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CENTRAL LIMIT THEOREMS IN LINEAR DYNAMICS
FREDERIC BAYART

ABSTRACT. Given a bounded operator T' on a Banach space X, we study the existence
of a probability measure y on X such that, for many functions f : X — K, the sequence
(f +---+ foT™ 1) //n converges in distribution to a Gaussian random variable.

1. INTRODUCTION

Linear dynamics (namely the study of the dynamics of linear operators) is a branch of
analysis connecting functional analysis and dynamics. Its main topics are detailed in the
two books [BM09] and [GEP11]. As for the classical dynamical systems, one can study
the dynamics of linear operators from a topological point of view. Precisely, an operator T'
defined on a separable Banach space X is called hypercyclic provided there exists a vector
x € X such that its orbit {T™z; n > 0} under T is dense. In this context, contrary to
the general case, there is a very easy criterion to prove that an operator is hypercyclic; it
allows to exhibit many hypercyclic operators. Let us recall this criterion.

Theorem (Hypercyclicity Criterion). Let T € £(X). Suppose that there exist a dense
subset D C X and a sequence of maps (Sp)n>0, Sn : D — X, such that, for each x € D,
(i) T"x — 0;
(ii) Spx — 0;
(iii) T"Spx — x.
Then T s hypercyclic.

In this paper, we shall concentrate on the other aspect of linear dynamics, that links it
with ergodic theory. Let us recall some basic definitions. Let (X, B, ) be a probability
space and let T': (X, B, u) — (X, B, 1) be a measurable map. We set

Li(p) = {f € L*(w); /deu = 0}-

We say that T is a measure-preserving transformation (or that u is T-invariant) if u(T-1A) =
w(A) for any A € B. A measure-preserving transformation 7" : (X, B, u) — (X, B, pu) is
ergodic (with respect to p) if

N-1
© S wANTT(B) 22 u(A)u(B)
n=0
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for any measurable sets A, B C X; T is weakly mizing (with respect to p) if

N—-1
+ S AN T(B) — w(A(B) X0
n=0

for any A, B € B; and T is strongly mixing if
WANT(B)) "5 (A)u(B)

for any A, B € B.

We wonder whether there exists a Borel probability measure p on the separable Banach
space X, which is nondegenerate (namely, ©(U) > 0 for any nonempty and open subset
U C X), such that T € L£(X) is p-invariant and 7 is ergodic (resp. weakly mixing, strongly
mixing) with respect to p. This line of investigation was opened by Flytzanis in [Fly95]
and pursued later by Bayart, Grivaux, Matheron (see [BG06], [BGO07], [BM11]) and also
recently by Murillo-Arcilla and Peris (see [MAP13]).

It turns out that, when an operator has many eigenvectors associated to eigenvalues of
modulus 1, then it is weakly mixing with respect to a nondegenerate and invariant Gauss-
ian measure on X. Indeed, the following theorem is proved in [BM11].

Theorem 1.1. Let T € £(X). Suppose that, for any countable set D C T = {z € C; |z| =
1}, the linear span of Uyer p ker(T' — A) is dense in X. Then there exists a T-invariant
weakly mizing Gaussian Borel probability measure y on X with full support.

An interesting application of this theorem (strictly speaking, of a variant of this theorem)
is that an enhancement of the hypercyclicity criterion leads to a strongly mixing dynamical
system.

Theorem 1.2. Let T € £(X). Suppose that there exist a dense set D C X and a sequence
of maps (Sp)n>0, Sn : D — X, such that, for each x € D,

(1) > >0 T"x converges unconditionally;

(it) >, >0 Sn converges unconditionally;

(iii) T"Spx = x and T™Spx = Sp—max if n > m.
Then there exists a T-invariant strongly mixzing (Gaussian) Borel probability measure p
on X with full support.

Theorem 1.2 has also been obtained in [MAP13] in a completely different way. The measure
p constructed in [MAP13] is not a Gaussian measure; in [MAP13], very few properties
of this measure are proved. For instance, it is not known whether the norm | - || or the
linear functionals (z*,-) belong to L?(X, i1), even if we can always ensure these properties,
see Section 3. On the other hand, the dynamical system (7', u) is conjugated to an easy
strongly mixing dynamical system: a Bernoulli shift.

In this paper, we are interested in properties stronger than just ergodicity or mixing. First
we are interested in the speed of mixing. For f,g € L?(X, u), define the correlation of f

COV(f,9)=/ngd/~c—/deu/ngu

and g as
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and the correlation of order n of f and g (with respect to T') by

Zn(f,g) = Cov(foT™,g).

T is p-mixing provided Z,(f,g) goes to zero for any f,g € L?(X, ). One may ask if we
can estimate the speed of convergence to 0 of Z,,(f, g) for any f,g € L?(X, i), or at least
for a large class of functions.

The second direction we investigate is related to the central limit theorem. Indeed, if T is
p-ergodic, then Birkhoff’s theorem says that, for any f € L'(X, ),

f—l—---—i—fOTn*l
n

— / fdu almost surely.

In other words, the sequence ( f oT*) satisfies the strong law of large numbers. One can ask
4t foTn—1 >
NG

converges in distribution to a Gaussian random variable of zero mean and finite variance

whether is also satisfies the central limit theorem, namely if the sequence <

(we now assume f € L3).

At this point, it is important to notice that we cannot expect results true for all f € Lg ().
Indeed, D. Volny has proved in [Vol90] that the Birkhoff means may converge to arbitrary
laws on a dense Gg-set of Lg(,u). More precisely, Volny has shown that, if T is u-ergodic
with u({z}) = 0 for any = € X, there exists a dense Gs-set E of LZ(u) such that, for any
f € E and any probability measure v on R satisfying [ tdv(t) = 0 and [ t3dv(t) = 1, there
exists a sequence (NNy) tending to infinity such that Sy, /||Sn,||2 converges in distribution
to v, where Sy = f + --- 4+ f o TN~ Similarly, the slow decay of correlations is a
typical feature of functions in LZ(u) (see [Che95]). However, for many concrete dynamical
systems, positive results were obtained if we assume some regularity condition on f, like
f is Holder.

Thus, in this paper, we are interested to prove central limit theorems or to estimate the
decay of correlation for functions belonging to a large class of L2(1), in the context of linear
dynamical systems. The first step in that direction was done by V. Devinck in [Dev13].
He started from Theorem 1.1 and he was able to prove that, when the T-eigenvectors of
T can be parametrized in a regular way, then Cov(foT",g) decreases fast to zero for f,g
belonging to large classes of functions. Let us summarized his main result.

Theorem 1.3. Let H be a separable Hilbert space and let T € £(H). Suppose that there
exists « € (0,1] and E : T — X such that TE(A) = AE(X) for any A € T and E is
a-Hdélderian: there exists Cg > 0 such that

IE(e”) — E(e”)| < Cglo —0'|* for any 0,0’ € [0,2).

Suppose moreover that span(E()\); A€ T) is dense in H. Then there exist a T-invariant
ergodic Gaussian measure p with full support and two classes of functions X, such that,
for any (f,g) € X x Y,

[Cov(foT™, g)| < Cpgn™.

We will not describe the two classes X and ) in the above theorem. Their definitions
involve the Gaussian measure p and depend on the Hilbertian structure of H. We just
mention that a typical function in X or ) is an infinitely differentiable function whose
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sequence of derivatives satisfies some growth condition. For instance, the set of polynomials
P is contained in both X and ). We recall that a function P : X — R is a homogeneous
polynomial of degree d provided there exists a bounded symmetric d-linear form ) on X
such that P(z) = Q(x,...,x). A polynomial of degree d is a sum P = Py+---+ P;, where
each P is a homogeneous polynomial of degree k.

Theorem 1.3 is really specific to the Hilbert space setting. In this paper, we obtain several
results in the Banach space setting regarding the decay of correlations and the validity of
the central limit theorem for large classes of functions. We do not start from the Gaussian
measure of Theorem 1.1; we rather use the class of measures introduced in [MAP13]. Our
theorems will have the following informative form:

Let T € £(X) satisfying a strong form of the Hypercyclicity Criterion.
Then there exist a T-invariant strongly mixing Borel probability measure
pwon X and a ”large” subset E of L?(u) such that
e for any f,g € F, the sequence of covariances (COV( foT™, g)) converges
quickly to zero;
e forany f € E, (f +---+ foT" 1)/y/n converges in distribution to a
Gaussian random variable.

Of course, precise statements will be given in Section 2, after we define our large subsets

E.

Notations. Throughout the paper, the letter C' will denote an absolute constant whose
value may change from line to line. If a constant depends on some parameter x, then we
shall denote it by C,.

2. CENTRAL LIMIT THEOREMS - RESULTS AND EXAMPLES

2.1. The spaces of functions. We shall first define the spaces of functions f such that
the sequence (f oT™) will satisfy a central limit theorem. There are many differences with
the classical cases due to the noncompactness of X. We will require that f is infinitely
differentiable; this is stronger than in many situations where a central limit theorem for
dynamical systems has been proved. On the contrary, we do not want to restrict ourselves
to bounded functions. We expect to apply our results to linear forms for instance.

Let w : N — (1, +00) which goes to infinity. We define E,, as the set of functions f : X — R
which are infinitely differentiable at 0, which may be written, for any = € X,

+00 e
sy =3 P00 )
k=0

and whose sequence of derivatives satisfies
[1f ]l == sup [ D f(0) w ()" < +o0.
k>0
Endowed with the norm || - ||, E, is a Banach space. Clearly, each E, contains the

polynomials. When w is well chosen, it also contains other natural classes of functions, as
the following proposition indicates.
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Proposition 2.1. There exists a function w : N — (1,400) tending to infinity such
that, for any polynomial P € P, for any function ¢ : R — R which can be written
() = >0 (::ﬁx" with |an| < AT™ for some constants A,7 > 0 and o > deg(P), ¢po P
belongs to E,,.

Proof. We write P = Py +-- -+ Py, where each Py is homogeneous with degree k. We may
assume deg(P) > 0. Let B > 0 be such that |P(z)| < Blz||*, for any k = 0,...,d. We
develop ¢ o P into

+o0
poP = Z(;”;U S Ry
k=0 > jot-tja=k

+m a . .
— Pjo o de : .70+"'+.]d.
2 B [Go+ -+ + Ja))°

jo, Ja=0
. ) Qi
_ JO Jd Jjo+-+Jjd
= Z >, BB 7o
]0>0 [(]0+”‘+]d)']
]1+ +djg=l

+oo
=: Z Q-
=0

Each @Q); is a homogeneous polynomial with degree [. We are looking for a function w such
that the sequence (||Qgl|/k!w(k)*) is bounded. We observe that

(Br)iottia
< A .
el = g;o (Gio ++++ 3a)!)

Jit-+djg=k
< AY By Y (Br)/it e
- Jo>0 Jitetdjg=k ((jo T +jd)!)
. (BT)k
< A (BT)%° S S A—
J;) j1+-§jd:k (([2] +JO)!)

(we assume, expanding B if necessary, that BT > 1). Now, the number of solutions of
the equation j; + --- + djg = k, j; > 0, is less than k%. We deduce the existence of some

positive constant 71 (depending on d) such that

1Qull < AT —
>

Now, for k sufficiently large and for any jo > 0,

(Bryo ljox 1
(([&] +30))” ~ <2> ([Y°

This yields
1QxIk! < A’

([d]-)”'
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We now set w(k) = log(k + €) (which does not depend on anything!) and observe that,
by Stirling’s formula, the sequence (||Qg||k!w(k)*) is bounded. O

2.2. Statement of the results and examples. Having described the spaces of functions
where we expect that a central limit theorem holds, we can now give our main statements.
We begin with an abstract result.

Theorem 2.2. Let T € £(X) and let w : N — (1,400) going to +o0o. Suppose that,
for any function wy : [1,400) — (1,4+00) going to infinity, one can find a sequence D =
(n)n>1 C X, a sequence (ex) C £Y(Z) and a sequence of maps S, : D — X, n >0, such
that

(i) For any x € D, -, T"x converges unconditionally;
(i1) For any x € D, Y, <, Snx converges unconditionally;
(iii) For any x € D, T"Sp,x = x and T"Spx = Sp_mz for any n > m;
w) For any sequence (ng) C N% such that Tkz, and S_rTn,, are convergent,
k>0 k k<0 k

Z Tkxnk + Z S_kTn,

k>0 k<0

< Zwo(nk)sk.

keZ

(v) span({T*xy; Spxn}; k>0, n > 1) is dense in X.

Then there exists a T-invariant strongly mizing Borel probability measure p on X with
full support such that E,, C L*(X,B, ).
Suppose moreover that there exists o > 1/2 such that, for any x € D, for any n,k > 0,

wo(n) wo(n)
Trz,|| < —22 and ||Spzn|| < —2—.

[T H_(1+k)a and || Sk, < A+ k)

Then, for any f,g € E,,
nl=2 if a € (1/2,1)
Cov(f 0T g)| < Cryad BMFTD 0y
n
n-¢ if a > 1.

1
If « > 1, then for any f € E, with zero mean, the sequence —(f + -+ f o T"_l)
n

converges in distribution to a Gaussian random variable of zero mean and finite variance.

Of course, this statement does not look very appealing and we shall not prove it immedi-
ately. We prefer to give two more readable corollaries. The first one deals with stronger
forms of unconditionality.

Theorem 2.3. Let T € £(X) and let w : N — (1,400) going to +o0o. Suppose that there
erist « > 1, a dense set D C X and a sequence of maps Sy, : D — X, n > 0, such that,
for any x € D,

(i) T"Spx = x and T™S,x = Sp_mz for any n > m;
(it) |[T"z[| = O(n™*) and ||Spz|| = O(n™%).
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Then there exists a T-invariant strongly mizing Borel probability measure p on X with
full support with E,, C L*(X,B, ) and such that for any f,g € E,,

|Cov(foT", g)] < Cpgan *.

1

Moreover, for any f € E,, with zero mean, the sequence —=(f +---+ foT™ 1) converges
n

in distribution to a Gaussian random variable of zero mean and finite variance.

Proof. First, the assumptions imply the unconditional convergence of the series ) T"x

and ), Spx for any x € D. Moreover, let wy : N = (1,400) going to +00. Let (z)n>1
be a dense sequence in D such that, for any n > 1, k > 0,

wo(n)
(1+ k)

Then for any sequence (ny) C NZ,

Z Tk:vnk +

k>0

wo(n)

TEz,|| < 0
T2l < T

and || Sgz,| <

Z S_1Tn,

k<0

wo(nk)
<2 W

so that the assumptions of Theorem 2.3 are satisfied with e, = (1 + |k|)“. O

The previous theorem may be applied to many examples where we already know that
Conditions (i) and (ii) hold. For instance, adjoints of multipliers or composition operators
associated to hyperbolic automorphisms of the disk, acting on the Hardy space H?(DD)
satisfy the assumptions of Theorem 2.3. We refer to [BM09, Chapter 6] for a description
of these examples.

Remark 2.4. When we work on a Hilbert space, we can compare the speed of convergence
to zero of the sequence of covariances given by the measure obtained in Theorem 2.3 with
that given by Devinck’s theorem. Indeed, the assumptions of Theorem 2.3 imply the
existence of a sequence of perfectly spanning T-eigenvectorfields: for any = € D, put
E(X) =3 ,cz A" Tz, If we assume that ||T"z|| = O(n~%) and ||Syz| = O(n™®) for any
z € D and some « € (1,2), then one can show that E is (o — 1)-Holderian: pick any
A\ i € T and let n € N be such that (n+1)"! < |A — | < n~!. Then

IEQ) —Ew)l < CY kA—plk™*+CY k™
k=1 k>n
< CIA—pn®> 4+ Cnt™
< CA—p|* 7t

Thus, with the assumptions of Theorem 2.3, we may also apply Devinck’s theorem to
obtain an ergodic measure such that, for any f,g € P,

|Cov(foT™, g)| < Cn~(@71),

This is less good than the result we obtain by applying directly Theorem 2.3.
Conversely, let us assume that the assumptions of Devinck’s theorem are satisfied. We set

D = span </ APE(N)dA; p € Z) ,
T
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which is dense in H. We define S,, on D by

S, ( /T ApE(A)d)\> _ /T AP E(A)dA

so that S, T™ = S,,_,, on D, for any n,m > 0. It is not hard to show that, for any « € D,
IT"z|| = O(n™%) and [|Spz| = O(n™%). Indeed,

2 L db
™ ( / ApE(A)d)\> / P Bty —
T 0

2

21 . ™
— 1/ oi(n+p)o (E(ew) _E (g(“m))) @
2 0 2

by a change of variables. Since F is assumed to be a-Holderian, this easily implies that

|IT"z|| = O(n™®) for any « € D. Theorem 2.3 and Devinck’s theorem then give the same
decay of correlations. However, we are sure that we can apply Theorem 2.3 only if a > 1,
and we cannot apply it if a < 1/2.

Thus, in the Hilbert space setting, it is not so easy to decide which measure has better
mixing properties. Moreover, we do not know whether we can compare our class E,, with
the classes X and Y of Devinck. We also point out that the way we construct E from the
assumptions of Theorem 2.3 or conversely the way we construct D from the assumptions
of Devinck’s theorem are often not optimal. In concrete situations, a more natural choice
of E (resp. of D) can improve the results we get automatically in this remark. In these
concrete situations, our results seem better; see the forthcoming examples 2.6 and 2.7.

2.3. Bilateral weighted shifts. We now apply Theorem 2.2 to backward weighted shift
operators on (P(Zy), p > 1. Let w = (wp)nez, be a bounded sequence in Ry. The
bilateral weighted shift By, on (#(Z..) is defined by By ((#5)) = (wpi12n+1). We know
by [BR13] that there exists a By-invariant ergodic Borel probability measure on ¢(Z.)
with full support iff Y o, (wq ... w,)™P < 4o0.

Theorem 2.5. Let w : N — (1,400) going to +oco and let By, be a bounded backward
weighted shift on P(Z4.). Suppose moreover that 3, < (w1 ... w,)"P < +oo. Then there

exists a By -invariant strongly mizing Borel probability measure on (P (Z,.) with full support
such that E,, C L*(X,B, u).
Suppose moreover that there exists C > 0 and o > 1/2 such that, for any n > 1,

wy -+ - wy, > Cn®.

Then for any f,g € E,,

nl=2 if a € (1/2,1)
1 1
Cov(f o B, g)| < Cpaad 080 FL
n
n-“ if a> 1.

1
If a > 1, then for any f € E, with zero mean, the sequence T(f +---+ fo B"fv_l)
n

converges in distribution to a Gaussian random variable of zero mean and finite variance.
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Proof. Let wp : N — (1,400) going to infinity. Let (ay,)n>1 be a dense sequence in K with
loh] < wo(n). We set D = (x)n>1, With 2, = aneqp, where (e;);>0 is the standard basis
of P(Z+). We define S, on D by Sy(e0) = 5=
> Sn for any x € D follows from the convergence of ) (w; ... w,) ? whereas Bz =0
for any = € D and any n > 1! Moreover, since (o, ) is dense in K, span(Siz,,; k> 0,n > 1)
is dense in X. As observed above, >, -, Bk, = ay,ep. Regarding Y ke S—kTn,, We

en. The unconditional convergence of

just write

Z S_kTn,|| =

k<0

D an e

k<0
g, [P 1/p
- (I;O(wl...iu_k)p>
)\
wolng

< 1, this in turn yields

wo(nk)
Z S—kZn | < Cwp Z (wr - w )P
k<0 F<0

Since £o(n=1) > L and 1
w1 w1 P

Thus, the assumptions of Theorem 2.2 are satisfied. Moreover, when w;y - - - w, > Cn®, it
is easy to check that, for any x € D, ||[T"z|| = O(n™%) and ||Syz|| = O(n™?), allowing to
apply the results regarding the sequence of covariances and the central limit theorem. [

Example 2.6. Let us now apply Theorem 2.5 to backward shifts on (2(Z,). Let a €

(0,1) and let By be the weighted backward shift on ¢*(Zy) with weight sequence w, =
a+1/2

(%) ,n > 2, w; = 1. An associated perfectly spanning T-eigenvectorfield is

E()‘) = Z Lena

n>0 1 n

where (e,) is the standard basis of £2(Z, ). F is a-Hélder (see [Dev13]). Thus we know
that there exists an ergodic Gaussian measure u on ¢2(Z, ) such that, for any f,g € P,

[Cov(f o By, 9)| < Crgan™.

On the other hand, we may also apply Theorem 2.5 to get an ergodic measure p such that,
for any f,g € P,

n~2 if @ € (0,1/2)
1 1

Cov(f 0 B g)] < Cpgnd BUFY 0 — 10
n=o—1/2 if > 1/2.

In all cases, the speed of mixing is better.
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2.4. Composition operators associated to parabolic automorphisms. The un-
pleasant condition (iv) in Theorem 2.2 is useful to handle operators such that > T"x
and ) S,z converge unconditionally whereas ) |T"z| = +oo or > |[|Shz| = +o0.
This was the case for backward shift operators. Another example is given by composition
operators induced by a parabolic automorphism of the disk.

Let ¢ be a parabolic automorphism of the disk, namely ¢ is an automorphism with a
unique boundary fixed point. The composition operator Cy defined by Cy(f) = fo ¢ is
bounded on the Hardy space H?(ID). Since, for any countable set D C T, the linear span
of Urem p ker(Cy — A) is dense in H 2(D) (see [BGOT]), there exists a Cy-invariant strongly
mixing Gaussian measure p on H?(ID) with full support. Moreover, it is shown in [BG07,
Example 3.9] that Cy admits a T-eigenvector field E which is a-Hélder, for any o < 1/2.
Devinck’s result ensures that, for any f € P, Cov(foT™, f) = O0(n~ %), a < 1/2.

As for backward shifts, we can go further.

Example 2.7. Let ¢ be a parabolic automorphism of the disk, let « < 1 and let w: N —
(1,+00) going to infinity. There exists a Cy-invariant strongly mixing Borel probability
measure p on H?(ID) with full support such that E,, C L?(X,B, ) and, for any f,g € E,,

Cov(foT", g) = O(n'=2%).

Proof. Without loss of generality, we may assume ¢(1) = 1. It is easier to work with the
upper half-plane P, = {s € C; Sm(s) > 0} which is biholomorphic to D via the Cayley
map o(z) = i(1+ 2)/(1 — 2z). We set H2 := {foo!; f € H*(D)}. The norm on H? is
given by

dt
14+

IF3=n" /R F (1)

Moreover, Cy, acting on H 2(D), is similar, via the Cayley map, to a translation operator
7a(F) = F(- + a) acting on H?, a € R*. We shall assume a = 1.

Let p > 1 and let D be the set of all holomorphic polynomials satisfying P(1) = P'(1) =
... = P@)(1) = 0. D is dense in H%(D) and any P € D satisfies |P(z)| < Cp|z — 1],
Hence Q = P oo~ ! € H? satisfies |Q(z)| < (157%)1) for any x € R.

Let now wp : N — (1,400) and let § = /wg. Let finally (Q,),>1 be a dense sequence in
H? such that, for any n > 1 and any z € R,

6(n)
T+ a2
We claim that the assumptions of Theorem 2.2 are satisfied with T' = 71, S,, = 7_, and

Ty, = @Qp. The first three points can be found e.g. in [BM09, Theorem 6.14]. Let us prove
(iv). Let (ng) C NZ and let us majorize

Z Tank

k>0

Q)] <

2 2

0(ng) dt
u@ E:(L+@+kﬁw 142

k>0
0(n)0(n,)
<2 3 [ erarat e

k>j>1

IN

2

dt.
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For k,j > 1, we say that k ~ j provided [~k — kY4, —k+ kY4 N [—j —j1/4, —j+ 514 # @.
It is important to notice that

(1) k~j = C 'k <j<Ck.
Let us consider £ > j > 1 and let us first assume that k = j. We split the integral over
R into three integrals: over [—k — kY4, —k + k'/4], over [—j — j1/*, —j + j/*] and outside

the two previous intervals. On [~k — kY4, —k 4+ k'/4], we know that (t + 5)2 > j1/2 (since
j » k), so that

/—k+k1/4 di 3 O/ < o
—h—kr/d (L @ RPA A+ (84 )2)P(1+182) 7 1 x P2 x k2 = KT/45TM

provided p > 7/2. A similar estimation holds true on [—j — j'/*, —j + j%/4]. On the
remaining part of R, we have both (t+5)% > j/2 and (t+k)? > k¥/2. Since [ dt/(1+?) <
400, we finally get, provided k ~ j,

dt < C
I e e e R

Suppose now k ~ j. We split the integral over R into two integrals: over [—k — kYA —j+
k'/4] (recall that k > j) and outside this interval. Outside the interval, the estimation
of the integral is very similar. Inside the interval, we cannot control both (¢ 4+ k)? and
(t+7)%, whereas (1+t2) > Ck?. Observe also that the length of the interval is controlled
by 2k/4. This leads to

/ dt < C
R (L4+(t+k)2)P(1+ (t+5)2)P(1 +12) — E7/4

Summing over all possible values of k and j and using the previous estimates, we find

2
ZTank < CZ k7/4 7/4 +C Z k7/4
k>1 ) kj>1 k>j>1
k~j
? 2 2
0 (ny) 0 (ry) 0(n;)
< oyl oy ko y )
k>1 k,j>1 k,j>1
k~j k~j

where the last inequality follows from (1). We then observe that, for a fixed k > 1, there
is at most Ck'/* integers j with j ~ k. Hence,

2
0
ZTank <C Z ,5?/1) +CZ k3/2 :

k>1 ) k>1

We take the square-root and observe that va + b < /a + Vb, v/c < cif ¢ > 1. This gives

> Tk Qn <CZ k3/2 ’

k>1 k>1




12 FREDERIC BAYART

which proves (iv) with e = k=3/2. We conclude the proof by showing that, for any
k,n>1,

Imalls < E40)

Indeed,
0(n)? dt
2 < / :
HTkQNH2 — R (1 n (t n k)g)p 1 +t2
We argue as above. Let ¢ € (0,1). We split the integral over R into the integral over
[—k — k%, —k + k°] and the integral over R\[—k — k°, —k + k°]. This yields

6(n)*  _0(n)?
HTanH% S C ]{?2_8 + C ]{7261) )
so that ) ) Cont)
woln
17Qnll2 < Cuwo(n) (W T ﬁ) < =
provided 1 —&/2 > a and ep > a. 0

Remark 2.8. It is also possible to get a Central Limit Theorem for linear functionals in
the context of parabolic composition operators. See Section 4.

3. CENTRAL LIMIT THEOREMS - THE PROOFS
This section is devoted to the proof of Theorem 2.2.

3.1. How to prove a central limit theorem. A central question in this paper is to find
ways to prove central limit theorems for linear dynamical systems. This has been already
studied in the general context of ergodic theory. Let (€2,.4, 1) be a probability space and
let T': Q2 —  be a bijective bimeasurable transformation preserving the measure p. We
also assume that 7" is ergodic. Let f € L?(Q), then (f oT%);cz is a stationary process. We
set Sy (f) = Z?:_()l oT* and we say that f satisfies the Central Limit Theorem (in short,
CLT) if ﬁSn( f) converges in distribution to a normal law.

To obtain sufficient conditions on a function f so that the CLT holds, we shall use the mar-
tingale method which was successfully used recently in various problems (see for instance
[LB99], [CBO5], [DS06], [Dup10]). This method goes back to Gordin in [Gor69]. The basic
idea is to try to approximate a given stationary sequence f o T™ by a sequence which
is a martingale difference sequence and to deduce the CLT for the given stationary se-
quence from the result for the martingale. An efficient sufficient condition was obtained by
Maxwell and Woodroofe in [MWO00]. Let (F;)scz be a filtration with F; € T~1F; = Fii1.
Let Fo be the smallest o-algebra containing all the F; and let F_, = ﬂiez Fi. Maxwell
and Woodroofe proved that, if f € L? (.7-" ) © L}(F_s) is Fo-measurable and

E(S,(f)|F
ZH DIFo)ll2 < Joo,

n3/2

then there exists a martingale difference sequence (m o T%) adapted to the filtration (F;)
such that ||.S,,(f — moT™)||2 = o(y/n). In particular, f satisfies the CLT.

The monotone filtration (F;) must be chosen in accordance with the transformation 7 in
a given concrete system the construction of this filtration is difficult. In particular, the
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Fo-measurability of f (meaning that (F;) is adapted to the sequence (f o T%)) is a too
restrictive condition for the applications we have in mind. We will need a nonadapted
version of the theorem of Maxwell and Woodroofe. This was done by Volny in [Vol06].

Theorem A. Let (F;)icz be a filtration with F; C T™YF;) = Fip1. Let f € L*(Fao) ©
L?(F_o) satisfying

ZHE NIFlz _ ndzus SuDIFle _

n3/2 ns/z

Then f satzsﬁes the CLT.

It should be observed that Theorem A do not exclude that S, (f)/v/n converges to a
degenerate normal law, namely to a Dirac mass. If we put stronger assumptions on f
(like the convergence of > n|Cov(f, f o T™)|, see [Liv96]), then this happens iff f is a
coboundary, namely f =g — g o T for some g € L?.

3.2. The measure on X. From now on, we fix w : [1,+00) — (1,+00) going to infinity.
Without loss of generality, we may assume that w is nondecreasing. We consider wy :
[1,4+00) = (1,400) tending to infinity and nondecreasing such that

1 (k)2 =3 400 0{e(k))
wi(k +1) < 2w (k).

We then fix another function wy : [1,4+00) — (1,4+00) going to +o00, nondecreasing, and

such that

/

(2) VK > 1, wolk + k) < wy (k)Fwy (K.

alt) = for (£)

We claim that wq satisfies (2). Indeed, since w; is nondecreasing,

For instance, we can set

/ k+E
Vi, K > 1, wi(k)rwi(K) > w ( ; )

The construction of the measure p which appears in Theorem 2.2 follows [MAP13]. How-
ever, we will need to be more careful during the construction because we want additional
properties. For convenience, throughout this section, for k& € N, we shall denote by T—*z
the vector Spx, z € D.

The idea of Murillo-Arcila and Peris is to conjugate T to a Bernoulli shift acting on N”
and to transfer the ergodic properties of this shift to 7. We start from the sequence
(x,,) satisfying the assumptions of Theorem 2.2. We may assume that 1 = 0 and that
Spz1 = 0 for all n > 0. Let (N,) be an increasing sequence of positive integers with
Nypt2 — Npy1 > Npy1 — N, and satisfying, for any n € N|

1.
Z Tra, || + Z Trz,, || < o if mi <1, for Ni < k| < Nip1, 1> n.
k>N, k<—Nn
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We define K = [[; o7 Fi where
Fk = {1, ,m} if Nm < ’k‘ < Nm+1 and Fk = {1} if V{)’ < Nj.

Let K(s) := 07%(K), s € Z, where ¢ : N* — N? is the forward shift. The intertwining
map ¢ is defined on Z = J ., K (s) by

(b((nk)) = Z Tkxnk.

keZ

¢ is well defined and continuous, and it satisfies on Z the intertwining relation
(3) Top=¢oo.

Let us now construct on N” a measure i which is invariant for o and such that ji(Z) = 1.
We fix a sequence (p;) of positive real numbers satisfying >, p; = 1 and such that, setting

(Niy1—1IV)

l
/Bl = Zp] > Oa
j=1

then [],~, 8% > 0. This condition is satisfied provided (p;) converges sufficiently fast
to zero. Then define fiy on N by fk({n}) = p, and i on NZ as fi = @pcq fix. 1t is
shown in [MAP13] that i is a o-invariant strongly mixing Borel probability measure on
N7 satisfying fi(Z) = 1. In particular, ¢ is defined almost everywhere on N% and (3) is
a.e. true.

These properties can be transfered to X by setting u(A4) = (¢ 1(A4)), A€ B(X). pis a
T-invariant strongly mixing Borel probability measure on X (see [MAP13]). We have just
to prove that p has full support (in [MAP13], this was done under the stronger assumption
that D is dense). Let U be a nonempty open subset of X. Let F' be a finite subset of Z
and let (n;) C N be such that

Yy = Z Tk'gvn,C el
keF

Let n € N be such that N,, > max(max F, —min F') and y + B(0,2™") Cc U. For k €
[—n,n]\F, we set ny = 1. Then U contains

Np,
Z Tkxnk + Z Tkacmk; my <l for Ny < |k| < Nipq, L >n
k=—N |k|>Nnp

Hence,

—+00

Ny,
[[ mdndII| T w0
k=—N,

l=n \N;<|k|<Ni41

=
S
v

v

Ny, —+o00
[ mmd) [[ 582> 0.
k=—Nnp, l=n
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To ensure stronger properties than mixing, we will need additional assumptions on the
sequence (p;). We summarize these technical assumptions now, without further comments:

(4) > pm = o(p1),

m>l
(5) Vi>1, Vk > 1, Z w/pmwo(m)k < Cy/pi max (wo(k)k,wo(l)k),
m>1
(6) Vi>1, Vk>1, Z:pmwo(m)lC < Cpymax (wo(k:)k,wo(l)k)
m>1

where C' is some absolute constant. These conditions are satisfied if we require that the
sequence (p;) decreases sufficiently fast to 0. This is clear for (4) and also for (5) if we
restrict ourselves to k < [. If we now assume k > [, then we can ensure (5) by requiring
that, for any m > 1,

1
VPmit (wo(m + 1)) < 3 VPm (wo(m))™ .
Indeed, for any [ > 1 and any k > [, one can decompose the sum into
“+o0o
Z vV meO < Z V meO + Z \/meO(m)m
m>l m=k-+1

The first sum is bounded by <Zm2 I pm) wo(k)*. The second sum is estimated as follows:

> Vmwo(m)™ < /prwo(k) <% + i +. >

m>k
< Vowo(k)*.

That we may also ensure (6) follows along the same lines.

We now show that our class of functions E,, is contained in L*(X, B, ).

Lemma 3.1. (a) Foranyd>1, | -||¢ € L3(X,B, u);
(b) E, C L*(X,B, u).

Proof. Let d > 1. The construction of the measure g ensures that, for almost every
(ni) C NZ%, the series Y, ., T*xy, is convergent. By Condition (iv),

e (i)l < erwolni).

keZ
We expand the product and then use Holder’s inequality to get

/X||x‘|2ddu($) < kl,%dez/ H€k wo(nk, )di((n,))
1/2d
< ) H </ ertwo(ng,) ddﬂ((”k))) :

k1,....kog€Z 1=1
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Now,
/ 6kdw0(nk )deﬂ((nk)) < 6%? Zplwo(Z)Qd < C’ez‘jwo@d)m
NZ I>1
where we have used (6). Coming back to the L2-norm of || - |4, we finally obtain

2d
[ lelPanta) < Cunapt 3 e

ki,...,koq€Z i=1

2d
Cup(2d)” (Z ek>

kEZ
Cwo(2d)%.

IN

IN

To prove (b), we start from a function f € E,, and we observe that
D" (0)(z, ..., z)[| < [[D"FO)] > =]
so that, from the proof of the first point, we deduce
[ID"f(0)[lz2 < C"wo (k) D" f(O)]].

Since sup,, | D* f(0)||lw(k)® < +00 and wo(k) =4o0 0(w(k)), the series 3, w is
convergent in L?(X, B, i), showing that E,, C L?(X, B, ). O

Remark 3.2. If f : X — R is infinitely differentiable at 0, satisfies for any x € X

+00 e
fao) =S 2O,

|
0 K.

and verifies moreover that, for any R > 0,

sup || D" f(0)[[R" < +o0,
k>0

then it is not hard to show that one can construct a function w : N — (1, +00) going to
400 and such that f € E,. Under the assumptions of Theorem 2.2, this means that one
can define a measure py on X such that the sequence (f o T") satisfies the central limit
theorem in L?(X, B, ). However, to get a single measure p which works for a large class
of functions, we have to fix w before.

3.3. An orthonormal basis of L?(X, B, u1). In this section, we describe an orthonormal
basis of L?(X, B, ) or, equivalently, an orthonormal basis of L?(N?, ). There is a usual
way to do so. Suppose that (e;);>0 is an orthonormal basis of (2 (N, (pn)) with eg = 1.
Let N© = Jyo NF, Z%° = Uy ZF et Z2° = {j = (j1, ..., Jr) € Z°% j1 < j2 < -+ <ji}.
For j € Z*, denote by |j| the unique positive integer r such that j € Z". Then, for
1= (l1,...,0;) e N"and j = (j1,...,Jr) € Z" with j; < --- < j,, define

€L = €51 X X €L s

where ¢ ; is a copy of ¢; on the j-th coordinate, namely el,j((nk)) = ¢(n;). It is well
known that {e; ;1 € N*°,j € Z%, |1] = |j|}U{1} is an orthonormal basis of L?(NZ, fi). Thus
we just need to concentrate on the choice of (e;). We construct a triangular orthonormal
basis.
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Lemma 3.3. There ezists an orthonormal basis (e;) of (*(N, (p,)) with eg = 1 and, for
1>1,

(0 ifu<l

1, V/ &mz1 P ifu=1
el(u) = VPL DD s D )

—/Pi % -
\/pl (s om) + (s pm)

Proof. Given these formula, we just need to verify that this is an orthonormal basis. We
observe that (e;);>0 is obtained by orthonormalization of the basis (1,1,...), (0,1,1,...),
(0,0,1,1,...),.... 0

if u> 1.

Of course, the exact values of ¢;(u) are not very appealing. In the sequel, we will just need
the following estimations, which are satisfied thanks to (4):

C

)] < —

()] < N

lej(w)] < pC if u> 1.
VP41

Let us point out that this orthonormal basis behaves very well with respect to o. Indeed,
it is easy to check that

(7) €100 = ej_1.

Let us also mention the following property which is the key for our forthcoming estimations.
The ¢? (N, (pn))—norm of each ¢; is equal to 1. However, the ¢! (N, (pn))—norm of e; goes
very quickly to zero: it behaves like /p;.

3.4. The Fourier coefficients. In this subsection, we control the Fourier coefficients of
a homogeneous polynomial. This will be the key point to control later the behaviour of
the sequence of the covariances Cov(f o T™,g) for f,g € E,. We first observe that many
Fourier coefficients of a homogeneous polynomial are equal to zero.

Lemma 3.4. Let P(z) = Q(z,...,x) be a homogeneous polynomial of degree d. Let
JjeZ¥,1e N> with |j| = (1] > d. Then

(erjs P o @) oz y = 0.

Proof. Let us introduce some notations which will also be useful for the next lemma. We
write j = {j1,...,5r}, 1 ={l1,...,1;} and we set

:_.E.

—~

—~
S
>

~—

~—
I

¢((nk)) _Th (xnh) .. Tjr(xan)
Nj - N\{jla e 7j7"}

v; is  the projection of ji onto I/\I:
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Moreover, for uyg, ..., u, nonnegative integers with ug + - - - + u, = d, we set
Quuve (1) = QU5((n0)). - (), TP, T
ug times w1 times
T (T, )5 T (n,,))-
u, times

The d—linearity of Q yields

d _
appos= 5 (") [ ast0w)@un (w)an(ow)

ug+t-Fur=
u; >0

Since r > d, in each term of the sum, one of the uq,...,u,, say ug, is equal to zero. We
use Fubini’s theorem and we integrate first with respect to the ji-th coordinate. We get
zero since

/ erj(n)dfij(n) =0, for any [ € N and any j € Z.
N

The nonzero coefficients will be estimated thanks to the following lemma.

Lemma 3.5. Let P(z) = Q(z,...,x) be a homogeneous polynomial of degree d. Let

J€ZX,1e N> with |j| = (1] =7 <d. Then

Cr)|Q|lwo(d)” sup; wo (1)
(L4l (A [g)>

Proof. We keep the same notations so that

(1 Pody= > (uO, d ,ur> /NZ erj ((nk)) Quo,...ur (1)

ug+--+ur=d
u; >0

‘<€Lj7po ¢>L2(NZ,;2)‘ < D1, - .- DI,

d; ((nk))dps, (ng,) - . di, (n;,).
As in the previous lemma we have just to consider the terms in the sum such that u; >
1,...,u, > 1. Moreover,

|Quo s ()| < NQI > N5 (i) )N TTIT (o 1
1=1

We get
d s
g Pod)l < QI 3 (u u) [ (i) a0
st N0 e U

T
T [tz el “doto).
i=1/N
The first integral may be handled exactly like in Lemma 3.1 and we get

/NA- 165 () [0 dw; ((n21)) < C0wp(ug)™.
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The estimation of the other integrals needs the properties of the sequences (p;) and (e;).
Indeed, for u > 1, j € Z and [ € N, one can write

/N\ez(n)!HTj(xn)H“duo(n) = > vl T (@) “ler(m)]

m2>l
T " e 3 et

We then apply (6) to get

jxufn C\/Zle u
Ll dom < e+

C
VP (L + )
C*\/prmax (wo(1)", wo(u)®)
(1+ |5~
Yo (u)"y/Prwo ()"
B A+lh>
Coming back to our original Fourier coefficient and using ug + - - - + u, = d, we get

d wo(ll)ul e WQ(lr)uT
eri, P o ¢)| < 0 Qllwo(d)? g ( > - - D1, - DL,
(s Peol= ”O()uﬁm+mqlumuwur<1+mnw.nuw+hoa o

u;>1

pr+1 max (wo(l + 1)%, wo(u)™)

We conclude by noting that the cardinal number of {(uo,...,u,) € Nt ug + -+ +u, =
d, uy,...,uy > 1} is less than or equal to 2¢ and that the multinomial coefficient is less
than or equal to (r + 1)%. O

We give a first application of the previous lemmas. It deals with the sum of the Fourier
coefficients of a given order for a function in E,,.

Lemma 3.6. Let f € E,, F = fo¢ = ZLJ ayjerj. Then, for any M > 1, there exists
Cuow,m > 0 such that, for any r > 1 and any j € Z with |j| =r,

Z |(Z] | < CUJ07W7MHwa
2103l < S e e

Proof. By the above lemmas,

ey, DF
Z‘al,j’ < ZZ| Lj f 09|

1=r I=r =0

too K K
gzmw(wmwml S supwo ()P L

K=r ! 1+’«71’)a"'(1+‘]r‘)a [1|=r ‘

By Stirling’s formula, % < C* for any k > r, so that

400
CH||D" £ (0) [lwo (s
Z ;] < Z Z sup wo(l;)*/p1y - - - Pi,. -
= N e T e 2
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Now, for k > r,

> supwole)on o < Y wolli) /PL P,

i

= i=1 [1j=r
r +oo r +oo
< 2D w) Ve[ v
i=11;=1 j=11=1
J#i
< C> Vpwo()”
>1
< Clwo(k)®

where we have used (5).
To conclude, observe that, given any absolute constant C', there exists some constant
Cuow.M such that, for any r, Cfwo(k)?® < Cyyy .M "w(k)®. This yields

Syl < Cwo,wM ZHD”f )w (k)"
N N N (R &

|1\:r K=T

) Copoillf
= MR (U D

O

3.5. The sequence of covariances. In this subsection, we prove the first part of The-
orem 2.2, that devoted to the behaviour of the sequence of covariances. We begin with a
first lemma which is an easy consequence of (7).

Lemma 3.7. Let F' = Zj7la17j€1j, G = Z b]jelj S Lg(NZ,ﬂ). Then
Cov(F oo?,G) = ZalJle —p

Proof. By linearity and by (7),
COV(F @) O’p7 G) = Z al,jbm7kCOV(€17j,p, em,k).
j7k717m

Now, €1 j—p and eny k are orthogonal, unless I = m and k = j—p. This gives the lemma. [

Let us now start with f,g € E,. Without loss of generality, we may assume that they
have zero mean. We set F' = fo¢, G = go ¢ so that Cov(foTP,g) = Cov(F ooP,G). Let

us write
—+o00 +oo
F = Z Z apjerj and G = Z Z by e,

r=11|=[j|=r r=1|l|=lj|=r
and let us compute Cov(F o 0P, G) using Lemma 3.7. We apply the estimations of the
Fourier coefficients given by Lemma 3.4 and Lemma 3.5. Using Stirling’s formula, we find,
for a given j € Z2 with |j| =1,

D% F(O)[[[| D f(0)[|C*H wo (k) wo(k')< sup; wo (L) pyy ... py,
Z’aLJbLJPKZZ 1 o (1 li —ono(l Trne
A+ —pD) T+ G — D@+ ) (T + 5])

1|=r |=r k,k'=r
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Now, for s,k > r,

T

> supwo(le) py p, <Y wole) Ny, -,
n=r * i=1 [l|=r
. too r—1
SDPH O RN DI
i=1 \lLi=1 1>1
< Crwy(k + &)

< Oy (k) wy (K)

(at this stage, we use the strange relation (2) satisfied by wy and also (6)). Hence,

+o0
> lagphgl < <ZC“IID“J‘( ws (k ) (ZC“HD“ w: (r )“)X

|=r
1
(L4l —pD* o (L4 G = pD* (X + [ D> (X + [
Clif el glle
(L4171 = pD* o (T + G = pD*(L + i) (L + [ >

We now sum over j with |j| = r:

Cll fllwllglle
Z |arj—pbrjl < Z . = . - —— ——
l§=I1=r 1< (14 [j1 —pD) ... (A4 [Gr — D@+ 7). .. (T + |4r])
r

1
Clflelale | X G = a s e

JEZ

IN

We split this last sum into three sums: >, 4, Z?:o and Z;:; 41 and we observe that
the first sum and the last sum are equal. We first consider these sums. We get different
estimates following the value of a. When « > 1, it is easy to check that, for j > p+ 1,
R S (R ) At R o P
A+G=p)* Q45> A+)*A+G-p)* — @+5)*A+ (G -p)*
Thus,

> 1 < Y (aromm - aar)
S A+ G =) T S \A G =) (A+5)e
1 1
< =4 ——— ) < Cup ©
-7 <2C“+ +(1)+1)C“> = er
On the other hand,
P [p/2]
< Cup™@ ————— < Cup™ “.
]ZZ:O (1+7)* 1+(p 3))e Jz::o(lﬂ)“

We finally find

C,\"
S Jangoobil < Callflullgll (p—) .

l=(1=r
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Summing this over r, we get
P Ca
[Cov(Foo”, G)| < p—aHwaHgHw

provided p® > 2C,.
The case a = 1 is the easiest one. Indeed, in that case, for j > p+ 1 one can write
1 I P
1+(G-p) 1+ A+HA+5-p)
We then argue exactly as before. Suppose now that o € (1/2,1). On the one hand

> : <> L 4 io 1
R () L CR ) e ¥ () S AR L RN 0L
Now,
P S
< — — < Caplf%{
= ]a(J _|_p)a pa st Ja
whereas
<C 1—2«
a a 20 — Ya
Pt VA ) P

On the other hand,

P p—1
1 2 1
;(14'])0‘( + (=3 p° ;J“(p—J)“
p—1
2 12« 1

|
i
Q
gl
<.
Il
—_
~
S I
~—
Q
—
|
D~
~—
Q

We recognize a Riemann sum of the function = — z%(1 — ), so that

1
: —— < CuplT,
— (1+7)*(1+(p—J)*

o

We conclude exactly like for the other cases.

3.6. Central limit theorem. We now prove that the central limit theorem holds for
f € E, with zero mean. Throughout the proof, we assume o > 1. We set F' = fo ¢ =
zLj apjerj. We will apply Theorem A with the filtration (F;);ez defined by F; = o~%(Fp)

and

Fo=xQx--xQAxPN)xPN) x ...,

where Q = {&,N} and the first P(N) is at the 0-th position. The filtration (F;)iez is
increasing, with 7o, = P(N)Z and F_o, = {@,N%}. Thus, F € L*(Fy) © L*(F_&). By

(M),
P _ O . .
Foo?= § :aLJeLJ—p = E :al,Jerel,J
Lj Lj
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so that

E :E :aLJJrPel,J

Lj p=0

If we take the conditional expectation, then we find

E(Sn(F)|Fo) = ZZalmeu

Lj p=0
7120

Su(F) = E(Su(F)|Fy) = Z Zalmeu

Lj p=0
Jji<—n

During the proof, we will need the two following technical facts.

Fact 1. For anyn > 1,

n—1

1 3—2a
Z Z m < Ca max (n ,10g(n + 1)) .

=20 \p=0

Fact 2. Foranyn>1 and any r > 1,

2 2
S : < S (St
n<—-n |p= 0 1 + ’]1 +p‘ (1 + ‘]7’ +p‘)a o ji<—n \ p=0 (1 + ’]1 +p‘)a

j27"'7j1"eZ
r—1

1
2 (145D

JEZ

We postpone the proof of these two facts and we show that the conditions of Theorem A
are satisfied. First,

2

SY Y S

r=1|j|=r[l|=r |p=0
Jj1=0

S (S5 g

r>1|jl=r \p=0|l|=r
J120

IE(Sn (F)|Fo) I3

IN
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We apply Lemma 3.6 with M2 > 25" This yields

7>1 1+])2a-
2
-1
Cupwall FII2 S 1
IB(S.(F)|Fo)ll; < T . ‘
' i = M 0§jl<zn-<jr pz=o (I +j+p)*... (L +jr +p)°
3 Cupwall Fllé S 1
- 2 Y N2
= M e (T ()
1 2
B
71>0 \ p=0 (1 +.]1 _|_p)a

We now apply Fact 1 to get

C 2
Z %Hf”w x max (n*~>*,log(n + 1))
r>1

< CugwallFI1E max (n*72 log(n + 1)).

[E(Sn (F)[Fo)lly

0372
We now turn to the second sum. The beginning of the estimatlon is completely similar,
We thus obtain

IE(Sn (F)[Fo)ll3

IN

A

Since (3 — 2a)/2 < 1/2, this yields the convergence of 3, -,

except that we now apply Lemma 3.6 with M? = 2 dez W

n—1

/112 1
10 (F) = E(Sa(F)|F)l5 < Z Conwelflo 5~ (5~ .
L A e e e
n<—-n
At this stage, we can no longer majorize (1+|jkl+p|)a by (Hékl)“ for k > 2 since it is possible

that jr < 0. We use Fact 2 instead. It yields
2

I1Su(F) = E(Su(ENF)I; < Y “’°’}(j§!f||w > Zm

r>1 J1<—n |p=0
r—1

1
LTI

The definition of M and the changes of variables j = —j1 — n, g =n — 1 — p imply

2
Co waHwa
CRCRETHESIERE DRt ic) pi) phemc s
r>1 >0 |q=0 1+ j+q)~
< Cupwall £l1Z max (n*72*, log(n + 1))

where the last inequality follows from Fact 1. As before,

S Fo)lls
ZH E(Sn(F)[Fn)l

n3/2

< +00.
n>1

Hence, F' satisfies the CLT.
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Proof of Fact 1. We first observe that there exists C, > 0 such that, for any j > 0,

i
L

<C, !
— (L+j+p> = 1+ )

hS]

Hence,

3
3
|
—_

n

Z; T S
— (L+j+p> | = & (l+g)?

J=0 \p J
1 provided a > 3/2
< Cuaqlog(n+1) provided o = 3/2
n3—2 provided « € (1,3/2).

For the remaining part of the sum, we just write

so that

n—1 1 1 -
2\ LTy sl

Proof of Fact 2. Let

—_

n—

s= 2 |2 ‘
==\ Al +phe. . (Ll +pl)e
j27"'7j7"6Z

We expand the square to get
n—1 1
S = ,
2 pz A+ [ +pD? . (L e +pl)?

Ji<on
]27"'7]7"62

1
2 , .
Osp;’gn_l I+l +pD). . (41 + D)

We put the sum over js, ..., j, inside and we observe that, for a fixed p € 7Z,

) . - ¥ .
< (14 g2 +p))2>...(1+|jr +p|)> (14 |ja])%> ... (1 + |gn])%

J25Jr€L

1
= |2 FERVIES

JEZ.

jQ,...,_]TEZ
r—1

25
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Similarly, for a fixed (p,q) € Z2, since (1 + |jx + q|) > 1, we get

1 1
- - < - -
2 (T4 1[g2 +pD)... (14 |5 +q|)@ 2 (1 + g2 +p))> ... (L+ |jr + pl)™

j2’.“’jrez j27"'7j7‘eZ
1
< X
< — —
iy (L 12D (U i)
r—1
- (X
— —
2 [+ 1)
Hence,

1 1
S < —_— 42 - .
Z g (14 |j1 + p|)? Z (1 + |71 +p)(1 + |51 +q])

0<p<g<n—1

2 r—1

— 1 1
< X\ Xarmear) < \Xaur

JET

4. FURTHER REMARKS

4.1. Unconditional convergence. In the statement of Theorem 2.2, Condition (iv) is
not very pleasant. During the proof it is used at two places: in Lemma 3.1 and in Lemma
3.5. We can delete this assumption if we accept to work only with polynomials instead of
functions in E,.

Theorem 4.1. Let T € £(X). Suppose that there exist a dense set D C X and a sequence
of maps Sy, : D — X, n >0, such that, for any x € X,

(1) >0 T"x converges unconditionally;

(i1) 3,50 Sn converges unconditionally;

(iii) TS,z =z and T™Spx = Sp_pma for any n > m;
Then there exists a T-invariant strongly mizing Borel probability measure p on X with
full support such that P C L*(X,B, ).
Suppose moreover that there exists a > 1/2 such that, for any x € D, |[T"z| = O(n™%)
and ||Spz|| = O(n™%). Then, for any f,g € P,

7111—204 if € (1/2,1)
|Cov(foT" g)| <Cfga @ ifa=1
n-¢ if > 1.

1
If a > 1, then for any f € P with zero mean, the sequence T(f—i— 4 foT™ 1 converges
n

in distribution to a Gaussian random variable of zero mean and finite variance.



CENTRAL LIMIT THEOREMS IN LINEAR DYNAMICS

Proof. We just point out the main differences with the proof of Theorem 2.2. Let wg : N —
(1,400) be any nondecreasing function going to +0o. Let (2, )nen be a dense sequence in
D with z; = 0 and || T*z,|| < wo(n) for any n > 1 and any k € Z. We may also ask, if we

want to prove the second part of Theorem 2.3, that for any n > 1 and any k € Z,

1T 2| <

We construct the measure exactly like in Section 3.2, except that we require that the

sequence (p;) also satisfies

wo(n)
(L4 |k

Vd > 1, VI > 2d, wo()* < p, 2,

vd>1, Y (N — Ni)py ™ < +oc.

>1

To prove that P C L?(X, B, i), it suffices to show that, for any d > 1, ||-||¢ € L?(X, B, u).

Now, by the triangle inequality,

Nyt

2d

St =[S0 S e du(on)

I>1 |k|=N,

> [

IN

Niy41

> Tran, | di((n)-

1/2d

ll,...,lgdzl ‘kIZNl’L
We then apply Holder’s inequality to get
2d N1 2d
2d k _
JREEEND SN 1 (D SIELN I ()
X ldag>1i=1 \ 7N || k=,
We fix some | > 1 and we want to estimate fNZ Z‘]leilNl Tk:vnk
and let us write
od 2d 2d
Nij1 Nit1 Nigr
S T < 2| e | 4| 3 7,
|k|=N [k[=NN; |k[=N
nE <l ng >l
22d 4d—1 2d—1 pER k 2d

2d
dii((ng)). Let (ng) C NZ

X 1{nk>l}-
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We integrate this inequality over N to find

Nit1 2d 22d Nt y
/ Y Tray, | da((m)) < o+ 21 (N = NP ST S HTkme
=g |k|=N, m>1
22d
S smt 2' (N1 — N)*HY  prtwo(m)
m>l
22d o
< Sid + 24d(Nl+1 - Nl)del max (wo(l)7w0(2d))
224 4d 2d 1/2 2d
S S T2 (Niy1 — Np)™p; " “wo(2d)™,

since we assumed wy(1)*p; < pll/2. We take the power 1/2d and we sum the inequalities
to get
2d
2 1/4d
[ lelPaute) < 0| (7 a0 - ) | an(za
X I>1
< Cy.

Thus, || - |4 belongs to L2(X, B, ). Contrary to what happens in Lemma 3.1, we cannot
control its norm by wy(2d)?, but only by some constant Cj; which can be much larger.
This also affects Lemma 3.5, where we have to replace C%%wy(d)? by some constant Cy
depending on d. However, when we want to study the sequence of covariances and the
validity of the Central Limit Theorem for the sequence (f o T™), with f a polynomial,
this is unimportant. Indeed, the sum over r which appears in both proofs is now a finite
sum. U

4.2. Central limit theorems and the Gaussian measure. When T satisfies the as-
sumptions of Theorem 1.2, we have two ways to define a T-invariant Gaussian measure
on X with full support: the Gaussian measure of [BM11] and the measure constructed in
[MAP13] or in Section 3. The Gaussian measure is probably simpler. However, it is easier
to understand why T is ergodic with respect to the measure of Section 3: it behaves like
a Bernoulli shift. This was very useful to apply the martingale method, in particular to
have a ”canonical” choice of the filtration (F;) to apply Theorem A.

If we want to apply Theorem A with the Gaussian ergodic measure, it is not clear which
filtration could be convenient. A particular case is that of backward shifts: in that case,
T is already a shift! Hence, on £2(Z ), we can prove a statement similar to Theorem 2.5
with a Gaussian measure and replacing F,, by some subspace of L? similar to those of
Devinck.

Question 4.2. Let T € £(X) satisfying the assumptions of Theorem 1.1 and let p be a

T-invariant and ergodic Gaussian measure on X with full support. Does there exist a big
subspace E C L?(u) such that any f € E satisfies the CLT?
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4.3. Central limit theorem for linear forms. It is a little bit deceiving in the state-
ment of Theorem 2.2 that the sequence (gx) is not directly related to the decay needed on
| T*z|| to obtain a CLT. It turns out that this is the case if we restrict ourselves to linear
forms.

Theorem 4.3. Let T € £(X), let a > 1 and let w : N — (1,400) going to +oo. Suppose
that, for any function wp : [1,400) — (1,+00) going to infinity, one can find a sequence
D = (xn)n>1 C X and a sequence of maps Sy : D — X, n > 0, such that
(i) For any x € D, Y, -, T"x converges unconditionally;
(i) For any x € D, Zn;o Snx converges unconditionally;
(iii) For any x € D, T"Spz =z and T™Spx = Sp_mz for any n > m;
(iv) For any sequence (ny) C NZ such that Y <o T*an, and ", _o S—_kon, are convergent,

Z S,kmnk

k<0

< Z wo(nk)k:_o‘.

kEZ

ZT’%WC +

k>0

(v) span({T*xy; Spxn}; k>0, n > 1) is dense in X.
Then there exists a T-invariant strongly mizing Borel probability measure p on X with full
1
support such that E,, C L*(X,B,p). Moreover, for any x* € X*, the sequence —=(z* +

NG

ezt oT"_l) converges in distribution to a Gaussian random variable of finite variance.

Proof. Let z* € X* and let us show that z* satisfies the CLT. Let F' = fo ¢ =
Zjez len @1 j¢1,5- A look at the proof of Theorem 2.2 shows that we only need to prove

2

n—1
(8) YD D ag] = 0@
p=0

§>0 1>1

n—1
(9) DD [P = 00T
p=0

j<—nlil>1

for some € > 0. Let j > 0 and [ > 1. Like in Lemma 3.5,

a, = / evs () &, () )i ()
N
— meel(m)<x*,zjm>.

m>1

By linearity of z*,

n—1 n—1
D arjap =Y pme(m) (@Y TIPr,).
p=0 p=0

m>l
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We can now use Assumption (iv) and argue as in Lemma 3.5:

n—1 n—1
1
Sap < CY palam)wo(m)z®] Y ———
p=0 m>l p=0 (1 +‘7 —|-p)04
< C w X P EEEEE——
< Cypwo(D)| HZ 1+g+p>

This implies, arguing as in Lemma 3.6,

2
n—1

2
n—1
SOSTI ages| <cl Py Z | <Ol
>0 )"

§>0 1>1 |p=0 0
Since 3 — 2a < 1, this shows (8). The proof of (9) is completely similar and omitted. [

This theorem is interesting for operators such that ) T"x converges unconditionnaly
whereas > ||[T"xz| = 4oco. For instance, we get the following corollary for backward
shifts, where the value 1/p is optimal.

Corollary 4.4. Let w : N — (1,400) going to +00 and let By, be a bounded backward
weighted shift on (P(Zy). Suppose that there exists o > 1/p such that, for any n >
1, wy---w, > Cn®. Then there exists a By-invariant strongly mizing Borel probability
measure pi on P(Zy) with full support such that E,, C L*(X,B,u). Moreover, for any

x* e l(Zy), % + % = 1, the sequence —=(x* + -+ x* o T™™ 1) converges in distribution
n
to a Gaussian random variable of finite variance.

More surprinzingly, we obtain that a central limit theorem holds in the context of parabolic
composition operators. This was unavailable with Theorem 2.2.

Corollary 4.5. Let ¢ be a parabolic automorphism of the disk. There exists a Cy-invariant
strongly mizing Borel probability measure . on H?(D) such that (H?)* C L*(n) and any
x* in (H?)* satisfies the CLT.

Question 4.6. Do the above corollaries remain true if we consider polynomials instead of
linear forms?

4.4. Fréchet spaces. Theorem 1.2 was proved in [MAP13] for an F'—space. For conve-
nience, we restrict ourselves to Banach spaces; however, there are interesting examples
beside this context, especially in the Fréchet space setting.

Question 4.7. Can we extend Theorem 2.2 to Fréchet spaces?
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