
International Journal of Communication Networks and Security International Journal of Communication Networks and Security

Volume 2 Issue 3 Article 11

January 2014

COMPARATIVE ANALYSIS OF PVM AND MPI FOR THE COMPARATIVE ANALYSIS OF PVM AND MPI FOR THE

DEVELOPMENT OF PHYSICAL APPLICATIONS IN PARALLEL AND DEVELOPMENT OF PHYSICAL APPLICATIONS IN PARALLEL AND

DISTRIBUTED SYSTEMS DISTRIBUTED SYSTEMS

SRIKANTH. BETHU
Department of Computer Science and Engineering, Holy Mary Institute of Technology and Science,
Hyderabad, India, srikanthbethu@gmail.com

Follow this and additional works at: https://www.interscience.in/ijcns

 Part of the Computer Engineering Commons, and the Systems and Communications Commons

Recommended Citation Recommended Citation
BETHU, SRIKANTH. (2014) "COMPARATIVE ANALYSIS OF PVM AND MPI FOR THE DEVELOPMENT OF
PHYSICAL APPLICATIONS IN PARALLEL AND DISTRIBUTED SYSTEMS," International Journal of
Communication Networks and Security: Vol. 2 : Iss. 3 , Article 11.
DOI: 10.47893/IJCNS.2014.1097
Available at: https://www.interscience.in/ijcns/vol2/iss3/11

This Article is brought to you for free and open access by the Interscience Journals at Interscience Research
Network. It has been accepted for inclusion in International Journal of Communication Networks and Security by
an authorized editor of Interscience Research Network. For more information, please contact
sritampatnaik@gmail.com.

https://www.interscience.in/ijcns
https://www.interscience.in/ijcns/vol2
https://www.interscience.in/ijcns/vol2/iss3
https://www.interscience.in/ijcns/vol2/iss3/11
https://www.interscience.in/ijcns?utm_source=www.interscience.in%2Fijcns%2Fvol2%2Fiss3%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=www.interscience.in%2Fijcns%2Fvol2%2Fiss3%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=www.interscience.in%2Fijcns%2Fvol2%2Fiss3%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.interscience.in/ijcns/vol2/iss3/11?utm_source=www.interscience.in%2Fijcns%2Fvol2%2Fiss3%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:sritampatnaik@gmail.com

COMPARATIVE ANALYSIS OF PVM AND MPI FOR THE
DEVELOPMENT OF PHYSICAL APPLICATIONS IN PARALLEL AND

DISTRIBUTED SYSTEMS

SRIKANTH. BETHU

Assistant Professor, Department of Computer Science and Engineering, Holy Mary Institute of Technology and Science,
Hyderabad, India

Jawaharlal Nehru Technological University, Hyderabad, A.P, India
E-mail: srikanthbethu@gmail.com

Abstract- This research is aimed to explore each of these two Parallel Virtual Machine (PVM) and Message Passing
Interface(MPI) vehicles for DPP (Distributed Parallel Processing) considering capability, ease of use, and availability, and
compares their distinguishing features and also explores programmer interface and their utilization for solving real world
parallel processing applications. This work recommends a potential research issue, that is, to study the feasibility of creating
a programming environment that allows access to the virtual machine features of PVM and the message passing features of
MPI. PVM and MPI, two systems for programming clusters, are often compared. Each system has its unique strengths and
this will remain so in to the foreseeable future. The comparisons usually start with the unspoken assumption that PVM and
MPI represent different solutions to the same problem. In this paper we show that, in fact, the two systems often are solving
different problems. In cases where the problems do match but the solutions chosen by PVM and MPI are different, we
explain the reasons for the differences. Usually such differences can be traced to explicit differences in the goals of the two
systems, their origins, or the relationship between their specifications and their implementations. This paper also compares
PVM and MPI features, pointing out the situations where one may be favored over the other; it explains the deference’s
between these systems and the reasons for such deference’s.

Keywords- Message Passing Interface , Parallel Virtual Machine , Parallel and Distributed Processing .

I. INTRODUCTION

Parallel processing, the method of having many small
tasks solve one large problem, has emerged as a key
enabling technology in modern computing. The past
several years have witnessed an ever- increasing
acceptance and adoption of parallel processing. The
acceptance has been facilitated by two major
developments: massively parallel processors (MPPs)
and the widespread use of distributed computing.
MPPs are probably the most powerful computers in
the world. These machines combine a few hundred to
a few thousand CPUs in a single large cabinet
connected to hundreds of gigabytes of memory and
over enormous computational power. But the cost of
such machines is very high, they are very expensive.
The second major development alerting scientific
problem solving is distributed computing. Distributed
computing is a process whereby a set of computers
connected by a network are used collectively to solve
a single large problem. The idea of using such
clusters or networks of workstations to solve a
parallel problem became very popular because such
clusters allow people to take advantage of existing
and mostly idle workstations and computers, enabling
them to do parallel processing without having to
purchase an expensive supercomputer. Common
between distributed computing and MPP is the notion
of message passing. In all parallel processing, data
must be exchanged between cooperating tasks.
Message passing libraries have made it possible to

map parallel algorithm onto parallel computing
platform in a portable way. PVM and MPI have been
the most successful of such libraries. Now PVM and
MPI are the most used tools for parallel
programming. Since there are freely available
versions of each, users have a choice, and beginning
users in particular can be confused by their superficial
similarities. So it is rather important to compare these
systems in order to understand under which situation
one system of programming might be favored over
another, when one is more preferable than another.

One of MPI's prime goals was to produce a system
that would allow manufacturers of high-performance
massively parallel processing (MPP) computers to
provide highly optimized and efficient
implementations. In contrast, PVM was designed
primarily for networks of workstations, with the goal
of portability, gained at the sacrifice of optimal
performance. PVM has been ported successfully too
many MPPs by its developers and by vendors, and
several enhancements including in-place data packing
and pack-send extensions have been implemented
with much success.

II. PARALLELPROGRAMMING

 FUDAMENTALS

i) Parallel machine model: Cluster
Sequential Machine Model or single Machine Model,
the von Neumann computer comprises a central

International Journal of Communication Network Security, ISSN: 2231 – 1882, Volume-2, Issue-3, 2014

46

Comparative analysis of PVM and MPI for the development of physical applications in Parallel and Distributed Systems

processing unit (CPU) connected to a storage unit
(memory). The CPU executes a stored program that
specifies a sequence of read and writes operations on
the memory. This simple model has proved
remarkably robust [3]. Really programmers can be
trained in the abstract art of \programming" rather
than the craft of \programming machine X" and can
design algorithms for an abstract von Neumann
machine, confident that these algorithms will execute
on most target computers with reasonable efficiency.
Such machine is called SISD (Single Instruction
Single Data) according to Flynn's taxonomy; it means
that single instruction stream is serially applied to a
single data set.

A cluster comprises a number of von Neumann
computers, or nodes, linked by an interconnection
network (see Figure 1). Each computer executes its
own program. This program may access local
memory and may send and receive messages over the
network. Messages are used to communicate with
other computers or, equivalently, to read and write
remote memories. Such cluster is most similar to
what is often called the distributed-memory MIMD
(Multiple Instruction Multiple Data) computer.
MIMD means that each processor can execute a
separate stream of instructions on its own local data;
distributed memory means that memory is distributed
among the processors, rather than placed in a central
location.

a. PVM communication issues
• Master/ Slave principle
• TCP/IP socket communication
• Loosely coupled and Tightly

coupled
b. PVM performance issues

• It provides Portability rather than
Performance.

ii) Parallel programming model: Message
passing

The sequential paradigm for programming is a
familiar one. The programmer has a simplified view
of the target machine as a single processor which can
access a certain amount of memory. He or she
therefore writes a single program to run on that
processor and the program or the underlying
algorithm could in principle be ported to any

sequential architecture. The message passing
paradigm is a development of this idea for the
purposes of parallel programming. Several instances
of the sequential paradigm are considered together.
That is, the programmer imagines several processors,
each with its own memory space, and writes a
program to run on each processor. Each processor in
a message passing program runs a separate process
(sub-program, task), and each such process
encapsulates a sequential program and local memory
(In effect, it is a virtual von Neumann machine).
Processes execute concurrently. The number of
processes can vary during program execution. Each
process is identified by a unique name (rank) (see
Figure 2). So far, so good, but parallel programming
by definition requires cooperation between the
processors to solve a task, which requires some
means of communication. The main point of the
message passing paradigm is that the processes
communicate via special subroutine calls by sending
each other message.

a. MPI communication issues
• Through message passing between

the processor into memory.
• SPMD (Single Program Single

Data) and MPMD (Multiple
Program Multiple Data) functions.

b. MPI performance issues

• It has the capability of delivering
high performance on high
performance systems with high
scalability.

III. PVM AND MPI

Usually differences between systems for
programming can be traced to explicit differences in
the goals of the two systems, their origins, or the
relationship between their specifications and
implementations. That's why we prefer to analyze the
differences in PVM and MPI by looking first at
sources of these differences, it will help better
illustrate how PVM and MPI differ and why each has
features the other does not.

International Journal of Communication Network Security, ISSN: 2231 – 1882, Volume-2, Issue-3, 2014

47

Comparative analysis of PVM and MPI for the development of physical applications in Parallel and Distributed Systems

a. Background and goals of design:
The development of PVM started in summer 1989 at
Oak Ridge National Laboratory (ORNL). PVM was
effort of a single research group, allowing it great
flexibility in design and also enabling it to respond
incrementally to the experiences of a large user
community. Moreover, the implementation team was
the same as the design team, so design and
implementation could interact quickly. Central to the
design of PVM was the notion of a "virtual machine"
a set of heterogeneous hosts connected by a network
that appears logically to user as a single large parallel
computer or parallel virtual machine, hence its name.
The research group, who developed PVM, tried to
make PVM interface simple to use and understand.
PVM was aimed at providing a portable
heterogeneous environment for using clusters of
machines using socket communications over TCP/IP
as a parallel computer. Because of PVM's focus on
socket based communication between loosely
coupled systems, PVM places a great emphasis on
providing a distributed computing environment and
on handling communication failures. Portability was
considered much more important than performance
(for the reason that communications across the
internet was slow); the research was focused on
problems with scaling, fault tolerance and
heterogeneity of the virtual machine [3].

The development of MPI started in April 1992. In
contrast to the PVM, which evolved inside a research
project, MPI was designed by the MPI Forum (a
diverse collection of implementers, library writers,
and end users) quite independently of any specific
implementation, but with the expectation that all of
the participating vendors would implement it. Hence,
all functionality had to be negotiated among the users
and a wide range of implementers, each of whom had
a quite different implementation environment in
mind.

MPI and its Goals:
MPI (Message Passing Interface) is specification for
message-passing libraries that can be used for writing
portable parallel programs.

What does MPI do?
• When we speak about parallel programming

using MPI, we imply that:
• A fixed set of processes is created at

program initialization; one process is created
per processor

• Each process knows its personal number
• Each process knows number of all processes
• Each process can communicate with other

processes
• Process can't create new processes; the

group of processes is static.

Some of these goals (and some of their implications)
were the following [1][2]:

• MPI would provide source-code portability.
• MPI would allow efficient implementation

across a range of architectures.
• MPI would be capable of delivering high

performance on high-performance systems.
Scalability, combined with correctness, for
collective operations required that group be
"static".

• MPI would support heterogeneous
computing, although it would not require
that all implementations be heterogeneous
(MPICH, LAM are implementations of MPI
that can run on heterogeneous networks of
workstation) MPI would require well-
defined behavior.

• The MPI standard has been widely
implemented and is used nearly everywhere,
attesting to the extent to which these goals
were achieved.

• MPI would be a library for writing
application programs, not a distributed
operating system.

PVM and its Goals:
PVM (Parallel Virtual Machine) is a software
package that allows a heterogeneous collection of
workstations (host pool) to function as a single high
performance parallel virtual machine. PVM, through
its virtual machine, provides a simple yet useful
distributed operating system. It has daemon running
on all computers making up the virtual machine.

The user writes his application as a collection of
cooperating processes (tasks) that can be performed
independently in different processors. Processes
access PVM/MPI resources through a library of
standard interface routines. These routines allow the
initiation and termination of processes across the
network as well as communication between
processes.

PVM had, with the exception of support for
heterogeneous computing and a different approach to
extensibility, different goals. In particular, PVM was
aimed at providing a portable, heterogeneous
environment for using clusters of machines using
socket communications over TCP/IP as a parallel
computer. Because of PVM’s focus on socket based
communication between loosely-coupled systems,
PVM places a greater emphasis on providing a
distributed computing environment and on handling
communication failures.

Master/Slave principle in PVM:
The master/slave programming model is a very
popular model used in distributed computing. In this
model exists two separate programs, master and slave
program. The master has the control over the running
application, it controls all data and it calls the slave to

International Journal of Communication Network Security, ISSN: 2231 – 1882, Volume-2, Issue-3, 2014

48

Comparative analysis of PVM and MPI for the development of physical applications in Parallel and Distributed Systems

do their work. So the master is a separate "control"
program, which is responsible for process spawning,
initialization, collection and display of results. The
slave programs perform the actual computation
involved; they either are allocated their workloads by
the master (statically or dynamically) or perform the
allocations themselves.

b. PVM and MPI equal issues:
Despite their differences, PVM and MPI certainly
have features in common. In this section we review
some of the similarities.

 Portability
 Both PVM and MPI are portable; the
specification of each is machine independent,
and implementations are available for a wide
variety of machines. Portability means, that
source code written for one architecture can be
copied to a second architecture, compiled and
executed without modification.

 MPMD
 Both MPI and PVM permit different
processes of a parallel program to execute
different executable binary files (This would be
required in a heterogeneous implementation, in
any case). That is, both PVM and MPI support
MPMD programs as well as SPMD programs,
although again some implementation may not do
so.

 Interoperability
 The next issue is interoperability - the ability
of different implementations of the same
specification to exchange messages. For both PVM
and MPI, versions of the same implementation
(Oak Ridge PVM, MPICH, or LAM) are
interoperable.

 Heterogeneity
 The next important point is support for
heterogeneity. When we wish to exploit a
collection of networked computers, we may have
to contend with several different types of
heterogeneity.

i. architecture
 The set of computers available can include a
wide range of architecture types such as PC class
machines, high-performance workstations,
shared memory multiprocessors, vector
supercomputers, and even large MPPs. Each
architecture type has its own optimal
programming method. Even when the
architectures are only serial workstations, there is
still the problem of incompatible binary formats
and the need to compile a parallel task on each
different machine.

ii. data format
 Data formats on different computers are
often incompatible. This incompatibility is an
important point in distributed computing because

data sent from one computer may be unreadable
on the receiving computer. Message passing
packages developed for heterogeneous
environments must make sure all the computers
understand the exchanged data; they must
include enough information in the message to
encode or decode it for any other computer.

iii. computational speed
 Even if the set of computers are all
workstations with the same data format, there is
still heterogeneity due to different computational
speeds. The problem of computational speeds
can be very subtle. The programmer must be
careful that one workstation doesn't sit idle
waiting for the next data from the other
workstation before continuing.

iv. machine load
 Our cluster can be composed of a set of
identical workstations. But since networked
computers can have several other users on them
running a variety of jobs, the machine load can
vary dramatically. The result is that the effective
computational power across identical
workstations can vary by an order of magnitude.

v. network load
 Like machine load, the time it takes to send
a message over the network can vary depending
on the network load imposed by all the other
network users, who may not even be using any of
the computers involved in our computation. This
sending time becomes important when a task is
sitting idle waiting for a message, and it is even
more important when the parallel algorithm is
sensitive to message arrival time. Thus, in
distributed computing, heterogeneity can appear
dynamically in even simple setups.

Both PVM and MPI provide support for
heterogeneity.

c. PVM and MPI differences
 Virtual topology

 A virtual topology is a mechanism for
naming the processes in a group in a way that fits
the communication pattern better. The main aim
of this is to make subsequent code simpler. It
may also provide hints to the run-time system
which allow it to optimize the communication or
even hint to the loader how to configure the
processes.

 Message passing operations
 MPI is a much richer source of
communication methods than PVM. PVM
provides only simple message passing, whereas
MPI1 specification has 128 functions for
message-passing operations, and MPI 2 adds an
additional 120 functions to functions specified in
the MPI 1.

 Fault Tolerance

International Journal of Communication Network Security, ISSN: 2231 – 1882, Volume-2, Issue-3, 2014

49

Comparative analysis of PVM and MPI for the development of physical applications in Parallel and Distributed Systems

 Fault tolerance is a critical issue for any
large scale scientific computer application. Long
running simulations, which can take days or even
weeks to execute, must be given some means to
gracefully handle faults in the system or the
application tasks. Without fault detection and
recovery it is unlikely that such application will
ever complete. For example, consider a large
simulation running on dozens of workstations. If
one of those many workstations should crash or
be rebooted, then tasks critical to the application
might disappear. Additionally, if the application
hangs or fails, it may not be immediately obvious
to the user. Many hours could be wasted before it
is discovered that something has gone wrong. So,
it is very essential that there be some well-
defined scheme for identifying system and
application faults and automatically responding
to them, or at least providing timely notification
to the user in the event of failure.

The problem with the MPI-1 model in terms of fault
tolerance is that the tasks and hosts are considered to
be static. An MPI-1 application must be started en
masse as a single group of executing tasks. If a task
or computing resource should fail, the entire MPI-1
application must fail. This is certainly effective in
terms of preventing leftover or hung tasks. However,
there is no way for an MPI program to gracefully
handle a fault, let alone recover automatically. As we
said before, the reasons for the static nature of MPI
are based on performance.

MPI 2 includes a specification for spawning new
processes. This expands the capabilities of the
original static MPI-1. New processes can be created
dynamically, but MPI-2 still has no mechanism to
recover from the spontaneous loss of process.

PVM supports a basic fault notification scheme: it
doesn't automatically recover an application after a
crash, but it does provide polling and notification
primitives to allow fault-tolerant applications to be
built. Under the control of the user, tasks can register
with PVM to be notified" when the status of the
virtual machine changes or when a task fails. This
notification comes in the form of special event
messages that contain information about the
particular event. A task can \post" a notify for any of
the tasks from which it expects to receive a message.
In this scenario, if a task dies, the receiving task will
get a notify message in place of any expected
message. The notify message allows the task an
opportunity to respond to the fault without hanging or
failing.

This type of virtual machine notification is also useful
in controlling computing resources. The Virtual
Machine is dynamically reconfigurable, and when a
host exits from the virtual machine, tasks can utilize

the notify messages to reconfigure themselves to the
remaining resources. When a new host computer is
added to the virtual machine, tasks can be notified of
this as well. This information can be used to
redistribute load or expand the computation to utilize
the new resource.

 Process Control
Process control refers to the ability to start and
stop tasks, to find out which tasks are running,
and possibly where they are running. PVM
contains all of these capabilities; it can
spawn/kill tasks dynamically. In contrast MPI - 1
has no defined method to start new task. MPI - 2
contains functions to start a group of tasks and to
send a kill signal to a group of tasks.

 Resource control
• In terms of resource management, PVM

is inherently dynamic in nature.
Computing resources or "hosts" can be
added and deleted at will, either from a
system "console" or even from within
the user's application. Allowing
applications to interact with and
manipulate thei computing environment
provides a powerful paradigm for

• load balancing | when we want to
reduce idle time for each machine
involved in computation

• task migration | user can request that
certain tasks execute on machines with
particular data formats, architectures, or
even on an explicitly named machine

IV. IMPLEMENTATION AND COMPARISON

a) Portability, Heterogeneity, and

Interoperability
Portability refers to the ability of the same
source code to be compiled and run on
different parallel machines. Heterogeneity
refers to portability to “virtual parallel
machines” made up of networks of
machines that are physically quite different.
Interoperability refers to the ability of
different implementations of the same
specification to exchange messages. In this
section we compare PVM and MPI with
respect to these three properties.

Portability is an underappreciated issue. PVM is
considered by many to be highly portable, and in fact
the PVM group has done an excellent job in
providing implementations across a wide range of
platforms, covering most Unix systems and Windows
[24]. But the designers of MPI had to consider
running on systems that were neither; in fact, MPI has
even been used in embedded systems (see
http://www.mc.com). MPI could not assume that any
particular operating system support was available; the

International Journal of Communication Network Security, ISSN: 2231 – 1882, Volume-2, Issue-3, 2014

50

Comparative analysis of PVM and MPI for the development of physical applications in Parallel and Distributed Systems

design of MPI reflects this constraint. Some users
have complained that MPI does not mandate support
for certain Unix features, when in fact features such
as standard input, process creation, and signals are
absent in many important, non-Unix systems.

Support for Heterogeneity is provided in both
specifications. PVM has separate functions to pack
specific data types into buffers; MPI uses basic and
derived data types. The MPI specification does not
mandate heterogeneous support, however; that is up
to the implementation. LAM [2], CHimP [1], and
MPICH [3] are implementations of MPI that can run
on heterogeneous networks of workstations.

Interoperability is outside the scope of the user
program, and entirely up to the implementation.
Some vendor implementations of PVM are neither
heterogeneous nor interoperable with the Oak Ridge
version of PVM. The MPI standard does not mandate
implementation details, and thus MPI
implementations, of which there are many, typically
are not interoperable. Thus, “interoperability” of MPI
matches that of PVM. Versions of the same
implementation (Oak Ridge PVM, MPICH, or LAM)
are interoperable. True interoperability is among
completely different implementations, matched at the
level of the wire protocol. A separate effort (not part
of the MPI Forum) has developed an “interoperability
standard” called IMPI that provides sufficient
standardization for some implementations details so
that implementations conforming to this standard can
exchange messages.

When we compare implementations rather than an
implementation of PVM with the MPI standard, the
gap in this type of functionality narrows. For
example, MPICH [3], rather than MPI, does provide a
way for debuggers like Total view to access to
internal MPICH state on the message queues. Many
users want this information, but it raises an
interesting issue: How does one define a standard for
the internal state of an implementation? For any
implementation this can be done, but different
implementations may have different internal states.
For example, one optimization for communication
has the process issuing an MPI RECV send a
message to the expected source of the message,
allowing the sender to deliver the message directly
into the receiver’s memory [2]. Should this
information be presented to the user? Other
implementation choices might eliminate some queues
altogether or makes it more difficult to find all
pending communication operations; in fact, in the

MPICH implementation, there is no send queue
unless the system has been configured and built to
support the message queue service. By not specifying
a model of the internals of an MPI implementation,
such as defining a “message queue” does, the MPI
standard allows MPI implementations to make
tradeoffs between the performance and functionality
that the users want.

V. CONCLUSION

In this paper we compared the features of the two
systems, PVM and MPI, and pointed out situations
where one is better suited than the other. If an
application is going to be developed and executed on
a single MPP, where every processor is exactly like
every other in capability, resources, software, and
communication speed, then MPI has the advantage of
expected higher communication performance. MPI
has a much richer set of communication functions, so
MPI is favored when an application is structured to
exploit special communication modes not available in
PVM (The most often cited example is the non-
blocking send). In contrast to PVM, MPI is available
on all massively parallel supercomputer. Because
PVM is built around the concept of a virtual machine,
PVM is particularly effective for heterogeneous
applications that exploit specific strengths of
individual machines on a network. The larger the
cluster of hosts or the time of program's execution,
the more important PVM's fault tolerant features
becomes, in this case PVM is considered to be better
than MPI, because of the lack of ability to write fault
tolerant application in MPI. The MP specification
states that the only thing that is guaranteed after an
MPI error is the ability to exit the program.
Programmers should evaluate the functional
requirements and running environment of their
application and choose the system that has the
features they need.

REFERENCES

[1] W. Gropp and E. Lusk. Goals Guiding Design: PVM and
MPI.

[2] I. Foster. Designing and building parallel programs.
Addison-Wesley, 1995. ISBN 0-201- 57594-9,
http://www.mcs.anl.gov/dbpp.

[3] G. A. Geist, J. A. Kohl, and P. M. Papadopoulos. PVM and
MPI: A comparison of features. Calculateurs Paralleles,
8(2), 1996.

[4] G. E. Fagg, A. Bukovsky, and J. J. Dongarra. HARNESS
and fault tolerant MPI. Parallel Computing, 27(11):1479–
1495, Oct. 2001.

International Journal of Communication Network Security, ISSN: 2231 – 1882, Volume-2, Issue-3, 2014

51

	COMPARATIVE ANALYSIS OF PVM AND MPI FOR THE DEVELOPMENT OF PHYSICAL APPLICATIONS IN PARALLEL AND DISTRIBUTED SYSTEMS
	Recommended Citation

	COMPARATIVE ANALYSIS OF PVM AND MPI FOR THE DEVELOPMENT OF PHYSICAL APPLICATIONS IN PARALLEL AND DISTRIBUTED SYSTEMS

