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CENTRAL LIMIT THEOREMS IN LINEAR DYNAMICS

FRÉDÉRIC BAYART

Abstract. Given a bounded operator T on a Banach space X, we study the existence

of a probability measure µ on X such that, for many functions f : X → K, the sequence

(f + · · ·+ f ◦ Tn−1)/
√
n converges in distribution to a Gaussian random variable.

1. Introduction

Linear dynamics (namely the study of the dynamics of linear operators) is a branch of

analysis connecting functional analysis and dynamics. Its main topics are detailed in the

two books [BM09] and [GEP11]. As for the classical dynamical systems, one can study

the dynamics of linear operators from a topological point of view. Precisely, an operator T

defined on a separable Banach space X is called hypercyclic provided there exists a vector

x ∈ X such that its orbit {T nx; n ≥ 0} under T is dense. In this context, contrary to

the general case, there is a very easy criterion to prove that an operator is hypercyclic; it

allows to exhibit many hypercyclic operators. Let us recall this criterion.

Theorem (Hypercyclicity Criterion). Let T ∈ L(X). Suppose that there exist a dense

subset D ⊂ X and a sequence of maps (Sn)n≥0, Sn : D → X, such that, for each x ∈ D,

(i) T nx → 0;

(ii) Snx → 0;

(iii) T nSnx → x.

Then T is hypercyclic.

In this paper, we shall concentrate on the other aspect of linear dynamics, that links it

with ergodic theory. Let us recall some basic definitions. Let (X,B, µ) be a probability

space and let T : (X,B, µ) → (X,B, µ) be a measurable map. We set

L2
0(µ) =

{
f ∈ L2(µ);

∫

X
fdµ = 0

}
.

We say that T is ameasure-preserving transformation (or that µ is T -invariant) if µ(T−1A) =

µ(A) for any A ∈ B. A measure-preserving transformation T : (X,B, µ) → (X,B, µ) is

ergodic (with respect to µ) if

1

N

N−1∑

n=0

µ(A ∩ T−n(B))
N→∞−−−−→ µ(A)µ(B)
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2 FRÉDÉRIC BAYART

for any measurable sets A,B ⊂ X; T is weakly mixing (with respect to µ) if

1

N

N−1∑

n=0

|µ(A ∩ T−n(B))− µ(A)µ(B)| N→∞−−−−→ 0

for any A,B ∈ B; and T is strongly mixing if

µ(A ∩ T−n(B))
n→∞−−−→ µ(A)µ(B)

for any A,B ∈ B.
We wonder whether there exists a Borel probability measure µ on the separable Banach

space X, which is nondegenerate (namely, µ(U) > 0 for any nonempty and open subset

U ⊂ X), such that T ∈ L(X) is µ-invariant and T is ergodic (resp. weakly mixing, strongly

mixing) with respect to µ. This line of investigation was opened by Flytzanis in [Fly95]

and pursued later by Bayart, Grivaux, Matheron (see [BG06], [BG07], [BM11]) and also

recently by Murillo-Arcilla and Peris (see [MAP13]).

It turns out that, when an operator has many eigenvectors associated to eigenvalues of

modulus 1, then it is weakly mixing with respect to a nondegenerate and invariant Gauss-

ian measure on X. Indeed, the following theorem is proved in [BM11].

Theorem 1.1. Let T ∈ L(X). Suppose that, for any countable set D ⊂ T = {z ∈ C; |z| =
1}, the linear span of

⋃
λ∈T\D ker(T − λ) is dense in X. Then there exists a T -invariant

weakly mixing Gaussian Borel probability measure µ on X with full support.

An interesting application of this theorem (strictly speaking, of a variant of this theorem)

is that an enhancement of the hypercyclicity criterion leads to a strongly mixing dynamical

system.

Theorem 1.2. Let T ∈ L(X). Suppose that there exist a dense set D ⊂ X and a sequence

of maps (Sn)n≥0, Sn : D → X, such that, for each x ∈ D,

(i)
∑

n≥0 T
nx converges unconditionally;

(ii)
∑

n≥0 Snx converges unconditionally;

(iii) T nSnx = x and TmSnx = Sn−mx if n > m.

Then there exists a T -invariant strongly mixing (Gaussian) Borel probability measure µ

on X with full support.

Theorem 1.2 has also been obtained in [MAP13] in a completely different way. The measure

µ constructed in [MAP13] is not a Gaussian measure; in [MAP13], very few properties

of this measure are proved. For instance, it is not known whether the norm ‖ · ‖ or the

linear functionals 〈x∗, ·〉 belong to L2(X,µ), even if we can always ensure these properties,

see Section 3. On the other hand, the dynamical system (T, µ) is conjugated to an easy

strongly mixing dynamical system: a Bernoulli shift.

In this paper, we are interested in properties stronger than just ergodicity or mixing. First

we are interested in the speed of mixing. For f, g ∈ L2(X,µ), define the correlation of f

and g as

Cov(f, g) =

∫

X
fgdµ−

∫

X
fdµ

∫

X
gdµ
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and the correlation of order n of f and g (with respect to T ) by

In(f, g) = Cov(f ◦ T n, g).

T is µ-mixing provided In(f, g) goes to zero for any f, g ∈ L2(X,µ). One may ask if we

can estimate the speed of convergence to 0 of In(f, g) for any f, g ∈ L2(X,µ), or at least

for a large class of functions.

The second direction we investigate is related to the central limit theorem. Indeed, if T is

µ-ergodic, then Birkhoff’s theorem says that, for any f ∈ L1(X,µ),

f + · · ·+ f ◦ T n−1

n
→
∫

fdµ almost surely.

In other words, the sequence (f ◦T k) satisfies the strong law of large numbers. One can ask

whether is also satisfies the central limit theorem, namely if the sequence
(
f+···+f◦Tn−1

√
n

)

converges in distribution to a Gaussian random variable of zero mean and finite variance

(we now assume f ∈ L2
0).

At this point, it is important to notice that we cannot expect results true for all f ∈ L2
0(µ).

Indeed, D. Volný has proved in [Vol90] that the Birkhoff means may converge to arbitrary

laws on a dense Gδ-set of L
2
0(µ). More precisely, Volný has shown that, if T is µ-ergodic

with µ({x}) = 0 for any x ∈ X, there exists a dense Gδ-set E of L2
0(µ) such that, for any

f ∈ E and any probability measure ν on R satisfying
∫
tdν(t) = 0 and

∫
t2dν(t) = 1, there

exists a sequence (Nk) tending to infinity such that SNk
/‖SNk

‖2 converges in distribution

to ν, where SN = f + · · · + f ◦ TN−1. Similarly, the slow decay of correlations is a

typical feature of functions in L2
0(µ) (see [Che95]). However, for many concrete dynamical

systems, positive results were obtained if we assume some regularity condition on f , like

f is Hölder.

Thus, in this paper, we are interested to prove central limit theorems or to estimate the

decay of correlation for functions belonging to a large class of L2
0(µ), in the context of linear

dynamical systems. The first step in that direction was done by V. Devinck in [Dev13].

He started from Theorem 1.1 and he was able to prove that, when the T-eigenvectors of

T can be parametrized in a regular way, then Cov(f ◦T n, g) decreases fast to zero for f, g

belonging to large classes of functions. Let us summarized his main result.

Theorem 1.3. Let H be a separable Hilbert space and let T ∈ L(H). Suppose that there

exists α ∈ (0, 1] and E : T → X such that TE(λ) = λE(λ) for any λ ∈ T and E is

α-Hölderian: there exists CE > 0 such that

‖E(eiθ)− E(eiθ
′

)‖ ≤ CE |θ − θ′|α for any θ, θ′ ∈ [0, 2π).

Suppose moreover that span
(
E(λ); λ ∈ T

)
is dense in H. Then there exist a T -invariant

ergodic Gaussian measure µ with full support and two classes of functions X ,Y such that,

for any (f, g) ∈ X × Y,
|Cov(f ◦ T n, g)| ≤ Cf,gn

−α.

We will not describe the two classes X and Y in the above theorem. Their definitions

involve the Gaussian measure µ and depend on the Hilbertian structure of H. We just

mention that a typical function in X or Y is an infinitely differentiable function whose
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sequence of derivatives satisfies some growth condition. For instance, the set of polynomials

P is contained in both X and Y. We recall that a function P : X → R is a homogeneous

polynomial of degree d provided there exists a bounded symmetric d-linear form Q on X

such that P (x) = Q(x, . . . , x). A polynomial of degree d is a sum P = P0+ · · ·+Pd, where

each Pk is a homogeneous polynomial of degree k.

Theorem 1.3 is really specific to the Hilbert space setting. In this paper, we obtain several

results in the Banach space setting regarding the decay of correlations and the validity of

the central limit theorem for large classes of functions. We do not start from the Gaussian

measure of Theorem 1.1; we rather use the class of measures introduced in [MAP13]. Our

theorems will have the following informative form:

Let T ∈ L(X) satisfying a strong form of the Hypercyclicity Criterion.

Then there exist a T -invariant strongly mixing Borel probability measure

µ on X and a ”large” subset E of L2(µ) such that

• for any f, g ∈ E, the sequence of covariances
(
Cov(f◦T n, g)

)
converges

quickly to zero;

• for any f ∈ E, (f + · · ·+ f ◦ T n−1)/
√
n converges in distribution to a

Gaussian random variable.

Of course, precise statements will be given in Section 2, after we define our large subsets

E.

Notations. Throughout the paper, the letter C will denote an absolute constant whose

value may change from line to line. If a constant depends on some parameter x, then we

shall denote it by Cx.

2. Central limit theorems - Results and examples

2.1. The spaces of functions. We shall first define the spaces of functions f such that

the sequence (f ◦T n) will satisfy a central limit theorem. There are many differences with

the classical cases due to the noncompactness of X. We will require that f is infinitely

differentiable; this is stronger than in many situations where a central limit theorem for

dynamical systems has been proved. On the contrary, we do not want to restrict ourselves

to bounded functions. We expect to apply our results to linear forms for instance.

Let ω : N → (1,+∞) which goes to infinity. We define Eω as the set of functions f : X → R

which are infinitely differentiable at 0, which may be written, for any x ∈ X,

f(x) =

+∞∑

κ=0

Dκf(0)

κ!
(x, . . . , x),

and whose sequence of derivatives satisfies

‖f‖ω := sup
κ≥0

‖Dκf(0)‖ω(κ)κ < +∞.

Endowed with the norm ‖ · ‖ω, Eω is a Banach space. Clearly, each Eω contains the

polynomials. When ω is well chosen, it also contains other natural classes of functions, as

the following proposition indicates.
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Proposition 2.1. There exists a function ω : N → (1,+∞) tending to infinity such

that, for any polynomial P ∈ P, for any function φ : R → R which can be written

φ(x) =
∑

n≥0
an

(n!)σ x
n with |an| ≤ Aτn for some constants A, τ > 0 and σ > deg(P ), φ ◦ P

belongs to Eω.

Proof. We write P = P0+ · · ·+Pd, where each Pk is homogeneous with degree k. We may

assume deg(P ) > 0. Let B > 0 be such that |Pk(x)| ≤ B‖x‖k, for any k = 0, . . . , d. We

develop φ ◦ P into

φ ◦ P =

+∞∑

k=0

ak
(k!)σ

∑

j0+···+jd=k

P j0
0 . . . P jd

d

=

+∞∑

j0,...,jd=0

P j0
0 . . . P jd

d

aj0+···+jd

[(j0 + · · · + jd)!]σ

=

+∞∑

l=0

∑

j0≥0
j1+···+djd=l

P j0
0 . . . P jd

d

aj0+···+jd

[(j0 + · · · + jd)!]σ

=:
+∞∑

l=0

Ql.

Each Ql is a homogeneous polynomial with degree l. We are looking for a function ω such

that the sequence (‖Qk‖k!ω(k)k) is bounded. We observe that

‖Qk‖ ≤ A
∑

j0≥0
j1+···+djd=k

(Bτ)j0+···+jd
(
(j0 + · · ·+ jd)!

)σ

≤ A
∑

j0≥0

(Bτ)j0
∑

j1+···+djd=k

(Bτ)j1+···+jd
(
(j0 + · · ·+ jd)!

)σ

≤ A
∑

j0≥0

(Bτ)j0
∑

j1+···+djd=k

(Bτ)k(([
k
d

]
+ j0

)
!
)σ

(we assume, expanding B if necessary, that Bτ ≥ 1). Now, the number of solutions of

the equation j1 + · · · + djd = k, ji ≥ 0, is less than kd. We deduce the existence of some

positive constant τ1 (depending on d) such that

‖Qk‖ ≤ Aτk1
∑

j0≥0

(Bτ)j0(([
k
d

]
+ j0

)
!
)σ .

Now, for k sufficiently large and for any j0 ≥ 0,

(Bτ)j0(([
k
d

]
+ j0

)
!
)σ ≤

(
1

2

)j0

× 1([
k
d

]
!
)σ .

This yields

‖Qk‖k! ≤ A′ τk1 k!([
k
d

]
!
)σ .
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We now set ω(k) = log(k + e) (which does not depend on anything!) and observe that,

by Stirling’s formula, the sequence (‖Qk‖k!ω(k)k) is bounded. �

2.2. Statement of the results and examples. Having described the spaces of functions

where we expect that a central limit theorem holds, we can now give our main statements.

We begin with an abstract result.

Theorem 2.2. Let T ∈ L(X) and let ω : N → (1,+∞) going to +∞. Suppose that,

for any function ω0 : [1,+∞) → (1,+∞) going to infinity, one can find a sequence D =

(xn)n≥1 ⊂ X, a sequence (εk) ⊂ ℓ1(Z) and a sequence of maps Sn : D → X, n ≥ 0, such

that

(i) For any x ∈ D,
∑

n≥0 T
nx converges unconditionally;

(ii) For any x ∈ D,
∑

n≥0 Snx converges unconditionally;

(iii) For any x ∈ D, T nSnx = x and TmSnx = Sn−mx for any n > m;

(iv) For any sequence (nk) ⊂ N
Z such that

∑
k≥0 T

kxnk
and

∑
k<0 S−kxnk

are convergent,

∥∥∥∥∥∥
∑

k≥0

T kxnk

∥∥∥∥∥∥
+

∥∥∥∥∥
∑

k<0

S−kxnk

∥∥∥∥∥ ≤
∑

k∈Z
ω0(nk)εk.

(v) span
(
{T kxn;Skxn}; k ≥ 0, n ≥ 1

)
is dense in X.

Then there exists a T -invariant strongly mixing Borel probability measure µ on X with

full support such that Eω ⊂ L2(X,B, µ).
Suppose moreover that there exists α > 1/2 such that, for any x ∈ D, for any n, k ≥ 0,

‖T kxn‖ ≤ ω0(n)

(1 + k)α
and ‖Skxn‖ ≤ ω0(n)

(1 + k)α
.

Then, for any f, g ∈ Eω,

|Cov(f ◦ T n, g)| ≤ Cf,g,α





n1−2α if α ∈ (1/2, 1)
log(n+ 1)

n
if α = 1

n−α if α > 1.

If α > 1, then for any f ∈ Eω with zero mean, the sequence
1√
n
(f + · · · + f ◦ T n−1)

converges in distribution to a Gaussian random variable of zero mean and finite variance.

Of course, this statement does not look very appealing and we shall not prove it immedi-

ately. We prefer to give two more readable corollaries. The first one deals with stronger

forms of unconditionality.

Theorem 2.3. Let T ∈ L(X) and let ω : N → (1,+∞) going to +∞. Suppose that there

exist α > 1, a dense set D ⊂ X and a sequence of maps Sn : D → X, n ≥ 0, such that,

for any x ∈ D,

(i) T nSnx = x and TmSnx = Sn−mx for any n > m;

(ii) ‖T nx‖ = O(n−α) and ‖Snx‖ = O(n−α).



CENTRAL LIMIT THEOREMS IN LINEAR DYNAMICS 7

Then there exists a T -invariant strongly mixing Borel probability measure µ on X with

full support with Eω ⊂ L2(X,B, µ) and such that for any f, g ∈ Eω,

|Cov(f ◦ T n, g)| ≤ Cf,g,αn
−α.

Moreover, for any f ∈ Eω with zero mean, the sequence
1√
n
(f + · · ·+ f ◦T n−1) converges

in distribution to a Gaussian random variable of zero mean and finite variance.

Proof. First, the assumptions imply the unconditional convergence of the series
∑

n T
nx

and
∑

n Snx for any x ∈ D. Moreover, let ω0 : N → (1,+∞) going to +∞. Let (xn)n≥1

be a dense sequence in D such that, for any n ≥ 1, k ≥ 0,

‖T kxn‖ ≤ ω0(n)

(1 + k)α
and ‖Skxn‖ ≤ ω0(n)

(1 + k)α
.

Then for any sequence (nk) ⊂ N
Z,

∥∥∥∥∥∥
∑

k≥0

T kxnk

∥∥∥∥∥∥
+

∥∥∥∥∥
∑

k<0

S−kxnk

∥∥∥∥∥ ≤
∑

k∈Z

ω0(nk)

(1 + |k|)α ,

so that the assumptions of Theorem 2.3 are satisfied with εk = (1 + |k|)−α. �

The previous theorem may be applied to many examples where we already know that

Conditions (i) and (ii) hold. For instance, adjoints of multipliers or composition operators

associated to hyperbolic automorphisms of the disk, acting on the Hardy space H2(D)

satisfy the assumptions of Theorem 2.3. We refer to [BM09, Chapter 6] for a description

of these examples.

Remark 2.4. When we work on a Hilbert space, we can compare the speed of convergence

to zero of the sequence of covariances given by the measure obtained in Theorem 2.3 with

that given by Devinck’s theorem. Indeed, the assumptions of Theorem 2.3 imply the

existence of a sequence of perfectly spanning T-eigenvectorfields: for any x ∈ D, put

E(λ) =
∑

n∈Z λ
nT nx. If we assume that ‖T nx‖ = O(n−α) and ‖Snx‖ = O(n−α) for any

x ∈ D and some α ∈ (1, 2), then one can show that E is (α − 1)-Hölderian: pick any

λ, µ ∈ T and let n ∈ N be such that (n+ 1)−1 < |λ− µ| ≤ n−1. Then

‖E(λ) −E(µ)‖ ≤ C

n∑

k=1

k|λ− µ|k−α + C
∑

k>n

k−α

≤ C|λ− µ|n2−α + Cn1−α

≤ C|λ− µ|α−1.

Thus, with the assumptions of Theorem 2.3, we may also apply Devinck’s theorem to

obtain an ergodic measure such that, for any f, g ∈ P,

|Cov(f ◦ T n, g)| ≤ Cn−(α−1).

This is less good than the result we obtain by applying directly Theorem 2.3.

Conversely, let us assume that the assumptions of Devinck’s theorem are satisfied. We set

D = span

(∫

T

λpE(λ)dλ; p ∈ Z

)
,
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which is dense in H. We define Sn on D by

Sn

(∫

T

λpE(λ)dλ

)
=

∫

T

λp−nE(λ)dλ

so that SnT
m = Sn−m on D, for any n,m ≥ 0. It is not hard to show that, for any x ∈ D,

‖T nx‖ = O(n−α) and ‖Snx‖ = O(n−α). Indeed,

T n

(∫

T

λpE(λ)dλ

)
=

∫ 2π

0
ei(n+p)θE(eiθ)

dθ

2π

=
1

2

∫ 2π

0
ei(n+p)θ

(
E(eiθ)− E

(
e
i
(
θ+ π

p+n

)))
dθ

2π
.

by a change of variables. Since E is assumed to be α-Hölderian, this easily implies that

‖T nx‖ = O(n−α) for any x ∈ D. Theorem 2.3 and Devinck’s theorem then give the same

decay of correlations. However, we are sure that we can apply Theorem 2.3 only if α > 1,

and we cannot apply it if α < 1/2.

Thus, in the Hilbert space setting, it is not so easy to decide which measure has better

mixing properties. Moreover, we do not know whether we can compare our class Eω with

the classes X and Y of Devinck. We also point out that the way we construct E from the

assumptions of Theorem 2.3 or conversely the way we construct D from the assumptions

of Devinck’s theorem are often not optimal. In concrete situations, a more natural choice

of E (resp. of D) can improve the results we get automatically in this remark. In these

concrete situations, our results seem better; see the forthcoming examples 2.6 and 2.7.

2.3. Bilateral weighted shifts. We now apply Theorem 2.2 to backward weighted shift

operators on ℓp(Z+), p ≥ 1. Let w = (wn)n∈Z+
be a bounded sequence in R+. The

bilateral weighted shift Bw on ℓp(Z+) is defined by Bw

(
(xn)

)
= (wn+1xn+1). We know

by [BR13] that there exists a Bw-invariant ergodic Borel probability measure on ℓp(Z+)

with full support iff
∑

n≥1(w1 . . . wn)
−p < +∞.

Theorem 2.5. Let ω : N → (1,+∞) going to +∞ and let Bw be a bounded backward

weighted shift on ℓp(Z+). Suppose moreover that
∑

n≥1(w1 . . . wn)
−p < +∞. Then there

exists a Bw-invariant strongly mixing Borel probability measure on ℓp(Z+) with full support

such that Eω ⊂ L2(X,B, µ).
Suppose moreover that there exists C > 0 and α > 1/2 such that, for any n ≥ 1,

w1 · · ·wn ≥ Cnα.

Then for any f, g ∈ Eω,

|Cov(f ◦Bn
w, g)| ≤ Cf,g,α





n1−2α if α ∈ (1/2, 1)
log(n+ 1)

n
if α = 1

n−α if α > 1.

If α > 1, then for any f ∈ Eω with zero mean, the sequence
1√
n
(f + · · · + f ◦ Bn−1

w )

converges in distribution to a Gaussian random variable of zero mean and finite variance.
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Proof. Let ω0 : N → (1,+∞) going to infinity. Let (αn)n≥1 be a dense sequence in K with

|αp
n| ≤ ω0(n). We set D = (xn)n≥1, with xn = αne0, where (el)l≥0 is the standard basis

of ℓp(Z+). We define Sn on D by Sn(e0) =
1

w1···wn
en. The unconditional convergence of∑

n Snx for any x ∈ D follows from the convergence of
∑

n(w1 . . . wn)
−p whereas Bn

wx = 0

for any x ∈ D and any n ≥ 1! Moreover, since (αn) is dense in K, span(Skxn; k ≥ 0, n ≥ 1)

is dense in X. As observed above,
∑

k≥0B
k
wxnk

= αn0
e0. Regarding

∑
k<0 S−kxnk

, we

just write
∥∥∥∥∥
∑

k<0

S−kxnk

∥∥∥∥∥ =

∥∥∥∥∥
∑

k<0

αnk
e−k

∥∥∥∥∥

=

(∑

k<0

|αnk
|p

(w1 . . . w−k)p

)1/p

≤
(∑

k<0

ω0(nk)

(w1 . . . w−k)p

)1/p

.

Since ω0(n−1)
w1

≥ 1
w1

and 1
p ≤ 1, this in turn yields

∥∥∥∥∥
∑

k<0

S−kxnk

∥∥∥∥∥ ≤ Cw,p

∑

k<0

ω0(nk)

(w1 . . . w−k)p
.

Thus, the assumptions of Theorem 2.2 are satisfied. Moreover, when w1 · · ·wn ≥ Cnα, it

is easy to check that, for any x ∈ D, ‖T nx‖ = O(n−α) and ‖Snx‖ = O(n−α), allowing to

apply the results regarding the sequence of covariances and the central limit theorem. �

Example 2.6. Let us now apply Theorem 2.5 to backward shifts on ℓ2(Z+). Let α ∈
(0, 1) and let Bw be the weighted backward shift on ℓ2(Z+) with weight sequence wn =(

n
n−1

)α+1/2
, n ≥ 2, w1 = 1. An associated perfectly spanning T-eigenvectorfield is

E(λ) =
∑

n≥0

λn

w1 . . . wn
en,

where (en) is the standard basis of ℓ2(Z+). E is α-Hölder (see [Dev13]). Thus we know

that there exists an ergodic Gaussian measure µ on ℓ2(Z+) such that, for any f, g ∈ P,

|Cov(f ◦Bn
w, g)| ≤ Cf,g,αn

−α.

On the other hand, we may also apply Theorem 2.5 to get an ergodic measure µ such that,

for any f, g ∈ P,

|Cov(f ◦Bn
w, g)| ≤ Cf,g,α





n−2α if α ∈ (0, 1/2)
log(n+ 1)

n
if α = 1/2

n−α−1/2 if α > 1/2.

In all cases, the speed of mixing is better.
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2.4. Composition operators associated to parabolic automorphisms. The un-

pleasant condition (iv) in Theorem 2.2 is useful to handle operators such that
∑

n T
nx

and
∑

n Snx converge unconditionally whereas
∑

n ‖T nx‖ = +∞ or
∑

n ‖Snx‖ = +∞.

This was the case for backward shift operators. Another example is given by composition

operators induced by a parabolic automorphism of the disk.

Let φ be a parabolic automorphism of the disk, namely φ is an automorphism with a

unique boundary fixed point. The composition operator Cφ defined by Cφ(f) = f ◦ φ is

bounded on the Hardy space H2(D). Since, for any countable set D ⊂ T, the linear span

of
⋃

λ∈T\D ker(Cφ−λ) is dense in H2(D) (see [BG07]), there exists a Cφ-invariant strongly

mixing Gaussian measure µ on H2(D) with full support. Moreover, it is shown in [BG07,

Example 3.9] that Cφ admits a T-eigenvector field E which is α-Hölder, for any α < 1/2.

Devinck’s result ensures that, for any f ∈ P, Cov(f ◦ T n, f) = O(n−α), α < 1/2.

As for backward shifts, we can go further.

Example 2.7. Let φ be a parabolic automorphism of the disk, let α < 1 and let ω : N →
(1,+∞) going to infinity. There exists a Cφ-invariant strongly mixing Borel probability

measure µ on H2(D) with full support such that Eω ⊂ L2(X,B, µ) and, for any f, g ∈ Eω,

Cov(f ◦ T n, g) = O(n1−2α).

Proof. Without loss of generality, we may assume φ(1) = 1. It is easier to work with the

upper half-plane P+ = {s ∈ C; ℑm(s) > 0} which is biholomorphic to D via the Cayley

map σ(z) = i(1 + z)/(1 − z). We set H2 := {f ◦ σ−1; f ∈ H2(D)}. The norm on H2 is

given by

‖F‖22 = π−1

∫

R

|F (t)|2 dt

1 + t2
.

Moreover, Cφ, acting on H2(D), is similar, via the Cayley map, to a translation operator

τa(F ) = F (·+ a) acting on H2, a ∈ R
∗. We shall assume a = 1.

Let p ≥ 1 and let D be the set of all holomorphic polynomials satisfying P (1) = P ′(1) =
· · · = P (2p)(1) = 0. D is dense in H2(D) and any P ∈ D satisfies |P (z)| ≤ CP |z − 1|2p.
Hence Q = P ◦ σ−1 ∈ H2 satisfies |Q(x)| ≤ CQ

(1+x2)p
for any x ∈ R.

Let now ω0 : N → (1,+∞) and let θ =
√
ω0. Let finally (Qn)n≥1 be a dense sequence in

H2 such that, for any n ≥ 1 and any x ∈ R,

|Q(x)| ≤ θ(n)

(1 + x2)p
.

We claim that the assumptions of Theorem 2.2 are satisfied with T = τ1, Sn = τ−n and

xn = Qn. The first three points can be found e.g. in [BM09, Theorem 6.14]. Let us prove

(iv). Let (nk) ⊂ N
Z and let us majorize

∥∥∥∥∥∥
∑

k≥0

τkQnk

∥∥∥∥∥∥

2

2

≤
∫

R


∑

k≥0

θ(nk)

(1 + (t+ k)2)p




2

dt

1 + t2

≤ 2
∑

k≥j≥1

∫

R

θ(nk)θ(nj)

(1 + (t+ k)2)p(1 + (t+ j)2)p(1 + t2)
dt.
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For k, j ≥ 1, we say that k ∼ j provided [−k−k1/4,−k+k1/4]∩ [−j− j1/4,−j+ j1/4] 6= ∅.

It is important to notice that

k ∼ j =⇒ C−1k ≤ j ≤ Ck.(1)

Let us consider k ≥ j ≥ 1 and let us first assume that k ≁ j. We split the integral over

R into three integrals: over [−k− k1/4,−k+ k1/4], over [−j − j1/4,−j + j1/4] and outside

the two previous intervals. On [−k− k1/4,−k+ k1/4], we know that (t+ j)2 ≥ j1/2 (since

j ≁ k), so that

∫ −k+k1/4

−k−k1/4

dt

(1 + (t+ k)2)p(1 + (t+ j)2)p(1 + t2)
≤ Ck1/4

1× jp/2 × k2
≤ C

k7/4j7/4

provided p ≥ 7/2. A similar estimation holds true on [−j − j1/4,−j + j1/4]. On the

remaining part of R, we have both (t+j)2 ≥ j1/2 and (t+k)2 ≥ k1/2. Since
∫
R
dt/(1+t2) <

+∞, we finally get, provided k ≁ j,
∫

R

dt

(1 + (t+ k)2)p(1 + (t+ j)2)p(1 + t2)
≤ C

k7/4j7/4
.

Suppose now k ∼ j. We split the integral over R into two integrals: over [−k− k1/4,−j +

k1/4] (recall that k ≥ j) and outside this interval. Outside the interval, the estimation

of the integral is very similar. Inside the interval, we cannot control both (t + k)2 and

(t+ j)2, whereas (1+ t2) ≥ Ck2. Observe also that the length of the interval is controlled

by 2k1/4. This leads to
∫

R

dt

(1 + (t+ k)2)p(1 + (t+ j)2)p(1 + t2)
≤ C

k7/4
.

Summing over all possible values of k and j and using the previous estimates, we find
∥∥∥∥∥∥
∑

k≥1

τkQnk

∥∥∥∥∥∥

2

2

≤ C
∑

k,j≥1

θ(nk)θ(nj)

k7/4j7/4
+C

∑

k≥j≥1
k∼j

θ(nk)θ(nj)

k7/4

≤ C


∑

k≥1

θ(nk)

k7/4




2

+ C
∑

k,j≥1
k∼j

θ(nk)
2

k7/4
+ C

∑

k,j≥1
k∼j

θ(nj)
2

j7/4

where the last inequality follows from (1). We then observe that, for a fixed k ≥ 1, there

is at most Ck1/4 integers j with j ∼ k. Hence,
∥∥∥∥∥∥
∑

k≥1

τkQnk

∥∥∥∥∥∥

2

2

≤ C


∑

k≥1

θ(nk)

k7/4




2

+ C
∑

k≥1

θ(nk)
2

k3/2
.

We take the square-root and observe that
√
a+ b ≤ √

a+
√
b,

√
c ≤ c if c ≥ 1. This gives

∥∥∥∥∥∥
∑

k≥1

τkQnk

∥∥∥∥∥∥
2

≤ C
∑

k≥1

θ(nk)
2

k3/2
,
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which proves (iv) with εk = k−3/2. We conclude the proof by showing that, for any

k, n ≥ 1,

‖τkQn‖2 ≤
Cω0(n)

kα
.

Indeed,

‖τkQn‖22 ≤
∫

R

θ(n)2

(1 + (t+ k)2)p
dt

1 + t2
.

We argue as above. Let ε ∈ (0, 1). We split the integral over R into the integral over

[−k − kε,−k + kε] and the integral over R\[−k − kε,−k + kε]. This yields

‖τkQn‖22 ≤ C
θ(n)2

k2−ε
+ C

θ(n)2

k2εp
,

so that

‖τkQn‖2 ≤ Cω0(n)

(
1

k1−ε/2
+

1

kεp

)
≤ Cω0(n)

kα
,

provided 1− ε/2 ≥ α and εp ≥ α. �

Remark 2.8. It is also possible to get a Central Limit Theorem for linear functionals in

the context of parabolic composition operators. See Section 4.

3. Central limit theorems - The proofs

This section is devoted to the proof of Theorem 2.2.

3.1. How to prove a central limit theorem. A central question in this paper is to find

ways to prove central limit theorems for linear dynamical systems. This has been already

studied in the general context of ergodic theory. Let (Ω,A, µ) be a probability space and

let T : Ω → Ω be a bijective bimeasurable transformation preserving the measure µ. We

also assume that T is ergodic. Let f ∈ L2(Ω), then (f ◦T i)i∈Z is a stationary process. We

set Sn(f) =
∑n−1

i=0 f ◦ T i and we say that f satisfies the Central Limit Theorem (in short,

CLT) if 1√
n
Sn(f) converges in distribution to a normal law.

To obtain sufficient conditions on a function f so that the CLT holds, we shall use the mar-

tingale method which was successfully used recently in various problems (see for instance

[LB99], [CB05], [DS06], [Dup10]). This method goes back to Gordin in [Gor69]. The basic

idea is to try to approximate a given stationary sequence f ◦ T n by a sequence which

is a martingale difference sequence and to deduce the CLT for the given stationary se-

quence from the result for the martingale. An efficient sufficient condition was obtained by

Maxwell and Woodroofe in [MW00]. Let (Fi)i∈Z be a filtration with Fi ⊂ T−1Fi = Fi+1.

Let F∞ be the smallest σ-algebra containing all the Fi and let F−∞ =
⋂

i∈Z Fi. Maxwell

and Woodroofe proved that, if f ∈ L2(F∞)⊖ L2(F−∞) is F0-measurable and

+∞∑

n=1

‖E(Sn(f)|F0)‖2
n3/2

< +∞,

then there exists a martingale difference sequence (m ◦ T i) adapted to the filtration (Fi)

such that ‖Sn(f −m ◦ T n)‖2 = o(
√
n). In particular, f satisfies the CLT.

The monotone filtration (Fi) must be chosen in accordance with the transformation T ; in

a given concrete system the construction of this filtration is difficult. In particular, the
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F0-measurability of f (meaning that (Fi) is adapted to the sequence (f ◦ T i)) is a too

restrictive condition for the applications we have in mind. We will need a nonadapted

version of the theorem of Maxwell and Woodroofe. This was done by Volný in [Vol06].

Theorem A. Let (Fi)i∈Z be a filtration with Fi ⊂ T−1(Fi) = Fi+1. Let f ∈ L2(F∞) ⊖
L2(F−∞) satisfying

+∞∑

n=1

‖E(Sn(f)|F0)‖2
n3/2

< +∞ and

+∞∑

n=1

‖Sn(f)− E(Sn(f)|Fn)‖2
n3/2

< +∞.

Then f satisfies the CLT.

It should be observed that Theorem A do not exclude that Sn(f)/
√
n converges to a

degenerate normal law, namely to a Dirac mass. If we put stronger assumptions on f

(like the convergence of
∑

n|Cov(f, f ◦ T n)|, see [Liv96]), then this happens iff f is a

coboundary, namely f = g − g ◦ T for some g ∈ L2.

3.2. The measure on X. From now on, we fix ω : [1,+∞) → (1,+∞) going to infinity.

Without loss of generality, we may assume that ω is nondecreasing. We consider ω1 :

[1,+∞) → (1,+∞) tending to infinity and nondecreasing such that
{

ω1(k)
2 =k→+∞ o(ω(k))

ω1(k + 1) ≤ 2ω1(k).

We then fix another function ω0 : [1,+∞) → (1,+∞) going to +∞, nondecreasing, and

such that

∀k, k′ ≥ 1, ω0(k + k′)k+k′ ≤ ω1(k)
kω1(k

′)k
′

.(2)

For instance, we can set

ω0(k) =

√
ω1

(
k

2

)
.

We claim that ω0 satisfies (2). Indeed, since ω1 is nondecreasing,

∀k, k′ ≥ 1, ω1(k)
kω1(k

′)k
′ ≥ ω1

(
k + k′

2

) k+k′

2

.

The construction of the measure µ which appears in Theorem 2.2 follows [MAP13]. How-

ever, we will need to be more careful during the construction because we want additional

properties. For convenience, throughout this section, for k ∈ N, we shall denote by T−kx

the vector Skx, x ∈ D.

The idea of Murillo-Arcila and Peris is to conjugate T to a Bernoulli shift acting on N
Z

and to transfer the ergodic properties of this shift to T . We start from the sequence

(xn) satisfying the assumptions of Theorem 2.2. We may assume that x1 = 0 and that

Snx1 = 0 for all n ≥ 0. Let (Nn) be an increasing sequence of positive integers with

Nn+2 −Nn+1 > Nn+1 −Nn and satisfying, for any n ∈ N,
∥∥∥∥∥∥
∑

k>Nn

T kxmk

∥∥∥∥∥∥
+

∥∥∥∥∥∥
∑

k<−Nn

T kxmk

∥∥∥∥∥∥
≤ 1

2n
if mk ≤ l, for Nl < |k| ≤ Nl+1, l ≥ n.
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We define K =
∏

k∈Z Fk where

Fk = {1, . . . ,m} if Nm < |k| ≤ Nm+1 and Fk = {1} if |k| ≤ N1.

Let K(s) := σ−s(K), s ∈ Z, where σ : NZ → N
Z is the forward shift. The intertwining

map φ is defined on Z =
⋃

s∈ZK(s) by

φ
(
(nk)

)
=
∑

k∈Z
T kxnk

.

φ is well defined and continuous, and it satisfies on Z the intertwining relation

T ◦ φ = φ ◦ σ.(3)

Let us now construct on N
Z a measure µ̄ which is invariant for σ and such that µ̄(Z) = 1.

We fix a sequence (pl) of positive real numbers satisfying
∑

l pl = 1 and such that, setting

βl =




l∑

j=1

pj




(Nl+1−Nl)

> 0,

then
∏

l≥1 β
2
l > 0. This condition is satisfied provided (pl) converges sufficiently fast

to zero. Then define µ̄k on N by µ̄k({n}) = pn and µ̄ on N
Z as µ̄ =

⊗
k∈Z µ̄k. It is

shown in [MAP13] that µ̄ is a σ-invariant strongly mixing Borel probability measure on

N
Z satisfying µ̄(Z) = 1. In particular, φ is defined almost everywhere on N

Z and (3) is

a.e. true.

These properties can be transfered to X by setting µ(A) = µ̄
(
φ−1(A)

)
, A ∈ B(X). µ is a

T -invariant strongly mixing Borel probability measure on X (see [MAP13]). We have just

to prove that µ has full support (in [MAP13], this was done under the stronger assumption

that D is dense). Let U be a nonempty open subset of X. Let F be a finite subset of Z

and let (nk) ⊂ N
F be such that

y =
∑

k∈F
T kxnk

∈ U.

Let n ∈ N be such that Nn > max(maxF,−minF ) and y + B(0, 2−n) ⊂ U . For k ∈
[−n, n]\F , we set nk = 1. Then U contains





Nn∑

k=−Nn

T kxnk
+
∑

|k|>Nn

T kxmk
; mk ≤ l for Nl < |k| ≤ Nl+1, l ≥ n



 .

Hence,

µ(U) ≥
Nn∏

k=−Nn

µk({nk})
+∞∏

l=n


 ∏

Nl<|k|≤Nl+1

µk({1, . . . , l})




≥
Nn∏

k=−Nn

µk({nk})
+∞∏

l=n

β2
l > 0.
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To ensure stronger properties than mixing, we will need additional assumptions on the

sequence (pl). We summarize these technical assumptions now, without further comments:
∑

m>l

pm = o(pl),(4)

∀l ≥ 1, ∀k ≥ 1,
∑

m≥l

√
pmω0(m)k ≤ C

√
pl max

(
ω0(k)

k, ω0(l)
k
)
,(5)

∀l ≥ 1, ∀k ≥ 1,
∑

m≥l

pmω0(m)k ≤ Cpl max
(
ω0(k)

k, ω0(l)
k
)

(6)

where C is some absolute constant. These conditions are satisfied if we require that the

sequence (pl) decreases sufficiently fast to 0. This is clear for (4) and also for (5) if we

restrict ourselves to k ≤ l. If we now assume k > l, then we can ensure (5) by requiring

that, for any m ≥ 1,

√
pm+1 (ω0(m+ 1))m+1 ≤ 1

2

√
pm (ω0(m))m .

Indeed, for any l ≥ 1 and any k > l, one can decompose the sum into

∑

m≥l

√
pmω0(m)k ≤

k∑

m=l

√
pmω0(m)k +

+∞∑

m=k+1

√
pmω0(m)m.

The first sum is bounded by
(∑

m≥l
√
pm

)
ω0(k)

k. The second sum is estimated as follows:

∑

m>k

√
pmω0(m)m ≤ √

pkω0(k)
k

(
1

2
+

1

4
+ . . .

)

≤ √
plω0(k)

k.

That we may also ensure (6) follows along the same lines.

We now show that our class of functions Eω is contained in L2(X,B, µ).

Lemma 3.1. (a) For any d ≥ 1, ‖ · ‖d ∈ L2(X,B, µ);
(b) Eω ⊂ L2(X,B, µ).

Proof. Let d ≥ 1. The construction of the measure µ̄ ensures that, for almost every

(nk) ⊂ N
Z, the series

∑
k∈Z T

kxnk
is convergent. By Condition (iv),

‖φ
(
(nk)

)
‖ ≤

∑

k∈Z
εkω0(nk).

We expand the product and then use Hölder’s inequality to get

∫

X
‖x‖2ddµ(x) ≤

∑

k1,...,k2d∈Z

∫

NZ

2d∏

i=1

εkiω0(nki)dµ̄
(
(nk)

)

≤
∑

k1,...,k2d∈Z

2d∏

i=1

(∫

NZ

ε2dkiω0(nki)
2ddµ̄

(
(nk)

))1/2d

.
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Now, ∫

NZ

ε2dkiω0(nki)
2ddµ̄

(
(nk)

)
≤ ε2dki

∑

l≥1

plω0(l)
2d ≤ Cε2dkiω0(2d)

2d,

where we have used (6). Coming back to the L2-norm of ‖ · ‖d, we finally obtain

∫

X
‖x‖2ddµ(x) ≤ Cω0(2d)

2d
∑

k1,...,k2d∈Z

2d∏

i=1

εki

≤ Cω0(2d)
2d

(∑

k∈Z
εk

)2d

≤ C2dω0(2d)
2d.

To prove (b), we start from a function f ∈ Eω and we observe that

‖Dκf(0)(x, . . . , x)‖ ≤ ‖Dκf(0)‖ × ‖x‖κ

so that, from the proof of the first point, we deduce

‖Dκf(0)‖L2 ≤ Cκω0(κ)
κ‖Dκf(0)‖.

Since supκ ‖Dκf(0)‖ω(κ)κ < +∞ and ω0(κ) =+∞ o
(
ω(κ)

)
, the series

∑
κ

Dκf(0)(x,...,x)
κ! is

convergent in L2(X,B, µ), showing that Eω ⊂ L2(X,B, µ). �

Remark 3.2. If f : X → R is infinitely differentiable at 0, satisfies for any x ∈ X

f(x) =
+∞∑

κ=0

Dκf(0)

κ!
(x, . . . , x),

and verifies moreover that, for any R > 0,

sup
κ>0

‖Dκf(0)‖Rκ < +∞,

then it is not hard to show that one can construct a function ω : N → (1,+∞) going to

+∞ and such that f ∈ Eω. Under the assumptions of Theorem 2.2, this means that one

can define a measure µf on X such that the sequence (f ◦ T n) satisfies the central limit

theorem in L2(X,B, µf ). However, to get a single measure µ which works for a large class

of functions, we have to fix ω before.

3.3. An orthonormal basis of L2(X,B, µ). In this section, we describe an orthonormal

basis of L2(X,B, µ) or, equivalently, an orthonormal basis of L2(NZ, µ̄). There is a usual

way to do so. Suppose that (el)l≥0 is an orthonormal basis of ℓ2
(
N, (pn)

)
with e0 = 1.

Let N∞ =
⋃

k≥1N
k, Z∞ =

⋃
k≥1 Z

k et Z∞
< = {j = (j1, . . . , jr) ∈ Z

∞; j1 < j2 < · · · < jr}.
For j ∈ Z

∞, denote by |j| the unique positive integer r such that j ∈ Z
r. Then, for

l = (l1, . . . , lr) ∈ N
r and j = (j1, . . . , jr) ∈ Z

r with j1 < · · · < jr, define

el,j = el1,j1 × · · · × elr ,jr ,

where el,j is a copy of el on the j-th coordinate, namely el,j
(
(nk)

)
= el(nj). It is well

known that {el,j; l ∈ N
∞, j ∈ Z

∞
< , |l| = |j|}∪{1} is an orthonormal basis of L2(NZ, µ̄). Thus

we just need to concentrate on the choice of (el). We construct a triangular orthonormal

basis.
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Lemma 3.3. There exists an orthonormal basis (el) of ℓ2
(
N, (pn)

)
with e0 = 1 and, for

l ≥ 1,

el(u) =





0 if u < l

1√
pl

×
√∑

m>l pm√
pl +

∑
m>l pl

if u = l

−√
pl ×

1√
pl
(∑

m>l pm
)
+
(∑

m>l pm
)2 if u > l.

Proof. Given these formula, we just need to verify that this is an orthonormal basis. We

observe that (el)l≥0 is obtained by orthonormalization of the basis (1, 1, . . . ), (0, 1, 1, . . . ),

(0, 0, 1, 1, . . . ), . . . . �

Of course, the exact values of el(u) are not very appealing. In the sequel, we will just need

the following estimations, which are satisfied thanks to (4):





|el(l)| ≤ C√
pl

|el(u)| ≤ C
√
pl+1

if u > l.

Let us point out that this orthonormal basis behaves very well with respect to σ. Indeed,

it is easy to check that

el,j ◦ σ = el,j−1.(7)

Let us also mention the following property which is the key for our forthcoming estimations.

The ℓ2
(
N, (pn)

)
-norm of each el is equal to 1. However, the ℓ1

(
N, (pn)

)
-norm of el goes

very quickly to zero: it behaves like
√
pl.

3.4. The Fourier coefficients. In this subsection, we control the Fourier coefficients of

a homogeneous polynomial. This will be the key point to control later the behaviour of

the sequence of the covariances Cov(f ◦ T n, g) for f, g ∈ Eω. We first observe that many

Fourier coefficients of a homogeneous polynomial are equal to zero.

Lemma 3.4. Let P (x) = Q(x, . . . , x) be a homogeneous polynomial of degree d. Let

j ∈ Z
∞
< , l ∈ N

∞ with |j| = |l| > d. Then

〈el,j, P ◦ φ〉L2(NZ,µ̄) = 0.

Proof. Let us introduce some notations which will also be useful for the next lemma. We

write j = {j1, . . . , jr}, l = {l1, . . . , lr} and we set

φj

(
(nk)

)
= φ

(
(nk)

)
− T j1(xnj1

)− · · · − T jr(xnjr
)

N̂j = N\{j1, . . . , jr}
ν̄j is the projection of µ̄ onto N̂j.
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Moreover, for u0, . . . , ur nonnegative integers with u0 + · · ·+ ur = d, we set

Qu0,...,ur

(
(nk)

)
= Q

(
φj

(
(nk)

)
, . . . , φj

(
(nk)

)
︸ ︷︷ ︸

u0 times

, T j1xnj1
, . . . , T j1xnj1︸ ︷︷ ︸
u1 times

, . . . ,

T jr(xnjr
), . . . , T jr(xnjr

)︸ ︷︷ ︸
ur times

)
.

The d−linearity of Q yields

〈el,j, P ◦ φ〉 =
∑

u0+···+ur=d
ui≥0

(
d

u0, . . . , ur

)∫

NZ

el,j
(
(nk)

)
Qu0,...,ur

(
(nk)

)
dµ̄
(
(nk)

)
.

Since r > d, in each term of the sum, one of the u1, . . . , ur, say uk, is equal to zero. We

use Fubini’s theorem and we integrate first with respect to the jk-th coordinate. We get

zero since ∫

N

el,j(n)dµ̄j(n) = 0, for any l ∈ N and any j ∈ Z.

�

The nonzero coefficients will be estimated thanks to the following lemma.

Lemma 3.5. Let P (x) = Q(x, . . . , x) be a homogeneous polynomial of degree d. Let

j ∈ Z
∞
< , l ∈ N

∞ with |j| = |l| = r ≤ d. Then

∣∣∣〈el,j, P ◦ φ〉L2(NZ,µ̄)

∣∣∣ ≤ Cdrd‖Q‖ω0(d)
d supi ω0(li)

d

(1 + |j1|)α . . . (1 + |jr|)α
√
pl1 . . . plr .

Proof. We keep the same notations so that

〈el,j, P ◦ φ〉 =
∑

u0+···+ur=d
ui≥0

(
d

u0, . . . , ur

) ∫

NZ

el,j
(
(nk)

)
Qu0,...,ur

(
(nk)

)

dν̄j
(
(nk)

)
dµ̄j1(nj1) . . . dµ̄jr(njr).

As in the previous lemma we have just to consider the terms in the sum such that u1 ≥
1, . . . , ur ≥ 1. Moreover,

∣∣Qu0,...,ur

(
(nk)

)∣∣ ≤ ‖Q‖ × ‖φj

(
(nk)

)
‖u0

r∏

i=1

‖T ji(xnji
)‖ui .

We get

|〈el,j, P ◦ φ〉| ≤ ‖Q‖
∑

u0+···+ur=d
ui≥1

(
d

u0, . . . , ur

)∫

N̂j

‖φj

(
(nk)

)
‖u0dν̄j

(
(nk)

)
×

r∏

i=1

∫

N

|el(n)|‖T ji(xn)‖uidµ̄0(n).

The first integral may be handled exactly like in Lemma 3.1 and we get
∫

N̂j

‖φj

(
(nk)

)
‖u0dν̄j

(
(nk)

)
≤ Cu0ω0(u0)

u0 .
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The estimation of the other integrals needs the properties of the sequences (pl) and (el).

Indeed, for u ≥ 1, j ∈ Z and l ∈ N, one can write
∫

N

|el(n)|‖T j(xn)‖udµ̄0(n) =
∑

m≥l

pm‖T j(xm)‖u|el(m)|

≤ C
√
pl

(1 + |j|)αuω0(l)
u +

C
√
pl+1(1 + |j|)αu

∑

m≥l+1

pmω0(m)u.

We then apply (6) to get
∫

N

|el(n)|‖T j(xn)‖udµ̄0(n) ≤ C
√
pl

(1 + |j|)αuω0(l)
u +

C
√
pl+1(1 + |j|)αu pl+1max (ω0(l + 1)u, ω0(u)

u)

≤ Cu√pl max
(
ω0(l)

u, ω0(u)
u
)

(1 + |j|)α

≤ Cuω0(u)
u√plω0(l)

u

(1 + |j|)α .

Coming back to our original Fourier coefficient and using u0 + · · · + ur = d, we get

|〈el,j, P ◦ φ〉| ≤ Cd‖Q‖ω0(d)
d

∑

u0+···+ur=d
ui≥1

(
d

u0, . . . , ur

)
ω0(l1)

u1 . . . ω0(lr)
ur

(1 + |j1|)α . . . (1 + |jr|)α
√
pl1 . . . plr .

We conclude by noting that the cardinal number of {(u0, . . . , ur) ∈ N
r+1; u0 + · · ·+ ur =

d, u1, . . . , ur ≥ 1} is less than or equal to 2d and that the multinomial coefficient is less

than or equal to (r + 1)d. �

We give a first application of the previous lemmas. It deals with the sum of the Fourier

coefficients of a given order for a function in Eω.

Lemma 3.6. Let f ∈ Eω, F = f ◦ φ =
∑

l,j al,jel,j. Then, for any M > 1, there exists

Cω0,ω,M > 0 such that, for any r ≥ 1 and any j ∈ Z
∞
< with |j| = r,

∑

|l|=r

|al,j| ≤
Cω0,ω,M‖f‖ω

M r(1 + |j1|)α . . . (1 + |jr|)α
.

Proof. By the above lemmas,

∑

|l|=r

|al,j| ≤
∑

|l|=r

+∞∑

κ=0

|〈el,j,Dκf(0) ◦ φ〉|
κ!

≤
+∞∑

κ=r

Cκrκ
‖Dκf(0)‖ω0(κ)

κ

κ!(1 + |j1|)α . . . (1 + |jr|)α
∑

|l|=r

sup
i

ω0(li)
κ√pl1 . . . plr .

By Stirling’s formula, rκ

κ! ≤ Cκ for any κ ≥ r, so that

∑

|l|=r

|al,j| ≤
+∞∑

κ=r

Cκ‖Dκf(0)‖ω0(κ)
κ

(1 + |j1|)α . . . (1 + |jr|)α
∑

|l|=r

sup
i

ω0(li)
κ√pl1 . . . plr .
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Now, for κ ≥ r,

∑

|l|=r

sup
i

ω0(li)
κ√pl1 . . . plr ≤

r∑

i=1

∑

|l|=r

ω0(li)
κ√pl1 . . . plr

≤
r∑

i=1

+∞∑

li=1

ω0(li)
κ√pli

r∏

j=1
j 6=i

+∞∑

l=1

√
pl

≤ Cr
∑

l≥1

√
plω0(l)

κ

≤ Cκω0(κ)
κ

where we have used (5).

To conclude, observe that, given any absolute constant C, there exists some constant

Cω0,ω,M such that, for any κ, Cκω0(κ)
2κ ≤ Cω0,ω,MM−κω(κ)κ. This yields

∑

|l|=r

|al,j| ≤ Cω0,ω,M

(1 + |j1|)α . . . (1 + |jr|)α
+∞∑

κ=r

‖Dκf(0)‖ω(κ)κ
Mκ

≤ Cω0,ω,M‖f‖ω
M r(1 + |j1|)α . . . (1 + |jr|)α

.

�

3.5. The sequence of covariances. In this subsection, we prove the first part of The-

orem 2.2, that devoted to the behaviour of the sequence of covariances. We begin with a

first lemma which is an easy consequence of (7).

Lemma 3.7. Let F =
∑

j,l al,jel,j, G =
∑

j,l bl,jel,j ∈ L2
0(N

Z, µ̄). Then

Cov(F ◦ σp, G) =
∑

j,l

al,jbl,j−p.

Proof. By linearity and by (7),

Cov(F ◦ σp, G) =
∑

j,k,l,m

al,jbm,kCov(el,j−p, em,k).

Now, el,j−p and em,k are orthogonal, unless l = m and k = j−p. This gives the lemma. �

Let us now start with f, g ∈ Eω. Without loss of generality, we may assume that they

have zero mean. We set F = f ◦φ, G = g ◦φ so that Cov(f ◦T p, g) = Cov(F ◦σp, G). Let

us write

F =
+∞∑

r=1

∑

|l|=|j|=r

al,jel,j and G =
+∞∑

r=1

∑

|l|=|j|=r

bl,jel,j,

and let us compute Cov(F ◦ σp, G) using Lemma 3.7. We apply the estimations of the

Fourier coefficients given by Lemma 3.4 and Lemma 3.5. Using Stirling’s formula, we find,

for a given j ∈ Z
∞
< with |j| = r,

∑

|l|=r

|al,jbl,j−p| ≤
∑

|l|=r

+∞∑

κ,κ′=r

‖Dκf(0)‖‖Dκ′

f(0)‖Cκ+κ′

ω0(κ)
κω0(κ

′)κ
′

supi ω0(li)
κ+κ′

pl1 . . . plr
(1 + |j1 − p|)α . . . (1 + |jr − p|)α(1 + |j1|)α . . . (1 + |jr|)α

.
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Now, for κ, κ′ ≥ r,

∑

|l|=r

sup
i

ω0(li)
κ+κ′

pl1 . . . plr ≤
r∑

i=1

∑

|l|=r

ω0(li)
κ+κ′

pl1 . . . plr

≤
r∑

i=1




+∞∑

li=1

pliω0(li)
κ+κ′


×


∑

l≥1

pl




r−1

≤ Crω0(κ+ κ′)κ+κ′

≤ Cκ+κ′

ω1(κ)
κω1(κ

′)

(at this stage, we use the strange relation (2) satisfied by ω0 and also (6)). Hence,

∑

|l|=r

|al,j−pbl,j| ≤
(

+∞∑

κ=r

Cκ‖Dκf(0)‖ω1(κ)
2κ

)
×
(

+∞∑

κ=r

Cκ‖Dκg(0)‖ω1(κ)
2κ

)
×

1

(1 + |j1 − p|)α . . . (1 + |jr − p|)α(1 + |j1|)α . . . (1 + |jr|)α

≤ C‖f‖ω‖g‖ω
(1 + |j1 − p|)α . . . (1 + |jr − p|)α(1 + |j1|)α . . . (1 + |jr|)α

.

We now sum over j with |j| = r:

∑

|j|=|l|=r

|al,j−pbl,j| ≤
∑

j1<j2<···<jr

C‖f‖ω‖g‖ω
(1 + |j1 − p|)α . . . (1 + |jr − p|)α(1 + |j1|)α . . . (1 + |jr|)α

≤ C‖f‖ω‖g‖ω


∑

j∈Z

1

(1 + |j − p|)α(1 + |j|)α




r

.

We split this last sum into three sums :
∑

j≤−1,
∑p

j=0 and
∑+∞

j=p+1 and we observe that

the first sum and the last sum are equal. We first consider these sums. We get different

estimates following the value of α. When α > 1, it is easy to check that, for j ≥ p+ 1,

1

(1 + (j − p))α
− 1

(1 + j)α
=

(1 + j)α − (1 + j − p)α

(1 + j)α(1 + (j − p))α
≥ pα

(1 + j)α(1 + (j − p))α
.

Thus,

∑

j≥p+1

1

(1 + j)α(1 + (j − p))α
≤ p−α

∑

j≥p+1

(
1

(1 + (j − p))α
− 1

(1 + j)α

)

≤ p−α

(
1

2α
+ · · ·+ 1

(p+ 1)α

)
≤ Cαp

−α.

On the other hand,

p∑

j=0

1

(1 + j)α(1 + (p− j))α
≤ Cαp

−α

[p/2]∑

j=0

1

(1 + j)α
≤ Cαp

−α.

We finally find
∑

|j|=|l|=r

|al,j−pbl,j| ≤ Cα‖f‖ω‖g‖ω
(
Cα

pα

)r

.
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Summing this over r, we get

|Cov(F ◦ σp, G)| ≤ Cα

pα
‖f‖ω‖g‖ω

provided pα ≥ 2Cα.

The case α = 1 is the easiest one. Indeed, in that case, for j ≥ p+ 1 one can write

1

1 + (j − p)
− 1

1 + j
=

p

(1 + j)(1 + j − p)
.

We then argue exactly as before. Suppose now that α ∈ (1/2, 1). On the one hand

∑

j≥p+1

1

(1 + j)α(1 + (j − p))α
≤

p∑

j=1

1

jα(j + p)α
+

+∞∑

j=p+1

1

jα(j + p)α
.

Now,
p∑

j=1

1

jα(j + p)α
≤ 1

pα

p∑

j=1

1

jα
≤ Cαp

1−2α

whereas
+∞∑

j=p+1

1

jα(j + p)α
≤

+∞∑

j=p+1

1

j2α
≤ Cαp

1−2α.

On the other hand,

p∑

j=0

1

(1 + j)α(1 + (p− j))α
≤ 2

pα
+

p−1∑

j=1

1

jα(p− j)α

≤ 2

pα
+ p1−2α × 1

p

p−1∑

j=1

1(
j
p

)α (
1− j

p

)α

We recognize a Riemann sum of the function x 7→ xα(1− x)α, so that

p∑

j=0

1

(1 + j)α(1 + (p − j))α
≤ Cαp

1−2α.

We conclude exactly like for the other cases.

3.6. Central limit theorem. We now prove that the central limit theorem holds for

f ∈ Eω with zero mean. Throughout the proof, we assume α > 1. We set F = f ◦ φ =∑
l,j al,jel,j. We will apply Theorem A with the filtration (Fi)i∈Z defined by Fi = σ−i(F0)

and

F0 = · · · ×Ω× · · · × Ω× P(N)× P(N) × . . . ,

where Ω = {∅,N} and the first P(N) is at the 0-th position. The filtration (Fi)i∈Z is

increasing, with F∞ = P(N)Z and F−∞ = {∅,NZ}. Thus, F ∈ L2(F∞) ⊖ L2(F−∞). By

(7),

F ◦ σp =
∑

l,j

al,jel,j−p =
∑

l,j

al,j+pel,j
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so that

Sn(F ) =
∑

l,j

n−1∑

p=0

al,j+pel,j.

If we take the conditional expectation, then we find

E(Sn(F )|F0) =
∑

l,j
j1≥0

n−1∑

p=0

al,j+pel,j

Sn(F )− E(Sn(F )|Fn) =
∑

l,j
j1<−n

n−1∑

p=0

al,j+pel,j.

During the proof, we will need the two following technical facts.

Fact 1. For any n ≥ 1,

∑

j≥0




n−1∑

p=0

1

(1 + j + p)α




2

≤ Cα max
(
n3−2α, log(n + 1)

)
.

Fact 2. For any n ≥ 1 and any r ≥ 1,

∑

j1<−n
j2,...,jr∈Z

∣∣∣∣∣∣

n−1∑

p=0

1

(1 + |j1 + p|)α . . . (1 + |jr + p|)α

∣∣∣∣∣∣

2

≤
∑

j1<−n




n−1∑

p=0

1

(1 + |j1 + p|)α




2

×


∑

j∈Z

1

(1 + |j|)α




r−1

.

We postpone the proof of these two facts and we show that the conditions of Theorem A

are satisfied. First,

‖E(Sn(F )|F0)‖22 =
∑

r≥1

∑

|j|=r
j1≥0

∑

|l|=r

∣∣∣∣∣∣

n−1∑

p=0

al,j+p

∣∣∣∣∣∣

2

≤
∑

r≥1

∑

|j|=r
j1≥0




n−1∑

p=0

∑

|l|=r

|al,j+p|




2

.
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We apply Lemma 3.6 with M2 ≥ 2
∑

j≥1
1

(1+j)2α . This yields

‖E(Sn(F )|F0)‖22 ≤
∑

r≥1

Cω0,ω,α‖f‖2ω
M2r

∑

0≤j1<···<jr




n−1∑

p=0

1

(1 + j1 + p)α . . . (1 + jr + p)α




2

≤
∑

r≥1

Cω0,ω,α‖f‖2ω
M2r

∑

j2,...,jr≥1

1

(1 + j2)2α . . . (1 + jr)2α
×

∑

j1≥0




n−1∑

p=0

1

(1 + j1 + p)α




2

.

We now apply Fact 1 to get

‖E(Sn(F )|F0)‖22 ≤
∑

r≥1

Cω0,ω,α‖f‖2ω
2r

×max
(
n3−2α, log(n+ 1)

)

≤ Cω0,ω,α‖f‖2ω max
(
n3−2α, log(n + 1)

)
.

Since (3− 2α)/2 < 1/2, this yields the convergence of
∑

n≥1
‖E(Sn(F )|F0)‖2

n3/2 .

We now turn to the second sum. The beginning of the estimation is completely similar,

except that we now apply Lemma 3.6 with M2 = 2
∑

j∈Z
1

(1+|j|)α . We thus obtain

‖Sn(F )− E(Sn(F )|Fn)‖22 ≤
∑

r≥1

Cω0,ω,α‖f‖2ω
M2r

∑

|j|=r
j1<−n




n−1∑

p=0

1

(1 + |j1 + p|)α . . . (1 + |jr + p|)α




2

.

At this stage, we can no longer majorize 1
(1+|jk+p|)α by 1

(1+|jk|)α for k ≥ 2 since it is possible

that jk ≤ 0. We use Fact 2 instead. It yields

‖Sn(F )− E(Sn(F )|Fn)‖22 ≤
∑

r≥1

Cω0,ω,α‖f‖2ω
M2r

∑

j1<−n

∣∣∣∣∣∣

n−1∑

p=0

1

(1 + |j1 + p|)α

∣∣∣∣∣∣

2

×


∑

j∈Z

1

(1 + |j|)α




r−1

.

The definition of M and the changes of variables j = −j1 − n, q = n− 1− p imply

‖Sn(F )− E(Sn(F )|Fn)‖22 ≤
∑

r≥1

Cω0,ω,α‖f‖2ω
2r

∑

j>0

∣∣∣∣∣∣

n−1∑

q=0

1

(1 + j + q)α

∣∣∣∣∣∣

2

≤ Cω0,ω,α‖f‖2ω max
(
n3−2α, log(n+ 1)

)

where the last inequality follows from Fact 1. As before,

∑

n≥1

‖Sn(F )− E(Sn(F )|Fn)‖2
n3/2

< +∞.

Hence, F satisfies the CLT.
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Proof of Fact 1. We first observe that there exists Cα > 0 such that, for any j ≥ 0,

n−1∑

p=0

1

(1 + j + p)α
≤ Cα

1

(1 + j)α−1
.

Hence,

n∑

j=0




n−1∑

p=0

1

(1 + j + p)α




2

≤ Cα

n∑

j=0

1

(1 + j)2α−2

≤ Cα





1 provided α > 3/2

log(n+ 1) provided α = 3/2

n3−2α provided α ∈ (1, 3/2).

For the remaining part of the sum, we just write

n−1∑

p=0

1

(1 + j + p)α
≤ n

jα

so that

∑

j>n




n−1∑

p=0

1

(1 + j + p)α




2

≤ n2
∑

j>n

1

j2α
≤ Cαn

3−2α.

�

Proof of Fact 2. Let

S =
∑

j1<−n
j2,...,jr∈Z




n−1∑

p=0

1

(1 + |j1 + p|)α . . . (1 + |jr + p|)α




2

.

We expand the square to get

S =
∑

j1<−n
j2,...,jr∈Z




n−1∑

p=0

1

(1 + |j1 + p|)2α . . . (1 + |jr + p|)2α+

2
∑

0≤p<q≤n−1

1

(1 + |j1 + p|)α . . . (1 + |jr + q|)α


 .

We put the sum over j2, . . . , jr inside and we observe that, for a fixed p ∈ Z,

∑

j2,...,jr∈Z

1

(1 + |j2 + p|)2α . . . (1 + |jr + p|)2α =
∑

j2,...,jr∈Z

1

(1 + |j2|)2α . . . (1 + |jr|)2α

=


∑

j∈Z

1

(1 + |j|)2α




r−1

.
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Similarly, for a fixed (p, q) ∈ Z
2, since (1 + |jk + q|) ≥ 1, we get

∑

j2,...,jr∈Z

1

(1 + |j2 + p|)α . . . (1 + |jr + q|)α ≤
∑

j2,...,jr∈Z

1

(1 + |j2 + p|)α . . . (1 + |jr + p|)α

≤
∑

j2,...,jr∈Z

1

(1 + |j2|)α . . . (1 + |jr|)α

=


∑

j∈Z

1

(1 + |j|)α




r−1

.

Hence,

S ≤
∑

j1<−n




n−1∑

p=0

1

(1 + |j1 + p|)2α + 2
∑

0≤p<q≤n−1

1

(1 + |j1 + p|)α(1 + |j1 + q|)α


×


∑

j∈Z

1

(1 + |j|)α




r−1

≤
∑

j1<−n




n−1∑

p=0

1

(1 + |j1 + p|)α




2

×


∑

j∈Z

1

(1 + |j|)α




r−1

�

4. Further remarks

4.1. Unconditional convergence. In the statement of Theorem 2.2, Condition (iv) is

not very pleasant. During the proof it is used at two places: in Lemma 3.1 and in Lemma

3.5. We can delete this assumption if we accept to work only with polynomials instead of

functions in Eω.

Theorem 4.1. Let T ∈ L(X). Suppose that there exist a dense set D ⊂ X and a sequence

of maps Sn : D → X, n ≥ 0, such that, for any x ∈ X,

(i)
∑

n≥0 T
nx converges unconditionally;

(ii)
∑

n≥0 Snx converges unconditionally;

(iii) T nSnx = x and TmSnx = Sn−mx for any n > m;

Then there exists a T -invariant strongly mixing Borel probability measure µ on X with

full support such that P ⊂ L2(X,B, µ).
Suppose moreover that there exists α > 1/2 such that, for any x ∈ D, ‖T nx‖ = O(n−α)

and ‖Snx‖ = O(n−α). Then, for any f, g ∈ P,

|Cov(f ◦ T n, g)| ≤ Cf,g,α





n1−2α if α ∈ (1/2, 1)
log(n+ 1)

n
if α = 1

n−α if α > 1.

If α > 1, then for any f ∈ P with zero mean, the sequence
1√
n
(f+· · ·+f ◦T n−1) converges

in distribution to a Gaussian random variable of zero mean and finite variance.



CENTRAL LIMIT THEOREMS IN LINEAR DYNAMICS 27

Proof. We just point out the main differences with the proof of Theorem 2.2. Let ω0 : N →
(1,+∞) be any nondecreasing function going to +∞. Let (xn)n∈N be a dense sequence in

D with x1 = 0 and ‖T kxn‖ ≤ ω0(n) for any n ≥ 1 and any k ∈ Z. We may also ask, if we

want to prove the second part of Theorem 2.3, that for any n ≥ 1 and any k ∈ Z,

‖T kxn‖ ≤ ω0(n)

(1 + |k|)α .

We construct the measure exactly like in Section 3.2, except that we require that the

sequence (pl) also satisfies

∀d ≥ 1, ∀l ≥ 2d, ω0(l)
2d ≤ p

−1/2
l ,

∀d ≥ 1,
∑

l≥1

(Nl+1 −Nl)p
1/4d
l < +∞.

To prove that P ⊂ L2(X,B, µ), it suffices to show that, for any d ≥ 1, ‖ · ‖d ∈ L2(X,B, µ).
Now, by the triangle inequality,

∫

X
‖x‖2d =

∫

NZ

∥∥∥∥∥∥
∑

l≥1

Nl+1∑

|k|=Nl

T kxnk

∥∥∥∥∥∥

2d

dµ̄
(
(nk)

)

≤
∑

l1,...,l2d≥1

∫

NZ

2d∏

i=1

∥∥∥∥∥∥

Nli+1∑

|k|=Nli

T kxnk

∥∥∥∥∥∥
dµ̄
(
(nk)

)
.

We then apply Hölder’s inequality to get

∫

X
‖x‖2d ≤

∑

l1,...,l2d≥1

2d∏

i=1



∫

NZ

∥∥∥∥∥∥

Nli+1∑

|k|=Nli

T kxnk

∥∥∥∥∥∥

2d

dµ̄
(
(nk)

)



1/2d

.

We fix some l ≥ 1 and we want to estimate
∫
NZ

∥∥∥
∑Nl+1

|k|=Nl
T kxnk

∥∥∥
2d

dµ̄
(
(nk)

)
. Let (nk) ⊂ N

Z

and let us write

∥∥∥∥∥∥

Nl+1∑

|k|=Nl

T kxnk

∥∥∥∥∥∥

2d

≤ 22d




∥∥∥∥∥∥∥∥

Nl+1∑

|k|=Nl
nk≤l

T kxnk

∥∥∥∥∥∥∥∥

2d

+

∥∥∥∥∥∥∥∥

Nl+1∑

|k|=Nl
nk>l

T kxnk

∥∥∥∥∥∥∥∥

2d


≤ 22d

2ld
+ 24d−1(Nl+1 −Nl)

2d−1

Nl+1∑

|k|=Nl

∥∥∥T kxnk

∥∥∥
2d

× 1{nk>l}.
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We integrate this inequality over NZ to find

∫

NZ

∥∥∥∥∥∥

Nl+1∑

|k|=Nl

T kxnk

∥∥∥∥∥∥

2d

dµ̄
(
(nk)

)
≤ 22d

2ld
+ 24d−1(Nl+1 −Nl)

2d−1

Nl+1∑

|k|=Nl

∑

m>l

pm

∥∥∥T kxm

∥∥∥
2d

≤ 22d

2ld
+ 24d(Nl+1 −Nl)

2d
∑

m>l

pmω0(m)2d

≤ 22d

2ld
+ 24d(Nl+1 −Nl)

2dplmax
(
ω0(l), ω0(2d)

)2d

≤ 22d

2ld
+ 24d(Nl+1 −Nl)

2dp
1/2
l ω0(2d)

2d,

since we assumed ω0(l)
2dpl ≤ p

1/2
l . We take the power 1/2d and we sum the inequalities

to get

∫

X
‖x‖2ddµ(x) ≤ C


∑

l≥1

(
2

2l/2
+ 4(Nl+1 −Nl)p

1/4d
l

)


2d

ω0(2d)
2d

≤ Cd.

Thus, ‖ · ‖d belongs to L2(X,B, µ). Contrary to what happens in Lemma 3.1, we cannot

control its norm by ω0(2d)
d, but only by some constant Cd which can be much larger.

This also affects Lemma 3.5, where we have to replace Cdrdω0(d)
d by some constant Cd

depending on d. However, when we want to study the sequence of covariances and the

validity of the Central Limit Theorem for the sequence (f ◦ T n), with f a polynomial,

this is unimportant. Indeed, the sum over r which appears in both proofs is now a finite

sum. �

4.2. Central limit theorems and the Gaussian measure. When T satisfies the as-

sumptions of Theorem 1.2, we have two ways to define a T -invariant Gaussian measure

on X with full support: the Gaussian measure of [BM11] and the measure constructed in

[MAP13] or in Section 3. The Gaussian measure is probably simpler. However, it is easier

to understand why T is ergodic with respect to the measure of Section 3: it behaves like

a Bernoulli shift. This was very useful to apply the martingale method, in particular to

have a ”canonical” choice of the filtration (Fi) to apply Theorem A.

If we want to apply Theorem A with the Gaussian ergodic measure, it is not clear which

filtration could be convenient. A particular case is that of backward shifts: in that case,

T is already a shift! Hence, on ℓ2(Z+), we can prove a statement similar to Theorem 2.5

with a Gaussian measure and replacing Eω by some subspace of L2 similar to those of

Devinck.

Question 4.2. Let T ∈ L(X) satisfying the assumptions of Theorem 1.1 and let µ be a

T -invariant and ergodic Gaussian measure on X with full support. Does there exist a big

subspace E ⊂ L2(µ) such that any f ∈ E satisfies the CLT?
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4.3. Central limit theorem for linear forms. It is a little bit deceiving in the state-

ment of Theorem 2.2 that the sequence (εk) is not directly related to the decay needed on

‖T kx‖ to obtain a CLT. It turns out that this is the case if we restrict ourselves to linear

forms.

Theorem 4.3. Let T ∈ L(X), let α > 1 and let ω : N → (1,+∞) going to +∞. Suppose

that, for any function ω0 : [1,+∞) → (1,+∞) going to infinity, one can find a sequence

D = (xn)n≥1 ⊂ X and a sequence of maps Sn : D → X, n ≥ 0, such that

(i) For any x ∈ D,
∑

n≥0 T
nx converges unconditionally;

(ii) For any x ∈ D,
∑

n≥0 Snx converges unconditionally;

(iii) For any x ∈ D, T nSnx = x and TmSnx = Sn−mx for any n > m;

(iv) For any sequence (nk) ⊂ N
Z such that

∑
k≥0 T

kxnk
and

∑
k<0 S−kxnk

are convergent,

∥∥∥∥∥∥
∑

k≥0

T kxnk

∥∥∥∥∥∥
+

∥∥∥∥∥
∑

k<0

S−kxnk

∥∥∥∥∥ ≤
∑

k∈Z
ω0(nk)k

−α.

(v) span
(
{T kxn;Skxn}; k ≥ 0, n ≥ 1

)
is dense in X.

Then there exists a T -invariant strongly mixing Borel probability measure µ on X with full

support such that Eω ⊂ L2(X,B, µ). Moreover, for any x∗ ∈ X∗, the sequence
1√
n
(x∗ +

· · ·+x∗ ◦T n−1) converges in distribution to a Gaussian random variable of finite variance.

Proof. Let x∗ ∈ X∗ and let us show that x∗ satisfies the CLT. Let F = f ◦ φ =∑
j∈Z,l∈N al,jel,j . A look at the proof of Theorem 2.2 shows that we only need to prove

∑

j≥0

∑

l≥1

∣∣∣∣∣∣

n−1∑

p=0

al,j+p

∣∣∣∣∣∣

2

= O(n1−ε)(8)

∑

j<−n

∑

l≥1

∣∣∣∣∣∣

n−1∑

p=0

al,j+p

∣∣∣∣∣∣

2

= O(n1−ε)(9)

for some ε > 0. Let j ≥ 0 and l ≥ 1. Like in Lemma 3.5,

al,j =

∫

N

el,j
(
(nk)

)
〈x∗, φ

(
(nk

)
)〉dµ̄

(
(nk)

)

=
∑

m≥l

pmel(m)〈x∗, T jxm〉.

By linearity of x∗,

n−1∑

p=0

al,j+p =
∑

m≥l

pmel(m)〈x∗,
n−1∑

p=0

T j+pxm〉.
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We can now use Assumption (iv) and argue as in Lemma 3.5:
∣∣∣∣∣∣

n−1∑

p=0

al,j+p

∣∣∣∣∣∣
≤ C

∑

m≥l

pm|el(m)|ω0(m)‖x∗‖
n−1∑

p=0

1

(1 + j + p)α

≤ C
√
plω0(l)‖x∗‖

n−1∑

p=0

1

(1 + j + p)α
.

This implies, arguing as in Lemma 3.6,

∑

j≥0

∑

l≥1

∣∣∣∣∣∣

n−1∑

p=0

al,j+p

∣∣∣∣∣∣

2

≤ C‖x∗‖2
∑

j≥0

∣∣∣∣∣∣

n−1∑

p=0

1

(1 + j + p)α

∣∣∣∣∣∣

2

≤ C‖x∗‖2n3−2α.

Since 3− 2α < 1, this shows (8). The proof of (9) is completely similar and omitted. �

This theorem is interesting for operators such that
∑

n T
nx converges unconditionnaly

whereas
∑

n ‖T nx‖ = +∞. For instance, we get the following corollary for backward

shifts, where the value 1/p is optimal.

Corollary 4.4. Let ω : N → (1,+∞) going to +∞ and let Bw be a bounded backward

weighted shift on ℓp(Z+). Suppose that there exists α > 1/p such that, for any n ≥
1, w1 · · ·wn ≥ Cnα. Then there exists a Bw-invariant strongly mixing Borel probability

measure µ on ℓp(Z+) with full support such that Eω ⊂ L2(X,B, µ). Moreover, for any

x∗ ∈ ℓq(Z+),
1
p + 1

q = 1, the sequence
1√
n
(x∗ + · · · + x∗ ◦ T n−1) converges in distribution

to a Gaussian random variable of finite variance.

More surprinzingly, we obtain that a central limit theorem holds in the context of parabolic

composition operators. This was unavailable with Theorem 2.2.

Corollary 4.5. Let φ be a parabolic automorphism of the disk. There exists a Cφ-invariant

strongly mixing Borel probability measure µ on H2(D) such that (H2)∗ ⊂ L2(µ) and any

x∗ in (H2)∗ satisfies the CLT.

Question 4.6. Do the above corollaries remain true if we consider polynomials instead of

linear forms?

4.4. Fréchet spaces. Theorem 1.2 was proved in [MAP13] for an F−space. For conve-

nience, we restrict ourselves to Banach spaces; however, there are interesting examples

beside this context, especially in the Fréchet space setting.

Question 4.7. Can we extend Theorem 2.2 to Fréchet spaces?
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