅ (𝛽2 + 𝛼2) + 168) ⋅ 𝜉3
1260

 

𝑆4,5
𝑛𝑐𝑙 = −

𝛽 ⋅ 𝛼 ⋅ ℎ ⋅ (17 ⋅ ℎ2 ⋅ (𝛽2 + 𝛼2) + 168) ⋅ 𝜉3
1260

 

Nomenclature   

ℎ = plate thickness 

𝜌0 = density 

𝑢 = vector of displacements 

(𝑢0, 𝑣0, 𝑤0) = displacement components of a midplane point along the (𝑥1, 𝑥2, 𝑥3) 
coordinate axes 

𝜙1 = angle of rotation about the 𝑥2-axis 

𝜙2 = angle of rotation about the 𝑥1-axis 

𝑙𝑖 = material length scale parameter 

�̃�𝑖𝑗𝑘𝑙, 𝐺𝑖 = elasticity constants 

𝜎, 휀 = stress and strain tensors 

𝜒 = curvature (rotation gradient) tensor 

𝑚 = couple stress moment tensor 

𝑒 = permutation symbol (the Levi-Civita symbol) 

CT = classical theory of plate deformation 

FOPT = first order theory of plate deformation 

TOPT = third order theory of plate deformation 
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