
International Journal of Computer and Communication International Journal of Computer and Communication

Technology Technology

Volume 8 Issue 3 Article 3

January 2022

Predicting Faultiness of Program Modules Using Mamdani Model Predicting Faultiness of Program Modules Using Mamdani Model

by Fuzzy Profile Development of Software Metrics by Fuzzy Profile Development of Software Metrics

Mohammed Ali
Birzeit University, mdali.mail21@gmail.com

Ahmed Abusnaina
Birzeit University, aabusnaina@birzeit.edu

Follow this and additional works at: https://www.interscience.in/ijcct

 Part of the Computer and Systems Architecture Commons

Recommended Citation Recommended Citation
Ali, Mohammed and Abusnaina, Ahmed (2022) "Predicting Faultiness of Program Modules Using
Mamdani Model by Fuzzy Profile Development of Software Metrics," International Journal of Computer
and Communication Technology: Vol. 8 : Iss. 3 , Article 3.
DOI: 10.47893/IJCCT.2022.1422
Available at: https://www.interscience.in/ijcct/vol8/iss3/3

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Computer and Communication Technology
by an authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcct
https://www.interscience.in/ijcct
https://www.interscience.in/ijcct/vol8
https://www.interscience.in/ijcct/vol8/iss3
https://www.interscience.in/ijcct/vol8/iss3/3
https://www.interscience.in/ijcct?utm_source=www.interscience.in%2Fijcct%2Fvol8%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=www.interscience.in%2Fijcct%2Fvol8%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcct/vol8/iss3/3?utm_source=www.interscience.in%2Fijcct%2Fvol8%2Fiss3%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-3

12

1. INTRODUCTION

Measuring the reliability of software systems has become a key concern in

software industry. This is because humans are extremely depending on software

systems these days (Pandey & Goyal, 2010). This increasing demand on systems

leads to keen need for rapid development approaches and accurate tools to

measure the overall system quality. Especially, software failures lead to several

serious drawbacks in business supported by these systems. Hence, there is an

increasing need to resolve the software faults in the early phases of Software

Development Life Cycle (SDLC) (Rizvi et al., 2016). Furthermore, if early

identification of software faults and errors is practiced, the more it will be cost

effective to fix them. Thus, fault prediction and estimation models are needed to

assess software reliability in early phases of SDLC utilizing data collected during

those phases (Kumar & Ranjan, 2017). Importantly, it has been found by

literature that the absence of failure data during early SDLC phases can be

compensated by software metrics that may be collected statically from software

components and artifacts (Pandey & Goyal, 2010). Importantly, software metrics

have a fuzzy nature. Accordingly, this makes fuzzy prediction models more

candidate to deal with these problems (Pandey & Goyal, 2010).

For this end, a software module, represented by software metrics of fuzzy

nature, will be modelled as fuzzy sets (Pandey & Goyal, 2010). In addition, fuzzy

inference models require fuzzy profiles development and fuzzy rules (Yadav,

2015). Those two requirements are often provided from domain experts.

However, it will be infeasible to get consensus from experts about them. Instead,

data mining techniques are alternative and recommended solution to satisfy these

requirements (Pandey & Goyal, 2010)(Subhashis & Bappa, 2016) (Rizvi et al.,

2016)(Kumar & Ranjan, 2017) (Singh et al., 2016).

Most of fault prediction models rely on the failure data of a software system

collected from the testing and usage phases. However, there will be no available

failure data just after the software module has been developed. Thus, if it is

possible to tag a software module as fault-prone in this time, software engineers

can well manage the consequent activities in terms of time, effort, and resources,

and finally producing reliable systems (Pandey & Goyal, 2010)(Pandey & Goyal,

2010) (Yadav, 2015)(Kumar & Ranjan, 2017). More important, the unavailability

of failure data in early phases makes software metrics a better choice to be used in

fault prediction models. These metrics are measures that are collected statically

from the source code of a software module. Also, because they are associated

with some level of vagueness, fuzzy logic will be the most suitable approach for

software defect prediction (Yadav, 2015).

The main contribution of this research is to build a Mamdani fuzzy inference

system without the assistance of domain expert or using any other literature

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-3

13

assumptions. In particular, it used the data itself to satisfy the requirements of

building such models. The employed data represented software metrics which are

of a fuzzy-nature data. For this end, the proposed model tested and validated a

published technique used to develop fuzzy profiles for inputs and outputs from

data. In addition, it used k-mean clustering algorithm to generate the fuzzy rules

needed to the inferencing process in the proposed model. Finally, the new system

was able to estimate and predict faults in the developed software modules with a

significant accuracy, and then, it was benefitable in supporting the testing efforts

and decisions.

In sum, problem definition in this research is as follows:

Given a just developed software module, estimate the fault-proneness degree of

that new module and predict its class with respect to either fault-prone (FP) or

non-fault-prone (NFP). So that, this could support the testing phase in several

aspects.

This work will address the above research problem by trying to answer the

following research question:

• RQ1: Do software metrics, that are related to the implementation phase,

enable building of fault prediction models to support testing phase efforts

of SDLC?

• RQ2: What will be the effect of developing fuzzy profiles from data,

instead of expert opinions, on fault prediction by Mamdani fuzzy

inference systems?

• RQ3: Can k-mean clustering algorithm be used to generate “if-then” fuzzy

rules for effective functioning of Mamdani fuzzy inference systems?

2. BACKGROUND

Fuzzy logic is a type of multi-valued logic, it deals with fuzzy sets which

were proposed by Lotfi Zadeh in 1965 (Zadeh, 2015). Elements of a fuzzy set

have a multi-valued membership relation toward that set, on the contrary of the

elements of classical sets which have only a binary membership value [0,1]

(Subhashis & Bappa, 2016).

Figure 1 shows a Mamdani fuzzy inference system for fault prediction. It

consists of four parts: first, fuzzification, which is the conversion of the crisp

input to a fuzzy linguistic variable such as low, medium, and high using a

predefined input membership function (Subhashis & Bappa, 2016) (Wang, 2015).

Second, fuzzy rule base, which is a set of rules used by inferencing process to

convert fuzzy input to fuzzy output (Subhashis & Bappa, 2016) (Wang, 2015).

Third, inferencing process, which evaluates the fuzzy rules on inputs and then

aggregates the results of applying those rules to finally producing one fuzzy

output (Subhashis & Bappa, 2016) (Wang, 2015). Actually, given the fuzzy sets A

and B. In addition, µA, and µB are the membership functions that represent A and

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-3

14

B in the universe R, the fuzzy operators union (OR), intersection (AND), and

complement (NOT) are represented by the equations 1,2, and 3, respectively.

µ(𝐴 Ս 𝐵)(𝑅) = 𝑀𝑎𝑥(µ𝐴(𝑅), µ𝐵(𝑅)) (1)

µ(𝐴 Ո 𝐵)(𝑅) = 𝑀𝑖𝑛(µ𝐴(𝑟), µ𝐵(𝑅)) (2)

µÃ = 1 − µ𝐴(𝑅) (3)

Forth, defuzzification, which is the process of converting the fuzzy output to

crisp using the outputs membership function. Whereas, A membership function is

a graphical representation that represents how the transition from one fuzzy set to

another happens.

Figure 1

 An Example of Mamdani Fuzzy Inference System.

Software reliability is the probability of a software system to perform

defined tasks in a specified environment with failure-free (Rizvi et al., 2016).

Moreover, software reliability is affected by failures which are caused by software

faults. The main sources for faults are user inputs and program internal state.

Therefore, the knowledge represented by software metrics plays a vital role in

early prediction and early estimation of those faults (Malhotra, 2016). In fact, the

most widespread categories of software metrics are McCabe and Halstead metrics

(Yadav, 2015).

3. RELATED WORK

Pandey and Goyal (2010) built a Mamdani fuzzy system to predict faults

using KC2 dataset. Moreover, fuzzy profile development for inputs and output

utilized opinions of domain experts. Whereas, fuzzy rules were generated using

ID3 decision tree algorithm. Accordingly, they achieved 87% overall average

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-3

15

accuracy for their model which had outperformed other models. In addition, same

authors developed a fuzzy system to predict number of faults using software

metric in KC2. However, this time, fuzzy rules were generated by consulting the

experts in the field of software engineering.

Farahbod and Eftekhari (2013) proposed an approach based on clustering-

based methods for obtaining the fuzzy classification rules from numeric data to

create a model mapping the input output relationship of the system. The results

proved that their proposed approach produced significant performance.

Sadeghian et al. (2014) proposed k-mean clustering-based algorithm to extract

fuzzy rules from numeric data of customer ratings in banks. This method may be

used to support software engineering tasks. In particular, the main concept of this

method is that by grouping similar data into one cluster, then it could be

represented as a rule.

Yadav (2015) built fuzzy inference system to predict faults using software

metrics by mainly using k-mean clustering algorithm in order to develop fuzzy

profiles. In another work, they completely utilizing experts’ knowledge and

consulting the domain experts to build the same fuzzy model.

Subhashis and Bappa (2016) proposed a Mamdani fuzzy model that helps

software engineers and stakeholders in predicting software quality in the

requirement engineering phase. They proposed a novel approach to extract fuzzy

rules using an approach based on calculating the relative importance of each

software metric, and later taking the decision to include or exclude it from the

fuzzy rule structure.

Singh et al. (2016) proposed an approach to identify software faults before

they actually become run time failures. Actually, their approach utilized k-mean

clustering algorithm to implement metrics selection method to form effective

fuzzy classification rules.

Erturk and Sezer (2016) used Mamdani fuzzy inference system to develop

predictive model for fault prediction. More importantly, the process of fuzzy

profile development and fuzzy inference rules extraction were created by the help

of domain experts and their knowledge in software systems.

Rizvi et al. (2016) presented a study for software reliability prediction using

the fuzzy logic just before the implementation phase of SDLC. Particularly, the

proposed effective model that utilized expert opinions to estimate the software

reliability using four requirement metrics and four design metrics to be all as

inputs for the fuzzy inference system. Finally, the results of this work were

validated statistically.

AI-Jamimi (2016) proposed a framework using Mamdani type fuzzy inference

system that utilized 21 historical software metrics, aimed to predict the fault

proneness of a given software module. Fuzzy profile development was achieved

by utilizing expert knowledge. Importantly, correlation-based technique to select

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-3

16

the most discriminating metrics to be used in forming the rules.

Kumar and Ranjan (2017) proposed three fuzzy models to predict faults in all

phases of SDLC by using software metrics. The first two approaches used

Mamdani fuzzy inference system. The options of building these systems were

provided by domain experts. Their results were validated using MMRE, and

BMMRE techniques.

Golnoush et al. (2018) designed an unsupervised methodology for prediction

fault-proneness software modules from software metrics. They used expert

knowledge to implement two types of fuzzy inference systems: Mamdani and

Assilian, and Takagi and Sugeno. In addition, genetic algorithm was employed in

order to optimize the rulebase of the fuzzy inference systems. Consequently, the

results show significant improvement in terms of the predefined performance

measures by using the GA for rule-base optimization.

Diwaker et al. (2019) proposed a model for estimating and predicting of

software reliability based on Mamdani fuzzy inference system. This model

supported software engineering using an approach called component-based SE.

the fuzzy profile development besides 243 fuzzy rules were provided by the

assistance of domain experts. the model was implemented using MATLAB on

publicity available dataset called QWS. The results of the proposed model show

that the fuzzy inference system produces better performance and less error rate as

compared to another soft computing technique called PSO.

Ali and Abusnaina (2021) Proposed a hybrid approach used fuzzy set theory

to build effective fuzzy classifier model that is able to classify the reported

software bugs using Jira bug tracking system to either bug or not-bug. This

approach offered an important feature for software engineers as it enhanced their

ability to well manage software maintenance activities toward reaching to the

overall reliability in the supported software system.

By reviewing the related literature, it is found that there was very limited

number of research papers that utilized the fuzzy inference methods to estimate

and predict the faultiness degree of a software module to support testing phase.

Importantly, software metrics have a vagueness nature making fuzzy logic the

most suitable technique to model such these problems. In addition, only few of

fuzzy works used Mamdani fuzzy systems. Moreover, most of reviewed papers

used binary classification machine learning algorithms regarding this research

problem. Furthermore, regarding building the fuzzy inference systems, the most

of papers utilized the knowledge of domain experts in order to satisfy the

requirements of building these systems such as fuzzy profile development for

inputs and outputs besides to the fuzzy rules generation. However, very few

papers used the data itself to build inference systems and satisfy its requirements

by implementing data mining techniques on that data. Finally, there were very

few papers addressed the current research problem by utilizing the metrics of the

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-3

17

developed software modules to early predict faulty modules to support testing

phase.

4. RESEARCH METHODOLOGY

This research made use of a software metrics dataset called KC2. This dataset

consists of 21 software metrics. It shows a crisp value against each metric, and it

is available publicity from Promise repository (Shirabad, & Menzies, 2005). It is

originated from NASA Data Metric Program (DMP). More importantly, authors,

such as Pandey and Goyal (2010) Yadav (2015), proved that 13 out of 21

software metrics from this dataset offer a significant role in software fault

prediction. These selected 13-software metrics are clustered below by four

categories:

• Halstead metrics category: total number of operators (N1), total

number of operands (N2), number of unique operators (NN1), and

number of unique operands (NN2).

• Line of code metrics category: total line of code (LOC), LOC blank

(BL), LOC code and comments (CCL), LOC comments (CL), and

executable LOC (EL).

• McCabe metrics category: cyclomatic complexity (CC), essential

complexity (EC), and design complexity (DC).

• Branch Count Metric Category: branch count metric (BC).

The main goal of this research is to develop a Mamdani fuzzy inference model

that will be used to estimate and predict the degree of faultiness of a software

module before it is tested. Mainly, the prerequisites and requirements for building

the model will be satisfied using the data itself rather than just consulting the

domain experts. Figure 2 shows a high-level diagram of the proposed approach

which is composed of the following four main parts:

First, developing fuzzy profile for inputs and outputs, it includes defining the

shape of the membership function, the fuzzy sets of linguistic variables used in

this function, and the range of the possible values for that sets.

Second, by employing trainingdata of software metrics, fuzzy inference rules

will be generated. In using k-mean clustering algorithm from machine learning

domain. More importantly, a new approach will be used to select the antecedent

portion for rules. In particular, the selection strategy depends on a controlled

threshold for membership values constructed from the previous component.

Third, building Mamdani fuzzy inference system (FIS). Test data will be the

inputs. Membership functions for inputs and output besides input fuzzification are

all provided by the first component. In addition, the fuzzy inference rules are

extracted from the second component. Furthermore, other configurations such

defuzzification method and rules evaluation methods, the default parameters were

used since they were wildly experimented by literature.

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-3

18

Finally, the first output of the built Mamdani model will be the estimated

degree of faultiness. Then, this output will be checked against the output

membership function to obtain the membership value in each class. Consequently,

the class of the larger membership value will be considered as the final predicted

class of the system. After that, given the desired and predicted output classes, an

evaluation model will be conducted in order to measure system performance.

Figure 2

The Proposed Approach for Fault Estimation and Prediction

5. EXPERIMENTAL DESIGN

This section explains the followed methodology to develop fuzzy profiles for

inputs and outputs. Moreover, it illustrates the methodology applied to generate

the fuzzy inferencing rules. Then, it shows details of implementation of Mamdani

fuzzy system. Besides, it shows results of each process.

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-3

19

5.1.Inputs Fuzzy Profile Development

In this study, triangle membership function was used to represent the

linguistic variables of inputs (software metrics). Triangle membership function is

widely utilized in literature because it can better represent the knowledge of

domain experts and it is computationally effective (Pandey & Goyal, 2010)

(Yadav, 2015). Moreover, each input will be represented by five linguistic

variables (fuzzy sets): very low, low, medium, high, and very high. Thus,

development of a fuzzy profile for an input means to find fuzzy ranges and

overlap area of adjacent membership functions for that input.

This task is often provided by experts, but this research will use and validate

the methodology proposed by Yadav (2015) to construct membership functions

for software metrics. Figure 3 shows a triangle membership function, where the

horizontal axis represents the inputs. The vertical axis represents the

corresponding membership value of each input variable. The points (ai, bi, ci)

represent the fuzzy range of the input variable which is called “support” (Wang,

2015). In particular, construction a triangle membership function means to

calculate the values of (ai, bi, ci).

Figure 3

Construction of Triangle Membership Function

Given an input software metric (feature) which is represented by Fj, it has n

values (v1j - vnj). Fjmin represents the minimum value of Fj. Fjmax represents the

maximum value of Fj. The membership functions are generated using the

following steps:

1. Sort Fj values in ascending order.

2. Cluster Fj values using k-mean algorithm into five clusters (y1-y5),

where yimin represents the minimum value of a cluster. yimax represents

the maximum value of a cluster.

3. Find out the prototypes (centroids) for each cluster (b1-b5).

4. Regarding Fi, calculate the difference between adjacent data (diffi =

vi+1 - vi).

5. Calculate the similarity value between adjacent data according to

formula 4:

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-3

20

𝑆𝑚 = {
1 −

𝑑𝑖𝑓𝑓𝑖
𝐶 + 𝜎𝑠

 𝑓𝑜𝑟 𝑑𝑖𝑓𝑓𝑖 ≤ 𝐶 ∗ 𝜎𝑠

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4)

where,

Sm = donates the similarity value between adjacent data of input variable.

σ = the standard deviation of diffi

C = a fixed parameter with value of 4, representing the triangle shape.

6. The membership value for the two boundaries yimin, and Fimax will be

the minimum similarity value of each cluster.

7. Calculate left vertex point ai according formulas 5 and 6:

𝑎𝑖
′ = 𝑏𝑖 −

𝑏𝑖 − 𝑦𝑖 𝑚𝑖𝑛
1 − µ(𝑦𝑖 𝑚𝑖𝑛)

 (5)

𝑎𝑖 = {

0 𝑓𝑜𝑟 𝑎𝑖
′ ≤ 0

𝑏𝑖−1 𝑓𝑜𝑟 0 < 𝑎𝑖
′ ≤ 𝑏𝑖−1

𝑎𝑖
′ 𝑓𝑜𝑟 𝑎𝑖

′ > 𝑏𝑖−1

 (6)

8. Calculate right vertex point ci according formulas 7 and 8:

𝑐𝑖
′ = 𝑏𝑖 +

𝑦𝑖 𝑚𝑎𝑥 − 𝑏𝑖
1 − µ(𝑦𝑖 𝑚𝑎𝑥)

 (7)

𝑐𝑖 = {
𝑐𝑖
′ 𝑓𝑜𝑟 𝑐𝑖

′ ≤ 𝑏𝑖+1
𝑏𝑖+1 𝑓𝑜𝑟 𝑐𝑖

′ > 𝑏𝑖+1
 (8)

9. Calculate the membership value for each crisp value of feature Fi

according to formula 9:

µ(𝑣) =

{

𝑏𝑖 − 𝑉

𝑏𝑖 − 𝑎𝑖
 𝑓𝑜𝑟 𝑣 < 𝑏𝑖

𝑐𝑖 − 𝑉

𝑐𝑖 − 𝑏𝑖
 𝑓𝑜𝑟 𝑏𝑖 ≤ 𝑣 < 𝑐𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (9)

Figures 4, 5, and 6 show the constructed input triangle membership function

for 3 out of 13 software metrics as sample results for applying the previous

methodology.

Figure 4

Fuzzy Profile for “Number of unique operators” Input Software Metric

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-3

21

Figure 5

Fuzzy Profile for “Total line of code” Input Software Metric

Figure 6

Fuzzy Profile for “LOC blank” Input Software Metric

5.2.Output Fuzzy Profile Development

Degree of fault-prone (FPD) is the output of the proposed model. It is

categorized into two fuzzy sets not-fault-prone (NFP), and fault-prone (FP).

According to scale used by Pandey and Goyal (2010) it is assumed that this output

variable is of linear nature. Thus, it will be represented by triangular membership

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-3

22

function. The fuzzy profile ranges will take the following values: NFP (0,0,100),

FP (0,100,100).

5.3.Fuzzy Rules Generation

These below steps represent the employed methodology to extract the

inference rules for the proposed model. To the best of our knowledge, this will be

the first work that follows such this methodology for fuzzy rule generation. More

importantly, this method extracted fuzzy rules using the training portion of the

dataset.

1. The data of each class (FP, NFP) from the dataset was divided into two

parts, training and testing, by 20%, 40%, 60%, and 80% ratios for

training portions.

2. k-mean clustering algorithm was applied to each subset of training

data independently. Many runs were executed in order to optimize the

value of number of clusters (k). In particular, each run was validated

against three conditions: high inter-class separation, high intra-class

homogeneity, and special condition was introduced in order to ensure

that every cluster must have at least one data instance (module)

assigned to it. This will help in generating rules with acceptable

inference power. Accordingly, the results are k number of data records

(clusters), for each, 13 feature prototypes (centroid) are produced.

Each prototype is a representative to k values of the respective feature

(software metric).

3. For each centroid value of a feature (software metric), within a cluster,

the centroid value was converted into the corresponding linguistic

fuzzy set (VL, L, M, H, or VH). Then, formula 9 was used to compute

the membership value of that crisp value (centroid) to the

corresponding fuzzy set.

4. Threshold based mechanism was introduced to decide whether to

include a software metric in a rule formulation or not. This was

performed by checking the membership value of a software metric

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-3

23

against a list of threshold values: 10%, 30%, 50%, and 70%. This

ensured generating good rules with bias free.

Table 1 shows results of applying the above methodology using several ratios

of training data and 10% threshold value as an exclusion parameter. Table 2

shows membership values of the antecedents for a generated fuzzy rule and their

corresponding fuzzy sets.

Table 1

Number of Generated Fuzzy rules

Data (%) NFP class FP class

20 5 4

40 8 4

60 8 5

80 9 8

Table 2

A Generated Fuzzy Rule Example

Software

metric

Membership

value

Corresponding

fuzzy set

LOC 0.1165 M

CC 0.061 M

EC 0.6257 L

….. ….. …..

N1 0.637 L

N2 0.604 L

BC 0609 M

The generated fuzzy rule:

IF (LOC is M) AND (CC is M) AND (EC is L) AND

……. AND (N1 is L) AND (N2 is L) AND (BC is M)

THENFP

6. MAMDANI FUZZY INFERENCE SYSTEM

According to figure 1, Mamdani fuzzy inference system (FIS) was built in

order to estimate faults, in particular, four steps were applied in order to build

Mamdani fuzzy inference system (FIS) that will be able to map linguistic input

variables (software metrics in this case) to a crisp output (degree of faultiness in

this case) in a way approximates humans in their reasoning about things using

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-3

24

fuzzy rules (Wang, 2015):

1. Fuzzify the software metrics:

This means to convert the crisp numerical values of software metrics

into the corresponding fuzzy sets (VL, L, M, H, and VH) using

triangular membership function which was constructed in the previous

section.

2. Evaluation fuzzy rules.

“AND” operator in the generated rules will be applied using a fuzzy

operator called “MIN”. In particular, it applies a rule of two inputs by

finding the minimum membership value of that inputs to their

corresponding fuzzy sets. Actually, it functions as exactly as Boolean

logic in such (1 𝐴𝑁𝐷 0 ⇒ 𝑀𝐼𝑁(1,0) ⇒ 0). After that, the result of

rule evaluation will be mapped to the two output fuzzy sets (FP and

NFP) using the membership function for outputs, discussed in the

previous section. Specifically, this operation is named in fuzzy logic

as implication.

3. Apply the aggregation:

This process aimed at combining the fuzzy sets resulted from

evaluation and implication of each rule into one and only one fuzzy set

that contains in some point the desired crisp output. For this, an

aggregation technique called “MAX” was used.

4. Defuzzification:

This step was used to extract a crisp output (degree of fault proneness)

from the aggregated fuzzy sets in the previous step. A fuzzy technique

called CENTROID was used for this step.

Table 3 shows the selected options and hyperparameters of the developed

fuzzy inference systems.

Table 3

Mamdani FIS hyperparameters

Option Value Source

Inputs membership

function
Triangle constructed

Output membership

function
Triangle literature

Fuzzy inference rules Generated

Implication operator Min literature

Aggregation method Max literature

Defuzzification method Centroid literature

AND method Min literature

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-3

25

OR method Max literature

Furthermore, according to the previous mentioned steps, One Mamdani FIS

was built for each set of training and testing data (20%, 40%, 60%, and 80%). 10

runs were carried out and the average performance was recorded. After that, the

model that showed the best performance was revalidated a gain using four

experiments testing the effect of threshold values (0.1, 0.3, 0.5, and 0.7). Also, 10

runs were carried out and the average performance was recorded. Finally, the best

performant model was selected.

Finally, in order to binary classify software modules into either fault-prone or not

fault-prone, the membership value for the system output (degree of fault

proneness) was calculated using formula 10 which is documented in MATLAB

online pages.Then, according to formula 11, the predicted class was given the

name of the output fuzzy set thathas the larger computed membership value for

that estimated output. Accordingto the following formula:

{

𝑥 − 𝑎

𝑏 − 𝑎
 𝑎 ≤ 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
 𝑏 ≤ 𝑥 ≤ 𝑐

0 𝑐 ≤ 𝑥 𝑜𝑟 𝑥 ≤ 𝑎

 (10)

𝐼𝑓 µ(𝐹𝐼𝑆 𝑜𝑢𝑡𝑝𝑢𝑡) ≥ 50 𝑇ℎ𝑒𝑛 𝐹𝑃 𝑒𝑙𝑠𝑒 𝑁𝐹𝑃

(11)

Evaluation

This paper used accuracy performance metric to evaluate the performance of

the built models. It is an estimation to how these models recognize the correct

classes FP and NFP from the test data (Han & Kamber, 2011). This accuracy can

be derived using the confusion which is a tool that provides useful information

about the behaviour of the models in terms of the following:

1. Ture Positives (TP): the number of fault-prone data instances that are

actually fault-prone.

2. True Negative (TN): the number of non-fault-prone data instances that

are actually non-fault-prone.

3. False Negative (FN): the number of non-fault-prone data instances that

are actually fault-prone.

4. False Positive (FP): the number of fault-prone data instances that are

actually, non-fault-prone.

Accordingly, the accuracy is computed using the formula 12:

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-3

26

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗ 100 (12)

7. RESULTS AND DISCUSSION

The proposed approach, with the optimal configuration, achieves 83%

accuracy in classifying software modules to either fault-prone or not fault-prone

using certain metrics for these modules before beginning the testing phase. To the

best of our knowledge, this will be the first approach that implements such this

methodology and achieves significant performanceregarding current research

problem.Moreover, Table 4 shows model performance according to the

percentage of data used for training/test. In particular, test data is used to evaluate

the built model, and training data is used to extract the inferencing rules. In

addition, Table 5 shows the performance of the model that was build using 20:80

partitioning of the dataset according to the threshold values used to optimize the

fuzzy rules.

Table 4

Model Performance According to The Data Ratio Used to Create Rules Base

Data (%) Accuracy (%)

20 83

40 77.3

60 77

80 77.9

Table 5

Model Performance According to threshold values and 20:80 Data Partitioning

Threshold

(%)

Accuracy

(%)

10 80.6

30 80.4

50 79.4

70 83

Importantly, by comparing with baseline approach proposed by Pandey and

Goyal (2010), the proposed approach generated fuzzy inference rules for both

classes. FP and NFP. However, baseline approach only extracted rules for fault-

prone class. In addition, fuzzy profile development in the baseline approach

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-3

27

utilized expert knowledge. Whereas, the proposed approach assumes that data is

the most accurate source to be consulted regarding developing fuzzy profiles.

Moreover, Finally, according to performance data, it will be valid to conclude

that software metrics, that are related to software modules, have predictive power

that supports testing of these modules. Additionally, this paper validated a

methodology for constructing fuzzy profiles from data and proves that data of

software metrics can be used to build Mamdani FIS without the assistance of

domain experts. As well, k-mean clustering algorithm, as an unsupervised

machine learning technique, proves its capabilities in obtaining accurate and

representative inference rules.

8. THREATS TO VALIDITY

Prediction models are often sensitive to values set for hyperparameters or

even exposed to the researcher bias. This paper contained many of them. For

example, number of clusters hyperparameter (k) used with k-mean clustering

algorithm, the value of threshold used to create the fuzzy rules, and several

parameters for Mamdani fuzzy inference system. Many techniques were applied

in order to mitigate these threats. For instance, a well-known technique for cluster

validity in k-mean algorithm was used, randomness was employed, and literature

was considered regarding some decisions.Moreover, this paper made use of KC2

dataset, one potential is that it is not known much about the circumstances of

obtaining this dataset besides to the tools used in this process. Furthermore, the

used dataset is relatively small and dedicated to only one developing language,

C++.

9. CONCLUSION AND FUTURE WORK

This paper applies a hybrid approach combining machine learning and Fuzzy

logic to estimate and predict software faults using software metrics for the sake of

supporting testing phase. The study starts by critically analyzing related works

and providing research gaps. Then, Mamdani fuzzy inference system was built.

First, this work applied and validated a methodology to create fuzzy profiles.

Second, machine learning was introduced through a proposed methodology by

using k-mean clustering algorithm to extract fuzzy inference rules. Finally, the

proposed model achieves a significant and competitive predictive accuracy. In

addition, it shows that only the given 13 software metrics can be used to build

fuzzy systems. Moreover, it is concluded that data can eliminate the need for

domain expert assistance as it is effective source for building fuzzy inference

systems.

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-3

28

REFERENCES

Yadav, H. B., & Yadav, D. K. (2015). A fuzzy logic-based approach for

phase-wise software defects prediction using software metrics. Information and

Software Technology, 63, 44-57.

Abaei, G., Selamat, A., & Al Dallal, J. (2020). A fuzzy logic expert system to

predict module fault proneness using unlabeled data. Journal of King Saud

University-Computer and Information Sciences, 32(6), 684-699.

Farahbod, F., & Eftekhari, M. (2013). A new clustering-based approach for

modeling fuzzy rule-based classification systems. Iranian Journal of Science

and Technology. Transactions of Electrical Engineering, 37(E1), 67.

Chatterjee, S., & Maji, B. (2016). A new fuzzy rule-based algorithm for

estimating software faults in early phase of development. Soft

Computing, 20(10), 4023-4035.

Diwaker, C., Tomar, P., Solanki, A., Nayyar, A., Jhanjhi, N. Z., Abdullah, A., &

Supramaniam, M. (2019). A new model for predicting component-based

software reliability using soft computing. IEEE Access, 7, 147191-147203.

Kumar, S., & Ranjan, P. (2017). A Proposed Methodology for Phase Wise

Software Testing Using Soft Computing. International Journal of Applied

Engineering Research, 12(24), 15855-15875.

Wang, C. (2015). A study of membership functions on mamdani-type fuzzy

inference system for industrial decision-making. Lehigh University.

Novák, V. (2005). Are fuzzy sets a reasonable tool for modeling vague

phenomena? Fuzzy Sets and Systems, 156(3), 341-348.

Yadav, H. B., & Yadav, D. K. (2015). Construction of membership function for

software metrics. Procedia Computer Science, 46, 933-940.

Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques.

Elsevier.

Yadav, D. K., & Yadav, H. B. (2015, June). Developing Membership Functions

and Fuzzy Rules from Numerical Data for Decision Making. In IFSA-

EUSFLAT.

Malhotra, R. (2019). Empirical research in software engineering: concepts,

analysis, and applications. Chapman and Hall/CRC.

Pandey, A. K., & Goyal, N. K. (2010). Fault prediction model by fuzzy profile

development of reliability relevant software metrics. International Journal of

Computer Applications, 11(6), 34-41.

International Journal of Computer and Communication Technology (IJCCT), ISSN: 2231-0371, Vol-8, Iss-3

29

Singh, P., Pal, N. R., Verma, S., & Vyas, O. P. (2016). Fuzzy rule-based approach

for software fault prediction. IEEE Transactions on Systems, Man, and

Cybernetics: Systems, 47(5), 826-837.

Sadeghian, R., Gholamaliei, B., & Peyman, L. P. (2014). Fuzzy Rules Extraction

Based on Deterministic Data (Case Study: Bank's Customers Rating). Jordan

Journal of Mechanical & Industrial Engineering, 8(6).

Zadeh, L. A. (1996). Fuzzy sets. In Fuzzy sets, fuzzy logic, and fuzzy systems:

selected papers by Lotfi A Zadeh (pp. 394-432).

Pandey, A. K., & Goyal, N. K. (2010). Predicting fault-prone software module

using data mining technique and fuzzy logic. International Journal of

Computer and Communication Technology, 2(2), 56-63.

Erturk, E., & Sezer, E. A. (2016). Software fault prediction using Mamdani type

fuzzy inference system. International Journal of Data Analysis Techniques

and Strategies, 8(1), 14-28.

Ramani, S., Gokhale, S. S., & Trivedi, K. S. (2000). SREPT: software reliability

estimation and prediction tool. Performance evaluation, 39(1-4), 37-60.

Rizvi, S. W. A., Khan, R. A., & Singh, V. K. (2016). Software reliability

prediction using fuzzy inference system: early-stage

perspective. International Journal of Computer Applications, 145(10), 16-23.

Shirabad, & Menzies, (2005). The {PROMISE} Repository of Software

Engineering Databases, http://promise.site.uottawa.ca/SERepository.

Al-Jamimi, H. A. (2016, August). Toward comprehensible software defect

prediction models using fuzzy logic. In 2016 7th IEEE International

Conference on Software Engineering and Service Science (ICSESS) (pp.

127-130). IEEE.

Ali MD, Abusnaina AA. Classifying bug reports to bugs and other requests: an

approach using topic modelling and fuzzy set theory. International Journal of

Advanced Computer Research. 2021; 11(56):103-115.

DOI:10.19101/IJACR.2021.1152031

http://promise.site.uottawa.ca/SERepository

	Predicting Faultiness of Program Modules Using Mamdani Model by Fuzzy Profile Development of Software Metrics
	Recommended Citation

	OLE_LINK4
	OLE_LINK3

