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Abstract. Human and industrial activities produce air pollutants that can cause a 

decline in air quality. In urban areas, transportation activities are the main source 

of air pollution. One of the emitted air pollutants produced by transportation is 

carbon monoxide (CO). The understanding of CO concentration is crucial since 

its overabundance beyond a certain limit will have a negative impact on human 

health and the environment. In this study, the support vector regression (SVR) 

method was used to predict CO concentration. The purpose of this study was to 

predict the hourly CO concentration in the Ujung Berung district, Bandung City, 

West Java, Indonesia with optimal prediction accuracy. An experiment was carried 

out by modeling the CO concentration with varying kernel parameter values to 

obtain accurate prediction results. The suitability of the values between error (ɛ), 

a trade-off constant (C), and variation mismatch (γ) is vital to obtain optimal 

prediction results. The results showed that the best prediction accuracy value was 

97.68% with kernel parameter values ɛ = 0.02, γ = 30, and C = 0.006. These results 

may lead to proper decision making on environmental issues and can improve air 

pollution control strategies. 

Keywords: air pollution; carbon monoxide; kernel; prediction; support vector 

regression. 

1 Introduction 

Human activities in the form of transportation, industry, and households 

contribute to air pollution in urban areas. A study of air pollution conducted in 

urban areas in 51 countries [1] concluded that 25% of urban air pollution comes 

from transportation or traffic activities, 15% comes from industrial activities, 

20% comes from domestic fuel burning activities, and the rest comes from dust 

and natural salt. Road vehicles emit multiple air pollutants and greenhouse gases, 
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such as particulate matter (PM), hydrocarbons (HCs), carbon dioxide (CO2), 

nitrogen oxides (NOX), and carbon monoxide (CO) [2]. CO emissions result from 

imperfect fuel combustion, where the carbon in the fuel is incompletely oxidized, 

producing CO instead of CO2. CO is extremely toxic and has no color or odor. In 

humans, inhaling air contaminated by CO decreases the flow of oxygen in the 

bloodstream, thus affecting the quality of health. Together with HCs, CO also 

plays a role in the formation of smog and ground-level ozone. 

Accurate information about the concentration of air pollutants is significantly 

important for the general public. Accuracy of predicting the concentration of air 

pollutants ensures the accuracy of efforts in preventing and controlling air 

pollution in an area. The uncertainty model used is an important aspect of air 

pollution modeling because it can improve air pollution control strategies. In 

trying to control and prevent air pollution, governments, private companies and 

researchers directly measure the concentration of air pollutants and conduct 

modeling using various methods. 

Many researchers have studied air pollution modeling using different approaches,  

which can be grouped into regression techniques [3-5], deterministic models [6-

7], and artificial intelligence based models (AI) [8-11]. These modeling 

approaches provide satisfactory results in air pollution forecasting. 

Regression and AI methods have two main advantages over deterministic models. 

Firstly, both models do not require real-time data about emissions, and secondly, 

their structure is often better known than with a deterministic model [12]. 

However, according to Moazami et al. [13], both approaches have weaknesses, 

especially regarding the high uncertainty of the input data, the calculations, and 

the inherent properties of the processes taking place in the atmosphere. Therefore, 

uncertainty analysis is an important aspect when modeling air pollution. The 

support vector machine (SVM) paradigm developed by Boser, Guyon, and 

Vapnik in 1992 [14] is an important method to solve forecasting problems related 

to air pollution [15-19]. The SVM method has a branch called support vector 

regression (SVR), which is primarily designed for regression problems. SVR 

considers not only the estimated error of the data, but also the generalizability of 

the model, that is, SVR’s is able to improve the model’s predictions when 

evaluating new data. 

The use of SVR to predict the concentration of several air pollutants is discussed 

in Ortiz et al. [20] and Castelli et al. [21]. Moazami et al. [13] used SVR to 

analyze the uncertainty of air pollution and predict CO levels in Tehran, Iran. The 

results were compared to those from other artificial intelligence models, showing 

that the prediction of CO with SVR was more accurate than with the other models. 

In addition, Akbarzadeh et al. [22] predicted the daily CO concentration in the 
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Tehran atmosphere using SVR to minimize two error functions that reduced the 

output error and improved the performance of the model. They concluded that 

the SVR model is better than the adaptive fuzzy neuro inference system (ANFIS) 

and the artificial neural network (ANN) methods in predicting short-term CO 

concentrations. According to Brereton et al. [23], SVR is one of the supervised 

learning algorithms that exhibit high accuracy and optimal performance, and is 

superior to other artificial intelligence methods such as ANFIS and ANN. 

Although these results suggest that the performance and accuracy of the SVR 

method are better than those of the AI methods, the optimization of SVR’s 

performance remains a topic of interest for researchers. This is because the 

parameter values used in those studies were still very limited. In the present study, 

the effect of kernel parameter variation in SVR on the predicted CO concentration 

values was analyzed to evaluate the performance of the prediction approach. The 

scheme was applied to CO concentration data measured in Ujung Berung district, 

Bandung City, West Java, Indonesia. The Environmental Management Agency 

(BPLH) of Bandung City [24] has reported that the distribution of CO emissions 

in Bandung City is mainly contributed by the transportation sector (97.4%), 

followed by settlements, waste, and industry, who contributed 0.1%, 2.4%, and 

0.1%, respectively. 

2 Materials and Methods 

This section describes the formulation, error calculation, and accuracy of SVR. 

The formulation was applied to CO concentration data obtained in the Ujung 

Berung District, Bandung City, West Java, Indonesia as the case study area of 

this research. 

2.1 SVR Formulation 

SVR is an SVM that is designed to perform a regression. SVR was introduced in 

1997 by Vapnik, Golowith & Smola [25]. The basic principle is the same as for 

SVM, namely to find the best hyperplane. The SVR maps the input vector to a 

higher dimension. The goal of SVR is to find a function f(x) that is a hyperplane 

in the form of a regression function that fits all input data with the smallest 

possible error [14]. 

The error ɛ is the deviation of the data sample from the hyperplane. Data 

deviations less than or equal to ɛ are acceptable. Data deviations slightly larger 

than ɛ are given a tolerance, called a soft margin, the amplitude of which is known 

as ξ (slack variable). The slack variable is used to solve the sampling mismatch 

in the optimization problem, so that the equation for obtaining the optimal 

hyperplane becomes: 
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 min
1

2
‖𝑤̅‖2 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑛
𝑖=1  (1) 

with the following equation of boundary conditions: 

 𝑦𝑖 − 𝑤̅. 𝑥̅𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖  

 𝑤̅. 𝑥̅𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗ (2) 

 𝜉𝑖 , 𝜉𝑖
∗ ≥ 0  

C is the capacity constant, where C > 0 sets the trade-off between the flatness of 

the function f and its sum in order to tolerate deviations higher than ɛ [15]. 

Different kernel functions can be selected to create different types of SVR 

models. The radial basis function (RBF) is a kernel function that has fewer tuning 

parameters than polynomial and sigmoid kernel functions [26] and tends to 

perform well. RBF, defined by parameter  , is a better choice than other kernel 

functions [27]. In addition, RBF is a kernel function that can solve data with 

nonlinear cases. The core function parameters , , and C need to be optimized, 

since the correct adjustment of these parameters greatly influences the results of 

the prediction. 

To generate different types of SVR models, different kernel functions can be 

chosen. The radial basis function (RBF) is a well-performing kernel function with 

fewer tuning parameters than polynomial and sigmoid kernel functions [26]. RBF 

is specified as a superior choice to other kernel functions by parameter [27]. 

Furthermore, RBF is a kernel function that can solve nonlinear data. The 

fundamental function parameters  , , and C must be tuned because the correct 

modification of these parameters has a significant impact on the prediction 

results. 

In this study, the first step was filtering, which involved deleting unnecessary data 

and modifying the data through normalization and display to make it easier to 

process. After that, the data were divided into three groups: training data, test 

data, and forecast data. The data, which included variations in kernel parameter 

values , , and C, were simulated using SVR. The experiment was repeated 

several times in order to obtain the best modeling results. Error (R2) calculation 

was used to determine the best prediction outcomes. 

2.2 Error Calculation and Accuracy 

The fundamental purpose of utilizing modeling to find knowledge about 

statistical data is to create a representative model. A procedure of measuring 

errors and the accuracy of the modeling results with actual data is required to 

determine a model’s representativeness. Small inaccuracies show how well the 
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model matches the real-world situation, and vice versa. In this study, R2 was used 

to calculate the error. 

In a regression model, R-squared, or R2 (also known as the coefficient of 

determination), is a statistical metric that determines how much of the variance 

in the dependent variable can be explained by the independent variable. R-

squared, indicates how well the data fits the regression model (the goodness of 

fit). R2 is expressed as a decimal number between - to 1. The basic technique of 

R2 error calculation is mean squared error (MSE). 

The MSE of a model is calculated by squaring the difference between the 

predicted and the actual data. After that, all the squares are added together and 

divided by the total number of samples. This is expressed in the following 

equation: 

 𝑀𝑆𝐸(𝑚𝑜𝑑𝑒𝑙) =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1  (11) 

where n is the total number of data, i is the index number of the data, yi  is the i-

th actual data, and 𝑦̂𝑖 is the i-th predictive data. 

Meanwhile, by squaring the difference between the actual data and the average 

of the actual data, the baseline MSE is computed. After that, all the squares are 

added together and divided by the total number of data. This is expressed in the 

following equation: 

 𝑀𝑆𝐸(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) =
1

𝑛
∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1 , (12) 

where 𝑦̅ is the average value of the actual data. The value of R2 can be determined 

by: 

 𝑅2 = 1 −
𝑀𝑆𝐸(𝑚𝑜𝑑𝑒𝑙)

𝑀𝑆𝐸(𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
. (13) 

The following equation is used to determine the level of precision: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
100

𝑛
∑ (1 − |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|𝑛

𝑖=1 ). (14) 

2.3 Performance Comparison of SVR Utilizing RBF Kernel 

Function 

To validate the SVR method utilizing the RBF kernel function, a comparison was 

made between SVR using various kernel functions, particularly linear and 

polynomial kernels. Time series data on the closing price of Bank Central Asia 

(BCA)’s stock market, one of Indonesia’s commercial banking institutions, was 

used to compare the three kernel functions [28]. This type of time series data were 
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used because it has two distinctive behaviors: high frequency variation and low 

frequency variation, which are both needed for testing SVR performance. When 

compared to the other two kernel functions on the daily closing price data (Figure 

1), the RBF kernel function had the best R2 modeling error of 0.978, whereas the 

best R2 modeling errors for the linear and polynomial kernel functions were 0.908 

and 0.970, respectively, ensuring that the RBF kernel was the finest kernel 

function, at least within the scope of the above comparison. Nevertheless, the 

above results show that the SVR with RBF kernel function provides a high degree 

of performance. 

 

Figure 1 Comparison of SVR prediction performance of (a) linear kernel 

function, (b) polynomial kernel function, and (c) RBF kernel function.    

2.4 Case Study Area 

Ujung Berung is a district in the eastern part of Bandung City, West Java, 

Indonesia. Ujung Berung district is located at 107°43’8.11” to 107°42’20.50” east 

longitude and 6°55’4.81” to 6°53’13.61" south latitude, at an altitude of ±700 

meters above sea level. The area of Ujung Berung district is shown in Figure 2. 

Ujung Berung, with a land size of 661.2 hectares, is located east of the city of 

Bandung. The Cillengkrang district and Bandung district border on the north of 

the Ujung Berung area, the Panyileukan, Cinambo, and Arcamanik districts 
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border on the south, the Mandalajati district borders on the east, and the Cibiru 

district borders on the west. 

 

Figure 2 Map of Ujung Berung District, Bandung City, West Java, Indonesia. 

Ujung Berung can be reached via three different routes. The first is the route from 

Bandung’s downtown area, specifically the Bandung city plaza or Asia-Africa 

Street. The second route is the Soekarno-Hatta Road. The third route is from the 

east, across the Cileunyi-Cibiru region. The three routes to Ujung Berung result 

in a high level of transportation traffic in the Ujung Berung area, particularly on 

the AH Nasution Route, which is the district’s main road. One reason to monitor 

air quality in this area is the high level of traffic activity. 

Year after year, the rate of population growth in the Ujung Berung area increases. 

The population of Ujung Berung district rose from 2015 to 2019, according to the 

Bandung City Central Statistics Agency (BPS) [29]. With a population growth 

rate of 1.55 percent, the population of Ujung Berung was 85,887 people in 2019. 

There were 1,513 births and 238 deaths in 2019. Increased population growth has 

an impact on the number of people who drive and the kind of vehicles they drive. 

It also has an impact on transportation operations. 
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3 Results and Discussion 

The CO concentration was predicted using the SVR technique and an RBF kernel 

function with a 95:5 training to test data ratio. The CO concentration data for 

Ujung Berung, Bandung came from the city of Bandung’s Department of 

Environment and Hygiene (DLHK) database. As input data, hourly CO 

concentration measurements were used. The modeled CO concentration data was 

separated into 3,024 training data and 168 test data from April 26, 2018 to 

September 5, 2018, while the projected CO concentration data was divided into 

120 data from September 6, 2018 to September 10, 2018. Figure 3 depicts the 

actual CO concentration data.  

CO concentrations increased at 02.00, 05.00 to 07.00, 11.00 to 13.00, and 17.00 

to 20.00 in Figure 4 throughout the course of 24 hours. This is linked to the high 

transportation activity in the Ujung Berung area, which forms a bottleneck in 

Bandung City when moving outside of the city, particularly in the eastern section 

of the city. 

 

Figure 3 Hourly actual CO concentration at Ujung Berung Station. 

For each kernel parameter, 15 different values were tested in this study. Table 1 

displays the experimental outcomes in terms of parameter values, model 

accuracy, and prediction accuracy. 

Based on the results of varying the kernel parameters on carbon monoxide 

concentration data, it was discovered that a smaller  value causes an overfitting 

pattern, in which the model accuracy increases but the prediction accuracy drops, 

as was shown in the second and third experiments. Trials with bigger fluctuations 
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in the value of  reveal that the model’s and predictions’ accuracy declines since 

the resulting model does not match well enough due to the large data deviation 

tolerance, as was seen in the fifth, sixth, seventh, twelve, and fifteenth 

experiments. 

 

Figure 4 CO concentration for 24 hours from 26/04/2018 to 30/04/2018. 

The accuracy of the model increases or decreases as the   value changes. Because 

the model cannot forecast the training data or does not develop a model from the 

extracted data, a large increase in   results in a poorly fitted model. Changing the 

value of   to a very small number, on the other hand, produces overfitting, which 

causes the model to only store predictable training data, become unstable, and 

lose generalization, reducing its predictive power.  

The trade-off between maximizing margin and training error is controlled by 

parameter C. Parameter C is critical for determining the model’s predictive 

ability. When there is overfitting that follows the curvature of the data, a value of 

C that is too large tends to yield a more curvilinear model, resulting in erroneous 

predictions using a curved model. On the other hand, if the change in C is too 

small, the model will be underfitted since it will tolerate far larger deviations than 

lowering the model’s accuracy and predictions, as was seen in the first, second, 

third, seventh, and tenth experiments. 

The values of , , and C are all related to each other in some way. As a result, 

the suitability of the three parameters has a significant impact on the accuracy of 

a model and prediction. Thus, it is essential to attempt many different 
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variations/combinations of parameter values to get the best results. Because the 

results of the calculation of errors and their correctness can experience 

considerable changes at specific value limits, it is also necessary to utilize a 

smaller value scale, i.e. two to three digits after the decimal point.  

Table 1 Experimental results of varying the kernel parameters of 

the CO concentration data. 

Observation(s) 
Parameters Level of Accuracy (%) 

R2 
ɛ γ C Model Prediction 

1 0.1 30 0.006 97.85 97.66 0.001479 

2 0.045 30 0.006 97.85 97.62 0.000692 

3 0.053 29 0.006 97.81 97.63 0.0178 

4 0.0035 30 1 97.84 97.46 0.15616 

5 1 20 1 97.7 97.42 -0.15616 

6 1 30 1 97.7 97.42 -0.15616 

7 1 10 0.006 97.7 97.42 -0.15616 

8 0.034 29 1 97.84 97.44 0.17861 

9 0.079 30 0.14 97.85 97.67 0.17861 

10 0.079 30 0.006 97.85 97.64 0.17861 

11 0.02 30 0.006 97.84 97.68 0.17861 

12 1 0.1 1 97.7 97.42 -0.15985 

13 0.04 0.1 1.5 97.85 97.67 0.0042 

14 0.04 0.1 6 97.85 97.67 0.0042 

15 8 30 1 97.7 97.42 -0.15985 

 

Figure 5 CO concentration model in Ujung Berung with an almost straight curve 

for  = 8,  = 30, and C = 1. 

According to the experimental results, the regression curve, which is a data 

hyperplane, changes when the kernel parameter values are changed. The result of 

the 15th trial, which was a straight line, is shown in Figure 5. Due to the large 
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value of , the resulting hyperplane is still not appropriate. Because it tolerates 

large deviations, a high value of  creates an underfitting model, diminishing its 

predictive power. 

 

Figure 6 CO concentration in Ujung Berung model with an almost flat 

hyperplane for  = 0.04,  = 0.1, and C = 6. 

 

Figure 7 CO concentration model in Ujung Berung with the best prediction 

accuracy for  = 0.02,  = 30, dan C = 0.006. 

The hyperplane is depicted in Figure 6 as a virtually flat line with simple curves 

at both ends. C generated a large shift in the value of the regression result in the 

14th experiment, whereas  and  only saw a minor change. When the  value is 
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low, it will neglect most of the supporting vectors, resulting in underfitting of 

trained points and a reduction in predictive power. 

Figure 7 shows the graph for predicting CO concentration in Ujung Berung with 

the best forecast accuracy. The findings of the 11th trial are shown by a line with 

R2 = 0.17861 and a highest prediction value of 97.68% that follows the graph of 

the actual data. To produce the finest regression results, a small  value minimizes 

the deviation and is supported by the proper  and C values. 

Figure 8(a) depicts the actual CO concentration, with an average value of 4.502 

g/m3. Meanwhile, Figure 8(b) shows the predicted CO concentration results 

with an average of 4.504  g/m3. The prediction findings demonstrate that they 

are in line with the actual CO concentration data, indicating that the prediction 

results are highly accurate. 

 

Figure 8 CO concentration: (a) actual data with an average value of 4.502 g/m3, 

(b) predicted results with an average value of 4.504 g/m3, (c) actual data and 

predicted data. 
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4 Conclusion 

The best hyperplane is determined by the adequacy of the kernel parameter 

values. The best prediction accuracy value was 97.68%, for  = 0.02,  = 30, and 

C = 0.006, according to the experimental data, which reveal R2 = 0.17861. The 

average value of the actual CO concentration data and the predicted values of 

4.502 g/m3 and 4.504 g/m3, respectively, support the conclusion that the CO 

concentration prediction accuracy was very high. The kernel parameter values 

have a large impact on the model and prediction results since they can produce 

overfitting and underfitting. Overfitting will occur if parameter  is set to a small 

value, while underfitting will occur if the value is increased. Parameters  and C, 

on the other hand, have a reverse effect. 
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