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1. INTRODUCTION 

Measuring the reliability of software systems has become a key concern in 

software industry. This is because humans are extremely depending on software 

systems these days (Pandey & Goyal, 2010). This increasing demand on systems 

leads to keen need for rapid development approaches and accurate tools to 

measure the overall system quality. Especially, software failures lead to several 

serious drawbacks in business supported by these systems. Hence, there is an 

increasing need to resolve the software faults in the early phases of Software 

Development Life Cycle (SDLC) (Rizvi et al., 2016). Furthermore, if early 

identification of software faults and errors is practiced, the more it will be cost 

effective to fix them. Thus, fault prediction and estimation models are needed to 

assess software reliability in early phases of SDLC utilizing data collected during 

those phases (Kumar & Ranjan, 2017). Importantly, it has been found by 

literature that the absence of failure data during early SDLC phases can be 

compensated by software metrics that may be collected statically from software 

components and artifacts (Pandey & Goyal, 2010). Importantly, software metrics 

have a fuzzy nature. Accordingly, this makes fuzzy prediction models more 

candidate to deal with these problems (Pandey & Goyal, 2010). 

For this end, a software module, represented by software metrics of fuzzy 

nature, will be modelled as fuzzy sets (Pandey & Goyal, 2010). In addition, fuzzy 

inference models require fuzzy profiles development and fuzzy rules (Yadav, 

2015). Those two requirements are often provided from domain experts. 

However, it will be infeasible to get consensus from experts about them. Instead, 

data mining techniques are alternative and recommended solution to satisfy these 

requirements (Pandey & Goyal, 2010)(Subhashis & Bappa, 2016) (Rizvi et al., 

2016)(Kumar & Ranjan, 2017) (Singh et al., 2016). 

Most of fault prediction models rely on the failure data of a software system 

collected from the testing and usage phases. However, there will be no available 

failure data just after the software module has been developed. Thus, if it is 

possible to tag a software module as fault-prone in this time, software engineers 

can well manage the consequent activities in terms of time, effort, and resources, 

and finally producing reliable systems (Pandey & Goyal, 2010)(Pandey & Goyal, 

2010) (Yadav, 2015)(Kumar & Ranjan, 2017). More important, the unavailability 

of failure data in early phases makes software metrics a better choice to be used in 

fault prediction models. These metrics are measures that are collected statically 

from the source code of a software module. Also, because they are associated 

with some level of vagueness, fuzzy logic will be the most suitable approach for 

software defect prediction (Yadav, 2015). 

The main contribution of this research is to build a Mamdani fuzzy inference 

system without the assistance of domain expert or using any other literature 
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assumptions. In particular, it used the data itself to satisfy the requirements of 

building such models. The employed data represented software metrics which are 

of a fuzzy-nature data. For this end, the proposed model tested and validated a 

published technique used to develop fuzzy profiles for inputs and outputs from 

data. In addition, it used k-mean clustering algorithm to generate the fuzzy rules 

needed to the inferencing process in the proposed model. Finally, the new system 

was able to estimate and predict faults in the developed software modules with a 

significant accuracy, and then, it was benefitable in supporting the testing efforts 

and decisions. 

In sum, problem definition in this research is as follows: 

Given a just developed software module, estimate the fault-proneness degree of 

that new module and predict its class with respect to either fault-prone (FP) or 

non-fault-prone (NFP). So that, this could support the testing phase in several 

aspects. 

This work will address the above research problem by trying to answer the 

following research question: 

• RQ1: Do software metrics, that are related to the implementation phase, 

enable building of fault prediction models to support testing phase efforts 

of SDLC? 

• RQ2: What will be the effect of developing fuzzy profiles from data, 

instead of expert opinions, on fault prediction by Mamdani fuzzy 

inference systems? 

• RQ3: Can k-mean clustering algorithm be used to generate “if-then” fuzzy 

rules for effective functioning of Mamdani fuzzy inference systems? 

2. BACKGROUND 

Fuzzy logic is a type of multi-valued logic, it deals with fuzzy sets which 

were proposed by Lotfi Zadeh in 1965 (Zadeh, 2015). Elements of a fuzzy set 

have a multi-valued membership relation toward that set, on the contrary of the 

elements of classical sets which have only a binary membership value [0,1] 

(Subhashis & Bappa, 2016). 

Figure 1 shows a Mamdani fuzzy inference system for fault prediction. It 

consists of four parts: first, fuzzification, which is the conversion of the crisp 

input to a fuzzy linguistic variable such as low, medium, and high using a 

predefined input membership function (Subhashis & Bappa, 2016) (Wang, 2015). 

Second, fuzzy rule base, which is a set of rules used by inferencing process to 

convert fuzzy input to fuzzy output (Subhashis & Bappa, 2016) (Wang, 2015). 

Third, inferencing process, which evaluates the fuzzy rules on inputs and then 

aggregates the results of applying those rules to finally producing one fuzzy 

output (Subhashis & Bappa, 2016) (Wang, 2015). Actually, given the fuzzy sets A 

and B. In addition, µA, and µB are the membership functions that represent A and 
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B in the universe R, the fuzzy operators union (OR), intersection (AND), and 

complement (NOT) are represented by the equations 1,2, and 3, respectively. 

µ(𝐴 Ս 𝐵)(𝑅) = 𝑀𝑎𝑥(µ𝐴(𝑅), µ𝐵(𝑅)) (1) 

µ(𝐴 Ո 𝐵)(𝑅) = 𝑀𝑖𝑛(µ𝐴(𝑟), µ𝐵(𝑅)) (2) 

µÃ = 1 −  µ𝐴(𝑅) (3) 

 

Forth, defuzzification, which is the process of converting the fuzzy output to 

crisp using the outputs membership function. Whereas, A membership function is 

a graphical representation that represents how the transition from one fuzzy set to 

another happens. 

Figure 1 

 An Example of Mamdani Fuzzy Inference System. 

 
 

Software reliability is the probability of a software system to perform 

defined tasks in a specified environment with failure-free (Rizvi et al., 2016). 

Moreover, software reliability is affected by failures which are caused by software 

faults. The main sources for faults are user inputs and program internal state. 

Therefore, the knowledge represented by software metrics plays a vital role in 

early prediction and early estimation of those faults (Malhotra, 2016). In fact, the 

most widespread categories of software metrics are McCabe and Halstead metrics 

(Yadav, 2015).   

3. RELATED WORK 

Pandey and Goyal (2010) built a Mamdani fuzzy system to predict faults 

using KC2 dataset. Moreover, fuzzy profile development for inputs and output 

utilized opinions of domain experts. Whereas, fuzzy rules were generated using 

ID3 decision tree algorithm. Accordingly, they achieved 87% overall average 
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accuracy for their model which had outperformed other models. In addition, same 

authors developed a fuzzy system to predict number of faults using software 

metric in KC2. However, this time, fuzzy rules were generated by consulting the 

experts in the field of software engineering. 

Farahbod and Eftekhari (2013) proposed an approach based on clustering-

based methods for obtaining the fuzzy classification rules from numeric data to 

create a model mapping the input output relationship of the system. The results 

proved that their proposed approach produced significant performance. 

Sadeghian et al. (2014) proposed k-mean clustering-based algorithm to extract 

fuzzy rules from numeric data of customer ratings in banks. This method may be 

used to support software engineering tasks. In particular, the main concept of this 

method is that by grouping similar data into one cluster, then it could be 

represented as a rule. 

Yadav (2015) built fuzzy inference system to predict faults using software 

metrics by mainly using k-mean clustering algorithm in order to develop fuzzy 

profiles. In another work, they completely utilizing experts’ knowledge and 

consulting the domain experts to build the same fuzzy model. 

Subhashis and Bappa (2016) proposed a Mamdani fuzzy model that helps 

software engineers and stakeholders in predicting software quality in the 

requirement engineering phase. They proposed a novel approach to extract fuzzy 

rules using an approach based on calculating the relative importance of each 

software metric, and later taking the decision to include or exclude it from the 

fuzzy rule structure. 

Singh et al. (2016) proposed an approach to identify software faults before 

they actually become run time failures. Actually, their approach utilized k-mean 

clustering algorithm to implement metrics selection method to form effective 

fuzzy classification rules.  

Erturk and Sezer (2016) used Mamdani fuzzy inference system to develop 

predictive model for fault prediction. More importantly, the process of fuzzy 

profile development and fuzzy inference rules extraction were created by the help 

of domain experts and their knowledge in software systems. 

Rizvi et al. (2016) presented a study for software reliability prediction using 

the fuzzy logic just before the implementation phase of SDLC. Particularly, the 

proposed effective model that utilized expert opinions to estimate the software 

reliability using four requirement metrics and four design metrics to be all as 

inputs for the fuzzy inference system. Finally, the results of this work were 

validated statistically. 

AI-Jamimi (2016) proposed a framework using Mamdani type fuzzy inference 

system that utilized 21 historical software metrics, aimed to predict the fault 

proneness of a given software module. Fuzzy profile development was achieved 

by utilizing expert knowledge. Importantly, correlation-based technique to select 
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the most discriminating metrics to be used in forming the rules. 

Kumar and Ranjan (2017) proposed three fuzzy models to predict faults in all 

phases of SDLC by using software metrics. The first two approaches used 

Mamdani fuzzy inference system. The options of building these systems were 

provided by domain experts. Their results were validated using MMRE, and 

BMMRE techniques. 

Golnoush et al. (2018) designed an unsupervised methodology for prediction 

fault-proneness software modules from software metrics. They used expert 

knowledge to implement two types of fuzzy inference systems: Mamdani and 

Assilian, and Takagi and Sugeno. In addition, genetic algorithm was employed in 

order to optimize the rulebase of the fuzzy inference systems. Consequently, the 

results show significant improvement in terms of the predefined performance 

measures by using the GA for rule-base optimization. 

Diwaker et al. (2019) proposed a model for estimating and predicting of 

software reliability based on Mamdani fuzzy inference system. This model 

supported software engineering using an approach called component-based SE. 

the fuzzy profile development besides 243 fuzzy rules were provided by the 

assistance of domain experts. the model was implemented using MATLAB on 

publicity available dataset called QWS. The results of the proposed model show 

that the fuzzy inference system produces better performance and less error rate as 

compared to another soft computing technique called PSO. 

Ali and Abusnaina (2021) Proposed a hybrid approach used fuzzy set theory 

to build effective fuzzy classifier model that is able to classify the reported 

software bugs using Jira bug tracking system to either bug or not-bug. This 

approach offered an important feature for software engineers as it enhanced their 

ability to well manage software maintenance activities toward reaching to the 

overall reliability in the supported software system. 

By reviewing the related literature, it is found that there was very limited 

number of research papers that utilized the fuzzy inference methods to estimate 

and predict the faultiness degree of a software module to support testing phase. 

Importantly, software metrics have a vagueness nature making fuzzy logic the 

most suitable technique to model such these problems. In addition, only few of 

fuzzy works used Mamdani fuzzy systems. Moreover, most of reviewed papers 

used binary classification machine learning algorithms regarding this research 

problem. Furthermore, regarding building the fuzzy inference systems, the most 

of papers utilized the knowledge of domain experts in order to satisfy the 

requirements of building these systems such as fuzzy profile development for 

inputs and outputs besides to the fuzzy rules generation. However, very few 

papers used the data itself to build inference systems and satisfy its requirements 

by implementing data mining techniques on that data. Finally, there were very 

few papers addressed the current research problem by utilizing the metrics of the 
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developed software modules to early predict faulty modules to support testing 

phase.  

4. RESEARCH METHODOLOGY 

This research made use of a software metrics dataset called KC2. This dataset 

consists of 21 software metrics. It shows a crisp value against each metric, and it 

is available publicity from Promise repository (Shirabad, & Menzies, 2005). It is 

originated from NASA Data Metric Program (DMP). More importantly, authors, 

such as Pandey and Goyal (2010) Yadav (2015), proved that 13 out of 21 

software metrics from this dataset offer a significant role in software fault 

prediction. These selected 13-software metrics are clustered below by four 

categories: 

• Halstead metrics category: total number of operators (N1), total 

number of operands (N2), number of unique operators (NN1), and 

number of unique operands (NN2). 

• Line of code metrics category: total line of code (LOC), LOC blank 

(BL), LOC code and comments (CCL), LOC comments (CL), and 

executable LOC (EL). 

• McCabe metrics category: cyclomatic complexity (CC), essential 

complexity (EC), and design complexity (DC). 

• Branch Count Metric Category: branch count metric (BC). 

The main goal of this research is to develop a Mamdani fuzzy inference model 

that will be used to estimate and predict the degree of faultiness of a software 

module before it is tested. Mainly, the prerequisites and requirements for building 

the model will be satisfied using the data itself rather than just consulting the 

domain experts. Figure 2 shows a high-level diagram of the proposed approach 

which is composed of the following four main parts: 

First, developing fuzzy profile for inputs and outputs, it includes defining the 

shape of the membership function, the fuzzy sets of linguistic variables used in 

this function, and the range of the possible values for that sets.  

Second, by employing trainingdata of software metrics, fuzzy inference rules 

will be generated. In using k-mean clustering algorithm from machine learning 

domain. More importantly, a new approach will be used to select the antecedent 

portion for rules. In particular, the selection strategy depends on a controlled 

threshold for membership values constructed from the previous component.  

Third, building Mamdani fuzzy inference system (FIS). Test data will be the 

inputs. Membership functions for inputs and output besides input fuzzification are 

all provided by the first component. In addition, the fuzzy inference rules are 

extracted from the second component. Furthermore, other configurations such 

defuzzification method and rules evaluation methods, the default parameters were 

used since they were wildly experimented by literature. 
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Finally, the first output of the built Mamdani model will be the estimated 

degree of faultiness. Then, this output will be checked against the output 

membership function to obtain the membership value in each class. Consequently, 

the class of the larger membership value will be considered as the final predicted 

class of the system. After that, given the desired and predicted output classes, an 

evaluation model will be conducted in order to measure system performance. 

Figure 2 

The Proposed Approach for Fault Estimation and Prediction 

 

5. EXPERIMENTAL DESIGN 

This section explains the followed methodology to develop fuzzy profiles for 

inputs and outputs. Moreover, it illustrates the methodology applied to generate 

the fuzzy inferencing rules. Then, it shows details of implementation of Mamdani 

fuzzy system. Besides, it shows results of each process. 
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5.1.Inputs Fuzzy Profile Development 

In this study, triangle membership function was used to represent the 

linguistic variables of inputs (software metrics). Triangle membership function is 

widely utilized in literature because it can better represent the knowledge of 

domain experts and it is computationally effective (Pandey & Goyal, 2010) 

(Yadav, 2015). Moreover, each input will be represented by five linguistic 

variables (fuzzy sets): very low, low, medium, high, and very high. Thus, 

development of a fuzzy profile for an input means to find fuzzy ranges and 

overlap area of adjacent membership functions for that input. 

This task is often provided by experts, but this research will use and validate 

the methodology proposed by Yadav (2015) to construct membership functions 

for software metrics. Figure 3 shows a triangle membership function, where the 

horizontal axis represents the inputs. The vertical axis represents the 

corresponding membership value of each input variable. The points (ai, bi, ci) 

represent the fuzzy range of the input variable which is called “support” (Wang, 

2015). In particular, construction a triangle membership function means to 

calculate the values of (ai, bi, ci).  

Figure 3 

Construction of Triangle Membership Function 

 
Given an input software metric (feature) which is represented by Fj, it has n 

values (v1j - vnj). Fjmin represents the minimum value of Fj. Fjmax represents the 

maximum value of Fj. The membership functions are generated using the 

following steps: 

1. Sort Fj values in ascending order. 

2. Cluster Fj values using k-mean algorithm into five clusters (y1-y5), 

where yimin represents the minimum value of a cluster. yimax represents 

the maximum value of a cluster. 

3. Find out the prototypes (centroids) for each cluster (b1-b5). 

4. Regarding Fi, calculate the difference between adjacent data (diffi = 

vi+1 - vi). 

5. Calculate the similarity value between adjacent data according to 

formula 4: 
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𝑆𝑚 = {
1 − 

𝑑𝑖𝑓𝑓𝑖
𝐶 + 𝜎𝑠

      𝑓𝑜𝑟 𝑑𝑖𝑓𝑓𝑖  ≤ 𝐶 ∗ 𝜎𝑠

0                           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              

 (4) 

where,  

Sm = donates the similarity value between adjacent data of input variable. 

σ = the standard deviation of diffi 

C = a fixed parameter with value of 4, representing the triangle shape. 

6. The membership value for the two boundaries yimin, and Fimax will be 

the minimum similarity value of each cluster. 

7. Calculate left vertex point ai according formulas 5 and 6: 

𝑎𝑖
′ = 𝑏𝑖 − 

𝑏𝑖 − 𝑦𝑖 𝑚𝑖𝑛
1 −  µ(𝑦𝑖 𝑚𝑖𝑛)

 (5) 

𝑎𝑖 = {

0                          𝑓𝑜𝑟 𝑎𝑖
′  ≤ 0

𝑏𝑖−1          𝑓𝑜𝑟 0 < 𝑎𝑖
′  ≤ 𝑏𝑖−1

𝑎𝑖
′                     𝑓𝑜𝑟 𝑎𝑖

′ > 𝑏𝑖−1

 (6) 

 

8. Calculate right vertex point ci according formulas 7 and 8: 

𝑐𝑖
′ = 𝑏𝑖 + 

𝑦𝑖 𝑚𝑎𝑥 − 𝑏𝑖
1 −  µ(𝑦𝑖 𝑚𝑎𝑥)

 (7) 

𝑐𝑖 = {
𝑐𝑖
′      𝑓𝑜𝑟 𝑐𝑖

′  ≤ 𝑏𝑖+1
𝑏𝑖+1  𝑓𝑜𝑟 𝑐𝑖

′ > 𝑏𝑖+1
 (8) 

 

9. Calculate the membership value for each crisp value of feature Fi 

according to formula 9: 

µ(𝑣) =  

{
 
 

 
 
𝑏𝑖 − 𝑉

𝑏𝑖 − 𝑎𝑖
              𝑓𝑜𝑟 𝑣 < 𝑏𝑖

𝑐𝑖 − 𝑉

𝑐𝑖 − 𝑏𝑖
      𝑓𝑜𝑟 𝑏𝑖 ≤ 𝑣 < 𝑐𝑖

0                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (9) 

Figures 4, 5, and 6 show the constructed input triangle membership function 

for 3 out of 13 software metrics as sample results for applying the previous 

methodology. 

Figure 4 

Fuzzy Profile for “Number of unique operators” Input Software Metric 
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Figure 5 

Fuzzy Profile for “Total line of code” Input Software Metric 

 
Figure 6 

Fuzzy Profile for “LOC blank” Input Software Metric 

 

5.2.Output Fuzzy Profile Development 

Degree of fault-prone (FPD) is the output of the proposed model. It is 

categorized into two fuzzy sets not-fault-prone (NFP), and fault-prone (FP). 

According to scale used by Pandey and Goyal (2010) it is assumed that this output 

variable is of linear nature. Thus, it will be represented by triangular membership 
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function. The fuzzy profile ranges will take the following values: NFP (0,0,100), 

FP (0,100,100).  

 

5.3.Fuzzy Rules Generation 

These below steps represent the employed methodology to extract the 

inference rules for the proposed model. To the best of our knowledge, this will be 

the first work that follows such this methodology for fuzzy rule generation. More 

importantly, this method extracted fuzzy rules using the training portion of the 

dataset.  

1. The data of each class (FP, NFP) from the dataset was divided into two 

parts, training and testing, by 20%, 40%, 60%, and 80% ratios for 

training portions.  

2. k-mean clustering algorithm was applied to each subset of training 

data independently. Many runs were executed in order to optimize the 

value of number of clusters (k). In particular, each run was validated 

against three conditions: high inter-class separation, high intra-class 

homogeneity, and special condition was introduced in order to ensure 

that every cluster must have at least one data instance (module) 

assigned to it. This will help in generating rules with acceptable 

inference power. Accordingly, the results are k number of data records 

(clusters), for each, 13 feature prototypes (centroid) are produced. 

Each prototype is a representative to k values of the respective feature 

(software metric). 

3. For each centroid value of a feature (software metric), within a cluster, 

the centroid value was converted into the corresponding linguistic 

fuzzy set (VL, L, M, H, or VH). Then, formula 9 was used to compute 

the membership value of that crisp value (centroid) to the 

corresponding fuzzy set.  

4. Threshold based mechanism was introduced to decide whether to 

include a software metric in a rule formulation or not. This was 

performed by checking the membership value of a software metric 
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against a list of threshold values: 10%, 30%, 50%, and 70%. This 

ensured generating good rules with bias free.   

Table 1 shows results of applying the above methodology using several ratios 

of training data and 10% threshold value as an exclusion parameter. Table 2 

shows membership values of the antecedents for a generated fuzzy rule and their 

corresponding fuzzy sets. 

Table 1 

Number of Generated Fuzzy rules 

Data (%) NFP class FP class 

20 5 4 

40 8 4 

60 8 5 

80 9 8 

Table 2 

A Generated Fuzzy Rule Example 

Software 

metric 

Membership 

value 

Corresponding 

fuzzy set 

LOC 0.1165 M 

CC 0.061 M 

EC 0.6257 L 

….. ….. ….. 

N1 0.637 L 

N2 0.604 L 

BC 0609 M 

The generated fuzzy rule: 

IF (LOC is M) AND (CC is M) AND (EC is L) AND 

……. AND (N1 is L) AND (N2 is L) AND (BC is M) 

THENFP 

 

6. MAMDANI FUZZY INFERENCE SYSTEM 

According to figure 1, Mamdani fuzzy inference system (FIS) was built in 

order to estimate faults, in particular, four steps were applied in order to build 

Mamdani fuzzy inference system (FIS) that will be able to map linguistic input 

variables (software metrics in this case) to a crisp output (degree of faultiness in 

this case) in a way approximates humans in their reasoning about things using 
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fuzzy rules (Wang, 2015): 

1. Fuzzify the software metrics: 

This means to convert the crisp numerical values of software metrics 

into the corresponding fuzzy sets (VL, L, M, H, and VH) using 

triangular membership function which was constructed in the previous 

section. 

2. Evaluation fuzzy rules. 

“AND” operator in the generated rules will be applied using a fuzzy 

operator called “MIN”. In particular, it applies a rule of two inputs by 

finding the minimum membership value of that inputs to their 

corresponding fuzzy sets. Actually, it functions as exactly as Boolean 

logic in such (1 𝐴𝑁𝐷 0 ⇒ 𝑀𝐼𝑁(1,0) ⇒ 0). After that, the result of 

rule evaluation will be mapped to the two output fuzzy sets (FP and 

NFP) using the membership function for outputs, discussed in the 

previous section.  Specifically, this operation is named in fuzzy logic 

as implication. 

3. Apply the aggregation: 

This process aimed at combining the fuzzy sets resulted from 

evaluation and implication of each rule into one and only one fuzzy set 

that contains in some point the desired crisp output. For this, an 

aggregation technique called “MAX” was used. 

4. Defuzzification: 

This step was used to extract a crisp output (degree of fault proneness) 

from the aggregated fuzzy sets in the previous step. A fuzzy technique 

called CENTROID was used for this step. 

Table 3 shows the selected options and hyperparameters of the developed 

fuzzy inference systems. 

Table 3 

Mamdani FIS hyperparameters 

Option Value Source 

Inputs membership 

function 
Triangle constructed 

Output membership 

function 
Triangle literature 

Fuzzy inference rules  Generated 

Implication operator Min literature 

Aggregation method Max literature 

Defuzzification method Centroid literature 

AND method Min literature 
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OR method Max literature 

 

Furthermore, according to the previous mentioned steps, One Mamdani FIS 

was built for each set of training and testing data (20%, 40%, 60%, and 80%). 10 

runs were carried out and the average performance was recorded.  After that, the 

model that showed the best performance was revalidated a gain using four 

experiments testing the effect of threshold values (0.1, 0.3, 0.5, and 0.7). Also, 10 

runs were carried out and the average performance was recorded. Finally, the best 

performant model was selected. 

 

Finally, in order to binary classify software modules into either fault-prone or not 

fault-prone, the membership value for the system output (degree of fault 

proneness) was calculated using formula 10 which is documented in MATLAB 

online pages.Then, according to formula 11, the predicted class was given the 

name of the output fuzzy set thathas the larger computed membership value for 

that estimated output. Accordingto the following formula: 

 

{
 
 

 
 
𝑥 − 𝑎

𝑏 − 𝑎
                             𝑎 ≤ 𝑥 ≤ 𝑏 

𝑐 − 𝑥

𝑐 − 𝑏
                             𝑏  ≤ 𝑥 ≤ 𝑐

0                             𝑐 ≤ 𝑥 𝑜𝑟 𝑥 ≤ 𝑎

 (10) 

 

𝐼𝑓 µ(𝐹𝐼𝑆 𝑜𝑢𝑡𝑝𝑢𝑡) ≥  50 𝑇ℎ𝑒𝑛 𝐹𝑃 𝑒𝑙𝑠𝑒 𝑁𝐹𝑃 

 

(11) 

Evaluation 

This paper used accuracy performance metric to evaluate the performance of 

the built models. It is an estimation to how these models recognize the correct 

classes FP and NFP from the test data (Han & Kamber, 2011). This accuracy can 

be derived using the confusion which is a tool that provides useful information 

about the behaviour of the models in terms of the following: 

1. Ture Positives (TP): the number of fault-prone data instances that are 

actually fault-prone. 

2. True Negative (TN): the number of non-fault-prone data instances that 

are actually non-fault-prone. 

3. False Negative (FN): the number of non-fault-prone data instances that 

are actually fault-prone. 

4. False Positive (FP): the number of fault-prone data instances that are 

actually, non-fault-prone. 

Accordingly, the accuracy is computed using the formula 12: 
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𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
∗ 100 (12) 

 

7. RESULTS AND DISCUSSION 

The proposed approach, with the optimal configuration, achieves 83% 

accuracy in classifying software modules to either fault-prone or not fault-prone 

using certain metrics for these modules before beginning the testing phase. To the 

best of our knowledge, this will be the first approach that implements such this 

methodology and achieves significant performanceregarding current research 

problem.Moreover, Table 4 shows model performance according to the 

percentage of data used for training/test. In particular, test data is used to evaluate 

the built model, and training data is used to extract the inferencing rules. In 

addition, Table 5 shows the performance of the model that was build using 20:80 

partitioning of the dataset according to the threshold values used to optimize the 

fuzzy rules. 

Table 4 

Model Performance According to The Data Ratio Used to Create Rules Base  

Data (%) Accuracy (%) 

20 83 

40 77.3 

60 77 

80 77.9 

 

Table 5 

Model Performance According to threshold values and 20:80 Data Partitioning 

Threshold 

(%) 

Accuracy  

(%) 

10 80.6 

30 80.4 

50 79.4 

70 83 

 

Importantly, by comparing with baseline approach proposed by Pandey and 

Goyal (2010), the proposed approach generated fuzzy inference rules for both 

classes. FP and NFP. However, baseline approach only extracted rules for fault-

prone class. In addition, fuzzy profile development in the baseline approach 
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utilized expert knowledge. Whereas, the proposed approach assumes that data is 

the most accurate source to be consulted regarding developing fuzzy profiles.   

Moreover, Finally, according to performance data, it will be valid to conclude 

that software metrics, that are related to software modules, have predictive power 

that supports testing of these modules. Additionally, this paper validated a 

methodology for constructing fuzzy profiles from data and proves that data of 

software metrics can be used to build Mamdani FIS without the assistance of 

domain experts. As well, k-mean clustering algorithm, as an unsupervised 

machine learning technique, proves its capabilities in obtaining accurate and 

representative inference rules. 

8. THREATS TO VALIDITY  

Prediction models are often sensitive to values set for hyperparameters or 

even exposed to the researcher bias. This paper contained many of them. For 

example, number of clusters hyperparameter (k) used with k-mean clustering 

algorithm, the value of threshold used to create the fuzzy rules, and several 

parameters for Mamdani fuzzy inference system. Many techniques were applied 

in order to mitigate these threats. For instance, a well-known technique for cluster 

validity in k-mean algorithm was used, randomness was employed, and literature 

was considered regarding some decisions.Moreover, this paper made use of KC2 

dataset, one potential is that it is not known much about the circumstances of 

obtaining this dataset besides to the tools used in this process. Furthermore, the 

used dataset is relatively small and dedicated to only one developing language, 

C++. 

9. CONCLUSION AND FUTURE WORK 

This paper applies a hybrid approach combining machine learning and Fuzzy 

logic to estimate and predict software faults using software metrics for the sake of 

supporting testing phase. The study starts by critically analyzing related works 

and providing research gaps. Then, Mamdani fuzzy inference system was built. 

First, this work applied and validated a methodology to create fuzzy profiles. 

Second, machine learning was introduced through a proposed methodology by 

using k-mean clustering algorithm to extract fuzzy inference rules. Finally, the 

proposed model achieves a significant and competitive predictive accuracy. In 

addition, it shows that only the given 13 software metrics can be used to build 

fuzzy systems. Moreover, it is concluded that data can eliminate the need for 

domain expert assistance as it is effective source for building fuzzy inference 

systems. 
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