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Дана робота складається з двох частин. Спочатку ми обговорюємо аналітичний підхід до 

розв’язання задачі Стокса про стаціонарну течію в’язкої нестисливої рідини в тривимірних 
порожнинах. Цей підхід базується на методі суперпозиції. В другій частині ми описуємо особливості 
ламінарного перемішування рідини в тривимірних течіях. 

Ключові слова: течія Стокса, вихори Моффата, перемішування, періодичні лінії. 
 

This study consists of two parts. First we consider an analytical approach for solving the problem of 
steady Stokes flow in some 3D containers with arbitrary velocities prescribed over the surfaces. The 
approach is based on the superposition method. First we discuss the Stokes problem solution in a finite 
cylinder. This is the simplest problem because the flow domain is restricted with only two families of 
coordinate surfaces and the edge (rim) is a smooth line. Then we discuss the analytical solution of the Stokes 
problem in more complicated domains, such as a circular cone, a rectangular trihedral corner and a 3D 
rectangular cavity. The Moffatt eddies in such domains are described. In the second part of the study we 
consider the laminar mixing process in the Stokes flow in a 3D container. We show that in 3D flows a much 
richer variety of mixing regimes is observed than in 2D flow configurations. The mixing processes in a 3D 
flow, containing periodic lines, possess essentially two-dimensional characteristics. In the flows, where only 
isolated periodic points exist, the liquid elements stretch or compress in all three directions. 

Key Words: Stokes flow, Moffatt eddies, mixing, periodic lines. 
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Stokes flows. Analytical approach 

 
In 1996, V.V. Meleshko published a paper which 
addressed a general analytical approach for solving 
the problem of two-dimensional steady Stokes flow 
in a rectangular cavity [1]. The flow inside the cavity 
was caused by a nonzero velocity distribution over 
two opposite sides of the cavity. The analytical 
approach called the superposition method was 
proposed for solving this problem. The principal idea 
of the method consists in representing the velocity 
field in a cavity as a sum of several velocity fields. 
Each of these velocity fields is represented in the 

form of Fourier series with arbitrary unknown 
coefficients. The terms of these series satisfy the 
governing equations and the superposition provides 
sufficient arbitrariness for fulfilling the boundary 
condition. In [1] the 2D rectangular cavity was 
treated as the intersection of two infinite strips. So, 
the solution of the Stokes problem was represented 
as the superposition of the well-known solutions for 
these infinite strips. The satisfaction of the boundary 
conditions led the author to an infinite system of 
linear algebraic equations, which was regular and 
consequently could be solved by the method of 
reduction. In the case of non-smooth distribution of 
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the velocity the convergence of the series was not 
sufficient to provide us with enough accuracy. But it 
was shown that knowledge of asymptotic behaviour 
of the unknowns could considerably improve the 
convergence of the series and consequently the 
accuracy of the solution. It was shown that the first 
term of the asymptotics was responsible for the 
discontinuity at the corner of the cavity.  

Later we decided that the method of 
superposition suggested in [1] could be applied to 
more complicated 3D problems. The simplest of 
them is the Stokes problem in a finite circular 
cylinder. The solution of this problem was published 
in [2]. In this case the cylinder was treated as 
intersection of the infinite cylinder and the infinite 
layer. So, the solution of the Stokes problem was 
represented as the superposition of the solutions for 
these two geometries. For the layer part the velocity 
field was expressed in the form of Dini and Fourier-
Bessel series. For the cylinder part the velocity was 
represented in the form of Fourier series. The 
asymptotic behaviour of the unknowns was 
established by the Mellin transform technique 
developed by Gomilko and Meleshko and it was 
shown that the main term of the asymptotics was 
responsible for the discontinuity of the velocity at the 
rim. Knowledge of the main asymptotic term 
allowed the authors to separate and present in closed 
form the part of solution containing the discontinuity 
at the rim. It was established that the asymptotic 
behaviour of the velocity field near the rim coincides 
with the well-known Goodier-Taylor solution in a 
2D wedge with constant tangential velocity applied 
at its sides. That is why the Stokes problem in a 
finite cylinder can be considered as the simpliest 3D 
problem. Smoothness of the cylinder’s rim makes the 
velocity singularity near the rim to actually have 2D 
nature. However the streamlines near the calm rim  
were completely different form the well-known 2D 
Moffatt eddies. Because of the third coordinate the 
streamlines in the plane of symmetry had the form of 
spirals. A small displacement form the symmetry 
plane made the streamline really three-dimensional. 
It moved away from the symmetry plane at one 
corner and approaches the plane at another corner. 

The Stokes problem solution becomes much 
more complicated in domains with 3D singular 
points at the surface. For example, a cuboid has eight 
trihedral corners. The unknowns of the solution 
depend on two indexes and therefore the technique 
for improvement of the series convergence based on 
the asymptotic analysis cannot be applied.  

The simplest example of the 3D singular point at 
the surface is the vertex of a cone. This problem was 

considered in [3]. The flow inside a circular cone 
was induced by a non-zero velocity prescribed at the 
boundary within a ring at some the distance from the 
vertex. Therefore the problem was a 3D analogous of 
the 2D corner flow considered by Moffatt [4]. Since 
this canonical domain is bounded with a coordinate 
surface in the spherical coordinate system, it is not 
necessary to apply the superposition method. The 
solution of the problem was represented in the form 
of a Fourier series on the trigonometric system 
cos(mφ), where φ was the angular coordinate. The 
solution was constructed for each term by use of the 
Mellin transform. The contribution of each term of 
the Fourier expansion to the local velocity field near 
the vertex was studied. The following two 
conclusions were drawn: 1) at any m, providing α is 
less than the critical value, there exists a sequence of 
eddies near the vertex; 2) when the Fourier 
expansion of the velocity prescribed at the boundary 
includes several terms, the term at m=1 will 
dominate near the vertex. If this term is missing in 
the Fourier expansion, the term at m=2 will 
dominate. If both the terms are missing, the 
axisymmetric term (m=0) will play a leading role.  

The Stokes flow in a trihedral rectangular corner 
was studied in [5]. The flow was induced by a non-
zero velocity distribution over one of the corner’s 
walls. We considered two possible motions of the 
wall: uniform translation or rotation about arbitrary 
point. Such a situation occurs for example in a cubic 
cavity where the motion of a lid generates the fluid 
motion. As mentioned above, the unknown 
coefficients depend now on two indexes and 
consequently the technique for investigating the 
asymptotic behaviour of the unknowns, used in 2D 
problems, is useless in 3D case. Within the limits of 
the linear approximation of the problem, this 
difficulty may be readily overcome provided the 
local behaviour of the flow field near the points of 
discontinuity is known. Indeed, since the 
superposition principle is valid, the solution may be 
presented as a superposition of the known solution 
responsible for the velocity discontinuity and some 
new solution satisfying continuous boundary 
conditions. The solution of the Stokes problem in a 
trihedral corner was constructed with the method of 
superposition. For this purpose three spherical 
coordinate systems with a common origin O at the 
vertex were introduce. These systems were such that 
each of the corner walls lay in the equatorial plane of 
the corresponding coordinate system. In order to 
obtain sufficient functional arbitrariness to fulfil all 
the boundary conditions at the walls we represent the 
velocity field as the superposition of three vector 
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fields. Each term of this superposition was a solution 
of the Stokes equations in the corresponding 
spherical coordinate system. The velocity field was 
represented as a local similarity solution 

( , , ) ( , )nU r r u     . This representation reduces 
dimensionality and allows us to formulate the 
boundary value problem for the corresponding 
spherical triangle. Now the problem becomes 2D 
since it is formulated at a spherical surface. 
Satisfaction of the boundary conditions leads to the 
infinite system of linear equations. But now the 
unknown coefficients depend on one index. So, the 
asymptotic analysis by means of Mellin transform 
developed by Gomilko and Meleshko can now be 
applied. The analysis of the asymptotic behaviour of 

the unknowns provided a way of refining the 
technique to obtain high accuracy everywhere in the 
corner. The velocity field was shown to behave near 
the edges, where the discontinuity of the tangential 
velocities was preassigned, in accordance with the 
Goodier-Taylor solution. The numerical analysis of 
the flow topology near the edge formed by two fixed 
walls conformed the existence of eddies. The flow 

driven by the wall rotation about the vertex was 
shown to be strictly 2D. In this case the streamlines 
lay on a spherical surface. The flow became 
essentially 3D when the wall rotated about a centre 
displaced from the vertex. The centrelines of the 
corner eddies contained also saddle points. 

In 2005 paper [6] was published by Albensoeder 
and Kuhlmann. They investigated the flow in a lid-
driven cubic cavity and concluded that the 
singularities in the boundary conditions cannot be 
fully removed by solution [5]. They said that if we 
compose the superposition of solutions [5] in every 
of the eight corners then the singularity at the edge 
connecting two neighbouring vertices is given twice. 
If we take the solution [5] in every corner with 
weight 1/2, then the singularity at the edge is now 
formulated correctly, but at the vertices of the 
trihedral corners we take only a half of the 
singularity into account. In the present paper we 
show haw to construct the singular solution to extract 
all the singularities correctly.  

The velocities prescribed at the surface of the 
cuboid are discontinuous at the eight edges and at the 
eight vertices. So, along the edges between the 
moving and the stationary walls the flow fields are 
singular. Since the local asymptotic solutions near 
both the edges and the vertices are known, we may 
eliminate these singularities. The flow fields may be 
presented as 

, .s sP p p   U u u                 (1) 

Here su  and sp  represent the singular solution of 
the Stokes problem which satisfies the discontinuous 
boundary condition. Then the flow fields u and p are 
continuous. The singular solution of the Stokes 
problem may be constructed as a superposition of the 
local flow fields in the trihedral rectangular corners 
[5]. But in this case the singularity at any edge is 
taken care of twice [6]. Therefore we have to 
subtract one singular solution valid at the dihedral 
corner formed by two planes. The singular solution 
takes the form: 

8 8

1 1
s i j

i j 

  u v e   ,                      (2) 

where iv  is the singular solution in the trihedral 

corner with vertex i and je  is the singular solution in 

the dihedral corner with edge j. The solutions iv  are 

given in [5]. The solutions je  are the well-known 

Goodier-Taylor solution or the shear flow for a 
dihedral corner where the moving wall slides in the 
direction parallel to the edge.  

Extraction of all the discontinuities with (1), (2) 
from the velocity field allowed us to satisfy the 

 
Fig. 1. Streamlines in the symmetry plane. The 
top wall is moving 

 
Fig. 2. Streamlines. The top wall is moving 
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boundary conditions with the accuracy of within 

410 . Fig.1 shows the streamlines in the plane of 
symmetry when only the top wall is moving 
constantly, while the other walls are fixed. We can 
see that the streamlines in the corner eddies are 
spirals. The same effect was observed in a circular 
cylinder [2]. In fig.2 we can see that even a small 
displacement from the symmetry plane gives a really 
3D streamline. It approaches a symmetry plane at 
one angle and moves away at the opposite one. 

 
Periodic points. Structure of manifolds  

 
According to Brauer's fixed point theorem, any 

continuous incompressible mapping of a closed 
domain into itself in a finite-dimensional Euclidean 
space has a fixed point. Obviously, such a fixed 
point of Poincare map will be a periodic point of 
flow. The location and type of periodic points 
determine the nature, intensity and quality of mixing. 

In terms of Poincare map, a periodic point with 
period T is a fixed point. If the Poincare map is 
defined as  1n nf x x , then for a periodic point 

with period T we have  fP P . In 2D flows, a 

periodic point can be classified as elliptic, hyperbolic 
or parabolic depending on the field structure in a 
vicinity of the periodic point. In 3D flows, the 
classification of periodic points is much more 
complicated [7]. Let some material particle close to 
point P  be in position 0dP x  at the initial moment 
of time. After a period, this material particle moves 
into the position  1 0d f d  P x P x . After 

linearization, we obtain 1 0d dx F x  where 

( ) / |f   F x x x P  is the Jacobi matrix at point P . 

The properties of stability of mapping f  are 
determined by the eigenvalues of matrix F . The 
eigenvalues are the roots of the equation 
| | 0 F E , which in the three-dimensional case 
takes the following form: 
 3 2

1 2 3 0J J J      ,  (3) 
where the three invariants of the matrix are defined 
as follows 1 tr( )J  F , 2 2

22 tr ( ) tr( )J  F F , 

3 det( )J  F .  
All the elements of matrix F  were calculated 

numerically for the Stokes problem in a cylinder. 
The condition of fluid incompressibility 3 1J   was 
used to control accuracy of the numerical 
calculations. The numerical error did not exceed 

310  near the surface of the cylinder and took much 
smaller values inside the calculation area. Obviously, 

equation (3) always has one real positive root. Let it 
be 1 . Then equation (3) can be represented as 
follows 

    2
1 1 1

1

1
0J    


 

     
 

.  (4) 

The other two eigenvalues are 

 
 1 1

2,3 2

J
D





  ,  (5) 

where the discriminant 

 
 2

1 1

1

1

4

J
D





   . (6) 

Eigenvalues 2 , 3 can take either real or complex 
conjugate values. And the transition occurs at 0D  , 

i.e. at 2 3 11 /     . It is now obvious that in 

3D flows we can distinguish nine types of periodic 
points, depending on the values of 1  and D . Let us 
describe the periodic point classification in more 
detail. If 1 1  , it means that there is no stretching 
or shrinking in the direction of the corresponding 
eigenvector. In the canonical coordinate system 

(1) (2) (3)( , , )   , the axes of which are determined by 

the eigenvectors, the condition 1 1   means that 
(1) (1)( )f  . Then for the other two eigenvalues 

the condition 2 3 1    is fulfilled, i.e. in the 

canonical plane (2) (3)( , )   mapping f  satisfies the 

condition of incompressibility. Thus, the case 1 1   
is essentially two-dimensional. Such periodic points 
can be divided into three classes: elliptic, hyperbolic 
and parabolic. The condition 1 1   is fulfilled at the 
points of periodic lines. Indeed, there is no stretching 
or shrinking in the tangential direction of the 
periodic line, i.e. the tangential direction of the 
periodic line corresponds to the direction of 
eigenvector 1n . The classification of points of a 
periodic line is equivalent to the classification of 
periodic points in 2D flows. Therefore the periodic 
lines can be divided into elliptic and hyperbolic 
segments that connect at the parabolic points. It 
follows from (6) that the point of a periodic line is 
elliptic if 11 3J   . In this case 0D  , and 

therefore the eigenvalues 2,3 are complex conjugate. 

If 1 1J    or 1 3J  , then 0D  , and therefore 
such a point of the periodic line is hyperbolic. In 2D 
systems, the elliptic points are surrounded by islands 
of regular motion. The Poincaré map in such islands 
is a rotation around the elliptic periodic point. The 
liquid inside the elliptical region does not leave this 
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region. It becomes isolated from the rest of the 
liquid. In 3D domains the elliptic segments of the 
periodic lines are also surrounded by pipe-shaped 
islands. The hyperbolic points in 2D systems are 
associated with stable and unstable manifolds, which 
are the lines along which fluid particles are shrunk or 
stretched. In the 3D case, the stable and unstable 
manifolds associated with a hyperbolic segment of 
the periodic line combine and merge into the 
surfaces. Thus, the Poincare map in a vicinity of a 
periodic line is essentially 2D in nature. 

If 1 1  , then such a periodic point is isolated. 

The Poincare map in the vicinity of such a periodic 
point is essentially three-dimensional. The 
classification of isolated points is much more 
complicated as compared with the classification of 
periodic lines. The phase portraits in the canonical 
coordinate system are given in [7]. In case 0D  , all 
three eigenvalues i  are real. Phase portraits in the 
coordinate planes are two saddles and a node. In the 
case of 0D  , the eigenvalues 2,3  acquire complex 

conjugate values that are responsible for rotation in 
the plane (2) (3)( , )  . The phase portrait in this plane 

is a hyperbolic focus. In the degenerate case 0D   

we have two equal eigenvalues 2 3 11 /     . In 

the plane (2) (3)( , )  , the phase portrait is a 

degenerate node. Thus, when 1 1   a periodic point 
is isolated and can be classified as a hyperbolic node 
or a hyperbolic focus. It is obvious that the phase 
portrait of isolated periodic points does not have 
closed lines or surfaces. Therefore isolated islands of 
regular motion similar to those formed around the 
elliptical points of the periodic lines cannot be 
formed around isolated periodic points. In a flow that 
has only isolated periodic points and no periodic 
lines, the liquid must be mixed throughout the flow 
area.  

Any isolated periodic hyperbolic point is 
associated with the surface or the line called 
manifolds. The stable manifold ( )sW P  is a set of 
points that approach a periodic point P  in the 
process of Poincare map. That is for any point 

( )sWx P  we have ( )nf x P  at n  . An 

unstable manifold ( )uW P  is a set of points that tend 
to P  in the reverse process, i.e. for an arbitrary point 

( )uWx P  we have ( )nf  x P  at n  . In a 
two-dimensional case, stable and unstable manifolds 
are two lines that intersect infinitely many. Since 
there are infinitely many points of intersection of the 
stable and unstable manifolds, they concentrate when 
approaching the periodic point. The manifolds form 
a complex layered structure. Due to this phenomenon 
the mixing of fluid represents the elongation of a 
liquid spot along the unstable manifold and multiple 
folding when passing through homoclinic points. 
Such elongation and folding of a liquid spot is called 

a horseshoe map. It is obvious that in three-
dimensional flows with periodic lines, the mixing 
mechanism is similar to that in two-dimensional 
flows. In such a quasi-two-dimensional mapping the 
liquid does not mix along the periodic line. The 
elongation and folding of the fluid elements occurs 

Fig. 5. Unstable manifold. Problem 3. 

 
Fig. 3. Stable and unstable manifolds. Problem 1. 

 
Fig. 4. Stable and unstable manifolds. Problem 2. 
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only in the plane perpendicular the periodic line. 
Although this horseshoe map also leads to a complex 
layered structure, but the presence of only a two-
dimensional mixing mechanism does not allow us to 
obtain a high-quality homogeneous mixture in the 
entire three-dimensional region of the flow. 

The above theoretical considerations are 
illustrated by the example of three possible periodic 
flows generated in a finite cylinder [7]. In all three 
cases, the flows in the cylinder are generated by the 
periodic motion of the cylinder’s lids. The lateral 
surface of the cylinder is stationary while the end 
faces move periodically. Three typical protocols of 
the lids motion were considered in [7]: 1) Problem 1. 
Only the upper end wall moves. The bottom wall 
remains stationary. The motion of the upper wall is 
zigzag. During the first half of the period, the upper 
end wall moves with a constant velocity in the 
direction of the x-axis, during the second half of the 
period in the direction of the y-axis. 2) Problem 2. 
The upper and lower walls move alternately in 
opposite directions parallel to the X-axis. 3) Problem 
3. The protocol of motion of the end walls consists 
of three different steps used in Problems 1 and 2. 

The flows in the first two problems have periodic 
lines, while the flow in problem 3 has only isolated 
periodic points. Thus, according to the theory 
described above, the flows in problems 1 and 2 have 
2D nature. Although the mixing mode may be 
chaotic, the passive impurity spot cannot be mixed 
throughout the area due to its two-dimensional 
nature. In addition, in such a flow there may be 
zones of regular mixing. The islands around the 
elliptical segments of the periodic lines are formed, 
which also prevent the good mixing. The flow of 
Problem 3 has only isolated periodic points and 
therefore the islands of regular motion cannot be 
formed around such points. The passive impurity 
spot should be mixed throughout the flow area. 

The stable and unstable manifolds of periodic 
points and lines for Problems 1-3 are shown in fig. 3-
5. The results of numerical calculation confirm the 
theoretical reasonings outlined above. In the flows of 
Problems 1-2 the passive impurity spot will not 
move throughout the domain. The flow of Problem 
3, where only isolated periodic points exist, provides 
effective mixing of fluid.  
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