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Abstract. Future missions such as Solar Orbiter (SO), Inter-
Helioprobe, or Solar Probe aim at approaching the Sun closer
than ever before, with on board some high resolution imagers
(HRI) having a subsecond cadence and a pixel area of about
(80 km)2 at the Sun during perihelion. In order to guaran-
tee their scientific success, it is necessary to evaluate if the
photon counts available at these resolution and cadence will
provide a sufficient signal-to-noise ratio (SNR).

For example, if the inhomogeneities in the Quiet Sun
emission prevail at higher resolution, one may hope to lo-
cally have more photon counts than in the case of a uniform
source. It is relevant to quantify how inhomogeneous the
quiet corona will be for a pixel pitch that is about 20 times
smaller than in the case of SoHO/EIT, and 5 times smaller
than TRACE.

We perform a first step in this direction by analyzing and
characterizing the spatial intermittency of Quiet Sun images
thanks to a multifractal analysis. We identify the parameters
that specify the scale-invariance behavior. This identifica-
tion allows next to select a family of multifractal processes,
namely the Compound Poisson Cascades, that can synthesize
artificial images having some of the scale-invariance proper-
ties observed on the recorded images.

The prevalence of self-similarity in Quiet Sun coronal
images makes it relevant to study the ratio between the
SNR present at SoHO/EIT images and in coarsened images.
SoHO/EIT images thus play the role of “high resolution” im-
ages, whereas the “low-resolution” coarsened images are re-
binned so as to simulate a smaller angular resolution and/or
a larger distance to the Sun. For a fixed difference in angu-
lar resolution and in Spacecraft-Sun distance, we determine
the proportion of pixels having a SNR preserved at high res-
olution given a particular increase in effective area. If scale-
invariance continues to prevail at smaller scales, the conclu-

Correspondence to: V. Delouille
(v.delouille@oma.be)

sion reached with SoHO/EIT images can be transposed to the
situation where the resolution is increased from SoHO/EIT to
SO/HRI resolution at perihelion.

Keywords. Solar physics, astrophysics,and astronomy
(Corona and transition region; Ultraviolet emissions; Instru-
ments and techniques)

1 Introduction

Many fine-scale structures in the corona do not seem to be
well resolved by current imaging telescopes. Filamentary
and threaded patterns are observed in coronal loops (e.g. De-
Forest, 2007); in the Quiet Sun (QS), small dynamical events
such as brightenings or blinkers point at unresolved sub-
structures. Having sufficient resolution is also necessary
to assess whether nanoflares occurring in QS may explain
coronal heating (Parker, 1988; Krucker and Benz, 1998; As-
chwanden et al., 2007; Mitra-Kraev and Benz, 2001; Bergh-
mans, 2002). Several studies (Berghmans et al., 1998;
Krucker and Benz, 1998; Aletti et al., 2000) present evidence
in favor of a turbulent mechanism, with individual dissipative
structure far below the instrumental resolution limit.

Scale-invariance has been observed down to the smallest
reachable scales, namely down to the PSF dimensions of to-
day’s highest resolution instruments. This paper studies this
scale-invariance (or self-similary) property in the case of a
SOHO/EIT data set, first by computing the Fourier spectrum,
and next by performing a multifractal analysis. But, should
this property persist to even smaller scales? To answer this
question, we can only rely on current observation extrapola-
tions and on physical theory and modeling. We now briefly
discuss some of those approaches.

A first element stems from the consistency between quan-
tities observed by both EIT and TRACE, albeit at resolutions
differing by a factor five in 1-D (×25 in 2-D). For example,
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Benz and Krucker (2002) show that EIT and TRACE stud-
ies agree about the distribution of energy released by flare-
like events in the Quiet Sun. Power-law distributions fit both
data, and they find similar values for their slopes. Along a
similar line, a Ḧolder analysis in Delouille et al. (2008) ev-
idences a continuity between supra- and intra-pixel scales.
Intra-pixel variability is therein estimated using a one-minute
cadence EIT data set, for which solar rotation induces a dis-
placement (from one image to the next) that is less than the
pixel. To go to smaller scales, note first that regions of strong
magnetic field, such as bright points, exhibit brighter EUV
emission, while regions of weak magnetic field lead to a
darker emission. Hence scale-invariance in the EUV emis-
sion might follow from similar properties in the magnetic
field strength. The tectonics model of Priest et al. (2002)
suggests a highly fragmented photospheric magnetic config-
uration in the quiet network, where the fundamental units
of flux are intense flux tubes having a 100 km diameter. Fi-
nally, much literature has been devoted to the study of flare
distributions, see e.g. Berghmans et al. (1998); Aschwanden
et al. (2000); Vlahos and Georgoulis (2004). Power-law dis-
tributions for e.g. the energy release and volume occupied by
flares might be explained by self-organization and the cas-
cading nature of flare activities. Such statistical theory of
flare activity are physically motivated by the turbulent nature
of the solar corona (Biskamp, 2003; Einaudi et al., 1996)
where the dissipative scale is estimated to be of a few me-
ters (Einaudi and Velli, 1994).

One notices that the above reasoning relies on rather hy-
pothetical guesses, and this is an additional motivation to ac-
tually plan high resolution observations of the QS in coro-
nal lines. We are also aware that the observed intensity in a
given EUV optically thin spectral line entangles the tempera-
ture and the emission measure. The above issue is worsened
by the possible contamination from other lines in the pass-
band, and by the projection effects. It remains nevertheless
of interest to prepare the conceptual tools that will enable the
analysis of better quality data when they come.

Beyond the Fourier spectrum, a multifractal analysis per-
mits to further characterize the spatial scale-invariance, or
more generally the so-called “intermittency” of a stochas-
tic process (Castaing and Dubrulle, 1995; Frisch, 1995; Ar-
neodo et al., 1997; Chainais et al., 1999). It has been
extensively used for the statistical modeling of turbulent
flows (Frisch, 1995), Internet traffic (Feldmann et al., 1998),
natural (Turiel et al., 1998; Chainais, 2007) and meteorolog-
ical images (Roux et al., 2000; Grazzini et al., 2007), as well
as ionospheric indices (Consolini et al., 1996).

In solar physics, studies on the fractal dimension were
achieved for Quiet Sun EUV network (Gallagher et al.,
1998), for the spatial extend of nanoflares events (Aschwan-
den and Parnell, 2002), and for active regions (McAteer et al.,
2005). Lawrence et al. (1995) present a multifractal anal-
ysis of photoelectric images of line-of-sight magnetic fields
in solar active regions and quiet photosphere. They consider

a multiplicative cascade approach in order to infer a scale-
invariant rule for the Ohmic dissipation measure. This rule is
then used to re-estimate with greater accuracy the multifrac-
tal spectrum. Multifractal analysis has been also applied to
the analysis of solar magnetograms (Georgoulis, 2005; Abra-
menko, 2005), and of the temporal variation of the emission
observed in several RHESSI X-ray energy bands (McAteer
et al., 2007).

In this work, we aim at generating synthetic images at EIT
resolution that capture several statistical properties of Quiet
Sun images. To do this with minimum a priori, we propose to
exploit the statistical scale invariance observed in data. We
first perform a multifractal analysis. It yields a set of pa-
rameters, namely the multiscaling exponents, that quantita-
tively describe this scale invariance. Next we aim at finding
a family of stochastic processes that obey the same statisti-
cal properties with the same set of parameters, thus injecting
minimum a priori in the model. The corresponding synthetic
images are exempt of spurious artifacts such as cosmic ray
hits, projection effect, or error sources in the data. This is
the first achievement necessary in the elaboration of a way to
create synthetic images at arbitrary resolution. The analysis
and parameter identification step is essential in order to know
how to extrapolate the properties of EIT images at higher res-
olution. Moreover, our methodology for synthesizing Quiet
Sun EUV images is new: having observed certain proper-
ties on EIT images, the associated parameters are then used
within a multifractal stochastic process that can simulate EIT
images.

There are two main applications of this procedure in so-
lar physics. First, artificial EUV images can be used for
the testing and calibration of automatic feature finder pro-
cedure, see e.g.Gissot and Hochedez (2007). Second, and
most importantly for the purpose of this paper, since QS im-
ages exhibit self-similarity behavior that can be reproduced
with a multifractal stochastic process, it makes sense to study
the relationships between intensities across different scales
of observation. More precisely, we can look at the statistics
of the ratio between intensity values at full resolution and
in a rebinned version of the original images. The conclu-
sion reached here can be transposed to higher resolutions as
long as the scale-invariance continues to prevail. Our study
therefore provides some guidance for radiometric studies re-
lated to future high resolution missions. The latter are much
needed since the spatial resolution of current telescopes pre-
cludes definite conclusion about the fundamental processes
that determine the existence and the underlying physics of
the transition region and of the quiet corona. In the follow-
ing, we are considering in more details the case of High Res-
olution Imagers (HRI) on board Solar Orbiter (SO).

HRIs on board SO will produce at perihelion images hav-
ing a pixel area at the Sun of (80 km)2. Evaluating the loss
in SNR when going from low to high resolution is necessary
in order to guarantee the scientific success of this high res-
olution mission. Indeed, the smaller the area covered by a
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pixel, the lesser the signal, and the fainter and more dynam-
ical the target. Similarly, the higher the cadence, the shorter
the exposure time, and the lesser the signal again.

Considering that the energyE emitted from the Sun
follows a Poisson process, and hence that SNR≤E/

√
E,

SNR2≤E, Hochedez et al. (2001) describe the relationship
between the quality of observations (left hand side) and the
experimental conditions (right hand side) as follows:

SNR2

AsunTExpTime
≤

AeffL

d2
, (1)

whereAsun is the Sun area covered by one pixel,TExpTime is
the exposure time,Aeff is the effective area of the telescope
(in m2), L is the radiance (in W sr−1 m−2), andd is the dis-
tance between the spacecraft and the Sun.

When comparing the situation of EIT with the one fore-
seen for an HRI on board SO, we observe that getting closer
to the Sun provides a factord2=25, but sinceAsun is divided
at the same time from (1800 km)2 (EIT) to (80 km)2 (HRI),
the effective areaAeff needs to be enhanced by a factor of
(1800/80)2/25≃20 or more in order to preserve a SNR for
a uniform source in space. Moreover, if one takes into ac-
count the temporal variability of solar features, this factor
gets even larger: Berghmans et al. (1998) showed that the
typical duration of an event was proportional to its size. If
this argument still holds at a scale of (80 km)2, HRI should
have an exposure time that is(1800/80)2 times less than in
the case of EIT. The effective area should then increase by

a factor
(

1800
80

)4
/25≃104 in order to have a SNR similar to

EIT images.
Our main contribution in this paper is to refine this argu-

ment by taking into account the inhomogeneities present in
the solar corona. Indeed, these might provide an indepen-
dent help in the quest for a sufficient SNR, with subsets of
high-resolution pixels likely to carry a large part of the en-
ergy present at a lower resolution.

Towards quantifying the needed gain inAeff, we first re-
write Eq. (1) in a more general form as

SNR2 ≤
Aeff

d2

∫

TExpTime

∫

Asun

L(s, t)dtds , (2)

which now considers the time dynamics and possible spa-
tial inhomogeneities in the emission process. In this paper,
we consider a fixed exposure time and a fixed effective area,
and we investigate how the spatial distribution of the radi-
ance will affect the SNR in the case of Quiet Sun data. As
mentioned above, the temporal variability is also necessar-
ily non-uniform; the methods presented here will be adapted
in the future to see how this variability affects positively the
SNR in case of a high cadence instrument.

We are interested in the evolution of the quantity

Q =
∫

Asun
L(s)ds

d2
, (3)

with a higher resolution. More precisely, we simulate the
degradation in resolution starting from EIT images using an
appropriate coarsening of the data. Taking the ratio between
the value ofQ obtained at low (coarsened) and high (EIT
original) resolution, we obtain an estimate of the gain in ef-
fective area needed in order to keep at high resolution the
SNR (as defined in Eq. 1) larger or equal to its value at low
resolution.

If the scale-invariance continues to prevail down to a
(80 km) scale, our conclusion about the needed gain inAeff
may be transposed to the situation where the resolution is
increased from EIT to HRI resolution at perihelion.

In future work, we aim at generating images directly at
HRI resolution at perihelion. However, additional difficul-
ties arise in this case because not only must the multifractal
spectrum be respected, but the histogram of rebinned images
must fit the histogram of EIT images as well. Indeed, the
multifractal stochastic model used in this paper to generate
QS images does not constrain the simulated images to have
the same histogram as the real ones. (Both histograms are
however fairly close for images generated at the same scale
of observation as the physical ones.)

This paper is structured as follows. Section 2 describes
the observations considered here with a general overview of
noise sources present in EIT images, followed by a presenta-
tion of the data set used in this paper. In Sect. 3 we first recall
the basics behind wavelet-based multifractal analysis. Next
we present our multifractal analysis of Quiet Sun images and
discuss its limitations. With the set of parameters identified
in Sect. 3, we are able to synthesize Quiet Sun-like images
in Sect. 4. The real and artificial EIT data sets are used in
Sect. 5 to study the effects of the transition from low to high
resolution when taking into account the multifractal behavior
of the observations. We then discuss the implications of our
study for the construction of high-resolution instruments.

2 Observations

We first recall the main sources of errors present in EIT im-
ages. After having described our data set, we discuss the
shape of its histogram and power spectrum.

2.1 Noise in EIT images

Several sources of errors are contaminating the recording of
incident electromagnetic flux in EUV images. In a simpli-
fied description of the process converting electromagnetic
flux into digital numbers, photons first impinge the optical
system. The photon interaction process can be described by
a Poisson distribution, and is most of the time the dominant
source of noise. Second the Point Spread Function (PSF)
acts as a blurring operator, and introduces spatial average of
unresolved features. This is at the origin of the so-called
“spatial noise” discussed in Delouille et al. (2008). Third, a
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512x512

256x256

Fig. 1. Example of a Quiet Sun images seen by EIT in 19.5 nm,
with indication of the squared area taken into account. The mul-
tifractal analysis characterizes the region within the square of size
256×256.

spectral selection is operated on the signal before it reaches
the CCD detector. The latter presents inhomogeneities in its
response from one pixel to the next; these have to be flat-
field corrected, usually using the solar software (ssw) library.
Fourth, when electronics next converts photon counts to dig-
ital numbers some read-out noise is introduced. Finally, note
that SoHO/EIT records the image in a lossless way, whereas
most of the STEREO/SECCHI/EUVI images are recorded
using a lossy compression scheme. Such scheme introduces
artifacts, especially in regions with low photon counts. For
a more detailed description of these types of noise, we refer
to Delouille et al. (2008).

In the following, we consider that the Poisson noise is
dominant, and therefore that SNR2≤E, whereE is the en-
ergy emitted from the Sun. In Sect. 5, we will talk indiffer-
ently about “intensities” and “SNR”.

2.2 Data set description

Our study is based on full-Sun images taken between 2 Jan-
uary and 28 December 1997 by EIT (Delaboudinière et al.,
1995) onboard SoHO in the Fe XII (19.5 nm) line, which
forms at 1.6×106 K. We selected a first set of 1024×1024
full Sun images recorded with at least 5 days parsing, so as
to maximize statistical independence between the images.

These images contain no missing blocks, and are pro-
cessed with theeit_prep procedure of the solar software
(ssw) library. Further, in order to limit the shortening effect
at the limb to roughly 15%, we do not consider the full Sun
images but rather disks� of a half solar radius wide centered
on the Sun, see Fig. 1.

Next, we want to exclude disks containing active regions.
To do so, we keep only disks with intensitiesI such that
the probabilityP(I>U)≤10−4 for a given thresholdU , de-
fined as the quantile such thatP(I>U)=10% for an image
containing one active region. We obtain a set of 54 disks
centered on the Sun, all having the same field of view. Note
that we did not attempt to erase cosmic rays, and hence no
interpolation or denoising method has been used.

To perform the wavelet-based multifractal analysis in
Sect. 3 below, we consider collectively the 54 squared im-
ages of size 512×512 containing the solar disks of 1/2 ra-
dius wide. In fact, in order to deal with border effect in the
wavelet analysis, we consider only the wavelet coefficients
associated to the squared image of size 256×256. In other
words, the multifractal analysis is performed on the 512×512
images, but we keep only results exempt of any border effect,
hence in the end, it is the squared image of size 256×256
lying within the disk of a half radius wide which is charac-
terized by our analysis, see Fig. 1.

Remark. We considered EIT rather than TRACE images for the
following reasons. EIT images have an always constant exposure
time, and the EIT archive has a regular sampling in time and space.
It allows to collect images having the same Field of View, and to
limit the shortening effect at the limb. Moreover, the compression
algorithm of the TRACE images would introduce other artifacts in
the analysis.

2.3 Histogram

The solar disks data set described above contains a sample of
5.8×106 pixels. The resulting histogram on Fig. 2a shows a
highly non-Gaussian distribution, with the logarithmic repre-
sentation exhibiting a straight line for large intensities indica-
tive of a power-law behavior. The corresponding power-law
index is estimated to 4.9, which is in good agreement with
Aletti et al. (2000).

2.4 Spatial power spectrum

The Fourier spectral density of Quiet Sun images gives in-
dication about the scale invariance nature of the process.
Individual power spectra are computed for each of the 54
images of size 256×256. We check the validity of the
time-invariance and isotropic assumption and next we com-
pute the omnidirectional power spectrum by averaging over
all wavenumbersk=(k1, k2) having a same norm||k||, see
Fig. 2b. There, the Fourier wavenumbersk are expressed in
rad/Mm, where we consider that one pixel corresponds to a
scale size of 1.8 Mm on the Sun.

The azimuthally integrated spectrum decreases for Fourier
wavenumbersk<1.1 rad/Mm, and becomes constant there-
after. This upper bound corresponds to scale sizes of
5700 km and is close to the Nyquist number equal to 2∗G,
whereG is the linear pixel size (G≃1.8 Mm on the solar sur-
face for EIT).
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Fig. 2. (a) Histogram of original data set in log-log scale, together with a lognormal distribution having the same mean and variance, and
the histogram of a set of 54 artificial images generated by a multiplicative cascade model.(b) Omnidirectional power spectrum. For Fourier
wavenumbers 0.03<||k||<1.12 rad/Mm, the spectrum exhibits a power law with index equal to−2.8 (estimation using least squares).

For almost two orders of magnitudes (between 0.03 and
1.12 rad/Mm), the spectrum follows a power law with index
equal to−2.8. This value is close to the−2.7 index value
found by Benz et al. (1997) for Yokhoh/SXT images showing
quiet disc corona, and is similar to the index value of−3 re-
ported by Gomez et al. (1993) for active regions observed by
the Normal Incidence X-ray telescope (Golub et al., 1990).
On a three hours data set of EIT 19.5 nm images, Berghmans
et al. (1998) found a lower value of−2.52.

The power law density exhibited by the omnidirectional
power spectrum is an indicator of the scale invariance, or
self-similarity property of Quiet Sun images in a certain
range of scale. For high wavenumbers the Fourier spectrum
represents mostly white noise, hence the flattening observed
between 1.12 rad/Mm≤k≤2.5 rad/Mm in Fig. 2.

The next section investigates more deeply this self-
similarity property through a wavelet-based multifractal
analysis.

3 Wavelet based multifractal analysis

3.1 Wavelet analysis

From previous section, we can reasonably argue that the
(second order) power spectrum obeys a power law behav-
ior. Moreover, the scale invariance property is usually con-
nected to some spatially intermittent behavior. Thus, a re-
fined analysis of the scale invariant behavior of Quiet Sun
images requires the study of higher order quantities based on
quantities that are spatially localized, which is not the case of
Fourier modes. We use here the discrete wavelet transform
(DWT) coefficients derived from an orthonormal wavelet ba-
sis (Daubechies, 1992; Mallat, 1998).

We consider the 54 EIT images data set described in
Sect. 2.2. Each of these images is decomposed using the
tensor product algorithm, which applies one-dimensional (1-
D) DWT on the column of an image, followed by another
1-D transform on the rows of the resulting coefficient ma-
trices. We thereby obtain 3 types of detail coefficients,
that give, respectively, information about vertical, horizon-
tal and diagonal variations in the image. The 1-D filter is
the minimal phase Daubechies filter with 2 vanishing mo-
ments. It was computed with the “Rice Wavelet toolbox”
(http://www-dsp.rice.edu/software/rwt.shtml).

Figure 3 shows the histograms of the corresponding 2-D
wavelet coefficients at different scales. Note that the hori-
zontal, vertical, diagonal coefficients are considered all to-
gether. There, the probability density functions of wavelet
coefficients evolve from nearly Gaussian at larger scalesa

(a=2j=32, j=5) to far from Gaussian at smaller scales
(a=1). This observation combined to the power law spec-
trum illustrates the spatial intermittency, or patchiness, of the
Quiet Sun EUV images. Similarly, Aletti et al. (2000) no-
ticed that at smaller scales one observes stronger departures
from Gaussian statistics.

3.2 Principle of multifractal analysis

The purpose of multifractal analysis is twofold. First, when
dealing with functions or realizations of stochastic processes,
it can be used to characterize the relative importance of sin-
gularities in the data. This is quantitatively done by identify-
ing the so-called multifractal (or singularity) spectrumD(h)

which can be roughly interpreted as a distribution of singu-
larities characterized by the so-called Hölder exponenth, see
Appendix A. The closerh to zero, the stronger the singu-
larity. Second, when dealing with scale invariant stochastic

www.ann-geophys.net/26/3169/2008/ Ann. Geophys., 26, 3169–3184, 2008
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Fig. 3. Histograms of 2-D discrete wavelet coefficients computed
from 54 Quiet Sun images taken by EIT at 19.5 nm during the year
1997.

processes in particular, the multifractal analysis can accu-
rately characterize the statistical structure of the process.
Indeed, it appears that the singular behavior (described by
D(h)) of realizations of a self-similar process can generally
be connected to the scaling behavior of the so-called structure
functionsS(q, a). A possible definition of these structure
functions is based on the use of a DWT. ThenSDWT (q, j) is
computed as the empirical moment of orderq of the wavelet
coefficient modulus (Abry et al., 2004; Jaffard, 1997; Riedi,
2003):

SDWT(q, j) =
1

nj

nj
∑

l=1

|d(j, l)|q ∼ 2jζ(q) (4)

where nj is the number of wavelet coefficientsd(j, l) at
scalea=2j . For a multifractal process, theSDWT(q, j) obey
a powerlaw scaling behaviorSDWT(q, j)∼aζ(q)∼2jζ(q), at
least for some range of scalesa and ordersq ’s. For a large
number of self-similar processes, it can be established that
the multiscaling exponentsζ(q) and the multifractal spec-
trumD(h) are linked through a Legendre transform, see Ap-
pendix A. The functionζ(q) is a signature of the scale in-
variance property of the process under study. For a stochas-
tic multifractal process, they contain information on the way
the distributions of wavelet coefficients change from larger
to smaller scales. This is the reason why we rather talk
of “multiscaling” (Castaing and Dubrulle, 1995; Chainais,
2007). The set of exponentsζ(q) is used as a set of param-
eters in the model described in Sect. 4. In our application,
SDWT(q, j) is obtained by summing over the wavelet coef-
ficients of the 54 images that compose our data set. This
method is fast and efficient for positive values ofq but be-
comes numerically unstable forq<0 since the most probable

value of thed(j, l) is zero. Although in principle it is better
to knowζ(q) for all values ofq, in our case values ofq<0 do
not bring fundamental information. The knowledge ofζ(q)

for q≥0 is sufficiently informative to constrain our model in
Sect. 4.

3.3 Multifractal analysis of Quiet Sun images

We estimated the structure functionSDWT(q, j) as in Eq. (4)
using the 54 Quiet Sun images that compose our data set.
Figure 4a shows the scaling behavior ofSDWT(q, ·) for some
values ofq. A linear behavior of log2 SDWT(q, j) as a func-
tion of j= log2 a is observed for 2≤j≤5. This is indicative
of a scale-invariant behavior of the set of EIT images in this
range of scales.

The exponentsζ(q) are estimated from a linear regression
performed on log2 SDWT(q, j) in the scaling range 2≤j≤5.
Figure 4b shows the set of the resultingζ(q) estimates for
−1≤q≤5. Note that errorbars are computed as the empirical
standard deviation of the set of 54 estimates. As remarked
above, estimates for negative values ofq are numerically un-
stable; this yields a large variability that results in wide error
bars. Error bars forq≥3 becomes important as well. We will
discuss this point in Sect. 3.4.

We observe a flattening of log2 SDWT(q, j) at small scales
(for j=1, j=2). It may be due to the PSF that is larger than
the pixel size, or to the fact that the wavelet coefficients cap-
ture mostly noise at the finest scale. It is interesting to note
another flattening of the curves forj≥5 (and even a maxi-
mum forSDWT(3, j)). There, scale invariance breaks down
and we observe a characteristic scale of approximately 64
pixel wide (115 Mm on the Sun). Typically, such character-
istic scale appearing in a structure function is indicative of
the scale of injection of energy in the turbulent flows. In our
case, it is compatible with the order of magnitude of the size
of super-granules, an important structure that governs the tur-
bulence in the corona.

In Sect. 5 we will compare intensities between EIT and
rebinned-EIT images. Our aim is to draw conclusions that
will remain valid as long as the scale-invariance observed on
EIT images continues to prevail at EIT sub-pixel scales. As
such, we must limit the amount of coarsening so as to stay
within the scale-invariance range observed on EIT images.
With the characteristic scale appearing on Fig. 4a, this means
that the rebin must be done on blocks of size smaller than
32×32.

3.4 Validity and limitations of multifractal analysis

When considering estimates of moments of higher orders,
one may wonder about 1) their existence and 2) their preci-
sion. We examine hereafter two arguments which show that
the ζ(q) estimated from Quiet Sun images must be consid-
ered differently ifq≤2.25 orq≥2.25.
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The first argument (Dudok de Wit, 2004) is based on the
analysis of the integrand of the theoretical quantity

ST
DWT(q, j) =

∫ ∞

0
p(yj )y

q
j dyj (5)

whereyj=|dj,·| denotes the set of wavelet coefficient modu-
lus at scalej , andp(yj ) is their probability density function
(pdf). ThenSDWT in (4) is viewed as an empirical estimate
of the “true” quantityST

DWT. Dudok de Wit (2004) indicates
how to estimate the maximal order of moment,qmax, such
that the integral in (5) begins to diverge. When applied to
our 54 EIT images (only the centered parts of size 256×256),
the method givesqmax≃2 for the first two finest scales, and
qmax≃1 for the last three coarse scales.

Note that the test proposed in Dudok de Wit (2004) is
not a proof that the moment estimates do not exist for
q>qmax, but rather an indication that the variance of these
estimates is large. One can still numerically estimate the
structure functionsSDWT(q, j) for q≥2 and get some in-
formation from its scaling behavior. Indeed, theoretical re-
sults on multifractal analysis (Barral and Mandelbrot, 2002)
show that the multifractal formalism (see Appendix A) re-
mains valid forh∗

+≤h≤h∗
− such thatD(h)≥0 only, i.e. for

q∗
−≤q≤q∗

+. In two dimensions,q∗
+ is found by solving the

equation;ζ(q)=2+qζ ′(q), whereζ ′(q) denotes the deriva-
tive of ζ(q). Moreover, forq≥q∗

+, one observes the lin-
ear behaviorζ(q)=2+qζ ′(q∗

+) described in Lashermes et al.
(2004).

Since our aim is to propose a multifractal model of Quiet
Sun images, this model must obey the same linearization ef-
fect as the EIT images, hence the importance of estimating
q∗
+. The arguments in Dudok de Wit (2004) and in Lash-

ermes et al. (2004) are consistent in showing that a lack of
statistics (for largeq) will induce a growing variance of the
estimate, but that the potential bias will remain limited. To
summarize, we will perform a multifractal analysis of Quiet
Sun images for 0≤q≤5 because our estimates are numeri-
cally unstable forq<0, and because we need to identify the
critical orderq∗

+. For Quiet Sun images, we obtain the value
of q∗

+≃2.25.

4 Synthesis of Quiet Sun-like images

4.1 Physical interpretation of multiscaling exponents

When considering the data as a multifractal field, it is usually
seen as based on some underlying positive multifractal scalar
field. For instance, let us recall that the Kolmogorov 1962
(K62) theory of turbulence (Kolmogorov, 1962) proposes to
describe the statistics of the velocity increments at scaler by
〈|δrv|q〉∼〈εq

r 〉rq/3 where〈εr 〉 stands for the locally averaged
energy dissipation at scaler. Then, Kolmogorov postulates
that the dissipation is intermittent and obeys a scale invari-
ance law so that〈εq

r 〉∼rτ(q). With this definition,τ(0)=0.

Moreover, in an homogeneous system, the spatial mean at
scaler, 〈εr 〉, does not depend onr, and henceτ(1)=0. As
a consequence, K62 theory predicts that〈|δrv|q〉∼rq/3+τ(q).
The link between the scaling behavior of the dissipationεr

and that of the velocity field is expressed in terms of the ve-
locity incrementsδrv. Thus, it suggests to look at the ve-
locity field itself as a fractionally integrated version of or-
der H=1/3 of the dissipation field. In the Fourier domain,
this translates into a 1/‖k‖H filtering (with H=1/3 in turbu-
lence). From a mathematical point of view, the dissipation
field would be modeled by the density of a multifractal mea-
sure (or by a probability density function of some distribu-
tion).

In Fig. 4b we see that for the intensity of Quiet Sun images
we getζ(1)=0.55±0.06. This indicates that the underlying
signal is rather similar to the velocity field than to the dis-
sipation field above. Therefore, the intensity field of Quiet
Sun images cannot be directly modeled by the density of
some multifractal measure while these measures are the eas-
iest multifractal objects to built and simulate. To overcome
this apparent difficulty, we propose to model EIT images by a
(fractionally) integrated version of some multifractal density
characterized by a set of multifractal exponentsτ(q). The
multiscaling exponents of the resulting intensity field will be
such that

ζ(q) = qH + τ(q) , (6)

whereH=ζ(1) represents the “fractional order” of the inte-
gration process. Fractional integration here loosely means a
1/‖k‖H low-pass filtering, wherek is the Fourier frequency.

4.2 Fractionally integrated Compound Poisson cascades

Multifractal measures are typically generated by means of a
multiplicative cascade process. A measure is initially dis-
tributed uniformly over a set. An iterative division of the
measure among subsets, and next sub-subsets is then per-
formed up to infinity. The division is done according to
a scale invariant allocation rule, which in the most inter-
esting examples is probabilistic. Several authors have in-
troduced precise definitions of multifractal measures in one
dimension (Schmitt and Marsan, 2001; Barral and Man-
delbrot, 2002; Muzy and Bacry, 2002; Bacry and Muzy,
2003; Chainais et al., 2003, 2005; Schmitt, 2003), and re-
cently in dimensionD≥2 (Chainais, 2006, 2007; Schmitt
and Chainais, 2007) for image modeling purpose mainly. An
important subset of the family of multiplicative cascade pro-
cesses is that of Compound Poisson Cascades (CPC). CPC
were originally introduced by Barral and Mandelbrot (2002).
They provide us with a model to generate multifractal densi-
ties with prescribed multiscaling exponentsτ(q), and more-
over their numerical synthesis is easy. CPC allows to gen-
erate the necessary underlying multifractal density evoked
above. Their role with respect to the intensity in EIT im-
ages is equivalent to the role of the dissipation fieldε with
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Fig. 4. (a) Structure function (q=−0.5, 1, 2, and 3) estimated from DWT of Quiet Sun images in 1997.(b) Exponentsζ(q) obtained from
the DWT structure functions, for the original Quiet Sun images, and for simulated images using Compound Poisson Cascades(c) Exponents
τ(q) deduced fromζ(q) by τ(q)=ζ(q)−qζ(1).

respect to velocity increments in K62 theory of turbulence.
See Appendix B for a more detailed presentation of Com-
pound Poisson Cascades and their numerical synthesis.

The main ingredient that controls the multifractal expo-
nents τ(q) of a CPC is the distribution of the so-called
multipliers denoted byW , see Sect. 4.3 and Appendix B.
Indeed, once the law of theW is determined, one has
τ(q)=q(IEW−1)+1−IEW q (IE denotes mathematical expec-
tation) forq∗

−≤q≤q∗
+ (see Sect. 3.4 and Appendix B). As a

consequence, the main thrust here is to propose a modeling
of Quiet Sun images by fractionally integrated Compound
Poisson Cascades. In practice the fractional integration cor-
responds to a 1/‖k‖H filtering which is carried out in the
Fourier space thanks to a fast Fourier transform and by using
a 1/‖k‖H frequential response that is truncated near the ori-
gin k=0 (since it is not defined at this point). We have chosen
to impose a saturation at the value associated to the smallest
available discretized frequency.This low-pass filter precisely
modifies the multifractal exponents so that givenτ(q) one
gets a multifractal intensity-like field with multifractal expo-
nents

ζCPC(q) =
{

qH + τ(q) for 0 ≤ q ≤ q∗
+

2 + qζ ′(q∗
+) for q ≥ q∗

+ ,
(7)

whereζ ′ denotes the derivative ofζ . The next section ex-
plains how to optimize the fit of a CPC stochastic process to
the modeling of Quiet Sun images.

4.3 Model identification

The model identification concerns two quantities: the frac-
tional orderH of integration, and the multiscaling exponents
τ(q) in Eq. (7). The parameterH describes the linear trends
of ζ(q). The functionτ(q) is a non linear concave function
obeyingτ(0)=τ(1)=0. It controls the multifractal behav-
ior of the final process. As a consequence, one expects that
H=ζ(1) so that we will use the estimatedζ(1) as an estimate

of H . We getH=0.55±0.06. Next,τ(q) is estimated from
the relationτ(q)=ζ(q)−qζ(1).

We studied the adequacy of several compound Poisson
cascade models to our experimental data. The best fit was
obtained with a model such thatW=((1+T )1/T u)T whereu

is uniformly distributed in[0, 1], andT >0. Such a model is
characterized by

τCPC(q) = 1 −
(1 + T )q

(1 + qT )
(for 0 ≤ q ≤ q∗

+) (8)

with T =0.85 (see Chainais, 2006, 2007, for a detailed pre-
sentation of available models). The existence of an upper
boundq∗

+ originates from the linearization effect described
in Lashermes et al. (2004), cf. Sect. 3.4. Therefore, one ex-
pectsζ(q) to behave as

ζCPC(q) =







qH + 1 −
(1 + T )q

(1 + qT )
for 0 ≤ q ≤ q∗

+,

2 + qζ ′(q∗
+) for q ≥ q∗

+,

(9)

where the best fit is obtained withq∗
+≃2.25 andT =0.85.

The estimates obtained from the multifractal analysis of 54
realizations are shown on Fig. 4b (black circles): they are
quite consistent with the theoretical values, except forq≤0
that we do not consider here because of numerical instability.

4.4 Validation of the model

Once we have identified the parameters of the model de-
scribed above, we can numerically synthesize as many re-
alizations as needed, at any desired resolution. To test the
validity of our model, we consider several indicators: the ex-
ponentsζ(q) andτ(q), the Fourier spectrum, the histogram,
and the visual aspect of synthetic images.

First, we generate 54 independent realizations of 512×512
model images, and we estimate the exponentsζ(q) andτ(q).
We then compare these estimates with the values ofζ(q) and
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τ(q) obtained in Sect. 3.3, Fig. 4b–c on 54 EIT Quiet Sun
images. Figure 4 shows that estimates from CPC model im-
ages are nearly superimposed onto estimates from Quiet Sun
images.

Second, note that by construction, the Fourier spec-
trum of the 2-D multifractal density underlying our syn-
thetic image process is∼1/k2+τ(2) whereτ(2)<0 so that
2+τ(2)<2 (Chainais, 2007). As a consequence, the spec-
trum of our fractionally integrated model is∼1/k2+τ(2)+2H .
Considering all together the 54 simulated images of size
512×512, the slope of their omnidirectional Fourier spec-
trum is equal to−2.8 which is identical to the value of the
slope computed on the EIT data set.

Third, we compare in Fig. 2a the histograms of fractionally
integrated compound Poisson cascades, of EIT images, and
of a lognormal fit on the EIT data set. The three histograms
have the same mean and variance, and are computed on the
same number of realizations.

Both EIT and fractionally integrated CPC histograms ex-
hibit a slow decrease for high intensity values, albeit with a
different slope. The CPC process attributes too much weight
to small values, and not enough to large values, while the
bulk of the distribution is fairly similar in both cases. Fit-
ting 19.5 nm EIT intensities with a single distribution has
been proved difficult, see e.g. Aletti et al. (2000). Ideally we
should constrain the histogram of our simulated CPC images
to be the same as those of EIT images. However building
such a stochastic process with prescribed multifractal spec-
trum and histogram is an intricate problem.

Indeed, multifractal properties can be interpreted as joint
properties on the histograms of the image seen at different
resolutions. However, not any distribution of probability is
compatible with some given multifractal properties. Trying
to naively impose such an histogram at some given resolution
in the model (by simply rescaling the data) disturbs and even
kills the multifractal properties. While it is easy to adapt the
histogram of an image to some desired shape, it is much more
difficult to impose scale invariance properties. In the present
work, we are particularly interested in the extrapolation of
the properties of images at smaller resolution. Therefore we
have chosen to focus on the evolution of the probability den-
sity functions through the scale rather than on the specifica-
tion of the histogram at some particular scale. In Sect. 6, we
outline some avenues for succeeding in preserving both the
histogram and the multifractal spectrum.

Finally, Fig. 5 allows to compare visually an EIT image to-
gether with a realization from a fractionally integrated CPC.
The visual aspect is particularly sensitive to high intensity
values. Note that Fig. 5b was obtained directly from our syn-
thesis model without any post-processing of the image.

Remark. Figure 4 represents both theζ(q) exponents and theτ(q)

exponents (where the linear trend of theζ(q) has been removed)
to make comparisons more discriminating. Error bars reflect the
empirical standard deviation of the set of 54 estimates. They are

not computed as an estimate of the variance of the estimator for one
single image.

In the previous sections, we studied the scale-invariance
properties of QS images, and we proposed a stochastic mod-
eling of these images based on compound Poisson cascades.
Having evaluated the validity of our model with different in-
dicators, it appears that the multifractal modeling of QS im-
ages can be used as a benchmark when comparing intensities
at different scales of observations. Such comparison is pre-
cisely the aim of the next section.

5 How many pixels from HRI will have a good SNR?

Two successive increases in resolution are taking place when
comparing EIT at the Lagrange pointL1 and HRI at perihe-
lion: the first one is due to an enhanced pixel angular resolu-
tion, the second is due to a smaller distance to the Sun. One
needs to answer the question: “what proportion of radiant
intensity remains available per pixel after such a magnifica-
tion?”

Equation (2) gives us information about the SNR avail-
able given some experimental conditions, and it is straight-
forward to deduce from this equation the radiant intensity
for a uniform source (Sect. 5.1), and for a point-like source
(Sect. 5.2). However, the quiet corona does not behave as
a uniform source, nor as a collection of infinitely localized
sources.

Instead, we saw in Sect. 3 that Quiet Sun images exhibit
multifractal properties. Therefore, they are highly irregular
and can be seen as an intricate superposition of singulari-
ties with finite Ḧolder exponent. This situation is interme-
diate between a uniform and a dirac signal and we show in
Sect. 5.3 what it implies in terms of quality of the observa-
tions at high resolution.

We now introduce some notations. LetL(s) be the radi-
ance emitted from an elementary surface of the Sunds, and
let Asun be the area at the Sun corresponding to one pixel.
The radiant intensity received by one pixel can be computed
asP=

∫

ASun
L(s)ds. Recall that we are interested in the evo-

lution of Q
.=P/d2, cf. Eq. (3) (the sign

.= means “by defini-
tion”). In this section, the subscriptLR (resp.HR) denotes a
quantity at low (resp. high) resolution. Moreover, we assume
that the PSF of the instrument adapts exactly to the decrease
in pixel size.

5.1 Uniform distribution of intensity

When the angular resolution is increased by a factorN , Asun
is divided by a factorN2, and hence

PHR =
∫

Asun/N2
L(s)ds =

PLR

N2
. (10)

Suppose next that the distanced and the effective areaAeff
stay constant. The SNR of the high resolution telescope is
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(a) (b)

Fig. 5. Examples of 512×512 images of(a) Quiet Sun,(b) a fractionally integrated compound Poisson cascade.

penalized by a factorN since

SNR2
HR =

SNR2
LR

N2

Consider now a telescope with a given resolution that gets
closer to the Sun. As the distanced decreases, so does the
area sustained by one pixel, henceAsundecreases in the same
proportion. The radiance being independent on the distance,
the SNR of a uniform source does not change as long asAeff
stays the same.

5.2 Point-like source

For a constant distanced, an angular resolution increased by
a factorN , and a signal containing one point-like structure,
if both the low and high-resolution pixel contains the same
diracδ located ats0, we obtain:

PHR =
∫

Asun/N2
L(s)δ(s − s0)ds = L(s0) , (11)

which is invariant with respect to the factorN , hence
SNRLR=SNRHR.

If now a given telescope gets closer to the Sun, a pixel that
contains a dirac ats0 will receive

Q =
L(s0)

d2

and hence the SNR increases whend decreases.
Table 1 summarizes these well-known situations. Note

that the study of the temporal variability would produce an
equivalent table, showing the difference between a continu-
ous, regular evolution and a highly intermittent one. Table 1
suggests that 1) observations will always get better when get-
ting closer, and 2) regions where the source is uniform will
not benefit from an increase in resolution (SNR will be pe-
nalized by a 1/N factor), but irregular source regions will
benefit.

5.3 Multifractal signal

We use our data set of 54 images of Quiet sun described
in Sect. 2.2 as well as 54 images of size 512×512 simu-
lated with the fractionally integrated CPC process detailed
in Sect. 4. For all these images we keep only the central part
of size 500×500 so as to ease the computations below.

Our aim is to determine the proportion of pixels having at
high resolution a SNR larger or equal to the SNR available
at low resolution, and this for a given increase in effective
areaAeff. These pixels will be qualified as “SNR-preserved”.
Recall from Eqs. (2–3) that

SNR2 ≤ Aeff
P

d2
.= AeffQ , (12)

where P is the radiant intensity. The inequality
Aeff,HRQHR≥Aeff,LRQLR is verified as soon as

GAeff
.=

Aeff,HR

Aeff,LR

≥
QLR

QHR

, (13)

whereGAeff denotes the gain in effective area. Since the so-
lar corona is not homogenous, Eq. (13) is pixel-dependent.
QHR is given by the intensity in EIT images (real or arti-
ficial). In order to obtainQLR, we start from these images
and we derive an appropriate rebinned version that simulates
a telescope having a smaller angular resolution, or a space-
craft located at a larger distance from the Sun. Naturally, the
transition from high to low resolution must match the evolu-
tion summarized in Table 1.

The study of the ratioQLR/QHR (and hence of a
lower bound forGAeff) finds its justification under the self-
similarity assumption: if the scale-invariance observed on
EIT images continues to prevail at sub-pixel scales, the ratio
GAeff will have a similar distribution as soon as the difference
in resolution considered is kept fixed.
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Let Ih denote a high-resolution image. We term the pixel
in this image micro-pixel. As the angular resolution de-
creases by a factorM, a low resolution imageIl is created,
for which each pixel, called macro-pixel, containsM2 micro-
pixels fromIh. We assume that the macro-pixels are disjoint.
We analyze what happens with 1) a change in angular reso-
lution 2) a change in distance to the Sun 3) a combination of
both effects.

5.3.1 Change in resolution

From Eq. (12), we see that ifd and Aeff are constant, a
change in angular resolution will impact the SNR through
the radiant intensityP only. SinceP is proportional to the
area observed on the Sun, the total intensity observed on a
given area at the Sun must be preserved.

We start from an image (real or simulated) at EIT res-
olution, that stands as “high-resolution” image. We then
construct a low-resolution image by rebining blocks of size
N×N such that the intensity in a macro-pixel is equal to the
sum ofN2 corresponding micro-pixels

A magnificationN=5 corresponds to the change in pixel
angular size between EIT and HRI or TRACE; indeed EIT
has a pixel angular size of 2.6 arcsec, whereas the one of
HRI and TRACE is of 0.5 arcsec. We are interested in the
increase in effective area needed to preserve the SNR at high
resolution. The ratioGAeff between the intensity at low reso-
lution (in a macro-pixel) and at high resolution (micro-pixel)
precisely gives this wanted factor coefficient forAeff.

Figure 6 represents, for a given value of the gain in effec-
tive areaGAeff, the percentage of pixels at high resolution
that are SNR-preserved. The dotted lines correspond to the
case where only the factorN changes.

If a new telescope hasN=5 better a resolution and 15
times larger effective area (GAeff=15), then the simulation
on EIT data shows that out of 1024×1024 pixels about 1000
pixels are SNR-preserved; this number becomes 300 when
the artificial CPC images are used. WhenGAeff=25 almost
all pixels keep the same SNR as in the low-resolution image.

Note that in the EIT data set there were obvious cosmic
rays, that produce a value ofGAeff as small as 1.4. The
graphs in Figs. 6 and 7 represent the results without these
outliers.

5.3.2 Change in distance

From Sects. 5.1 and 5.2 we know that when getting closer
to the Sun, the SNR increases in case of dirac-like signals,
and remains constant for a flat source. In other words, the
mean value ofQ over a given area of the Sun stays constant
as the distance Spacecraft-Sun changes. This means that for
some pixels the ratioGAeff between intensity at low (far from
the Sun) and at high (closer to the Sun) resolution may be
smaller than one, i.e. we may keep constant or even decrease
the effective area, and still have SNRHR≥SNRLR.

Table 1. Evolution of the SNR when the distanced to the objective
changes, and when the angular resolutionθ increases by a factorN ,
for a uniform source, and a dirac-like source.

SNR uniform source dirac source

d changes, constant ∝1/d
θ constant

θ changes, ∝1/N constant
d constant

Let α= d1
d2

, whered1 (resp.d2) is the distance “far from
the Sun” (resp. “close to the Sun”). Solar Orbiter will get
as close as 0.22 AU at perihelion; this is about five times
closer to the Sun than current telescopes, we therefore illus-
trate with Fig. 7 the case whereα=5. Note that a closer
proximity to the Sun may imply to build a telescope with a
smaller pupil diameter, and hence a reduced radiant intensity.
However, we do not discuss this aspect here.

5.3.3 Change in distance and in resolution

We now simulate a change in distance to the Sun and in reso-
lution by two successive rebins. With the first rebin on blocks
of size 5×5, the average pixel intensity is preserved ( mod-
eling thus a larger distance to the Sun). In a second rebin of
the same size 5×5, the sum intensity is kept constant within
a pixel (simulating a coarser-resolution telescope). Note that
a rebin in one dimension of a factor 25 still falls within the
scale invariance range shown in Fig. 4. Starting from images
of size 500×500, low-resolution images of size 20×20 are
constructed.

If we bring the new telescope (for whichN=5, GAeff=15)
five times closer to the Sun, then according to the simulations
using EIT images, 1.6% of the pixels are SNR-preserved.
This figure becomes 0.9% when artificial data based on CPC
model are used. Figures 6b and 7 show that for a givenGAeff,
the proportion of pixels that are SNR-preserved is underesti-
mated by artificial CPC images. This follows from the fact
that the CPC model does not put enough weight on large
intensity values (often featuring bright points, i.e. dirac-like
structure) as compared to EIT images, cf. the discrepancy ob-
served between EIT and CPC histograms for high intensity
values.

5.4 Implications for new high resolution telescope

Our study has several implications for the conceptions of
high resolution EUV telescope.

In a very high-resolution EUV telescope with fixed expo-
sure time, pixels with low photon counts may contain more
noise than signal. In this case, one would need compression
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Fig. 6. Simulation of the proportion of pixels in an HRI instrument at perihelion that will conserve the same SNR as in the case of EIT at L1
(we term these “SNR-preserved pixels”) given a factor of increase of the effective area in(a) linear and(b) semi-logarithmic representation.
Both EIT data (Real) and synthetic data (CPC) are represented in case of 1) a better angular resolution (N=5), 2) a better angular resolution
and a smaller distance (N=5, α=5). For a gain in effective area equal to 15, 1.6% of the pixels are SNR-preserved on real EIT data when
N=5, α=5. This figure becomes 0.2% whenGAeff=10 only.
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Fig. 7. Proportion of pixels having a similar SNR at low resolu-
tion (far from the Sun) and at high resolution (α=5 times closer to
the Sun) for a given change in effective area. When getting closer
to the Sun, one may have a reduced effective area and still have a
proportion of pixels with preserved SNR.

algorithms that adapt to the level of signals, viz. that com-
press more where the SNR is low.

In order to decrease the readout noise in the image, one
possibility is to allow for multiple non-destructive readouts
(NDR) and combine successive NDR values (Finger et al.,
2000).

To have a larger dynamical range, one could allow for ex-
posure timesT that vary according to the photon flux in each
pixel: the less the photon fluxφ(t), the longerT so that
∫

T
φ(t)dt would ideally be constant for all pixels. The map

of these exposure timesT would be the output of such a de-
vice (Bhm and Lule, 1998).

To motivate such options the radiometric models will eval-
uate for a given signal the photon counts expected. It is
important, especially for high resolution EUV telescopes to
have an accurate model; and towards this goal it is necessary
to take into account the multifractal nature of the data. In
this respect, the stochastic model proposed here provides a
natural benchmark and a correction factor.

In the 17.1 nm passband, the effective area of EIT is of
the order 10−2 cm2. New technologies will allow an HRI
instrument to have an effective area close to 10−1 cm2, so
that between HRI and EIT we would have a gain in effective
area equal to ten approximately. Our study shows that with
GAeff=10 about 0.2% of the pixels in a HRI QS image will
have a SNR similar to what is observed on EIT images. If
GAeff is increased up to 15, 1.6% of the pixels will be SNR-
preserved, i.e. about eight times more pixels will have an ex-
cellent SNR. This highlights that a relatively small increase
in instrumental performance may have a large impact on the
quality of the data.

Ann. Geophys., 26, 3169–3184, 2008 www.ann-geophys.net/26/3169/2008/



V. Delouille et al.: High resolution coronal imaging 3181

6 Conclusion and future prospects

Amongst the many challenges faced by high resolution mis-
sions, the precise estimation of photon counts is of funda-
mental importance. We showed in this paper that an accurate
radiometric model must take into account the spatial inho-
mogeneities present in the source.

We first showed how to characterize these spatial inhomo-
geneities through a multifracal analysis of Quiet Sun images:
We computed the multifractal spectrum and derived a set of
parameters, namely the multiscaling exponents, that quanti-
tatively describe the scale invariance properties. We then pro-
posed a family of stochastic processes that obey the same sta-
tistical property with the same set of parameters, thus inject-
ing minimum a priori in the model. This establishes firmly
the spatial scale-invariance structure of EIT images.

Next, we compared a set of images (real and simulated via
the above stochastic process) at EIT-resolution with an ap-
propriate rebin of these images. The rebin is done so as to
simulate a larger angular resolution, and a larger distance to
the Sun. By comparing the intensity values at low and high
resolutions, it is possible to estimate the needed gain in ef-
fective area such that the SNR at high and low resolutions
remains the same. If the scale-invariance observed at supra-
pixel scales on EIT images continues to prevail at smaller
scales, the distribution of this ratio will be the same when
comparing current low resolution EIT images with future
high resolution images. In this sense, we provided a proxy
for the needed gain in effective area for HRI telescopes.

With the new technologies, the future HRI instrument will
have an effective area which is approximately 10 times larger
than the one of EIT. In this case, our study shows that about
0.2% of the pixels in a HRI QS image will have a SNR sim-
ilar to what is observed on EIT images. However, if the ef-
fective area of HRI becomes 15 times larger (instead of 10
times), about 1.6% of the pixels (i.e. eight times more pixels)
will have an excellent SNR. Hence a relatively small increase
in instrumental performance may have a large impact on the
quality of the data.

The results presented in this paper are based on images of
the warm corona. X-ray images of the hot corona are likely
to exhibit a more pronounced spatial intermittency; a similar
analysis on X-ray images should therefore conclude that a
smaller gain in effective area is needed. As a general conclu-
sion we can say that 1) all other things being equal, the qual-
ity of observations will improve when getting closer to the
Sun1; 2) regions where the source is uniform will be penal-
ized by an increase in angular resolution, but irregular source
regions will benefit from such an increase.

In order to help improve current radiometric model, our
next goal is to generate synthetic images at arbitrary reso-

1However, as said before, a closer distance to the Sun might
imply to build a telescope with a smaller pupil, and hence a reduced
radiant intensity.

lution (e.g. EIT resolution or higher) which would capture
as many statistical properties of Quiet Sun images as possi-
ble. Indeed, Fig. 4 shows that we have succeeded in building
synthetic images from multifractal processes that obey some
of the scale-invariance properties of Quiet Sun EUV images,
more precisely that have the same multiscaling exponents.
However, in Fig. 6 we see that the present model underesti-
mates the proportion of bright (i.e. SNR-preserved) pixels.
This is related to the discrepancy between the histograms of
real and artificial EIT images observed for high intensity val-
ues. Indeed, our proposed model captures the self-similar
and multifractal nature of Quiet Sun images, but does not
take into account other constraint such as the distribution of
intensities in EIT images.

In future work, we plan on exploring two alternatives to
obtain a model that would both preserve the histogram ob-
served at a given resolution and satisfy the multifractal prop-
erties. The first one is to find a way to constrain the synthetic
processes to comply with some properties on their marginal
distributions (like e.g. intensity histograms) as well as with
the desired scale invariance properties. The difficulty here
comes from the fact that the multifractal spectrum strongly
constrains the global structure of stochastic process. Hence
there are few degrees of freedom left to further adopt other
criteria. This issue remains thus an open question for mathe-
maticians. The second possibility, more empirical, is to build
higher resolution images from low resolution images. The
challenge here is to extrapolate e.g. EIT images at higher res-
olution using the scale invariance properties. In this case, the
real image would serve as a boundary condition of the model,
and by construction the histogram of the low resolution im-
age would be preserved.

Appendix A

Multifractal formalism and Legendre transform

Multifractal analysis aims at the characterization of the reg-
ularity of measures, functions or graphs of realizations of a
stochastic process (Jaffard, 1997). Often, one quantifies the
presence of singularities in an image thanks to the multifrac-
tal spectrumD(h), whereh is the so-called Ḧolder expo-
nent. In brief,f (x) is said to be locally Ḧolder regular with
exponenth(xo) at xo if h(xo) is the highest exponent such
that there exist a polynomialP(x) and a constantC with
|f (x)−Pxo(x−xo)|≤C|x−xo|h for x in a neighborhood of
xo. The multifractal spectrumD(h) is defined as the frac-
tal dimension of the set{xo|h(xo)=h}. It can be defined for
a measure or for a function.

In practice, estimation ofD(h) from its definition is nu-
merically unstable. An alternative approach is to consider
the scaling behavior of the structure functionsS(q, a). More
precisely, we look at the multiscaling exponentsζ(q) such
that S(q, a)∼aζ(q), see e.g. Yordanova et al. (2004). The
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multifractal formalism is established when one can associate
the multifractal spectrumD(h) to its Legendre transform
ζ(q) (in dimension 2):

ζ(q) = 2 + inf
h

[qh − D(h)] ⇔ D(h) = 2 + inf
q

[qh − ζ(q)]

(A1)

The exponentsζ(q) reflect the multiresolution statistics of a
process (Castaing et al., 1990; Castaing and Dubrulle, 1995).
It is used in Sect. 4 as a set of parameters for modeling pur-
pose.

Appendix B

Synthesis of multifractal process

B1 Modeling of the images

A possible approach to model QS EUV images relies on the
use of an integrated version of the density of some underlying
multifractal measure described by a set of multifractal expo-
nentsτ(q) such thatτ(0)=τ(1)=0. Consider a low-pass fil-
ter which multiplies the Fourier transform of the quantity of
interest by a factor 1/‖k‖H , wherek are the Fourier frequen-
cies. This filter modifies the multifractal exponents so that
givenτ(q) one gets a measure with multifractal exponents

ζ(q) = qH + τ(q). (B1)

This is connected to the fact that the differentiation of a
Hölder singularity of exponenth becomes a singularity of
exponenth−1 while its integration yields a singularity of ex-
ponenth+1 (Mallat and Hwang, 1992). It is then natural to
consider the modeling of Quiet Sun images as a 1/‖k‖H fil-
tered version of a multifractal density. An interesting remark
is thatτ(1)=0 by definition so thatζ(1)=H . This latter prop-
erty will be useful to identify the parameters of the proposed
models.

B2 Compound poisson cascades

Compound poisson cascades were originally intro-
duced (Barral and Mandelbrot, 2002) as a multifractal
product of cylindrical pulses. This definition can be refor-
mulated as a multiplicative cascade (Chainais et al., 2003)
and extended to dimensionD≥2 (Chainais, 2006). The
densityQℓ(x) resulting from a compound Poisson cascade
is defined by

Qℓ(x) =
∏

i W
f (

x−xi
ri

)

i

IE

[

∏

i W
f (

x−xi
ri

)

i

] (B2)

where ℓ>0 is some small limiting scale (a kind of res-
olution); the Wi are independent identically distributed

(i.i.d.) non negative random variables called “multipliers”;
(xi, ri) is a Poisson point process inR2×[ℓ, 1] with density
dm(x, r) = (4/πr3)dxdr; the functionf (x)=I1[−1/2,1/2](x)

in the basic definition can be replaced by some compact sup-
ported non negative function (I1A denotes the indicator func-
tion over the setA). The integration kernelf plays the role of
some geometrical object in the image. It may also be used to
attenuate small scales discontinuities or to take into account
some geometrical features of the images under study.

In the limit ℓ→0, compound Poisson cascades are the den-
sity of a scale invariant multifractal measure characterized by
a set of multiscaling exponentsτ(q)=q(IEWi−1)+1−IEW

q
i

(IE denotes expectation), at least within a certain range ofq,
see Eqs. (8–9) in Sect. 4.3. Thus, the design of someτ(q)

function for modeling purpose reduces to the choice of the
distribution of the multipliersWi .

An interesting property of the processQℓ(x) is that it can
be interpreted as the intensityI (x) resulting from the scat-
tering of a uniform light by a random superposition of trans-
parent cylinders of sizes{ri} placed above positions{xi} and
with i.i.d. random transparencyWi . The centersxi of the
cylinders are uniformly distributed on the plane; the radiiri
are distributed by a scale invariant 1/r3 law; the distribu-
tion of the transparenciesWi is determined by the choice of
the functionτ(q) which is directly associated to their second
generating function. The intensity of one pixel is therefore
the product of the transparencies of the cylinders: this is a
multiplicative cascade. This presentation points to the re-
semblance between CPC and other classical approaches in
image modeling where elementary objects of random sizes
are distributed in space following a Poisson point process
(Srivastava et al., 2003). See Chainais (2006, 2007) for more
details.
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