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Michel Grédiac1†, Frédéric Sur2, Claudiu Badulescu3, Jean-Denis Mathias4
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Abstract

The use of various deconvolution techniques to enhance strain maps obtained with the
grid method is addressed in this study. Since phase derivative maps obtained with the grid
method can be approximated by their actual counterparts convolved by the envelope of
the kernel used to extract phases and phase derivatives, non-blind restoration techniques
can be used to perform deconvolution. Six deconvolution techniques are presented and
employed to restore a synthetic phase derivative map, namely direct deconvolution, regu-
larized deconvolution, Richardson-Lucy algorithm and Wiener filtering, the last two with
two variants concerning their practical implementations. Obtained results show that the
noise that corrupts the grid images must be thoroughly taken into account to limit its effect
on the deconvolved strain maps. The difficulty here is that the noise on the grid image
yields a spatially correlated noise on the strain maps. In particular, numerical experiments
on synthetic data show that direct and regularized deconvolutions are unstable when noisy
data are processed. The same remark holds when Wiener filtering is employed without
taking into account noise autocorrelation. On the other hand, the Richardson-Lucy al-
gorithm and Wiener filtering with noise autocorrelation provide deconvolved maps where
the impact of noise remains controlled within a certain limit. It is also observed that the
last technique outperforms the Richardson-Lucy algorithm. Two short examples of actual
strain fields restoration are finally shown. They deal with asphalt and shape memory alloy
specimens. The benefits and limitations of deconvolution are presented and discussed in
these two cases. The main conclusion is that strain maps are correctly deconvolved when
the signal-to-noise ratio is high and that actual noise in the actual strain maps must be
more specifically characterized than in the current study to address higher noise levels with
Wiener filtering.

Keywords: deconvolution, grid method, strain measurement
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1 Introduction

Full-field measurement techniques are now wide spread in the experimental mechanics com-
munity. One of the reasons is their ability to measure heterogeneous states of strain, thus
enabling to detect localized events that often occur in specimens under test but whose location
is not known a priori. Classic transducers such as strain gauges only give local information,
so they are not well suited to reach this goal despite a resolution generally recognized to be
better than that of full-field measurement techniques. Assessing the real metrological perfor-
mances of full-field measurement techniques remains an open problem, as illustrated by the
increasing number of papers on this topic. They mainly deal with digital image correlation
for which both the surface marking [1, 2, 3] and the algorithm which are used [4, 5] constitute
an issue. One of the difficulties comes from the fact that several parameters influence these
performances, some of them being not really intrinsic, but extrinsic such as lighting or image
contrast for instance [6]. Another reason is the fact that metrological performances depend,
among others, on two conflicting concepts: resolution and spatial resolution. The first one is
defined here by the smallest strain or displacement that can be detected, the second one by
the smallest distance between independent measurements. It is well known that the better the
resolution, the worst the spatial resolution. In addition, displacement is generally the physical
quantity which is provided by most techniques but strain is often the desired physical quantity
for material characterization purposes. The reason is that this quantity is directly involved in
constitutive equations of engineering materials. Since displacement maps are generally noisy,
they are smoothed using various strategies prior to the differentiation necessary to get the strain
components [7, 8]. Hence the number of independent parameters influencing the final result is
in general significant and changing one of the parameters has a direct impact on the obtained
strain value. This does not help to give a clear idea on the actual metrological performances of
full-field measurement techniques if strain components are to be considered instead of displace-
ments. Finally, it must be pointed out that finding a reference state of strain is also an issue.
Specific testing devices or procedures have been proposed in the literature [9, 10] but synthetic
images are used in most cases as in [4] for digital image correlation or in [11] for techniques for
which fringes must be processed.

This paper is devoted to a specific problem: the actual strain value determination in case
of localized phenomena which occur in many situations, especially when heterogeneous materi-
als are tested since the different phases may potentially exhibit various mechanical responses.
“Localized” means here that the dimensions of the phenomenon to be observed and for which
actual strain components are to be determined are similar to, or lower than the size of the
region involved in the calculation of the strain components by local image processing, in other
words that the strain gradient is significant.

The measurement method used herein is the grid method, which consists first in depositing
a regular bi-directional grid, in taking images of this grid and finally processing these images
to retrieve the in-plane strain components. The drawback of this technique is that a regular
marking (more precisely a pseudo-regular since printing the grids induces some defects) of
the surface under investigation must be obtained by any means, by engraving, transferring or
bonding for instance. This surface preparation is in general more difficult than considering a
random marking. The advantage is however that a regular marking is much easier to duplicate
or to control than a random one. Moreover, a regular marking enables one to use techniques
based on the Fourier transform, for which a broad literature is available, especially in image
processing [12]

Processing grid images to retrieve strains consists first in taking pictures of the grid before
and after the load is applied, and to quantify the changes in the images due to deformation. The
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“classic” procedure for processing these grids consists in extracting the phase using a windowed
Fourier transform because phase change is proportional to displacement [13]. The obtained
displacement field is then smoothed and differentiated using a suitable strategy to deduce the
strain field [14, 8, 15] for instance. A consequence of this “classic” procedure is that several
parameters influence the result, and thus the final metrological performance in terms of quality
of the strain measurement. On the contrary, retrieving directly the phase and differentiating
it directly without any smoothing, or retrieving the phase derivative directly from the grid
images, as proposed in [16, 17] for instance, reduces the number of parameters that govern the
extracting procedure to one since only the size of the window used in the windowed Fourier
transform used in this case drives the procedure. As a result, the link between the obtained
strain field and the grid images is straightforward. This link has been characterized in [18] in
the case of perfect grids. This enables one to tackle the problem of actual strain measurement
in case of strong strain gradient with a suitable tool, namely deconvolution.

Deconvolution techniques are widely used in image processing but it seems that they have
only seldom been employed in the field of mechanics [19, 20]. Concerning displacement and
strain measurement, one of the main reasons is certainly that the “classic” procedure involves
several non-linear steps and numerous parameters. Therefore, the retrieved mechanical quanti-
ties do probably not appear as the convolution of any kernel with the actual quantities. Knowing
the kernel is however crucial to perform efficient deconvolution [21].

In this context, the aim of this paper is to show that deconvolution can be applied to enhance
the ability of the grid method to detect and reliably quantify strain gradients. The paper is
organized as follows. After a short recall on the grid method, the basics of deconvolution are
described along with the characteristics of various deconvolution algorithms. The performance
of these algorithms is then briefly reviewed and a numerical example is processed to study the
limit and interest of deconvolution in the current context, especially when noise corrupts the
grid images that are processed. Two short examples of actual strain map restoration picked in
the recent literature are then shown to illustrate the procedure.

2 Determining in-plane strain components from grid im-

ages

The objective here is to briefly recall the procedure used to determine in-plane strain com-
ponents from grid images. In such images, the light intensity s(x, y) at each point (x, y) is a
quasi-periodic signal characterized by two phases Φx and Φy which are defined along the x-
and y- directions, respectively. The variation of these phases between two images, denoted
as ∆Φx and ∆Φy, are related to the in-plane displacements ux and uy through the following
equations [13]





ux = −
p

2π
× ∆Φx

uy = −
p

2π
× ∆Φy

(1)

The in-plane strain components are therefore deduced from the phase derivatives variations
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ǫxx = −
p

2π
× ∆

∂Φx

∂x

ǫyy = −
p

2π
× ∆

∂Φy

∂y

ǫxy = −
p

2π
×

(
∆

∂Φx

∂y
+ ∆

∂Φy

∂x

)
(2)

Considering a given grid picture, the phases can be determined by calculating a windowed
Fourier transform which writes as follows

Ψ(x, y, θ) =

∫ +∞

−∞

∫ +∞

−∞

s(ξ, η)gσ(x − ξ, y − η)e−2iπf(ξ cos(θ)+η sin(θ)) dξ dη

= R(x, y, θ) + iJ(x, y, θ)

(3)

where gσ is a 2D window function of width σ. It is symmetric, positive, and integrates to 1. In
practice, this window can be a triangle, as suggested in [13], or a Gaussian, as in [17] to ensure
differentiability. A Gaussian function is used in the current work. θ can be either equal to 0

or
π

2
, depending on the direction under consideration: x or y, respectively. The actual phase

variations ∆Φx(x, y) and ∆Φy(x, y) are approximated by calculating the following quantities

denoted ∆Φ̃x(x, y) and ∆Φ̃y(x, y)





∆Φ̃x(x, y) = ∆ arctan

(
J(x, y, 0)

R(x, y, 0)

)

∆Φ̃y(x, y) = ∆ arctan




J(x, y,
π

2
)

R(x, y,
π

2
)




(4)

2.1 The apparent phase and phase derivatives as the convolution of

their actual counterparts

An important result shown in [18] is the fact that each of the ∆Φ̃i quantities, i = x, y, is nearly
equal to the convolution of its actual counterpart ∆Φi, i = x, y, by the envelope gσ used in the
windowed Fourier transform defined above. The same remark holds for the phase derivatives.
Basically, this is true because displacements are small with respect to the pitch of the grid [18].
Thus

∆Φ̃i ≃ ∆Φi ∗ gσ i = x, y (5)

with θ = 0 for i = x and θ =
π

2
for i = y. In the same way





∆
∂Φ̃i

∂x
≃ ∆

∂Φi

∂x
∗ gσ

∆
∂Φ̃i

∂y
≃ ∆

∂Φi

∂y
∗ gσ i = x, y

(6)

In terms of displacement and strain, plugging Eqs 5 and 6 in Eqs 1 and 2 leads to the
displacement and strain components ũi and ǫ̃ij provided by the procedure, which can also be
approximated by the convolution of their actual counterparts ui and ǫij by gσ. Thus
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ũi ≃ ui ∗ gσ (7)

with i = x, y, and

ǫ̃ij ≃ ǫij ∗ gσ (8)

with ij = xx, yy, xy.

This property has two main consequences:

1. Any sudden variation of the actual displacement (resp. strain) distribution is smoothed
by the phase (resp. phase derivative) extraction procedure. Hence resulting maps are
automatically blurred in zones featuring high gradients. Consequently, the quantities
provided by the grid image processing are lower than the actual ones over these zones;

2. Since such maps can be considered as maps of the actual quantity convolved by gσ, one
can restore them and find the actual quantity by deconvolution.

Remark 1 above mainly concerns strain components in practice, displacement gradients
being very small within the framework of small deformations. Consequently, Remark 2 also
mainly concerns strain components in practice. It must however be pointed out that it is only
valid if no filtering (with polynomials for instance) is performed prior to strain calculation to
remove noise. Indeed, the classic route for calculating strain components ([22] for instance)
consists in:

1. extracting the phase and deducing the displacement field;

2. smoothing the displacement field with a suitable procedure to reduce noise;

3. differentiating the smoothed displacement field to deduce the strain field,

In this case, the number of parameters that govern the procedure to go from the grid images
to the strain map increases. Moreover these parameters generally spatially change, so it is not
possible to perform deconvolution. The idea here is to reduce this number as much as possible
to be able to perform deconvolution and thus to retrieve the actual strain in case of strong strain
gradients. For instance, Steps 1 and 2 above can be merged merely by adjusting the size of the
Gaussian envelope used in the windowed Fourier transform. This is done by changing the value
of σ. Even the three steps above can be merged by using explicit derivation, as in [16, 17] but
the phase obtained at the end of Step 2 can also be numerically differentiated. In conclusion,
only one main parameter may potentially govern the smoothness of the strain field obtained
at the end of the procedure: σ. The larger the value of σ, the higher the smoothness of the
strain field but the worst the spatial resolution in strain (defined here by the shortest distance
between two points where independent strain measurements are obtained) and the stronger the
weakening of the strain value in case of high strain gradients.

2.2 Synthetic image

A numerical example is discussed here to illustrate the fact that the difference between the phase
derivative provided by the windowed Fourier transform and the actual one increases when the
phase derivative gradient increases. The same example is then used throughout the paper to
discuss the performance of various deconvolution techniques.
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It is assumed that the phase derivative
∂Φy

∂y
is a sine wave along the y-direction of the image,

with a period slightly linearly changing along the x-axis. The idea under this assumption is to
provide an image containing a rich (within certain limits) and regular frequency signature, but
with a frequency nearly constant over the Gaussian kernel. The other phase Φx is assumed to
be null. In practice, the period pwave of this sine wave is modelled by the following equation

pwave = pmini
wave +

pmaxi
wave − pmini

wave

Lx

× x (9)

where pmini
wave is the minimum value of the sine period and pmaxi

wave its maximum value. Lx is the
width of the image. Its height is denoted Ly in the following. The phase amplitude is chosen
in such a way that the amplitude of its derivative denoted AΦ′ is constant. Thus





Φx = 0

Φy = AΦ′

pwave

2π
sin

(
2π

pwave

(y −
Ly

2
)

)
(10)

and





∂Φx

∂x
=

∂Φx

∂y
= 0

∂Φy

∂x
= 0,

∂Φy

∂y
= AΦ′ cos

(
2π

pwave

(y −
Ly

2
)

) (11)

The interest of this phase derivative distribution is to see at a glance the response of various
phase derivative calculation and restoration strategies. It is symmetric with respect to the
horizontal midline. This feature will turn out to be useful in the following since the cross-
section of the phase derivative map along this symmetry axis will be plotted to assess the
performance of various deconvolution techniques. pmini

wave and pmaxi
wave are chosen in such a way

that the sine wave period gently decreases from the left to the right, so the period variation
over the kernel remains negligible.

The phase and the derivative maps are shown in Figure 1 where AΦ′ = 1E − 03 (which
represents a typical value when strains are measured with this method), Lx = 4000 pixels,
Ly = 1000 pixels, pmini

wave=10 pixels and pmaxi
wave=80 pixels. The scale along the x and y-axes is

different to avoid too high an aspect ratio of the resulting image.
This phase is then used to build up a synthetic grid image for which the light intensity can

be written as follows:

s(x, y) =
A

2

(
2 + sin3(2πfx) + sin3(2πfy + Φy(x, y))

)
+ n(x, y) (12)

where n(x, y) is a Gaussian white noise of standard deviation N . Note that the signal is not
encoded with a sine to illustrate that a pure sine is not rigorously necessary to correctly retrieve
the phase derivative since only the first harmonic contains the sought information [13],[18]. The
simulated grid image (not shown here) is built with A(x, y) = A = 212, 5 pixels/grid period and
quantization of the grey level to 12 bits. Such values are typical in real experiments carried out
with a CCD camera. Note that the quantization step makes it impossible to perfectly retrieve
the actual phase or phase derivative from the grid image.
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2.3 Convolution of the phase derivative

The objective here is to illustrate and to quantify the fact that the phase derivative which
is retrieved with the windowed Fourier transform is different from the actual one because of
convolution. Parameter σ, which drives the window size, is equal to σ = 5 pixels in these
simulations, which is a typical value used in practice [17]. A top view of the envelope gσ is
superimposed on the top left-hand side of the map shown in Figure 1-a and -b in order to more
clearly compare the size of this envelope and the period of the waves. Since the scale along the
x and y- axes is different, the circle turns into an ellipse in each map. The actual diameter of
the circle is equal to 6 × σ = 30 pixels, ±3σ being the usual width considered for a Gaussian
envelope. It can be seen to the naked eye that the envelope covers several wave periods on the
left-hand side (up to 3), thus correctly assessing the phase derivative is difficult.

The estimated phase derivative is shown in Figure 2-a. As may be easily seen since the
amplitude of the reference phase derivative is constant, the estimated phase derivative is all the
more impaired by the grid image processing that the frequency of the reference phase increases
(see the left-hand side of the figure). The cross-section of the map along its symmetry axis
(the horizontal midline defined by y = 500) is plotted in Figure 2-b. The phase derivative
should be constant along this mid-line (as the reference value) but it is clear that the estimated
value is not, especially for high frequencies of the sine wave (left-hand side of the curve). The
difference between estimated and reference phase derivative is finally shown in (Figure 2-c) to
enable the reader to clearly assess this phenomenon. This simulation clearly illustrates the fact
that deconvolution is necessary to try to restore as well as possible the phase derivatives to get
reliable information from strain maps where significant strain gradients occur.

The phase derivative is all the more sensitive to this phenomenon that the width of the kernel
envelope used for the windowed Fourier transform is significant compared to the period of the
phase. This feature is illustrated in Figure 3-a where the cross-section of the phase derivative
map along its symmetry axis (y=500) is plotted for various values of σ. The higher the value
of σ, the wider the Gaussian envelope and the worst the spatial resolution. In addition, the
estimated phase derivative becomes more and more impaired by the procedure when σ increases.
The trade-off between resolution and spatial resolution is also illustrated in Figure 3-b where a
noise has been added to the grid images used for plotting Figure 3-a. It is clear that the noise
level observed on the phase derivative decreases when σ increases, but the result becomes more
and more impaired by the procedure at the same time.

Since the period of the phase derivative waves linearly decreases from the left to the right,
the same results as above can be plotted with respect to a normalized period defined by the
ratio ξ between the period of the phase derivative waves and σ. The vertical lines correspond
to boundary effects that can already be visible along the very left- and right-hand sides of
Figure 3-a and -b. They are shifted toward the center of Figure 3-c because of the change in
variable. They enable us to more clearly distinguish the domain over which they are defined.
All the curves are perfectly superimposed but the number of normalized periods decreases when
σ increases, and therefore when noise decreases, thus illustrating that the size of the observed
field is a third parameter which influences the quality of the result in addition to the spatial
resolution and the resolution. The spatial resolution being defined here by the “width” of the
Gaussian envelope 6σ, it can be seen that a loss of information slightly greater than 40% is
obtained when the period of the waves is equal to this spatial resolution (ξ = 6) and nearly lower
than 20% when this period is equal to twice this spatial resolution (ξ = 12). This highlights
that a procedure able to restore the phase derivative would be very useful to get the actual
value instead of quantities which are systematically impaired by the procedure employed to
retrieve them.
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The effect of convolution on the phase derivative is finally illustrated by a portion of the
cross-section of the phase derivative map along the y axis for x = 1500. The result obtained for
various values of σ is shown in Figure 4. As may be seen, the difference between estimated and
actual phase derivatives increases when σ increases. Even for small values of σ, this difference
is significant (about 20% of the reference value).

The objective is now to take advantage of the fact that
∂Φ̃y

∂y
can be considered as a convolu-

tion of
∂Φy

∂y
by gσ to retrieve

∂Φy

∂y
from

∂Φ̃y

∂y
by deconvolution. Various popular deconvolution

techniques are briefly described in the following section. They are then applied to the example
presented above and the obtained results are discussed. Some examples of strain maps picked
in the recent literature serve finally as examples to briefly illustrate the interest but also the
limits of deconvolution.

3 Phase and phase derivative restoration by deconvolu-

tion

3.1 Introduction

The grid image is actually impaired by digital noise. Under the mild assumption that the image
noise is a Gaussian white noise, it is shown in [18] that it yields a structured noise on the phase
or its derivatives. In this section, the restoration problem is defined as follows

u = u0 ∗ gσ + n (13)

where u can be either the phase (or one of its derivatives) retrieved by the windowed Fourier
transform, u0 is the ideal phase (resp. one of its phase derivatives) and n is the noise which
corrupts the quantity to be deconvolved. n is a spatially correlated Gaussian noise, which has
been characterized for the phases and the phase derivatives in [18]. In this section, knowing u
and with some information about noise n, the aim of restoration is to estimate u0.
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A large amount of literature is dedicated to deconvolution, either blind or non-blind. Let
us name just the survey article [23] in the specific, yet representative field of astronomy. In the
current case however, we are within the scope of non-blind deconvolution since the point spread
function (PSF) which blurs the maps is well known a priori : this is merely the window envelope
defined by gσ. Even in this case which is easier to tackle than the case of blind deconvolution,
it must be pointed out that non-blind deconvolution is an ill-posed inverse problem which is
prone to noise amplification and artifacts such as the so-called ringing artifact [12]. Contrary to
most of the studies in the field (although a recent survey paper [24] discusses the more limited
denoising problem), the noise is not white in the problem of interest [18].

Four non-blind deconvolution techniques are briefly recalled here: direct deconvolution,
regularized (Tikhonov) deconvolution [25], Richardson-Lucy deconvolution [26, 27] and Wiener
filtering [28]. All these techniques have been used in turn to deconvolve the synthetic image
presented and discussed above, the objective being to assess the efficiency of these techniques
and their robustness even though the hypotheses under which some of them are developed are
not fully satisfied.

3.2 Brief presentation of the deconvolution techniques used

In this section, f̂ denotes the Fourier transform of any function f . All the deconvolution
methods described below have been tested in this study using standard Matlab functions for
deconvolution from the Image Processing Toolbox [29], namely deconvreg, deconvwnr and
deconvlucy. The arguments used in each case are briefly given for each deconvolution method.

3.2.1 Direct deconvolution

Neglecting the noise, u = u0 ∗ gσ yields with Fourier transform:

û0(x, y) =
û(x, y)

ĝσ(x, y)
(14)

Image u0 is then retrieved by inverse Fourier transform. This method is called direct decon-
volution. Since gσ is here a smooth function, ĝσ quickly vanishes for high frequencies. Dividing
by ĝσ therefore accentuates high frequencies and possibly produces the ringing artifact along
localized, “edge-like” features of the phase or its derivatives.

In the presence of noise, direct deconvolution yields û/ĝσ + n̂/ĝσ. This still amplifies high
frequency noise artifacts in the retrieved image, which is even often overwhelmed by the noise.
When no noise occurs, the Wiener filtering described below is equivalent to direct deconvolution.
This latter technique was consequently implemented here using the Matlab function deconvwnr

devoted to Wiener filtering, with the noise-to-signal ratio set to 0.

3.2.2 Regularized deconvolution

A popular way to impose smoothness in deconvolution is to limit noise amplification by using
Tikhonov regularization [25]. In this framework, the deconvolved image u0 minimizes the
following quantity

F(u) = ||u − u0 ∗ gσ||
2
2 + λ||f(u0)||

2
2 (15)

where ||f(u0)||2 is a measure of “roughness” of u0 and λ controls the degree of roughness. In
this paper, the popular Laplacian function f(u0) = ∆u0 is used for this purpose.
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Note that if λ = 0, since ||u−gσ∗u0||
2
2 = ||û−û0ĝσ||

2
2 (by Parseval theorem), minimizing F(u)

yields û = û0 · ĝσ. In this case, the solution is therefore the same as in direct deconvolution.
The Matlab function deconvreg with standard arguments was used here. In particular λ was
set automatically.

3.2.3 Richardson-Lucy deconvolution

Richardson-Lucy deconvolution [26, 27] is an iterative procedure defined by

ui+1(x, y) = ui(x, y) ·
u(x, y)

ui ∗ gσ(x, y)
∗ gσ (16)

where gσ(x, y) = gσ(−x,−y). Under Poisson noise assumption, ui converges to a maximum
likelihood estimate of u0. It is important that u ≥ 0 to keep consistency with Poisson noise
hypothesis.

In the current study case however, u is not non-negative since we deal with phase and phase
derivatives. Two possible workarounds are tested in this study:

1. The Richardson-Lucy deconvolution is used on exp(u) and the logarithm is then taken.
This method is denoted LR 1;

2. The Richardson-Lucy deconvolution is used on u − min(u) and the result is normalized
so that its mean is equal to the mean of the corrupted image u. This method is denoted
LR 2.

Note however that in both methods, the noise on the non-negative image gray-values do not
fit a Poisson distribution. This still proves to give satisfactory empirical results. Both versions
were implemented with the Matlab function deconvlucy using standard arguments. The most
critical one is the number of iterations whose influence is discussed in Section 3.5 below.

3.2.4 Wiener filtering

Wiener filtering [28] amounts to retrieve u0 via

û0(x, y) =
ĝσ

∗
(x, y)

|ĝσ(x, y)|2 + M(x, y)/S(x, y)
û(x, y) (17)

where z∗ is the conjugate of the complex number z. E denotes the expectation. M(x, y) =
E(|n̂(x, y)|2) is the mean power spectral density of the random noise n and S(x, y) = |û0(x, y)|2

is the power spectral density of the (deterministic) ideal image u0. Note that in the noise-
free case, Wiener filtering boils down to direct deconvolution. Implementing Wiener filter
necessitates to estimate both M(x, y) and S(x, y). Two approaches have been investigated
here:

1. Assuming that n is a white noise, then M(x, y) = Var(n). In [18], it is demonstrated that
an accurate estimate of the variance of the noise on the phase maps φx and φy is:

Var(n) =
N2∆x∆y

8πσ2K2
(18)

where N2 is the variance of the Gaussian white noise impairing the grid image. K =
|d1|A/2, where d1 is the first Fourier coefficient of the sin3 function, and A is as in
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Eq. (12). ∆x∆y is the area of one pixel. It is equal to one here since all the dimensions
are given in pixels, so it vanishes in this expression.

It is also shown that the variance of the noise on the phase derivative maps in the x−
and y− directions is:

Var(n) =
N2∆x∆y

16πσ4K2
(19)

Besides, S(x, y) is approximated by |û(x, y)|2. This method is denoted hereafter WF 1.

2. The autocorrelation function ρ of the noise on u is assumed to be given a priori, using
the results presented in [18]. The well-known Wiener-Khinchin theorem yields M(x, y) =
ρ̂(x, y). Concerning S, it is still approximated by |û|2. This method is denoted WF 2.
hereafter.

Both Wiener filter variants were implemented with the Matlab function deconvwnr, each
time with arguments suited to the corresponding variant.

3.3 Deconvolution of the phase derivative of the synthetic example.

Comparison between various techniques

The objective here is to apply deconvolution to restore the phase derivative map discussed
in Section 2.2 using the methods presented in Section 3.2. The efficiency of these methods
is assessed by calculating the difference between deconvolved and reference phase derivatives,
first assuming that no noise corrupts the grid images, and then with an additional noise to
observe robustness. These so-called error maps, obtained by subtracting the phase derivative
maps and the reference map, are used to assess the obtained result. σ = 5 pixels is chosen in all
these simulations to keep the spatial resolution constant. The Richardson-Lucy technique being
iterative, nit = 10 iterations are taken in all cases for these first attempts but the influence of
this parameter is discussed in more details in Section 3.5 below.

Results obtained without noise added to the grid image are gathered in Figure 5. The Wiener
filter boiling down to direct deconvolution when no noise is present, it is not employed here.
Comparing the four error maps with that shown in Figure 2-c shows that a wide portion of the
phase derivative map is restored. Some significant edge effects are clearly visible in the direct
case and, to a lesser extend, in the regularized deconvolution case. Boundary effects along the
vertical border occur only in the first case. Remarkably, the regularized deconvolution provides
a map of nearly null error (to the naked eye) over a wider portion of the image compared to the
other techniques. Hence even small details that take place on the left-hand side of the phase
derivative map are restored in this case. For the three other techniques, a zone roughly defined
by x < 500 is not correctly restored. Beyond this threshold value, the error is nearly null in all
cases. The fringe pattern is however slightly recognizable in the RL 2 error map.

The performance of the different methods can be compared by calculating the peak signal to
noise ratio (PSNR) over a certain zone defined by the white rectangle shown in Figure 5-d. The
PSNR value is calculated over this rectangle throughout this paper. This quantity is equal to

PSNR = 20log10
D

RMSE
, where RMSE represents the root mean square error calculated over

this zone and D is the dynamics of the grid image. The zone is defined away from the edge of
the map to avoid boundary effects. The PSNR value reflects here the quality of deconvolution
in a zone where the error is stabilized with respect to the effect of the sine wave frequency
on the deconvolved map. The PSNR values obtained with the four deconvolution techniques
are represented in Figure 6-a along with their counterpart calculated with the image before
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Figure 5: Difference between deconvolved and reference phase derivatives obtained with various
deconvolution strategies. Noise amplitude=0

deconvolution (see Figure 2-c) for comparison purposes (first bar on the left-hand side of the
figure). As may be seen, all techniques lead to an improvement of the PSNR value, but the
best results are obtained with RL 1.

The influence of the frequency of the phase derivative on the quality of the results can be
assessed by examining the cross-section of the previous figures along the horizontal symmetry
axis, where the reference phase derivative is constant whatever the sine wave frequency. The ob-
tained result is shown in Figure 6-b where the result given by all the methods are superimposed.
The boundary effects along the vertical border are clearly visible with direct deconvolution. It
is also worthy noting that this technique provides a noisy distribution away from the borders.
This is consistent with the conclusion drawn from the PSNR maps. On the left-hand side,
the RL 1 and RL 2 curves sharply increase at a fairly linear rate which is nearly the same for
both variants. In addition, RL 1 then significantly overestimates the phase derivative (between
x = 500 and x = 1200). In all cases however it is worth mentioning that the actual value is
reached before x = 500. At that point, it can be checked with Eq. 9 that the period of the sine
wave pwave is slightly lower than 2σ, which is equal to one-third of the spatial resolution since
the latter is assumed to be equal to 6σ. This result is very interesting since convolution induces
a bias of about 20% in the phase derivative for a sine wave period equal to twice the spatial
resolution, as discussed in Section 2.3 above.

The robustness of these different deconvolution strategies to the noise in the grid image is a
key-issue. It has been examined by processing in turn the grid image corrupted by various noise
levels. Figures 7-8 show a set of maps obtained with the same procedures as in Figure 5. The
only difference is the fact that a noise (zero mean, amplitude N = 3 and N = 5 for Figure 7 and
8, respectively) has been added to the grid image modelled by Eq. 12. It clearly appears that
the strategies described above exhibit a different response when the grid image is corrupted by
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Figure 7: Difference between deconvolved and reference phase derivatives obtained with various
deconvolution strategies. Noise amplitude=3

noise. Figures 7-a,-b,-e and Figures 8-a,-b and -e clearly show that the direct, regularized and
W 1 deconvolution strategies are not robust whereas the other ones (RL 1, RL 2 and W 2)
still provide acceptable results. The last one (W 2) gives the less noisy phase derivative map,
but details featuring a high frequency are not so well restored compared to the two techniques
based on the Richardson-Lucy algorithm.

The performance of the techniques in each case can also be assessed with the PSNR value.
This quantity is represented in Figure 9. W 1 and W 2 appear only in case of noise, as justified
above. The obtained results confirm the trends observed to the naked eye in Figures 7-8:

• The PSNR value decreases when the noise amplitude increases. This is quite logical;

• RL 1 provides the best results when no noise occurs;

• W 2 outperforms the other techniques when noise corrupts the grid images.

The latter result is obtained in a case for which noise has been correctly characterized to

17



x

y

 

 

500 1000 1500 2000 2500 3000 3500 4000

100

200

300

400

500

600

700

800

900

1000 −1

−0.5

0

0.5

1
x 10

−3

x

y

 

 

500 1000 1500 2000 2500 3000 3500 4000

100

200

300

400

500

600

700

800

900

1000 −1

−0.5

0

0.5

1
x 10

−3

a- Direct deconvolution b- Regularized deconvolution

x

y

 

 

500 1000 1500 2000 2500 3000 3500 4000

100

200

300

400

500

600

700

800

900

1000 −1

−0.5

0

0.5

1
x 10

−3

x

y

 

 

500 1000 1500 2000 2500 3000 3500 4000

100

200

300

400

500

600

700

800

900

1000 −1

−0.5

0

0.5

1
x 10

−3

c- Richardson-Lucy, logarithmic (RL 1) d- Richardson-Lucy, linear (RL 2)

x

y

 

 

500 1000 1500 2000 2500 3000 3500 4000

100

200

300

400

500

600

700

800

900

1000 −1

−0.5

0

0.5

1
x 10

−3

x

y

 

 

500 1000 1500 2000 2500 3000 3500 4000

100

200

300

400

500

600

700

800

900

1000 −1

−0.5

0

0.5

1
x 10

−3

- Wiener without autocorrelation (W 1) f- Wiener with autocorrelation (W 2)

Figure 8: Difference between deconvolved and reference phase derivatives obtained with various
deconvolution strategies. Noise amplitude=5

18



initial direct regul. RL 1 RL 2 W 1 W 2
0

5

10

15

20

25

30

35

40

 

 

N=0
N=3
N=5

Figure 9: PSNR for various deconvolution techniques and noise levels

feed the filter. Indeed WL 1, which also relies on the Wiener filter, provides poor results because
noise is not correctly characterized in this case (autocorrelation is not taken into account). This
means that, in practice, the Wiener filter should be used with caution if noise is not correctly
assessed. RL 1 or RL 2 should be used instead in this case since they still give acceptable
results.

3.4 Optimal choice of σ for W 2

The previous results are obtained with a given value of σ: σ = 5 pixels, but one can easily
guess that this parameter also influences the results. Indeed, increasing σ reduces noise level and
therefore facilitates deconvolution. However this also reduces the amplitude of the convolved
phase derivative level and it is no wonder that retrieving the actual one becomes more difficult
if the value of σ becomes too large. In addition, this also contributes some blobs to appear in
the phase derivative map because the larger the σ, the larger the range of noise correlation,
as discussed in [18]. These “blobs” may then be mistaken for fictitious local events that are
then restored by deconvolution and this should obviously be avoided as far as possible. As a
conclusion, choosing at best the value for σ is a trade-off between various constraints. This
issue has been investigated here by examining the influence of N and σ the PSNR value.

Figure 10 shows the PSNR value for various noise levels and values of σ. These curves are
plotted for W2 and for the initial phase derivative maps. Six noise levels are considered in each
case. As may be seen, the curves obtained with W 2 regularly decrease when the noise level
increases, as expected. More interestingly, there is an optimal value lying between σ = 7 pixels
and σ = 9 pixels, depending on the noise level. Considering that σ = 8 pixels is optimal
whatever the noise seems to be a sound choice for the following calculations.

The curves obtained without deconvolution decrease when σ increases. This is quite logical
since it means that convolution smoothes the resulting phase derivative map, thus increasing
the error made when the size of the kernel increases because details are obtained with a lower
quality. It is also worth mentioning that the effect of noise is hidden behind this phenomenon
because the error due to smoothing is much greater that than that due to noise. Finally, it is
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Figure 10: PSNR for W 2, various values of σ and noise levels

also clear that the PSNR value is greater for W 2 than for the initial image whatever the noise
level, so it means that deconvolution with W 2 remains stable in this case.

3.5 Optimal choice of the number of iterations for RL 1

The Richardson-Lucy algorithm being iterative, the number of iterations nit must be chosen.
For the same reason as above σ must also be chosen. Since this quantity directly influences the
noise level in the phase derivative map, it must be adjusted to limit this effect whilst limiting
blobs due to correlated noise, as explained above. This issue has been investigated by calculating
the PNSR value for various values of σ and nit, the noise amplitude N being given. Three
cases have been investigated herein: N = 0, 3, 5. The obtained results are shown in Figure 11.
Comparing the PSNR values in the three cases confirms that noise significantly impairs the
results, but it is worth mentioning that the maximum PSNR value for the highest noise level
(nearly 23.92 dB for σ = 10 pixels, nit = 20) remains much higher than that obtained with the
raw phase derivative map (7.34 dB, see first column in Figure 11-c, σ = 10 pixels). This shows
that deconvolution still dramatically improves the phase derivative map despite noise. Another
shrinking fact is that the optimal choice for the σ and nit parameters corresponds to a series
of points located along the ridge of a 3D surface. This ridge slightly moves downwards left as
the noise level increases. If the noise level remains unknown in practice, it is possible to choose
a “reasonable value” for σ from these figures: σ = 8 pixels, and then launch the deconvolution
programme with nit = 10.

The fact that a maximum value for PSNR exists for a given value of σ means that beyond
this maximum, the procedure restores some details in the phase derivative map which are
sequels of the noise correlated by image processing and not zones of actual phase derivative
concentration. This feature is illustrated in Figure 12 where the error map over the white
rectangle shown in Figure 5-d is plotted. The benefit of deconvolution is clearly visible since the
residual fringes (difference between estimated and reference phase derivative) have disappeared,
details in the phase derivative map being now restored, but noise amplitude also increases when
nit increases. This is quantified by the PSNR value (reported in the caption of each sub-figure)
which is greater for nit = 500 iterations than that obtained before deconvolution: details are
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restored but noise also increases for large values of nit.

3.6 Conclusion

Some examples of restored phase derivative maps are shown in Figure 13 to conclude this section.
The estimated phase derivative map is shown in Figure 13-a. One can see that the information
progressively vanishes when moving from the right to the left, which illustrates the negative
impact of convolution when the frequency of the details increases. The effect of noise on the grid
image can be assessed in Figure 13-b. The two figures above serve then as input images for the
deconvolution techniques. Applying RL 1 in the noiseless case leads to the map in Figure 13-c.
Compared to the map located just above, it can be seen that a wide portion of the image is
restored. A thin band located at the very left remains inaccessible even after deconvolution.
The influence of noise can be assessed in Figure 13-d when W 2 (the best technique in this
case after the results obtained above) has been employed, but with σ = 5 pixels which is not
the optimized value. Again, details are restored but noise clearly corrupts the resulting map.
This result is improved by increasing σ, as suggested by the conclusion of the simulations in
Sections 3.4 and 3.5 above. RL 1 provides less noisy results than W 2, but it can be checked
that the error is greater for RL 1. In addition, the zone which remains unrestored is greater
for RL 1 than for W 2.
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4 Examples

4.1 Introduction

The objective here is to briefly illustrate the effect of the procedure described above on actual
strain maps obtained with the grid method. Two short examples have been chosen for this pur-
pose. They are extracted from recent studies in which the grid method was employed to obtain
the strain field during mechanical tests. It must however be pointed out that deconvolution was
not an objective as these studies were undertaken, so some information is not available here,
especially concerning noise. In addition, parameter σ used to obtain the maps was not always
optimal for deconvolution purposes. Nevertheless the authors think these examples still give a
first idea on the strengths and current limitations of this approach.

4.2 Example 1: strain field on asphalt specimens

In this example addressed in full details in [30], asphalt specimens were subjected to various
compressive tests and the strain fields were measured on one of their faces. Asphalt is mainly
made up of aggregates bound by a bitumen matrix. The problem here is the fact that aggre-
gates are separated by narrow bands of binder in some zones (see Figure 14-a) whose width can
be lower than one millimeter. The pitch of the grid bonded on the surface is equal to 0.2 mm.
Assuming that 5 pixels/period are used to encode the grid image (this choice is a trade-off
between spatial resolution, resolution and size of the field under interest), 25 pixels are used to
capture the details of the strain field over a distance equal to one millimeter. The Gaussian en-
velope used to calculate the phases and their derivatives generally exhibits a standard deviation
equal at least to σ = 5 pixels to limit the effect of noise [17], so the “width” of the Gaussian
envelope is equal to 30 pixels (6 × σ) in this case. This width is greater than the size of the
binder band under investigation is these zones (this is worse if σ > 5 pixels), so the procedure
for extracting the phase derivatives from the grid images is expected to directly influence the
strain level measured within the band.

Figure 14-b shows a typical εxx strain map obtained with σ = 5 pixels during a compression
test. This image (denoted Image 1 in the following), is obtained at an advanced stage of the
test. Hence the strain level in the binder bands reaches up to more than one percent, which
is quite significant. Noise influence due to the camera sensor is expected to be limited here,
so this situation is a priori favorable for deconvolution. The shape of the bigger aggregates
is recognizable in this figure. The observed pattern is consistent with the picture shown in
Figure 14-a because the strain level is nearly null in the aggregates compared to that in the
binder bands, bitumen being much softer than aggregates.

We focus now as an example on the zone defined by the small black rectangle. An enlarge-
ment is shown in Figure 15-a. On close comparison between the width of the apparent band in
Figure 14-b and the corresponding zone in the picture shown in Figure 14-a, it clearly appears
that the first one is greater, thus illustrating the effect of blurring and meaning that the strain
level displayed here is lower than the actual one.

The W 2 and LR 1 methods described and discussed above have been applied in this case.
For the first technique, the noise amplitude of the CCD chip was not measured and characterized
here. It is however one of the input data of the Wiener filter [18], it is roughly assessed from
the data sheet of the camera supplier. For the second technique, the grid image has been
processed with nit = 10, as suggested in Section 3.5 above. In both cases, σ is first chosen to be
σ = 8 pixels instead of 5, as suggested above. The obtained results are shown in Figures 15-c
and -d for W 2 and RL 1, respectively. It can be seen that the strain maps are slightly less
blurred than in Figure 14-b, but the strain field seems more noisy over the aggregates, which
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means that noise and other phenomena such as grid defects were not sufficiently erased before
deconvolution. Figure 15-b shows the enlarged zone after deconvolution. The same color scale
is used for the maps obtained before and after deconvolution (Figure 15-a and -b, respectively).
As may be seen, the band seems to be thinner and the strain amplitude at the center is greater,
as expected.

To make things clearer, a cross section along the line superimposed in Figure 15-a is shown
in Figure 16-a along with the curve obtained with RL 1 (the abscissa measured along this line is
denoted u). Interestingly, the profile is similar to that obtained with W 2. This shows that the
results obtained with both methods are consistent. A strain level enhancement clearly appears:
the profile is thinner at the base of the distribution and the maximum value reached at the
center is now greater. The strain value at the center is greater after deconvolution: 30% with
RL 2 and 33% with W 2. This illustrates the fact that deconvolution is vital if a quantitative
information and not only a qualitative one is sought in this zone.

σ=8 pixels being expected to be optimal, σ=5 pixels has been tested to visualize the effect
of this parameter. The obtained results are shown in Figures 15-e and -f for W 2 and RL 1,
respectively. As may be seen, the corresponding maps are noisier, thus confirming that an
optimal value for σ exists. The strain profile is shown in Figure 16-b. The initial profile is now
higher than with σ = 8 pixels, as expected since blurring is lower, but the restored profiles are
noisier merely because the initial profile is also noisier. It is however worth noting that the
restored profiles feature nearly the same maximum value as with σ = 5 pixels.

A second image obtained during the same test has also been investigated. It is referred to as
Image 2 in the following. It has been chosen at the very beginning of the test, for a much lower
load level to examine what happens when the strain level is lower, and therefore the impact of
noise greater. Obtained results are shown in Figures 17-a -b. As may be seen, some significant
blobs appear. They are due to noise and some other phenomena such as grid defects which were
not sufficiently erased in the strain map before deconvolution and/or, concerning the Wiener
filter, too rough a characterization of noise. The band profile obtained after deconvolution
with σ = 8 pixels is shown in Figure 16-c. The impact of noise is visible. Interestingly, the
magnitude of the restoration is comparable to that observed for Image 1 above, but it is worth
noting that we have here a strain level which is approximately ten times lower (compare the
strain levels in Figures 16-b and -c). This suggests that the “degree of restoration” mainly
depends on the geometry of the specimen, in other words the actual thickness of the band in
the current example. Finally, Figure 16-d shows what happens when σ=5 pixels: the impact of
noise becomes now too significant and the information is lost.

In conclusion, it can be said that results obtained here are promising. Keeping in mind
that noise was not properly characterized here, there is room for further improvements. In
particular, it is shown in [18] that the phase derivative variance can be predicted if the noise
variance of the CCD chip is know. This result has been used in the simulations discussed in
Section 3.3 above. This is however not enough when actual grids are considered: they feature
indeed some pitch variations or some local lack of ink which should be characterized specifically.
The lens also induces a PSF which certainly influences the strain maps. Tackling these issues
is however beyond the scope of the current paper.

4.3 Example 2: strain field on a shape memory alloy

This second example deals with a tensile test performed on a specimen of monocrystalline
CuAlBe shape memory alloy. It is austenite at room temperature, so when a tensile test is
performed, martensite bands or needles suddenly appear and propagate throughout the speci-
men, as discussed in [31]. These bands are generally very thin when they appear, so only slight
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Figure 14: Asphalt specimen under compression [30]
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Figure 15: Asphalt specimen under compression. Deconvolution of Image 1 for load level 1
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Figure 16: Asphalt specimen under compression. Cross section of the binder band in Zone A
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Figure 17: Deconvolution of Image 2
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bands are visible in the strain field. It must be pointed out that this case is very favorable for
deconvolution since the strain amplitude within these bands is immediately very high (some
percents) because they are due to a phase change, so the noise amplitude is very limited com-
pared to the measured strain thanks to the width of the kernel used in [31] to process the grid
images: σ=5 pixels.

A typical Green-Lagrange Eyy strain field (obtained i- by calculating the Hencky strain
tensor by adding small strain increments and then ii- by deducing directly the Green-Lagrange
tensor) is shown in Figure 18-a, where y represents the vertical direction along which the tensile
force is applied. The blue color corresponds to austenitic regions (only very slightly elastically
stretched during the test) whereas the red color corresponds to martensitic regions since the
phase change gives rise to a sudden and significant deformation.

In the white rectangle enlarged in Figure 19-a, it is clear that a hell blue band containing
some slight streaks has appeared. The color is not the same as that obtained in wider bands
located slightly higher. It can be checked that later on, during the same test, this band becomes
progressively wider and reaches the same color as that observed above in the specimen [31].

The width of the band in the white rectangle being lower than the width of the Gaussian
envelope used for processing the grid images (a circle featuring a 6×σ diameter is superimposed
to the map), one can reasonably guess that the actual strain level in this band is greater than
the apparent one. Applying here the RL 2 method reveals that two needles and not only one
were hidden behind the unique blurred band in Figure 19-a, which could not really be guessed.
In addition, the strain level in these needles is very similar to that observed above in the figure
(see Figure 19-b), where austenite has already transformed into martensite. This is quite logical
since it means that the martensite variant obtained in needles is the same as that obtained above
in wider bands, as expected. Figure 20 finally shows the strain distribution along the white
portion of line superimposed to the preceding figure. Strain enhancement clearly appears. It
can be seen that the thickness of the needles (estimated at half the maximum), is equal to about
10 pixels, which is equal here to 0.4 mm, the size of the pixels being equal to 40 micrometers
in this case.
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a- Before deconvolution [31] b- After deconvolution

Figure 18: Shape memory alloy under tension. Eyy map [31]
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Figure 19: Shape memory alloy under tension. Zoom of the white rectangle
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5 Conclusion

In this paper, various deconvolution techniques are presented and used to restore strain fields
obtained with the grid method. A synthetic example serves as a common thread between
various numerical examples which enable to assess the performance of these deconvolution
techniques. The influence of noise on the quality of the deconvolved maps is a major issue
since some techniques are not robust whereas some other ones still give good results when noise
corrupt grid images. Thanks to the regular marking, it is possible to establish a link between
noise variance in the camera sensor and strain variance. Simulations have shown that taking
this information in the Wiener filter led to the best results if noise is correctly characterized.
Two examples of actual strain fields were also studied. In these cases, it is clear that some
additional phenomena such as slight grid pitch variations, local grid bonding defects or PSF of
the optical device itself corrupt the actual strain fields when the signal to noise ratio decreases.
These phenomena could not be taken into account in the current work. Characterizing them
separately should be undertaken to provide a more complete and realistic information on the
deterioration of the final strain maps. This should then improve actual image enhancement
procedures based on deconvolution. Another extension could be to deconvolve simultaneously
the three in-plane strain components under the constraints of the compatibility equations which
link the second-derivatives of the strain components.
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[16] C. Badulescu, M. Grédiac, J.-D. Mathias, and D. Roux. A procedure for accurate
one-dimensional strain measurement using the grid method. Experimental Mechanics,
49(6):841–854, 2009.
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