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LINEAR KOSZUL DUALITY II – COHERENT SHEAVES

ON PERFECT SHEAVES

IVAN MIRKOVIĆ AND SIMON RICHE

Abstract. In this paper we continue the study (initiated in [MR1]) of linear Koszul duality, a
geometric version of the standard duality between modules over symmetric and exterior algebras.
We construct this duality in a very general setting, and prove its compatibility with morphisms
of vector bundles and base change.

Introduction

0.1. In [MR1] we have defined and initiated the study of linear Koszul duality, a geometric
version of the standard Koszul duality between (graded) modules over the symmetric algebra
of a vector space V and (graded) modules over the exterior algebra of the dual vector space
V ∗ (see e.g. [BGG, GKM]). In our setting of [MR1], we replaced the vector space V by a 2-
term complex of locally free sheaves on a (smooth) scheme X, and V ∗ by a shift of the dual
complex, and obtained an equivalence of derived categories of dg-modules over the symmetric
algebras (in the graded sense) of these complexes. As an application, given a vector bundle E
over X and subbundles F1, F2 ⊂ E, for an appropriate choice of a 2-term complex we obtained

an equivalence of derived categories of (dg-)sheaves on the derived intersections F1
R

∩E F2 and

F⊥
1

R

∩E∗ F⊥
2 . Here E∗ is the dual vector bundle, and F⊥

1 , F
⊥
2 ⊂ E∗ are the orthogonals to F1

and F2. A version of this equivalence (when F2 = E) has been used by the second author in
[Ri] to construct a Koszul duality for representations of semi-simple Lie algebras in positive
characteristic. This construction is also used to study a more geometric question in [UI], see
[AG, Appendix F] for comments.

The main result of this paper is a further generalization of this equivalence, where now V is
replaced by a finite complex of locally free sheaves of arbitrary length (in non-positive degrees),
on a scheme satisfying reasonable assumptions. (Schemes satisfying these conditions are called
nice, see §1.1.) See Theorems 1.4.1, 1.6.1 and 1.7.1 for three versions of this equivalence. This
generalization uses ideas of Positselski ([Po]), and does not rely on [MR1] except for some
technical lemmas.

0.2. If E is a complex of locally free sheaves of OX-modules, then it is well known that the
category of quasi-coherent SOX

(E∨)-modules is equivalent to the category of quasi-coherent
sheaves on the (unique) vector bundle whose sheaf of sections is E . By analogy, if X is a finite
complex of locally free OX -modules, then the derived category of quasi-coherent dg-modules
over the (graded) symmetric algebra SymOX

(X∨) can be considered as the derived category of
quasi-coherent sheaves on the complex X . So to any bounded complex X of locally free OX -
modules on a nice scheme X (in non-positive degrees) one can associate a derived category of

1



2 IVAN MIRKOVIĆ AND SIMON RICHE

quasi-coherent sheaves on X , and in this terminology linear Koszul duality is an equivalence
between certain categories of quasi-coherent sheaves on X and on X∨[−1].

Assume moreover that X is a scheme over a field of characteristic zero. Then if X is a bounded
complex of locally free sheaves, the complex SymOX

(X ) is a direct factor of the tensor algebra
TOX

(X ); it follows that if X → X ′ is a quasi-isomorphism of such complexes, the induced
morphism SymOX

(X ) → SymOX
(X ′) is a quasi-isomorphism1 (since such property is clear for

the tensor algebra). If X moreover admits an ample family of line bundles, then using [SGA6,
Lemme 2.2.8.c] we deduce that for any perfect sheaf F in DbCoh(X) one can define the derived
category of quasi-coherent sheaves on F (which is well defined up to equivalence; i.e. this category
does not depend on the presentation of F as a bounded complex of locally free sheaves), and
then one can interpret linear Koszul duality in these terms. This justifies our title.

0.3. In Sections 2 and 3 we study the behaviour of this linear Koszul duality under natural
operations: we prove compatibility results with respect to morphisms of perfect sheaves and
base change. We will use these results in [MR2] to construct a geometric realization of the
Iwahori–Matsumoto involution of affine Hecke algebras.

These compatibility properties are inspired by the results of the second author in [Ri, §2], and are
quite similar to some compatibility properties of the Fourier transform on constructible sheaves
(see [KS, §3.7]). In fact, we will make this similarity precise in [MR3], showing that our linear
Koszul duality and a certain Fourier transform isomorphism due to Kashiwara are related via the
Chern character from equivariant K-theory to (completed) equivariant Borel–Moore homology.
This result will explain the relation between the geometric realization of the Iwahori–Matsumoto
involution in [MR2] and the geometric realization of the Iwahori–Matsumoto involution for
graded affine Hecke algebras constructed in [EM]; see [MR3] for details.

0.4. Notation. If X is a scheme, we denote by Sh(X) the category of all sheaves of OX -
modules. We denote by QCoh(X), respectively Coh(X) the category of quasi-coherent, respec-
tively coherent, sheaves on X.

If X is a scheme and F , G are sheaves of OX-modules, we denote by F ⊞ G the OX2 -module
(p1)

∗F ⊕ (p2)
∗G on X2, where p1, p2 : X × X → X are the first and second projections. If

X is a Noetherian scheme and Y ⊆ X is a closed subscheme, we denote by CohY (X) the full
subcategory of Coh(X) whose objects are supported set-theoretically on Y . We use similar
notation for G-equivariant sheaves (where G is an algebraic group acting on X).

We will frequently work with Z
2-graded sheaves M. The (i, j) component of M will be denoted

Mi
j . Here “i” will be called the cohomological grading, and “j” will be called the internal

grading. Ordinary sheaves will be considered as Z
2-graded sheaves concentrated in bidegree

(0, 0).

1Note that this property does not hold over a field k of characteristic p (as pointed out to one of us by P. Polo):

for instance the symmetric algebra of the exact complex (k
idk
−−→ k) where the first copy is in even degree n and

the second one in degree n+ 1, is the de Rham complex of A1
k; in particular its cohomology is not k. This gives

a simple example of the principle that the theory of commutative dg-algebras is not suitable outside of fields of
characteristic zero, which justifies the need for Lurie’s formalism of Derived Algebraic Geometry.
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As usual, if M is a Z
2-graded sheaf of OX -modules, we denote by M∨ the Z2-graded OX -module

such that

(M∨)ij := HomOX
(M−i

−j ,OX).

As in [MR1] we will work with Gm-equivariant sheaves of quasi-coherent OX -dg-algebras over a
scheme X (for the trivial Gm-action on X).2 If A is such a dg-algebra, we denote by C(A−Mod)
the category of Gm-equivariant quasi-coherent sheaves of OX -dg-modules over A (Beware that
for simplicity we do not indicate Gm or “gr” in this notation, contrary to our conventions in
[MR1, Ri].) We denote by D(A−Mod) the associated derived category. On a few occasions we

will also consider the category C̃(A−Mod) of all sheaves of Gm-equivariant A-dg-modules on X

(in the sense of [Ri, §1.7]), and the associated derived category D̃(A−Mod).

If X is a scheme and F an OX -modules (considered as a bimodule where the left and right
actions coincide), we denote by SOX

(F), respectively
∧

OX
(F), the symmetric, respectively

exterior, algebra of F , i.e. the quotient of the tensor algebra of F by the relations f ⊗ g− g⊗ f ,
respectively f ⊗ g + g ⊗ f and f ⊗ f3, for f, g local sections of F . If F is a (Gm-equivariant)
complex of OX-modules, then these algebras are sheaves of (Gm-equivariant) dg-algebras in a
natural way. If F is a complex of (Gm-equivariant) OX -modules, we denote by SymOX

(F) the
graded-symmetric algebra of F , i.e. the quotient of the tensor algebra of F by the relations
f ⊗ g − (−1)|f |·|g|g ⊗ f for f, g homogeneous local sections of F , together with f ⊗ f for local
sections f such that |f | is odd.4 Again, this algebra is a sheaf of (Gm-equivariant) dg-algebras
in a natural way.

We will use the general convention that we denote similarly a functor between two categories
and the induced functor between the opposite categories.

0.5. Acknowledgements. This article is a sequel to [MR1]. This work was started while both
authors were members of the Institute for Advanced Study in Princeton, during the Special Year
on “New Connections of Representation Theory to Algebraic Geometry and Physics.”

I.M. was supported by NSF. S.R. was supported by ANR Grants No. ANR-09-JCJC-0102-01
and No. ANR-10-BLAN-0110.

We thank L. Positselski for his encouragements and for suggesting to look into [Po] for solutions
to our spectral sequence problems.

1. Linear Koszul duality

1.1. Nice schemes. Most of our results will be proved under some technical assumptions on
our base scheme. To simplify the statements we introduce the following terminology.

Definition 1.1.1. A scheme is nice if it is separated, Noetherian and of finite Krull dimension.

2In a different terminology one would replace “Gm-equivariant dg-algebra” by “dgg-algebra” (where dgg stands
for differential graded graded).

3Of course, this second set of equations is redundant if 2 is invertible in Γ(X,OX).
4Again, this second set of equations is redundant if 2 is invertible in Γ(X,OX).
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With this terminology, the schemes considered in [BR, §3.1] are exactly the nice schemes. In
particular, for every graded-commutative, non-positively graded OX -dg-algebra A, the category
of sheaves of A-dg-modules has enough K-flat and K-injective objects in the sense of [Sp] and,
if A is moreover quasi-coherent, the category of quasi-coherent sheaves of A-dg-modules has
enough K-flat and K-injective objects. If A is Gm-equivariant, then similar results hold for the

categories C̃(A−Mod) and C(A−Mod). (The case of C̃(A−Mod) is discussed in [Ri, §1.7]; the
case of C(A−Mod) follows, using the techniques of [BR, §3].) It follows that the usual functors
(direct and inverse image, tensor product) admit derived functors. Moreover, these functors
admit all the compatibility properties one might expect (see [BR, §3] for precise statements).

Recall finally that under our assumptions the category D(A−Mod) depends on A only up to
quasi-isomorphism (see [BR, §3.6]).

1.2. Koszul duality functors on the level of complexes. Let (X,OX ) be a scheme. We
consider a finite complex

X := · · · 0 → V−n → V−n+1 → · · · → V0 → 0 · · ·

where n ≥ 0 and each V i is a locally free OX-module of finite rank (j ∈ J0, nK). More precisely,
we will consider X as a complex of graded OX -modules, where each V i is in internal degree
2. Consider also the complex Y of graded OX-modules which equals X∨[−1] as a bigraded
OX -module, and where the differential is defined in such a way that

dY(y)(v) = (−1)|y|y
(
dX (v)

)

for y a local section of Y and v a local section of X . We define the (graded-commutative)
Gm-equivariant dg-algebras

T := SymOX
(X ), S := SymOX

(Y).

Our goal in this subsection is to construct (covariant) functors

A : C(T −Mod) → C(S−Mod), B : C(S−Mod) → C(T −Mod).

Let M be in C(T −Mod). We define A (M) as follows. As a Z
2-graded OX -module, A (M)

equals S ⊗OX
M. The S-action is induced by the left multiplication of S on itself, and the

differential is the sum of two terms, denoted d1 and d2. First, d1 is the natural differential on
the tensor product S ⊗OX

M, defined by

d1(s⊗m) = dS(s)⊗m+ (−1)|s|s⊗ dM(m).

Then, consider the natural morphism i : OX → EndOX
(X ) ∼= X∨ ⊗X . The differential d2 is the

composition of the morphism
{

S ⊗OX
M → S ⊗OX

M
s⊗m 7→ (−1)|s|s⊗m

followed by the morphism induced by i

S ⊗OX
M → S ⊗OX

X∨ ⊗OX
X ⊗OX

M,

and finally followed by the morphism

S ⊗OX
X∨ ⊗OX

X ⊗OX
M → S ⊗OX

M
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induced by the right multiplication S ⊗OX
X∨ → S and the morphism X ⊗OX

M → M induced
by the T -action. Locally, one can choose a basis {xα} of X over OX , and the dual basis {x∗α}
of X∨; then d2 can be described as

d2(s⊗m) = (−1)|s|
∑

α

sx∗α ⊗ xα ·m.

The following lemma is proved by a direct computation left to the reader.

Lemma 1.2.1. These data provide A (M) the structure of an S-dg-module.

The functor B is constructed similarly. For N in C(S−Mod), B(N ) is equal, as a Z
2-graded

OX -module, to T ∨ ⊗OX
N . The T -module structure is induced by the T -action on T ∨ defined

by (t · φ)(t′) = (−1)|t|·|φ|φ(t · t′). And the differential is the sum of d1, which is the differential
of the tensor product T ∨ ⊗OX

N , and d2, the Koszul differential defined locally by

d2(φ⊗ n) = (−1)|φ|
∑

α

φ(xα · −)⊗ x∗α · n,

The following lemma is proved by a direct computation left to the reader.

Lemma 1.2.2. These data provide B(N ) the structure of a T -dg-module.

1.3. Generalized Koszul complexes. We consider the generalized Koszul complexes

K(1) := A (T ∨), K(2) := B(S).

There exists a natural morphism of S-dg-modules K(1) → OX (projection to OX in bidegree

(0, 0)), and a natural morphism of T -dg-modules OX → K(2). The following proposition is
similar to [MR1, Lemma 2.6.1].

Proposition 1.3.1. The natural morphism K(1) → OX , respectively OX → K(2), is a quasi-

isomorphism.

Proof. The OX-dg-modules K(1) and K(2) are isomorphic under the (graded) exchange of factors

in the tensor product. Hence it is sufficient to treat the case of K(1). We prove the result by
induction on n, the case n = 0 being well known (see [MR1, §2.3] and the references therein).

Now assume n > 0, and denote by Z the complex

Z := · · · 0 → V−n+1 → · · · → V0 → 0 · · ·

Denote by K
(1)
Z the Koszul complex for Z; by induction, its cohomology is concentrated in degree

0, and equals OX . To fix notation, assume n is even. Then there is an isomorphism of graded
sheaves

K(1) ∼=
⊕

i,j,k

∧
i(V−n)

∨ ⊗OX

(
Sj(V−n)

)∨
⊗OX

(K
(1)
Z )k,

where the term
∧i(V−n)

∨ ⊗OX

(
Sj(V−n)

)∨
⊗OX

(K
(1)
Z )k is in degree k + nj + (n + 1)i. The

differential on K(1) is the sum of four differentials: d1 induced by the differential of K
(1)
Z , d2

induced by the Koszul differential on the Koszul complex
∧
(V−n)

∨ ⊗OX

(
S(V−n)

)∨
, d3 induced
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by d−n
X : V−n → V−n+1 acting in T ∨, and d4 induced by d−n

X acting in S. The effect of these
differentials on the indices can be described as follows:

d1 : k 7→ k + 1, d2 :

{
i 7→ i+ 1
j 7→ j − 1

, d3 :

{
j 7→ j + 1
k 7→ k − n+ 1

, d4 :

{
i 7→ i+ 1
k 7→ k − n

.

Hence K(1) is the total complex of the double complex whose (p, q)-term is

Ap,q :=
⊕

p=i+j,

q=k+ni+(n−1)j

∧
i(V−n)

∨ ⊗OX

(
Sj(V−n)

)∨
⊗OX

(K
(1)
Z )k,

and whose differentials are d′ = d3 + d4, d
′′ = d1 + d2. By definition we have Ap,q = 0 if q < 0.

Hence there is a converging spectral sequence

E
p,q
1 = Hq(Ap,∗, d′′) ⇒ Hp+q(K(1))

(see [MR1, Proposition 2.2.1(ii)]). Hence it is sufficient to prove that the complex K(1), endowed
with the differential d1 + d2, has cohomology OX . However, this complex is a tensor product
of two complexes of flat, non-positively graded complexes of OX -modules with cohomology OX .
Hence the result follows from the Künneth formula. �

1.4. Covariant linear Koszul duality. We denote by C(T −Mod−) the full subcategory of
C(T −Mod) whose objects have their internal degree which is bounded above (uniformly in the
cohomological degree), and by D(T −Mod−) the corresponding derived category. We define
similarly C(S−Mod−) and D(S−Mod−). Note that T ∨ and S are both concentrated in non-
positive internal degrees. In particular, they are objects of the categories just defined. Note also
that the natural functors

D(T −Mod−) → D(T −Mod) and D(S−Mod−) → D(S−Mod)

are fully faithful, with essential images the subcategories of dg-modules whose cohomology is
bounded above for the internal degree (uniformly in the cohomological degree).

The first (covariant) version of our linear Koszul duality is the following theorem.

Theorem 1.4.1. (1) The functors

A : C(T −Mod−) → C(S−Mod−), B : C(S−Mod−) → C(T −Mod−)

are exact, hence induce functors

A : D(T −Mod−) → D(S−Mod−), B : D(S−Mod−) → D(T −Mod−).

(2) The functors A and B are equivalences of triangulated categories, quasi-inverse to each

other.

Proof. The idea of the proof is taken from [Po, proof of Theorem A.1.2].

(1) We prove that A sends acyclic T -dg-modules in C(T −Mod−) to acyclic Sdg-modules; the
proof for B is similar. Let M be an acyclic object of C(T −Mod−). To fix notation, assume that
Mn = 0 for n > 0. Then for any m ∈ Z we have

A (M)m =
⊕

i≤0,j≤0,
m=i+j

Si ⊗OX
Mj .
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Hence A (M)m can be obtained from the homogeneous internal degree components of M by
tensoring with some homogeneous internal degree components of S (which are bounded com-
plexes of flat OX -modules) and taking shifts and cones a finite number of times. More precisely,
this process works as follows, e.g. when m is even: start with Sm ⊗M0; the Koszul differential
defines a morphism of complexes Sm+2⊗M−2[−1] → Sm⊗M0; take its cone L; then the Koszul
differential defines a morphism of complexes Sm+4 ⊗M−4[−1] → L; take its cone; and continue
until S0 ⊗Mm is reached.

As Mj is acyclic for any j, as the tensor product of an acyclic complex with a bounded above
complex of flat modules is acyclic, and as the cone of a morphism between acyclic complexes is
acyclic, we deduce that A (M)m is acyclic for any m, hence that A (M) is acyclic.

(2) The functors A and B are clearly adjoint; in particular we have adjunction morphisms
A ◦B → Id and Id → B ◦A , hence similar morphisms for the induced functors A and B. We
show that the morphism A ◦B → Id is an isomorphism; the proof for the morphism Id → B◦A

is similar. Let N be an object of C(S−Mod−). By a construction similar to that of (1), the
homogeneous internal degree components of the cone of the morphism A ◦ B(N ) → N can

be obtained from the positive homogeneous internal degree components of K(1) by tensoring
with some homogeneous internal degree components of M and taking shifts and cones a finite
number of times. Hence, using Proposition 1.3.1, it suffices to observe that the tensor product
of an acyclic, bounded above complex of flat OX-modules with any complex of OX -modules is
acyclic (see e.g. [Sp, Proposition 5.7]). �

Remark 1.4.2. So far, we have not used the condition that our dg-modules and dg-comodules
are quasi-coherent over OX , or that (X,OX ) is a scheme. In fact, Theorem 1.4.1 is true for any
commutative ringed space (X,OX ) and the whole categories of OX -dg-modules over T and S
(with the prescribed condition on the grading). Our assumption will be used in §1.6 below.

1.5. Reminder on Grothendieck–Serre duality. Let X be a nice scheme. We assume
moreover that there exists a dualizing object Ω in DbCoh(X) (see [H1, p. 258]; see [H1, §V.10]
for details about this assumption). Let us choose a bounded below complex IΩ of injective
quasi-coherent sheaves on X whose image in DbCoh(X) is Ω. Recall that the components of IΩ
are also injective in the category Sh(X). (This follows from [H1, Theorem II.7.18].)

The functor
HomOX

(−,IΩ) : CSh(X) → CSh(X)op

is exact, hence induces a functor

HomOX
(−,IΩ) : DSh(X) → DSh(X)op.

It is well known that under our hypotheses the natural functor

(1.5.1) DQCoh(X) → DSh(X)

is fully faithful (see e.g. [BR, Proposition 3.1.3] and the references therein), as well as the natural
functor

(1.5.2) DbCoh(X) → DQCoh(X).

Hence we can consider the category DbCoh(X) as a subcategory of DSh(X), hence obtain a
functor

HomOX
(−,IΩ) : D

bCoh(X) → DSh(X)op.
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It is explained in [H1, p. 257] that this functor factors through a functor

DΩ : DbCoh(X) → DbCoh(X)op.

Using again the fully faithfulness of (1.5.1) and (1.5.2), it is easy to construct a morphism
εΩ : Id → DΩ ◦ DΩ of endofunctors of the category DbCoh(X). The fact that Ω is a dualizing
complex means in particular that εΩ is an isomorphism of functors (see [H1, Proposition V.2.1]).
In particular, DΩ is an equivalence of categories.

Now we let A be a Gm-equivariant, non-positively (cohomologically) graded, graded-commuta-
tive sheaf of OX -dg-algebras on X. We denote by Dbc(A−Mod) the subcategory of D(A−Mod)
with objects the dg-modules M such that for any j ∈ Z the object Mj of DQCoh(X) has
bounded and coherent cohomology. Our goal now is to explain the construction of an autoe-
quivalence

DA
Ω : Dbc(A−Mod)

∼
−→ Dbc(A−Mod)op

which is compatible with DΩ in the natural sense. First, there exists a natural functor

0D̃A
Ω : C̃(A−Mod) → C̃(A−Mod)op

which sends a dg-module M to the dg-module whose underlying Gm-equivariant OX -dg-module
is Hom(M,IΩ), with A-action defined by

(a · φ)(m) = (−1)|a|·|φ|φ(a ·m)

for a a local section of A, φ a local section of Hom(M,IΩ), and m a local section of M. This
functor is exact, hence induces a functor

D̃A
Ω : D̃(A−Mod) → D̃(A−Mod)op.

Moreover, it is easy to construct a morphism ε̃AΩ : Id → D̃A
Ω ◦ D̃A

Ω of endofunctors of D̃(A−Mod).

Now by [BR, Proposition 3.3.2] the natural functor D(A−Mod) → D̃(A−Mod) is fully faithful,

hence so is also the natural functor Dbc(A−Mod) → D̃(A−Mod). Moreover, it is easy to prove

using the case of OX considered above that D̃A
Ω factors through a functor

DA
Ω : Dbc(A−Mod) → Dbc(A−Mod)op.

Using fully faithfulness again the morphism ε̃AΩ induces a morphism εAΩ : Id → DA
Ω ◦ DA

Ω of

endofunctors of Dbc(A−Mod). Finally, using again the case of OX one can check that εAΩ is an
isomorphism of functors, proving in particular that DA

Ω is an equivalence.

1.6. Contravariant linear Koszul duality. From now on we assume that X is nice. We
assume moreover that there exists a dualizing object Ω in DbCoh(X).

Using the same conventions as in §1.5, we denote by Dbc(T −Mod−) the subcategory of the
category D(T −Mod−) whose objects are the dg-modules M such that, for any j ∈ Z, H•(Mj)

is bounded and coherent. We define similarly the categories Dbc(S−Mod−) (replacing T by S)
and Dbc(T −Mod+) (replacing “above” by “below”).

Clearly, the functors A and B restrict to equivalences

A
bc

: Dbc(T −Mod−)
∼
−→ Dbc(S−Mod−), B

bc
: Dbc(S−Mod−)

∼
−→ Dbc(T −Mod−)
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(see e.g. the proof of Theorem 1.4.1). On the other hand, in §1.5 we have defined an equivalence
DT

Ω , which induces a conctravariant equivalence of categories

DT
Ω : Dbc(T −Mod+)

∼
−→ Dbc(T −Mod−)

op.

Composing these equivalences we obtain the following result, which is the second (contravariant)
version of our linear Koszul duality.

Theorem 1.6.1. Let X be a nice scheme admitting a dualizing complex Ω. Then the composition

A
bc

◦DT
Ω gives an equivalence of triangulated categories

KΩ : Dbc(T −Mod+)
∼
−→ Dbc(S−Mod−)

op,

which satisfies KΩ(M[n]〈m〉) = KΩ(M)[−n]〈−m〉.

Remark 1.6.2. (1) The equivalence KΩ only depends, up to isomorphism, on the dualizing
complex Ω ∈ DbCoh(X), and not on the injective resolution IΩ. This justifies the
notation.

(2) One can describe the equivalence KΩ very explicitly. Namely, if M is an object of
Dbc(T −Mod+), the image under KΩ of M is, as an S-dg-module, the image in the
derived category of the complex

S ⊗OX
HomOX

(M,IΩ),

where the differential is the sum of the usual differential on the tensor product S ⊗
Hom(M,IΩ) and of a Koszul-type differential. (Note that this dg-module might not be
quasi-coherent.)

(3) The covariant Koszul duality A may seem more appealing than the contravariant du-
ality KΩ. However, the category D(T −Mod−) is not very interesting since it does not
contain the free module T in general. In particular, the equivalence A will not yield an
equivalence for locally finitely generated dg-modules, contrary to KΩ (see Proposition
1.8.2 below). This equivalence will be interesting, however, if X is concentrated in odd
cohomological degrees. In this case, the equivalence obtained is essentially that of [GKM,
Theorem 8.4] (see also [Ri, Theorem 2.1.1]).

1.7. Regraded contravariant linear Koszul duality. Consider the Gm-equivariant dg-
algebra

R := Sym(Y[2]).

There is a “regrading” equivalence of categories

ξ : C(S−Mod)
∼
−→ C(R−Mod),

which sends the S-dg-module N to the R-dg-module with (i, j)-component ξ(M)ij := Mi−j
j . (If

one forgets the gradings, the dg-algebras R and S coincide, as well as M and ξ(M). Then the
R-action and the differential on ξ(M) are the same as the S-action and the differential on M.)
Composing the equivalence of Theorem 1.6.1 with ξ we obtain the third version of our linear
Koszul duality, which is the one we will use.

Theorem 1.7.1. Let X be a nice scheme admitting a dualizing complex Ω. Then the composition

ξ ◦KΩ gives an equivalence of triangulated categories

κΩ : Dbc(T −Mod+)
∼
−→ Dbc(R−Mod−)

op,
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which satisfies κΩ(M[n]〈m〉) = κΩ(M)[−n+m]〈−m〉.

1.8. Finiteness conditions. From now on, for simplicity we assume that n ≤ 1.

We consider subcategories of locally finitely generated T - and R-dg-modules. More precisely,
we let CFG(T ) be the category of locally finitely generated Gm-equivariant T -dg-modules,
and DFG(T ) be the associated derived category. We define also Dfg(T −Mod), respectively
Dfg(T −Mod+), as the subcategory of D(T −Mod), respectively D(T −Mod+), whose objects are
the dg-modules whose cohomology is locally finitely generated over the cohomology H•(T ). We
use similar notation for R-dg-modules.

The following lemma can be proved as in [MR1, Lemma 3.6.1].

Lemma 1.8.1. Assume that n ≤ 1, and that X is a Noetherian scheme.

(1) The inclusions CFG(T ) →֒ C(T −Mod+) →֒ C(T −Mod) induce equivalences of triangu-

lated categories

DFG(T ) ∼= Dfg(T −Mod+) ∼= Dfg(T −Mod).

(2) The inclusions CFG(R) →֒ C(R−Mod−) →֒ C(R−Mod) induce equivalences of triangu-

lated categories

DFG(R) ∼= Dfg(R−Mod−) ∼= Dfg(R−Mod).

Using this lemma, we prove that the equivalence κΩ restricts to the subcategories of objects
with locally finitely generated cohomology.

Proposition 1.8.2. Assume X is a nice scheme admitting a dualizing complex Ω, and that

n ≤ 1. Then κΩ restricts to an equivalence of triangulated categories

Dfg(T −Mod+) ∼= Dfg(R−Mod−)
op.

Proof. First case: n = 0. In this case, T = S(V0), with generators in bidegree (0, 2), and
R =

∧
(V0)

∨, with generators in bidegree (−1,−2). Any object of the category CFG(R) has a
filtration (as an R-dg-module) such that R acts trivially on the associated graded. Hence, using
Lemma 1.8.1, Dfg(R−Mod−) is generated, as a triangulated category, by trivial R-dg-modules,
i.e. by images of objects of DbCoh(X).

On the other hand, we claim that Dfg(T −Mod+) is generated, as a triangulated category, by
objects of the form T ⊗OX

F , for F in DbCoh(X) (where the T -action is induced by left multi-
plication on the left factor). This follows from the following general fact (see [CG, p. 266, last
paragraph]), using the classical fact that DFG(T ) is equivalent to the bounded derived category
of Gm-equivariant coherent sheaves on the vector bundle over X whose sheaf of sections is (V0)

∨.

Proposition 1.8.3. Let H be an algebraic group, and let π : F → Y be an H-equivariant vector

bundle. Then the category DbCohH(F ) is generated, as a triangulated category, by objects of the

form π∗F for F in CohH(Y ).

We have determined generating subcategory G1, respectively G2, for the triangulated category
Dfg(T −Mod+), respectively Dfg(R−Mod−). By definition, κΩ induces an equivalence bewteen
G1 and G2. Hence it induces an equivalence between Dfg(T −Mod+) and Dfg(R−Mod−).
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Second case: n = 1. In this case T = Sym(V−1 → V0), with V−1 in bidegree (−1, 2) and V0 in
bidegree (0, 2), while R = Sym

(
(V0)

∨ → (V−1)
∨
)
, with (V0)

∨ in bidegree (−1,−2) and (V−1)
∨

in bidegree (0,−2). As in §1.5, we denote by IΩ a bounded below complex of quasi-coherent
injective OX -modules whose image in the derived category is Ω. Let M be an object of CFG(T ).
We have to show that κΩ(M) has finitely generated cohomology over H•(R) or, equivalently,
that its cohomology is locally finitely generated over S

(
(V−1)

∨
)
. In fact it will be equivalent and

easier to work with the equivalence KΩ of Theorem 1.6.1 and the dg-algebra S (whose generators
are in bidegrees (1,−2) and (2,−2)).

Let K̃Ω be the equivalence corresponding to the complex of OX -modules X̃ concentrated in

degree 0, with only non-zero component V0. Denote by T̃ , S̃ the dg-algebras defined similarly

to T and S, but for the complex X̃ instead of X . With this notation, KΩ(M) is the image in
the derived category of the S-dg-module S ⊗OX

HomOX
(M,IΩ) (with a certain differential),

and K̃Ω(M) is the image in the derived category of the S̃-dg-module S̃ ⊗OX
HomOX

(M,IΩ).

The T -dg-module M is also locally finitely generated as a T̃ -dg-module. By the first case,

we deduce that K̃Ω(M) has locally finitely generated cohomology over S̃; in other words, this
cohomology is bounded and coherent over OX . Now we have an isomorphism of S

(
(V−1)

∨
)
-dg-

modules

(1.8.4) KΩ(M) ∼=
⊕

i,j

Si
(
(V−1)

∨
)
⊗OX

(
K̃Ω(M)

)j
,

where the term Si
(
(V−1)

∨
)
⊗OX

(
K̃Ω(M)

)j
is in cohomological degree j + 2i. The differential

on KΩ(M) is the sum of three terms: the differential d1 induced by dS , the Koszul differential
d2 induced by that of the Koszul complex (

∧
V−1)

∨ ⊗ S
(
(V−1)

∨
)
, and finally the differential d3

induced by that of K̃Ω(M). The effect of these differentials on the degrees of the decomposition
(1.8.4) are the following:

d1 :

{
i 7→ i+ 1
j 7→ j − 1

, d2 :

{
i 7→ i+ 1
j 7→ j − 1

, d3 : j 7→ j + 1.

Hence KΩ(M) is the total complex of the double complex with (p, q)-term

Bp,q :=
⊕

p=i,

q=j+i

Si
(
(V−1)

∨
)
⊗OX

(
K̃Ω(M)

)j

and differentials d′ := d1 + d2, d
′′ := d3. Now M is locally finitely generated over T ; in

particular it is bounded above for the cohomological grading. Hence K̃Ω(M) is bounded below
for the cohomological grading. It follows that Bp,q = 0 for q ≪ 0. Hence by [MR1, Proposition
2.2.1], there exists a converging spectral sequence

E
p,q
1 = Hq(Bp,∗, d′′) ⇒ Hp+q(KΩ(M)).

As K̃Ω(M) has bounded, coherent cohomology over OX , E1 is a locally finitely generated
S((V−1)

∨)-module. Moreover, in the (p, q)-plane, it is concentrated on an ascending diagonal
strip. It follows that the spectral sequence is stationary after finitely many steps. We deduce
that H•(KΩ(M)) is locally finitely generated over S((V−1)

∨).

By symmetry the equivalence (κΩ)
−1 also sends dg-modules with locally finitely generated co-

homology to dg-modules with the same property, which finishes the proof. �
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1.9. Intersection of vector subbundles. We can now extend the main result of [MR1] to
nice schemes admitting a dualizing complex. We let X be such a scheme, and denote by Ω a
dualizing complex.

Let E be a vector bundle over X, let F1, F2 ⊂ E be two vector subbundles, and let F1,F2, E be
the sheaves of sections of F1, F2, E. Let E∗ be the dual vector bundle, and F⊥

1 , F
⊥
2 ⊂ E∗ be the

orthogonals to F1 and F2. We will apply the constructions above to the complex

(1.9.1) X := (0 → F⊥
1 → F∨

2 → 0)

where F⊥
1 is in degree −1, F∨

2 is in degree 0, and the differential is the composition F⊥
1 →֒ E∨

։

F∨
2 . We set

Dc
Gm

(F1
R

∩E F2) := Dfg(T −Mod), Dc
Gm

(F⊥
1

R

∩E∗ F⊥
2 ) := Dfg(R−Mod).

To justify this notation, recall the notion of dg-scheme, first defined in [CK] and later studied
in [Ri, MR1, BR]. (Here we follow the conventions of [MR1].) It is explained in [MR1, Lemma

4.1.1] that the derived category of coherent dg-sheaves on the dg-scheme F1
R

∩E F2, respectively

F⊥
1

R

∩E∗ F⊥
2 , is equivalent to the derived category of quasi-coherent dg-modules over the sheaf of

OX -dg-algebras T , respectively R. (Note that here we consider usual dg-modules, and not Gm-
equivariant ones.) Hence the category Dfg(T −Mod), respectively Dfg(R−Mod), is a “graded
version” of this category.

Remark 1.9.2. Our definition of the category Dc
Gm

(F1
R

∩E F2) is not symmetric in F1 and F2.
However, it follows from an obvious Gm-equivariant analogue of [MR1, Proposition 1.3.2] that

the triangulated categories Dc
Gm

(F1
R

∩E F2) and Dc
Gm

(F2
R

∩E F1) are equivalent.

With this notation, and using Lemma 1.8.1, Proposition 1.8.2 can rephrased in the following
terms.

Theorem 1.9.3. Assume that X is a nice scheme admitting a dualizing complex Ω. Then κΩ
induces an equivalence of triangulated categories denoted similarly

κΩ : Dc
Gm

(F1
R

∩E F2)
∼
−→ Dc

Gm

(F⊥
1

R

∩E∗ F⊥
2 )op,

which satisfies κΩ(M[n]〈m〉) = κΩ(M)[−n+m]〈−m〉.

Remark 1.9.4. One can easily check that, if the assumptions of [MR1, Theorem 4.2.1] are sat-
isfied, then OX is a dualizing complex, and the equivalence of loc. cit. is isomorphic to the
equivalence κOX

of Theorem 1.9.3.

2. Linear Koszul duality and morphisms of perfect complexes

2.1. Statement. Let us come back to the setting of §1.7. More precisely, we consider a nice
scheme X admitting a dualizing complex Ω, and two complexes X and X ′ of locally free sheaves
as in §1.2. We denote by R,S,T , respectively R′,S ′,T ′, the dg-algebras constructed from X ,
respectively X ′. We also denote by

κΩ : Dbc(T −Mod+)
∼
−→ Dbc(R−Mod−)

op, κ′Ω : Dbc(T ′−Mod+)
∼
−→ Dbc(R′−Mod−)

op

the associated equivalences of Theorem 1.7.1.
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Let φ : X ′ → X be a morphism of complexes. This morphism induces morphisms of Gm-
equivariant dg-algebras

Φ : T ′ → T , Ψ : R → R′.

In turn, these morphisms of dg-algebras induce functors

Φ∗ : C(T −Mod) → C(T ′−Mod), Ψ∗ : C(R
′−Mod) → C(R−Mod)

(restriction of scalars) and

Φ∗ : C(T ′−Mod) → C(T −Mod), Ψ∗ : C(R−Mod) → C(R′−Mod)

(extension of scalars).

The functors Φ∗ and Ψ∗ are exact, hence induce functors

RΦ∗ : D(T −Mod) → D(T ′−Mod), RΨ∗ : D(R′−Mod) → D(R−Mod).

These functors clearly send the subcategory Dbc(T −Mod±) into Dbc(T ′−Mod±) and the sub-
category Dbc(R′−Mod−) into Dbc(R−Mod−) (and similarly without “bc”).

The functors Φ∗ and Ψ∗ are not exact. However, it follows from [MR1, Proposition 1.2.3]
(existence of K-flat resolutions) that they admit left derived functors

LΦ∗ : D(T ′−Mod) → D(T −Mod), LΨ∗ : D(R−Mod) → D(R′−Mod).

The following result expresses the compatibility of our Koszul duality equivalence κΩ with mor-
phisms of perfect sheaves. It is similar in spirit (but in a much more general setting) to [Ri,
Proposition 2.5.4].

Proposition 2.1.1. Let X be a nice scheme admitting a dualizing complex Ω.

(1) The functor LΨ∗ resticts to a functor from Dbc(R−Mod−) to Dbc(R′−Mod−), denoted
similarly. Moreover, there exists an isomorphism of functors:

LΨ∗ ◦ κΩ ∼= κ′Ω ◦RΦ∗ : Dbc(T −Mod+) → Dbc(R′−Mod−)
op.

(2) The functor LΦ∗ resticts to a functor from Dbc(T ′−Mod+) to Dbc(T −Mod+), denoted
similarly. Moreover, there exists an isomorphism of functors:

κΩ ◦ LΦ∗ ∼= RΨ∗ ◦ κ
′
Ω : Dbc(T ′−Mod+) → Dbc(R−Mod−)

op.

2.2. Proof of Proposition 2.1.1. To prove Proposition 2.1.1 we need some preparatory lem-
mas. We assume the conditions in the proposition are satisfied.

Lemma 2.2.1. The Gm-equivariant OX-dg-module S is K-flat.

Proof. It is enough to prove that for any i ∈ Z, the OX -dg-module Si is K-flat. However, this
complex is a bounded complex of flat OX-modules, which proves this fact. �

Lemma 2.2.2. For every object M of C(T −Mod−), there exists an object M′ of C(T −Mod−)
which is K-flat as a Gm-equivariant OX -dg-module and such that the images of M and M′ in

D(T −Mod−) are isomorphic.
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Proof. Let M be an object of C(T −Mod−). By Theorem 1.4.1, there exists an object N of
C(S−Mod−) such that M and B(N ) are isomorphic in the derived category. Hence we can
assume that M = B(N ).

By the same arguments as in [MR1, Proposition 1.2.3], using the existence of enough flat quasi-
coherent OX -modules in QCoh(X) (see [BR, §3.2]) one can check that for any object N ′ of
C(S−Mod−) there exists an object N ′′ of C(S−Mod−) which is K-flat as a Gm-equivariant S-

dg-module and a quasi-isomorphism N ′′ qis
−→ N ′. Hence we can assume that N is K-flat as

a Gm-equivariant S-dg-module. Then it follows from Lemma 2.2.1 that N is also K-flat as a
Gm-equivariant OX -dg-module (see [Ri, Lemma 1.3.2]).

We claim that, in this case, B(N ) is K-flat as a Gm-equivariant OX-dg-module. Indeed, it is
enough to show that for any n ∈ Z, B(N )n is a K-flat OX -dg-module. However, we have

B(N )n =
⊕

k+l=n

(T ∨)k ⊗Nl.

This sum is finite and, as in the proof of Theorem 1.4.1, this dg-module can be obtained from
the dg-modules (T ∨)k ⊗Nl (usual tensor product) by taking shifts and cones a finite number of
times. The latter dg-modules are K-flat over OX , and the cone of a morphism between K-flat
dg-modules is still K-flat, hence these remarks finish the proof of our claim, and also of the
lemma. �

Lemma 2.2.3. If M is an object of C(T −Mod−) which is K-flat as a Gm-equivariant OX -dg-

module, then A (M) is K-flat as a Gm-equivariant S-dg-module.

Proof. We have to check that for any acyclic object N of C(S−Mod), the complex N ⊗S A (M)
is acyclic. Every object of C(S−Mod) is a direct limit of objects of C(S−Mod−) (because S is
concentrated in non-positive internal degrees); moreover if the initial object is acyclic one can
choose these objects also acyclic. Hence we can assume that N is in C(S−Mod−). Then we
have N ⊗S A (M) = N ⊗OX

M, where the differential is the sum of the usual differential of the
tensor product N ⊗OX

M and a Koszul-type differential. The same argument as in the proof
of Theorem 1.4.1 or Lemma 2.2.2 proves that this complex is acyclic. �

Proof of Proposition 2.1.1. We only prove (1); the proof of (2) is similar.

The regrading functors of §1.7 do not play any role here, hence we will rather work with the
equivalences KΩ, K

′
Ω of Theorem 1.6.1. For simplicity, we still denote by LΨ∗ the derived

extension of scalars from S- to S ′-dg-modules. We denote by A ′, B′ the functors of §1.2
relative to the complex X ′. It is clear from definition that we have an isomorphism of functors

(2.2.4) DT ′

Ω ◦RΦ∗
∼= RΦ∗ ◦D

T
Ω .

(Here, the first RΦ∗ is considered as a functor from Dbc(T −Mod+) to Dbc(T ′−Mod+), while
the second one is considered as a functor from Dbc(T −Mod−) to Dbc(T ′−Mod−).)

We claim that there exists an isomorphism of functors from D(T −Mod−) to D(S ′−Mod)

(2.2.5) A ′ ◦RΦ∗
∼= LΨ∗ ◦ A .

First, consider the assigment from C(T −Mod−) to C(S ′−Mod) given by M 7→ Ψ∗A (M) ∼=
S ′⊗OX

M ∼= A ′Φ∗M. (Here the differential on S ′⊗OX
M involves a Koszul-type differential as
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usual.) This functor is exact, as the composition of the exact functors Φ∗ and A ′. The induced
functor from D(T −Mod−) to D(S ′−Mod) is clearly isomorphic to the left hand side of (2.2.5).

By usual properties of composition of derived functors, we obtain a morphism of functors

(2.2.6) LΨ∗ ◦ A → A ′ ◦RΦ∗.

What we have to show is that this morphism is an isomorphism. By Lemma 2.2.2, it is enough
to show that it is an isomorphism when applied to an object M of C(T −Mod−) which is K-flat
as a Gm-equivariant OX -dg-module. However, in this case A (M) is K-flat over S by Lemma
2.2.3, hence LΨ∗ ◦A (M) is the image in the derived category of Ψ∗ ◦A (M), which finishes the
proof of (2.2.5).

Composing (2.2.4) with the restriction of (2.2.5) and then with the regrading functor ξ′ we
obtain an isomorphism of functors from Dbc(T −Mod+) to D(R′−Mod)op

(2.2.7) LΨ∗ ◦ κΩ ∼= κ′Ω ◦RΦ∗.

As the right hand side sends Dbc(T −Mod+) to Dbc(R′−Mod−)
op, and as κΩ is an equivalence

between Dbc(T −Mod+) and Dbc(R−Mod−)
op, it follows from (2.2.7) that LΨ∗ restricts to a

functor from Dbc(R−Mod−) to Dbc(R′−Mod−). Then (2.2.7) proves the isomorphism of (1),
hence finishes the proof. �

2.3. Application to intersection of subbundles. Now we will explain the geometric content
of Proposition 2.1.1 in the context of §1.9. We let E and E′ be vector bundles on X, and let

E

&&MM
MM

MM

φ // E′

xxqqq
qq
q

X

be a morphism of vector bundles over X. Let us stress that the morphism X → X induced by
φ is assumed to be IdX . We consider subbundles F1, F2 ⊆ E and F ′

1, F
′
2 ⊆ E′, and assume that

φ(F1) ⊆ F ′
1, φ(F2) ⊆ F ′

2.

Let E , F1, F2, E
′, F ′

1, F
′
2 be the respective sheaves of sections of E, F1, F2, E

′, F ′
1, F

′
2. By

Theorem 1.9.3 we have linear Koszul duality equivalences

κΩ : Dc
Gm

(F1
R

∩E F2)
∼
−→ Dc

Gm

(F⊥
1

R

∩E∗ F⊥
2 )op,

κ′Ω : Dc
Gm

(F ′
1

R

∩E′ F ′
2)

∼
−→ Dc

Gm

((F ′
1)

⊥ R

∩(E′)∗ (F
′
2)

⊥)op.

We consider the complexes X (for the vector bundle E) and X ′ (for the vector bundle E′) defined
as in §1.9. The morphism φ defines a morphism of complexes X ′ → X , to which we can apply
(equivariant analogues of) the constructions of §2.1).

More geometrically, φ induces a morphism of dg-schemes Φ : F1
R

∩E F2 → F ′
1

R

∩E′ F ′
2, and we have

a (derived) direct image functor

RΦ∗ : D
c
Gm

(F1
R

∩E F2) → D(T ′−Mod).

This functor is just the restriction of the functor denoted similarly in §2.1 (in our special case).
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Lemma 2.3.1. Assume that the induced morphism of schemes between non-derived intersections

F1∩EF2 → F ′
1∩E′F ′

2 is proper. Then the functor RΦ∗ sends D
c
Gm

(F1
R

∩E F2) into the subcategory

Dc
Gm

(F ′
1

R

∩E′ F ′
2).

Proof. The dg-algebras T and T ′ are both concentrated in non-positive cohomological degrees;
hence there exist natural morphisms of dg-algebras Θ : T → H0(T ), Θ′ : T ′ → H0(T ′). Let also
Φ0 : H0(T ′) → H0(T ) be the morphism induced by Φ, so that we have Φ0 ◦Θ′ = Θ ◦Φ. Taking
direct images (i.e. restriction of scalars) we obtain a commutative diagram

D
(
H0(T )−Mod

) RΦ0
∗ //

Θ∗

��

D
(
H0(T ′)−Mod

)

Θ′
∗

��
D(T −Mod)

RΦ∗ // D(T ′−Mod).

One can easily check that the functor Θ∗ restricts to a functor from Dfg
(
H0(T )−Mod

)
to

Dfg(T −Mod), and similarly for Θ′
∗. Moreover, using Lemma 1.8.1 one can check that the

essential image of Θ∗ generates the category Dfg(T −Mod). Hence it is enough to prove that
RΦ0

∗ sends D
fg
(
H0(T )−Mod

)
into Dfg

(
H0(T ′)−Mod

)
. However the morphism from F1∩E F2 to

X is affine, and the direct image of the structure sheaf under this morphism is H0(T ), so that
we obtain an equivalence of categories

Dfg
(
H0(T )−Mod

)
∼= DbCohGm(F1 ∩E F2)

where t ∈ Gm acts on E by dilatation by t−2 on the fibers, and on F1 ∩E F2 by restriction.
Similarly we have an equivalence

D
(
H0(T ′)−Mod

)
∼= DQCohGm(F ′

1 ∩E F
′
2).

and under these equivalences the functor RΦ0
∗ identifies with the (derived) direct image under

the morphism F1 ∩E F2 → F ′
1 ∩E′ F ′

2. Hence our claim follows from [H1, Proposition II.2.2]. �

We also consider the (derived) inverse image functor

LΦ∗ : Dc
Gm

(F ′
1

R

∩E′ F ′
2) → D(T −Mod).

Again, this functor is the restriction of the functor denoted similarly in §2.1.

The morphism φ induces a morphism of vector bundles

ψ := φ∨ : (E′)∗ → E∗,

which satisfies ψ((F ′
i )

⊥) ⊂ F⊥
i for i = 1, 2. Hence the above constructions and results also apply

to ψ. We use similar notation.

The following result is an immediate application of Proposition 2.1.1 and Lemma 2.3.1.

Proposition 2.3.2. Assume that X is a nice scheme admitting a dualizing complex Ω.
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(1) Assume that the morphism of schemes F1 ∩E F2 → F ′
1 ∩E′ F ′

2 induced by φ is proper.

Then LΨ∗ sends Dc
Gm

(F⊥
1

R

∩E∗ F⊥
2 ) into Dc

Gm

((F ′
1)

⊥ R

∩(E′)∗ (F
′
2)

⊥). Moreover, there exists

a natural isomorphism of functors

LΨ∗ ◦ κΩ ∼= κ′Ω ◦RΦ∗ : Dc
Gm

(F1
R

∩E F2) → Dc
Gm

((F ′
1)

⊥ R

∩(E′)∗ (F
′
2)

⊥)op.

(2) Assume that the morphism of schemes (F ′
1)

⊥ ∩(E′)∗ (F
′
2)

⊥ → F⊥
1 ∩E′ F⊥

2 induced by ψ is

proper. Then LΦ∗ sends Dc
Gm

(F ′
1

R

∩E′ F ′
2) into Dc

Gm

(F1
R

∩E F2). Moreover, there exists a

natural isomorphism of functors

κΩ ◦ LΦ∗ ∼= RΨ∗ ◦ κ
′
Ω : Dc

Gm

(F ′
1

R

∩E′ F ′
2) → Dc

Gm

(F⊥
1

R

∩E∗ F⊥
2 )op.

In particular, if both assumptions are satisfied, the following diagram is commutative:

Dc
Gm

(F1
R

∩E F2)
κΩ

∼
//

RΦ∗

��

Dc
Gm

(F⊥
1

R

∩E∗ F⊥
2 )op

LΨ∗

��

Dc
Gm

(F ′
1

R

∩E′ F ′
2)

LΦ∗

OO

κ′
Ω

∼
// Dc

Gm

((F ′
1)

⊥ R

∩(E′)∗ (F
′
2)

⊥)op.

RΨ∗

OO

3. Linear Koszul duality and base change

3.1. Statement. Let us come back to the setting of §1.7. More precisely, let X and Y be nice
schemes, and let π : X → Y be a morphism of finite type. We assume that Y admits a dualizing
complex Ω; then by [H1, Corollary VI.3.5], π!Ω is a dualizing complex for X.

Let X be a complex of locally free sheaves on Y of the form considered in §1.2, and let RY ,TY ,SY

be the associated dg-algebras. We also consider the complex of locally free sheaves π∗X on X,
and let RX ,TX ,SX be the associated dg-algebras. Note that we have natural isomorphism

RX
∼= π∗RY , SX

∼= π∗SY , TX ∼= π∗TY .

We denote by

κYΩ : Dbc(TY−Mod+)
∼
−→ Dbc(RY −Mod−)

op, κX
π!Ω : Dbc(TX−Mod+)

∼
−→ Dbc(RX−Mod−)

op

the associated equivalences of Theorem 1.7.1.

The morphism of schemes π induces a morphism of dg-ringed spaces π̂ : (X, TX) → (Y, TY ),
and we can consider the associated direct and inverse image functors π̂∗ : C(TX−Mod) →
C(TY −Mod), π̂∗ : C(TY −Mod) → C(TX−Mod). Note that the following diagram commutes:

(3.1.1)

C(TY −Mod)
π̂∗

//

For
��

C(TX−Mod)

For
��

C(OY −Mod)
π∗

// C(OX−Mod).

One can also consider the associated derived functors

Rπ̂∗ : D(TX−Mod) → D(TY−Mod), Lπ̂∗ : D(TY −Mod) → D(TX−Mod)

(see §1.1).
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In the following lemma we will say π has finite Tor-dimension if for any F in QCoh(Y ) the set
{i ∈ Z | Hi(Lπ∗F) 6= 0} is bounded. (Note that this terminology is not the one used in [H1]!)

Lemma 3.1.2. (1) Assume that π has finite Tor-dimension. Then the functor Lπ̂∗ restricts

to a functor from Dbc(TY −Mod±) to Dbc(TX−Mod±).
(2) Assume that π is proper. Then Rπ̂∗ restricts to a functor from Dbc(TX−Mod+) to

Dbc(TY −Mod+).

Proof. (1) The dg-algebra TY is K-flat as a Gm-equivariant OX-dg-module, hence any K-flat
Gm-equivariant TY -dg-module is alsoK-flat as a Gm-equivariant OX -dg-module (see [Ri, Lemma
1.3.2(ii)]). It follows (using (3.1.1)) that the following diagram commutes:

D(TY −Mod)
Lπ̂∗

//

For
��

D(TX−Mod)

For
��

D(OY −Mod)
Lπ∗

// D(OX−Mod).

Hence we only have to prove the result when X = 0, in which case it follows from [H1, Proposition
II.4.4] and our assumption on π.

The proof of (2) is similar, using the compatibility of the functor Rπ̂∗ with Rπ∗ (see [BR,
Proposition 3.3.6]) and [H1, Proposition II.2.2]. �

In addition to the above functors, we will also consider the following one, in case π has finite
Tor dimension:

π̂! := D
TX
π!Ω

◦ Lπ̂∗ ◦DTY
Ω : Dbc(TY −Mod+) → Dbc(TX−Mod+)

(see §1.5 for the definition of duality functors).

Similarly, π induces a morphism of dg-ringed spaces π̃ : (X,RX) → (Y,RY ). By the same
arguments as above, if π has finite Tor-dimension then we have a derived inverse image functor

Lπ̃∗ : Dbc(RY −Mod−) → Dbc(RX−Mod−)

and, if π is proper, we have a derived direct image functor

Rπ̃∗ : D
bc(RX−Mod−) → Dbc(RY −Mod−).

The following result expresses the compatibility of our Koszul duality equivalence with base
change. It is similar in spirit to [Ri, Proposition 2.4.5].

Proposition 3.1.3. Assume that X and Y are nice schemes, that π is of finite type, and that

Y admits a dualizing complex Ω.

(1) Assume moreover that π has finite Tor-dimension. Then there exists an isomorphism of

functors:

Lπ̃∗ ◦ κYΩ
∼= κX

π!Ω ◦ π̂! : Dbc(TY −Mod+) → Dbc(RX−Mod−)
op.

(2) Assume moreover that π is proper. Then there exists an isomorphism of functors:

Rπ̃∗ ◦ κ
X
π!Ω

∼= κYΩ ◦Rπ̂∗ : Dbc(RX−Mod−) → Dbc(TY−Mod+)
op.



LINEAR KOSZUL DUALITY II 19

3.2. Proof of Proposition 3.1.3. We begin by proving some compatibility results for the
equivalences A and B of §1.4 (under weaker assumptions than in the proposition). We use
subscripts to indicate the scheme we are working on. The morphism π induces a morphism of
dg-ringed spaces π̌ : (X,SX) → (Y,SY ). As above, we have corresponding derived direct and
inverse image functors5

Rπ̌∗ : D(SX−Mod) → D(SY −Mod), Lπ̌∗ : D(SY−Mod) → D(SX−Mod).

Using the same arguments as in the proof of Lemma 3.1.2, one can check that these functors
restrict to functors

Rπ̌∗ : D(SX−Mod−) → D(SY−Mod−), Lπ̌∗ : D(SY −Mod−) → D(SX−Mod−)

which form an adjoint pair, and that the functors Rπ̂∗ and Lπ̂∗ restrict to functors

Rπ̂∗ : D(TX−Mod−) → D(TY−Mod−), Lπ̂∗ : D(TY −Mod−) → D(TX−Mod−)

which also form an adjoint pair.

Proposition 3.2.1. Assume that X and Y are nice schemes.

(1) There exists an isomorphism of functors:

Lπ̌∗ ◦ A Y
∼= A X ◦ Lπ̂∗ : D(TY−Mod−) → D(SX−Mod−).

(2) There exists an isomorphism of functors:

A Y ◦Rπ̂∗ ∼= Rπ̌∗ ◦ A X : D(TY−Mod−) → D(SX−Mod−).

Proof. (1) By Theorem 1.4.1, it is equivalent to prove an isomorphism of functors:

BX ◦ Lπ̌∗ ∼= Lπ̂∗ ◦ BY : D(SY −Mod−) → D(TX−Mod−).

Using the same arguments as for (2.2.6) one can easily construct a morphism of functors from
the right hand side to the left side; what remains is to prove that it is an isomorphism.

By construction of resolutions, there are enough objects in C(SY −Mod−) which areK-flat as Gm-
equivariant SY -dg-modules. Hence it is enough to prove that for any object N of C(SY −Mod−)
which is K-flat as a Gm-equivariant SY -dg-module, with image N in the derived category, our
morphism

(3.2.2) Lπ̂∗ ◦ BY (N ) → BX ◦ Lπ̌∗(N )

is an isomorphism.

The right hand side of (3.2.2) is easy to compute: it is isomorphic to the image in the derived
category of the TX-dg-module BX

(
π̌∗N

)
. Let us consider now the right hand side. As SY

is K-flat as a Gm-equivariant OY -dg-module (see Lemma 2.2.1), any K-flat Gm-equivariant
SY -dg-module is also K-flat as a Gm-equivariant OY -dg-module (see [Ri, Lemma 1.3.2]); in
particular N has this property. As checked in the course of the proof of Lemma 2.2.2, this
implies that BY (N ) is K-flat as a Gm-equivariant OY -dg-module. From this it follows that
the left hand side of (3.2.2) is isomorphic to the image in the derived category of π̂∗

(
BY (N )

)
.

Indeed, let P be a K-flat resolution of BY (N ) as a Gm-equivariant TY -dg-module; then the

5Note that SX and SY are not non-positively graded, so that we cannot apply directly the results quoted in
§1.1. However, one can reduce our situation to the one of §1.1 using the regrading equivalence of §1.7.
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morphism π̂∗P → π̂∗
(
BY (N )

)
is a quasi-isomorphism since the functor π̂∗ sends every acyclic

TY -dg-module which is K-flat as a Gm-equivariant OY -dg-module to an acyclic dg-module.

Using these remarks, the fact that (3.2.2) is an isomorphism now follows from the natural
isomorphism BX

(
π̌∗N

)
∼= π̂∗

(
BY (N )

)
, which finishes the proof of (1).

Isomorphism (2) follows from (1) by adjunction. �

We will also need the following compatibility result for direct images and duality. It is a “dg-
version” of Hartshorne’s Duality Theorem of [H1].

Proposition 3.2.3. Assume that X and Y are nice schemes, that π is of finite type, and that Y

admits a dualizing complex Ω. Assume also that π is proper. Then there exists an isomorphism

of functors from Dbc(TX−Mod) to Dbc(TY −Mod)op:

Rπ̂∗ ◦D
TX
π!Ω

∼= D
TY
Ω ◦Rπ̂∗.

Proof. In this proof we will work with some dg-modules which are not necessarily quasi-coherent,
but which have quasi-coherent cohomology. This is allowed by [BR, Proposition 3.3.2]. Note
also that by [BR, Proposition 3.3.6] we can compute the image under Rπ̂∗ of an object of
D(TX−Mod) in the larger derived category of all sheaves of TX-dg-modules. Finally, in this
proof we write QM for the image in the suitable derived category of a dg-module M.

Recall that we have fixed bounded below complexes of injective quasi-coherent OX -modules IΩ
and Iπ!Ω such that QIΩ ∼= Ω and QIπ!Ω

∼= π!Ω. By [H1, p. 257], we can assume that both of
them are bounded complexes. Note that, as X and Y are in particular locally Noetherian, the
terms of these complexes are injective as O-modules (see [H1, Proposition II.7.17]).

Start with some M in C(TX−Mod) such that QM is in Dbc(TX−Mod), and denote by J a

K-injective object of C(TX−Mod) endowed with a quasi-isomorphism M
qis
−→ J . Then we have

(3.2.4) Rπ̂∗ ◦D
TX
π!Ω

(QM) ∼= Qπ̂∗HomOX
(J ,Iπ!Ω).

Indeed, by definition we have D
TX
π!Ω

(QM) ∼= QHomOX
(M,Iπ!Ω). Now as Iπ!Ω is a bounded

complex of injective OX-modules, it is K-injective in the category of all OX-modules, hence
the morphism HomOX

(J ,Iπ!Ω) → HomOX
(M,Iπ!Ω) is a quasi-isomorphism (see [Li, Lemma

(2.4.5.1)]). Now again as Iπ!Ω is a bounded complex of injective OX -module, the complex of
OX -modulesHomOX

(J ,Iπ!Ω) is made of flasque sheaves, which are π∗-acyclic. By [Li, Corollary
(3.9.3.5)], we deduce that the natural morphism Qπ∗HomOX

(J ,Iπ!Ω) → Rπ∗QHomOX
(J ,Iπ!Ω)

is an isomorphism. One can deduce (3.2.4) from this.

Now there exists a morphism of dg-modules

π̂∗HomOX
(J ,Iπ!Ω) → HomOY

(π̂∗J , π∗Iπ!Ω).

Composing with the morphism induced by the “trace morphism” π∗Iπ!Ω → IΩ one obtains a
morphism of dg-modules

π̂∗HomOY
(J ,Iπ!Ω) → HomOY

(π̂∗J ,IΩ).
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Moreover, the image in the derived category of the right hand side is isomorphic to D
TY
Ω ◦

Rπ̂∗(QM). Hence we have constructed a natural morphism

Rπ̂∗ ◦D
TX
π!Ω

(QM) → D
TY
Ω ◦Rπ̂∗(QM).

After forgetting the action of TY , this is the “duality morphism” of [H1, p. 378], which is known
to be an isomorphism (see [H1, Theorem VII.3.3]). Hence this morphism is also an isomorphism,
which finishes the proof of the proposition. �

Proof of Proposition 3.1.3. (1) We obtain the isomorphism as the following composition of iso-
morphisms of functors:

Lπ̃∗ ◦ κYΩ = Lπ̃∗ ◦ ξY ◦ A
bc
Y ◦DTY

Ω
∼= ξX ◦ Lπ̌∗ ◦ A

bc
Y ◦DTY

Ω
Prop. 3.2.1

∼= ξX ◦ A
bc
X ◦ Lπ̂∗ ◦DTY

Ω
= κX

π!Ω
◦ π̂!.

(2) We obtain the isomorphism as the following composition of isomorphisms of functors:

Rπ̃∗ ◦ κ
X
π!Ω

= Rπ̃∗ ◦ ξX ◦ A
bc
X ◦DTX

π!Ω
∼= ξY ◦Rπ̌∗ ◦ A

bc
X ◦DTX

π!Ω
Prop. 3.2.1

∼= ξY ◦ A
bc
Y ◦Rπ̂∗ ◦D

TX
π!Ω

Prop. 3.2.3
∼= κYΩ ◦Rπ̂∗.

�

3.3. Compatibility with inverse image in the case of smooth varieties. The isomor-
phism of Proposition 3.1.3(1) is not easy to work with in general since the functor π̂! has not a
completely explicit description. In this subsection we give an easier description of this functor
in the case X and Y are Noetherian, integral, separated, regular schemes of finite dimension. In
this case π has automatically finite Tor-dimension, as follows from [H2, Ex. III.6.9]. Moreover
Ω is a shift of a line bundle (see [H1, Theorem V.3.1 and §V.10]), hence π∗Ω is also a dualizing
complex on X. For simplicity we will also assume that n ≤ 1 and work with locally finitely
generated dg-modules, so that we are in the setting of §1.8.

Lemma 3.3.1. For any M in Dfg(TY −Mod), there exists an object P in C(TY−Mod) such that

Pj is a finite complex of locally free OY -modules of finite rank for any j ∈ Z, and whose image

in D(TY−Mod) is isomorphic to M.

Proof. By Lemma 1.8.1 we can assume thatM is in CFG(TY ). Then the construction of the proof
of [MR1, Proposition 3.1.1] produces an object P as in the statement and a quasi-isomorphism

P
qis
−→ M. �

Proposition 3.3.2. Assume that X and Y are Noetherian, integral, separated, regular schemes

of finite dimension. Then there exists an isomorphism of functors

Lπ̂∗ ◦DTY
E

∼= D
TX
π∗E ◦ Lπ̂∗ : Dfg(TY −Mod) → Dbc(TX−Mod)op.
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Proof. Recall that by [BR, §3.2–3.3] one can compute the derived functors of inverse and direct

image functors also in the categories D̃ of all sheaves of dg-modules, and that we obtain functors
which are compatible in the natural sense with their version for categories D.

First we construct a morphism of functors

(3.3.3) D
TY
Ω → Rπ̂∗ ◦D

TX
π∗Ω ◦ Lπ̂∗ : C̃(TY −Mod) → C̃(TY −Mod)op.

For this construction we observe that we have an isomorphism of functors

π∗HomOX
(π∗(−), π∗Ω) ∼= HomOY

(−, π∗π
∗Ω)

by the local version of the (−)∗-(−)∗ adjunction (see e.g. [KS, Corollary 2.3.4]), so that we obtain
a morphism of functors

HomOY
(−,Ω) → π̂∗HomOX

(π̂∗(−), π∗Ω) : C̃(TY−Mod) → C̃(TY −Mod)op

Now we observe that the right derived functor of the left hand side is the left hand side of (3.3.3),

while the right hand side is the composition of the functors π̂∗ : C̃(TY −Mod)op → C̃(TX−Mod)op,

HomOX
(−, π∗Ω) : C̃(TX−Mod)op → C̃(TX−Mod) and π̂∗ : C̃(TX−Mod) → C̃(TY−Mod). These

functors admit right derived functors, and the composition of these derived functors are the
right hand side of (3.3.3). Hence we obtain morphism (3.3.3) by standard properties of (right)
derived functors.

By adjunction, from (3.3.3) we obtain a morphism of functors

(3.3.4) Lπ̂∗ ◦DTY
Ω → D

TX
π∗Ω ◦ Lπ̂∗ : C̃(TY−Mod) → C̃(TX−Mod)op.

To conclude the proof, we only have to check that this morphism is an isomorphism on objects
of Dfg(TY−Mod). By Lemma 3.3.1 it is enough to prove that it is an isomorphism on images
in the derived category of objects P in C(TY−Mod) such that Pj is a finite complex of locally
free OY -modules of finite rank for any j ∈ Z. Let P be such an object. It is easy to check that
Lπ̂∗P is the image in the derived category of π̂∗P, that the natural morphism

HomOX
(π̂∗P, π∗Ω) → HomOX

(π̂∗P,Iπ∗Ω)

is a quasi-isomorphism, and finally that we have an isomorphism

HomOX
(π̂∗P, π∗Ω) ∼= π̂∗HomOX

(P,Ω).

Hence D
TX
π∗Ω ◦ Lπ̂∗P is the image in the derived category of π̂∗HomOX

(P,Ω). By similar argu-

ments, one can check that Lπ̂∗◦DTY
Ω is also the image in the derived category of π̂∗HomOX

(P,Ω),
and that (3.3.4) applied to P is an isomorphism. �

Combining Proposition 3.2.1 and Proposition 3.3.2 we obtain the following result.

Corollary 3.3.5. Assume that X and Y are Noetherian, integral, separated, regular schemes

of finite dimension. Then there exists an isomorphism of functors

Lπ̃∗ ◦ κYΩ
∼= κXπ∗Ω ◦ Lπ̂∗ : Dfg(TY −Mod) → Dfg(RX−Mod)op.
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3.4. Application to intersections of subbundles. Now we explain the geometric content
on Propositions 3.1.3 and 3.3.2 in the context of §1.9. We assume as above that X and Y are
nice schemes, that π : X → Y is a morphism of finite type, and that Y admits a dualizing
complex Ω.

Consider a vector bundle E on Y , and let F1, F2 ⊂ E be subbundles. Consider also EX :=
E ×Y X, which is a vector bundle on X, and the subbundles FX

i := Fi ×Y X ⊂ EX (i = 1, 2).
If E , F1, F2 are the respective sheaves of sections of E, F1, F2, then π∗E , π∗F1, π

∗F2 are the
sheaves of sections of EX , FX

1 , F
X
2 , respectively. Out of these data we define the complexes XX

and XY as in §1.9, and then the dg-algebras TX , SX , RX and TY , SY , RY . Note that we have
natural isomorphisms of dg-algebras

TX ∼= π∗TY , SX
∼= π∗SY , RX

∼= π∗RY .

We define the categories

Dc
Gm

(F1
R

∩E F2), Dc
Gm

(F⊥
1

R

∩E∗ F⊥
2 )

Dc
Gm

(FX
1

R

∩EX FX
2 ), Dc

Gm

((FX
1 )⊥

R

∩(EX)∗ (F
X
2 )⊥)

as in §1.9. Then by Theorem 1.9.3 there are equivalences of categories

κXπ!Ω : Dc
Gm

(FX
1

R

∩EX FX
2 )

∼
−→ Dc

Gm

((FX
1 )⊥

R

∩(EX)∗ (F
X
2 )⊥)op,

κYΩ : Dc
Gm

(F1
R

∩E F2)
∼
−→ Dc

Gm

(F⊥
1

R

∩E∗ F⊥
2 )op.

If X and Y are Noetherian, integral, separated, regular schemes of finite dimension, we also
have an equivalence

κXπ∗Ω : Dc
Gm

(FX
1

R

∩EX FX
2 )

∼
−→ Dc

Gm

((FX
1 )⊥

R

∩(EX)∗ (F
X
2 )⊥)op.

The morphism of schemes π induces a morphism of dg-schemes

π̂ : FX
1

R

∩EX FX
2 → F1

R

∩E F2.

This morphism can be represented by the natural morphism of dg-ringed spaces (X, TX) →
(Y, TY ).

Lemma 3.4.1. (1) Assume π has finite Tor-dimension. The functor

Lπ̂∗ : Dc
Gm

(F1
R

∩E F2) → D(TX−Mod)

takes values in Dc
Gm

(FX
1

R

∩EX FX
2 ).

(2) Assume π is proper. Then the functor

Rπ̂∗ : D
c
Gm

(FX
1

R

∩EX FX
2 ) → D(TY −Mod)

takes values in Dc
Gm

(F1
R

∩E F2).
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Proof. (1) As TX ∼= π∗TY and TY is K-flat over T 0
Y
∼= S(F∨

2 ), the following diagram commutes:

Dc
Gm

(F1
R

∩E F2)
Lπ̂∗

//

For
��

D(TX−Mod)

For

��
Dfg(S(F∨

2 )−Mod)
Lπ∗

// D(S(π∗F∨
2 )−Mod).

On the bottom line, π is the morphism of dg-schemes (X, S(π∗F∨
2 )) → (Y, S(F∨

2 )) induced by π.

But Dfg(S(F∨
2 )−Mod) is naturally equivalent to DbCohGm(F2) (see the arguments in the proof of

Lemma 2.3.1), and D(S(π∗F∨
2 )−Mod) to DQCohGm(FX

2 ). Moreover, via these indentifications,
Lπ∗ is the inverse image functor for the morphism FX

2 → F2 induced by π. Hence Lπ∗ takes
values in Dfg(S(π∗F∨

2 )−Mod). Our result follows.

(2) The proof is similar. It uses the fact that, as TX is K-flat over S(π∗F∨
2 ), every K-injective

object in C(TX−Mod) has an image in C(S(F∨
2 )−Mod) which is also K-injective (see [Ri, Lemma

1.3.2]), so that the diagram

Dc
Gm

(FX
1

R

∩EX FX
2 )

Rπ̂∗
//

For
��

D(TY −Mod)

For

��
Dfg(S(π∗F∨

2 )−Mod)
Rπ∗

// D(S(F∨
2 )−Mod)

commutes. �

Similarly, π induces a morphism of dg-schemes

π̃ : (FX
1 )⊥

R

∩(EX)∗ (F
X
2 )⊥ → F⊥

1
R

∩E∗ F⊥
2 ,

hence, if π has finite Tor-dimension, a functor

Lπ̃∗ : Dc
Gm

(F⊥
1

R

∩E∗ F⊥
2 ) → Dc

Gm

((FX
1 )⊥

R

∩(EX)∗ (F
X
2 )⊥),

and, if π is proper, a functor

Rπ̃∗ : D
c
Gm

((FX
1 )⊥

R

∩(EX)∗ (F
X
2 )⊥) → Dc

Gm

(F⊥
1

R

∩E∗ F⊥
2 ).

The following result is an immediate consequence of Proposition 3.1.3 and Corollary 3.3.5.

Proposition 3.4.2. Assume that X and Y are nice schemes, that π is of finite type, and that

Y admits a dualizing complex Ω.

(1) If π is proper, there exists a natural isomorphism of functors

κYΩ ◦Rπ̂∗ ∼= Rπ̃∗ ◦ κ
X
π!Ω : Dc

Gm

(FX
1

R

∩EX FX
2 ) → Dc

Gm

(F⊥
1

R

∩E∗ F⊥
2 )op.

(2) If X and Y are Noetherian, integral, separated, regular schemes of finite dimension, then

there exists a natural isomorphism of functors

Lπ̃∗ ◦ κYΩ
∼= κXπ∗Ω ◦ Lπ̂∗ : Dc

Gm

(F1
R

∩E F2) → Dc
Gm

((FX
1 )⊥

R

∩(EX)∗ (F
X
2 )⊥)op.
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