
Scikit-learn: Machine Learning in Python

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, et al.

To cite this version:

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, et
al.. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, Journal
of Machine Learning Research, 2011. <hal-00650905v2>

HAL Id: hal-00650905

https://hal.inria.fr/hal-00650905v2

Submitted on 2 Mar 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Clermont Université

https://core.ac.uk/display/49292317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.inria.fr/hal-00650905v2


Journal of Machine Learning Research 12 (2011) 2825-2830 Submitted 3/11; Revised 8/11; Published 10/11

Scikit-learn: Machine Learning in Python

Fabian Pedregosa fabian.pedregosa@inria.fr

Gaël Varoquaux gael.varoquaux@normalesup.org

Alexandre Gramfort alexandre.gramfort@inria.fr

Vincent Michel vincent.michel@logilab.fr

Bertrand Thirion bertrand.thirion@inria.fr

Parietal, INRIA Saclay
Neurospin, Bât 145, CEA Saclay
91191 Gif sur Yvette – France

Olivier Grisel olivier.grisel@ensta.fr

Nuxeo
20 rue Soleillet
75 020 Paris – France

Mathieu Blondel mblondel@ai.cs.kobe-u.ac.jp

Kobe University
1-1 Rokkodai, Nada
Kobe 657-8501 – Japan

Peter Prettenhofer peter.prettenhofer@gmail.com

Bauhaus-Universität Weimar
Bauhausstr. 11
99421 Weimar – Germany

Ron Weiss ronweiss@gmail.com

Google Inc
76 Ninth Avenue
New York, NY 10011 – USA

Vincent Dubourg vincent.dubourg@gmail.com

Clermont Université, IFMA, EA 3867, LaMI
BP 10448, 63000 Clermont-Ferrand – France

Jake Vanderplas vanderplas@astro.washington.edu

Astronomy Department
University of Washington, Box 351580
Seattle, WA 98195 – USA

Alexandre Passos alexandre.tp@gmail.com

IESL Lab
UMass Amherst
Amherst MA 01002 – USA

David Cournapeau cournape@gmail.com

Enthought

21 J.J. Thompson Avenue

Cambridge, CB3 0FA – UK

c©2011 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David
Cournapeau, Matthieu Brucher, Matthieu Perrot and Édouard Duchesnay



Pedregosa, Varoquaux, Gramfort et al.

Matthieu Brucher matthieu.brucher@gmail.com

Total SA, CSTJF
avenue Larribau
64000 Pau – France

Matthieu Perrot matthieu.perrot@cea.fr

Édouard Duchesnay edouard.duchesnay@cea.fr

LNAO

Neurospin, Bât 145, CEA Saclay

91191 Gif sur Yvette – France

Editor: Mikio Braun

Abstract

Scikit-learn is a Python module integrating a wide range of state-of-the-art machine learn-
ing algorithms for medium-scale supervised and unsupervised problems. This package
focuses on bringing machine learning to non-specialists using a general-purpose high-level
language. Emphasis is put on ease of use, performance, documentation, and API consis-
tency. It has minimal dependencies and is distributed under the simplified BSD license,
encouraging its use in both academic and commercial settings. Source code, binaries, and
documentation can be downloaded from http://scikit-learn.org.

Keywords: Python, supervised learning, unsupervised learning, model selection

1. Introduction

The Python programming language is establishing itself as one of the most popular lan-
guages for scientific computing. Thanks to its high-level interactive nature and its maturing
ecosystem of scientific libraries, it is an appealing choice for algorithmic development and
exploratory data analysis (Dubois, 2007; Milmann and Avaizis, 2011). Yet, as a general-
purpose language, it is increasingly used not only in academic settings but also in industry.

Scikit-learn harnesses this rich environment to provide state-of-the-art implementations
of many well known machine learning algorithms, while maintaining an easy-to-use interface
tightly integrated with the Python language. This answers the growing need for statistical
data analysis by non-specialists in the software and web industries, as well as in fields
outside of computer-science, such as biology or physics. Scikit-learn differs from other
machine learning toolboxes in Python for various reasons: i) it is distributed under the
BSD license ii) it incorporates compiled code for efficiency, unlike MDP (Zito et al., 2008)
and pybrain (Schaul et al., 2010), iii) it depends only on numpy and scipy to facilitate easy
distribution, unlike pymvpa (Hanke et al., 2009) that has optional dependencies such as R
and shogun, and iv) it focuses on imperative programming, unlike pybrain which uses a
data-flow framework. While the package is mostly written in Python, it incorporates the
C++ libraries LibSVM (Chang and Lin, 2001) and LibLinear (Fan et al., 2008) that provide
reference implementations of SVMs and generalized linear models with compatible licenses.

2826



Scikit-learn: Machine Learning in Python

Binary packages are available on a rich set of platforms including Windows and any POSIX
platforms. Furthermore, thanks to its liberal license, it has been widely distributed as
part of major free software distributions such as Ubuntu, Debian, Mandriva, NetBSD and
Macports and in commercial distributions such as the “Enthought Python Distribution”.

2. Project Vision

Code quality. Rather than providing as many features as possible, the project’s goal has
been to provide solid implementations. Code quality is ensured with unit tests—as of release
0.8, test coverage is 81%—and the use of static analysis tools such as pyflakes and pep8.
Finally, we strive to use consistent naming for the functions and parameters used throughout
a strict adherence to the Python coding guidelines and numpy style documentation.

BSD licensing. Most of the Python ecosystem is licensed with non-copyleft licenses. While
such policy is beneficial for adoption of these tools by commercial projects, it does impose
some restrictions: we are unable to use some existing scientific code, such as the GSL.

Bare-bone design and API. To lower the barrier of entry, we avoid framework code and keep
the number of different objects to a minimum, relying on numpy arrays for data containers.

Community-driven development. We base our development on collaborative tools such as
git, github and public mailing lists. External contributions are welcome and encouraged.

Documentation. Scikit-learn provides a ∼300 page user guide including narrative docu-
mentation, class references, a tutorial, installation instructions, as well as more than 60
examples, some featuring real-world applications. We try to minimize the use of machine-
learning jargon, while maintaining precision with regards to the algorithms employed.

3. Underlying Technologies

Numpy: the base data structure used for data and model parameters. Input data is pre-
sented as numpy arrays, thus integrating seamlessly with other scientific Python libraries.
Numpy’s view-based memory model limits copies, even when binding with compiled code
(Van der Walt et al., 2011). It also provides basic arithmetic operations.

Scipy: efficient algorithms for linear algebra, sparse matrix representation, special functions
and basic statistical functions. Scipy has bindings for many Fortran-based standard numer-
ical packages, such as LAPACK. This is important for ease of installation and portability,
as providing libraries around Fortran code can prove challenging on various platforms.

Cython: a language for combining C in Python. Cython makes it easy to reach the perfor-
mance of compiled languages with Python-like syntax and high-level operations. It is also
used to bind compiled libraries, eliminating the boilerplate code of Python/C extensions.

4. Code Design

Objects specified by interface, not by inheritance. To facilitate the use of external objects
with scikit-learn, inheritance is not enforced; instead, code conventions provide a consistent
interface. The central object is an estimator, that implements a fit method, accepting as
arguments an input data array and, optionally, an array of labels for supervised problems.
Supervised estimators, such as SVM classifiers, can implement a predict method. Some

2827



Pedregosa, Varoquaux, Gramfort et al.

scikit-learn mlpy pybrain pymvpa mdp shogun

Support Vector Classification 5.2 9.47 17.5 11.52 40.48 5.63
Lasso (LARS) 1.17 105.3 - 37.35 - -
Elastic Net 0.52 73.7 - 1.44 - -
k-Nearest Neighbors 0.57 1.41 - 0.56 0.58 1.36
PCA (9 components) 0.18 - - 8.93 0.47 0.33
k-Means (9 clusters) 1.34 0.79 ⋆ - 35.75 0.68

License BSD GPL BSD BSD BSD GPL
-: Not implemented. ⋆: Does not converge within 1 hour.

Table 1: Time in seconds on the Madelon data set for various machine learning libraries
exposed in Python: MLPy (Albanese et al., 2008), PyBrain (Schaul et al., 2010),
pymvpa (Hanke et al., 2009), MDP (Zito et al., 2008) and Shogun (Sonnenburg
et al., 2010). For more benchmarks see http://github.com/scikit-learn.

estimators, that we call transformers, for example, PCA, implement a transformmethod,
returning modified input data. Estimators may also provide a score method, which is an
increasing evaluation of goodness of fit: a log-likelihood, or a negated loss function. The
other important object is the cross-validation iterator, which provides pairs of train and test
indices to split input data, for example K-fold, leave one out, or stratified cross-validation.

Model selection. Scikit-learn can evaluate an estimator’s performance or select parameters
using cross-validation, optionally distributing the computation to several cores. This is ac-
complished by wrapping an estimator in a GridSearchCV object, where the “CV” stands for
“cross-validated”. During the call to fit, it selects the parameters on a specified parameter
grid, maximizing a score (the score method of the underlying estimator). predict, score,
or transform are then delegated to the tuned estimator. This object can therefore be used
transparently as any other estimator. Cross validation can be made more efficient for certain
estimators by exploiting specific properties, such as warm restarts or regularization paths
(Friedman et al., 2010). This is supported through special objects, such as the LassoCV.
Finally, a Pipeline object can combine several transformers and an estimator to create
a combined estimator to, for example, apply dimension reduction before fitting. It behaves
as a standard estimator, and GridSearchCV therefore tune the parameters of all steps.

5. High-level yet Efficient: Some Trade Offs

While scikit-learn focuses on ease of use, and is mostly written in a high level language, care
has been taken to maximize computational efficiency. In Table 1, we compare computation
time for a few algorithms implemented in the major machine learning toolkits accessible
in Python. We use the Madelon data set (Guyon et al., 2004), 4400 instances and 500
attributes, The data set is quite large, but small enough for most algorithms to run.

SVM. While all of the packages compared call libsvm in the background, the performance of
scikit-learn can be explained by two factors. First, our bindings avoid memory copies and
have up to 40% less overhead than the original libsvm Python bindings. Second, we patch
libsvm to improve efficiency on dense data, use a smaller memory footprint, and better use
memory alignment and pipelining capabilities of modern processors. This patched version
also provides unique features, such as setting weights for individual samples.

2828



Scikit-learn: Machine Learning in Python

LARS. Iteratively refining the residuals instead of recomputing them gives performance
gains of 2–10 times over the reference R implementation (Hastie and Efron, 2004). Pymvpa

uses this implementation via the Rpy R bindings and pays a heavy price to memory copies.

Elastic Net. We benchmarked the scikit-learn coordinate descent implementations of Elastic
Net. It achieves the same order of performance as the highly optimized Fortran version
glmnet (Friedman et al., 2010) on medium-scale problems, but performance on very large
problems is limited since we do not use the KKT conditions to define an active set.

kNN. The k-nearest neighbors classifier implementation constructs a ball tree (Omohundro,
1989) of the samples, but uses a more efficient brute force search in large dimensions.

PCA. For medium to large data sets, scikit-learn provides an implementation of a truncated
PCA based on random projections (Rokhlin et al., 2009).

k-means. scikit-learn’s k-means algorithm is implemented in pure Python. Its performance
is limited by the fact that numpy’s array operations take multiple passes over data.

6. Conclusion

Scikit-learn exposes a wide variety of machine learning algorithms, both supervised and
unsupervised, using a consistent, task-oriented interface, thus enabling easy comparison
of methods for a given application. Since it relies on the scientific Python ecosystem, it
can easily be integrated into applications outside the traditional range of statistical data
analysis. Importantly, the algorithms, implemented in a high-level language, can be used
as building blocks for approaches specific to a use case, for example, in medical imaging
(Michel et al., 2011). Future work includes online learning, to scale to large data sets.

References

D. Albanese, G. Merler, S.and Jurman, and R. Visintainer. MLPy: high-performance
Python package for predictive modeling. In NIPS, MLOSS workshop, 2008.

C.C. Chang and C.J. Lin. LIBSVM: a library for support vector machines. http://www.

csie.ntu.edu.tw/cjlin/libsvm, 2001.

P.F. Dubois, editor. Python: batteries included, volume 9 of Computing in Science &
Engineering. IEEE/AIP, May 2007.

R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin. LIBLINEAR: A library for
large linear classification. The Journal of Machine Learning Research, 9:1871–1874, 2008.

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of statistical software, 33(1):1, 2010.

I Guyon, S. R. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the NIPS 2003 feature
selection challenge, 2004.

M. Hanke, Y.O. Halchenko, P.B. Sederberg, S.J. Hanson, J.V. Haxby, and S. Pollmann.
PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data. Neuroin-
formatics, 7(1):37–53, 2009.

2829



Pedregosa, Varoquaux, Gramfort et al.

T. Hastie and B. Efron. Least Angle Regression, Lasso and Forward Stagewise. http:

//cran.r-project.org/web/packages/lars/lars.pdf, 2004.

V. Michel, A. Gramfort, G. Varoquaux, E. Eger, C. Keribin, and B. Thirion. A supervised
clustering approach for fMRI-based inference of brain states. Patt Rec, page epub ahead
of print, April 2011. doi: 10.1016/j.patcog.2011.04.006.

K.J. Milmann and M. Avaizis, editors. Scientific Python, volume 11 of Computing in Science
& Engineering. IEEE/AIP, March 2011.

S.M. Omohundro. Five balltree construction algorithms. ICSI Technical Report TR-89-063,
1989.

V. Rokhlin, A. Szlam, and M. Tygert. A randomized algorithm for principal component
analysis. SIAM Journal on Matrix Analysis and Applications, 31(3):1100–1124, 2009.

T. Schaul, J. Bayer, D. Wierstra, Y. Sun, M. Felder, F. Sehnke, T. Rückstieß, and J. Schmid-
huber. PyBrain. The Journal of Machine Learning Research, 11:743–746, 2010.

S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, J. Behr, A. Zien, F. de Bona, A. Binder,
C. Gehl, and V. Franc. The SHOGUN Machine Learning Toolbox. Journal of Machine
Learning Research, 11:1799–1802, 2010.

S. Van der Walt, S.C Colbert, and G. Varoquaux. The NumPy array: a structure for
efficient numerical computation. Computing in Science and Engineering, 11, 2011.

T. Zito, N. Wilbert, L. Wiskott, and P. Berkes. Modular toolkit for Data Processing (MDP):
a Python data processing framework. Frontiers in neuroinformatics, 2, 2008.

2830


