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In this thesis we will be working with dominating and interpolating sequences. We 

worked with a geometric approach and used pseudohyperbolic translated to the Euclidean disc in 

order to show that a sequence within a certain radius of a dominating sequence is dominating as 

well.  
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CHAPTER I 

BACKGROUND KNOWLEDGE 

History 

Dominating Sequences 

Our topic of discussion for this thesis, dominating and interpolating sequences, is a 

relatively young subject in mathematics. What later came to be called dominating sequences, 

where a sequence, {𝑧𝑛}𝑛=1
∞ , is said to be dominating if given the function  

𝑅: 𝐻∞ → ℓ∞ by (𝑅𝑓)(𝑛) = 𝑓(𝑧𝑛) 

 
(1.1) 

 

 
‖𝑓‖∞ = 𝑠𝑢𝑝{𝑓(𝑧𝑛): 𝑛 ∈ ℕ} ∀ 𝑓 ∈ 𝐻∞ 

 

(1.2) 

The term would eventually be coined in the mid 1960’s in a paper by Leon Brown, Allen 

Shields, and Karl Zeller by covering topics “On Absolutely Convergent Exponential Sums” in 

which they show that these sequences on the unit disc have the property that “Every boundary 

point 𝑝 = 𝑒𝑖𝜃 may be approached non-tangentially (inside of some angle with vertex at p) by 

points of S.” in which they defined S = {αn} (n = 1,  2,   … ) as a sequence with distinct points in 

the region with no interior limit points. This use of non-tangential limits will be the basis for our 

work. Since our work will be focusing primarily on dominating sequences it would behoove us 

to go into greater detail regarding them. The authors paper proved the following theorem which 

is what we used to define a dominating sequence. The proof is as follows: 
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Proof  

We want to show that 𝑠𝑢𝑝|𝑓(𝑒𝑖𝜃)| = ‖𝑓‖ ∀𝑓 ∈ 𝐻∞  ⇒ almost every boundary point 𝑝 =

𝑒𝑖𝜃 may be approached non-tangentially (inside of some angle with vertex at p) by the points of 

S with S as defined above. The authors started by assuming that the condition that is implied fails 

and they will go on to show that the condition 𝑠𝑢𝑝|𝑓(𝑒𝑖𝜃)| = ‖𝑓‖ fails as well. 

Since the implied condition is false, then there is a set E of positive measure on the unit 

circumference (i.e. |𝑧| = 1) such that no point of E can be approached non-tangentially by the 

sequence 𝛼𝑛. This of course means that any angle with a vertex on a point of E can contain only 

a finite number of 𝛼𝑛. In this case it is true for a right angle, placed so that the radius to the point 

bisects the angle.  

This will then imply that at each point 𝑝 = 𝑒𝑖𝜃 ∈ 𝐸 there is a right triangle, denoted as 

⊿𝜃, with the right angle vertex at the point p and the other two vertices inside of the unit circle, 

having the radius p as an axis of symmetry and containing none of the 𝛼𝑛. There will then exist a 

number 𝑏 > 0 and a closed subset 𝐸1 ⊂ 𝐸 of positive measure such that at each point of 𝐸1 the 

altitude of ⊿𝜃 measured from the vertex p has length ≥ 𝑏. The authors then chose a closed arc, I, 

that has endpoints that are in 𝐸1 for which |𝐸1 ∩ 𝐼| > 0 and |𝐼| < 𝑏 where the vertical bars 

denote Lebesgue measure. We then let G be the complement of 𝐸1 with respect to the arc I. Then 

G is the union of a set of open arcs {𝐼𝑛}. Then, take one of the arcs, say 𝐼𝑗 with endpoints 𝑒𝑖𝛼 and 

𝑒𝑖𝛽 and draw the two triangles ⊿𝛼 and ⊿𝛽. We then easily can see that the sides of the triangles 

cross over the interval 𝐼𝑗 to form a smaller triangle, denoted by 𝑇𝑗, one side of which is the arc 𝐼𝑗. 

Then if t represents a point of 𝐼𝑗, then any of the 𝛼𝑛 sufficiently near to t must lie within 𝑇𝑗. 

We will now let 𝑘(𝜑) be the characteristic function of the set G, and define 𝑓(𝑧) by: 
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𝑓(𝑧) = 𝑒𝑥𝑝 {
1

2𝜋
∫ 𝑘(𝜑)

𝑧 + 𝑒𝑖𝜑

𝑧 − 𝑒𝑖𝜑

2𝜋

0

𝑑𝜑} 

 

(1.3) 

 

Then 

 

|𝑓(𝑧)| = 𝑒𝑥𝑝 {
−1

2𝜋
∫ 𝑘(𝜑)

1 − 𝑟2

|𝑧 − 𝑒𝑖𝜃|2

2𝜋

0

𝑑𝜑} 

 

(1.4) 

 

for 𝑧 = 𝑟𝑒𝑖𝜃, and so |𝑓(𝑧)| ≤ 1 for |𝑧| < 1. 

The authors then employ a well-known property of the Poisson integral that  

 

lim|𝑓(𝑟𝑒𝑖𝜃)| = 1 

 

(1.5) 

 

at almost all points 𝑒𝑖𝜃 of 𝐸1.  

We now want to show that  

 

|𝑓(𝑧)| ≤ 𝑒
−1
2                               (𝑧 ∈ 𝑇𝑗 , 𝑗 = 1, 2, ⋯ ) 

 

(1.6) 

 

Now we will consider the arc 𝐼𝑗 with endpoints as defined above. Then we get |𝑓(𝑧)| =

∏|𝑓𝑛(𝑧)| where 

 

𝑓𝑛(𝑧) = 𝑒𝑥𝑝 {
1

2𝜋
∫

𝑧 + 𝑒𝑖𝜑

𝑧 − 𝑒𝑖𝜑
𝑑𝜑

𝐼𝑛

} 

 

(1.7) 
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since each |𝑓𝑛(𝑧)| ≤ 1 for |𝑧| < 1 this means that |𝑓(𝑧)| ≤ |𝑓𝑗(𝑧)| so then the previous 

equation will be proven if it can be shown that  

 

1

2𝜋
∫

1 − |𝑧|2

|𝑧 − 𝑒𝑖𝜑|2
𝑑𝜑 ≥

1

2
           (𝑧 ∈ 𝑇𝑗)

𝛽

𝛼

 

 

(1.8) 

 

The authors then use the fact that the previous integral has a well-known and simple 

geometric interpretation. One can extend the line segment from 𝑒𝑖𝛼 to z until it meets the 

boundary of the unit circle at some point 𝑤1. The same can be done in a similar fashion, 

extending the line segment from 𝑒𝑖𝛽 to z until it meets the boundary at a point 𝑤2. Then, the 

integral is equal to the arc length from 𝑤1 to 𝑤2 in the counterclockwise direction divided by 2𝜋. 

Using this, we can then get that the minimum of the integral for 𝑧 ∈ 𝑇𝑗 is reached at the interior 

vertex of 𝑇𝑗 and that the minimum value is 
1

2
+

(𝛽−𝛼)

2𝜋
. This then proves the prior integral, which 

of course will prove the integral that directly preceded it.  

Now, we will let 𝑡 = 𝑒𝑖𝜃 be a point of 𝐸1, interior to the arc I, at which the previous limit 

holds. To make things simple it is assumed that 𝑡 = 1. Then there is an 𝜀 > 0 such that if 

𝑅𝑒(𝛼𝑛) > 1 − 𝜀, then 𝛼𝑛 is in one of the triangles 𝑇𝑗. We then get that |𝑓(𝛼𝑛)| ≤ 𝑒
−1

2⁄  at all 

such points 𝛼𝑛. Then, let 𝑔(𝑧) = 𝑓(𝑧)𝑒𝑧. 𝑔 ∈ 𝐻∞ and ‖𝑔‖ = 𝑒 but 

 

|𝑔(𝛼𝑛)| ≤ 𝑒
1
2           𝑓𝑜𝑟 𝑅𝑒(𝛼𝑛) > 1 − 𝜀 

 

(1.9) 

 

 

|𝑔(𝛼𝑛)| ≤ 𝑒1−𝜀           𝑓𝑜𝑟 𝑅𝑒(𝛼𝑛) ≤ 1 − 𝜀 

 

 

(1.10) 
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and so 𝑠𝑢𝑝|𝑔(𝛼𝑛)| < ‖𝑔‖. This of course tells us that the initial condition is not 

satisfied. Because our implied condition was false this then shows that that 𝑠𝑢𝑝|𝑓(𝑒𝑖𝜃)| =

‖𝑓‖ ∀𝑓 ∈ 𝐻∞  ⇒ almost every boundary point 𝑝 = 𝑒𝑖𝜃 may be approached non-tangentially. ∎  

The below image shows the geometric layout of the proof in the paper by Brown, 

Shields, and Zeller.  

 

Figure 1.1 Non-tangential limit as described by Brown, Shields, and Zeller 

 

Interpolating Sequences 

Lennart Carleson, in the late 1950’s, went on to characterize an interpolating sequence, 

on the unit disc in his paper “An interpolation problem for bounded analytic functions”. A paper 

by Shapiro and Shields later simplified an interpolating sequence to the following definition: 
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they proved that if {𝑎𝑛} ∈ ℓ∞, then there is an 𝑓 ∈ 𝐻∞ that interpolates the values 𝑎𝑛 at 𝑧𝑛 i.e. 

𝑓(𝑧𝑛) = 𝑎𝑛 ∀𝑛 then 

 

infn ∏ 𝜌(𝑧𝑗 , 𝑧𝑛)

𝑗≠𝑛

> 0 

 

 

(1.11) 

 

 

where 𝜌(𝑧, 𝑤) = |
𝑧 − 𝑤

1 − �̅�𝑧
| 

 

 

(1.12) 

 

is defined as the pseudo-hyperbolic metric on 𝔻 and This notion of taking advantage of 

the pseudo-hyperbolic metric will be expanded upon in the coming chapter.  

Daniel Luecking 

Perhaps most fascinating, given the definitions of interpolating and dominating sequences 

above, Daniel Luecking showed in the early 1980’s that if we have a sequence 𝑧𝑛 ∈ 𝔻. Define 

 

R: H∞ → ℓ∞ via (Rf)(n) = f(zn) 

 

 

(1.13) 

 

then R has a closed range if and only if {𝑧𝑛}𝑛=1
∞  is either a dominating sequence or an 

interpolating sequence. The Open Mapping Theorem will imply that there exists some constant 

𝐶 > 0 such that ∀𝑔 ∈ 𝐻∞, ∃ 𝑓 ∈ 𝐻∞such that 𝑅𝐹 = 𝑅𝑔 and ‖𝑓‖∞ ≤ 𝐶‖𝑅𝑔‖∞. 

Given our knowledge of these two types of sequences the differences between the 

outcome of such a function just from the assumption of a closed range is striking and will be 
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expanded upon further. The backwards direction of the if and only if statement is clear while the 

forward direction is where we want to spend the bulk of our time, and as mentioned before will 

produce two very distinct outcomes. 

Case 1: R is 1-1 (Dominating) 

In this case Luecking showed that if R is 1-1 then the sequence {𝑧𝑛}𝑛=1
∞  is a dominating 

sequence with the following proof: 

Let 𝑓 ∈ 𝐻∞, then  ‖𝑓‖∞ ≤ 𝐶‖𝑅𝑓‖∞. ∀𝑛 ∈ ℕ, ‖𝑓‖∞
𝑛 = ‖𝑓𝑛‖∞ ≤ 𝐶‖𝑅𝑓𝑛‖∞ = 𝐶‖𝑅𝑓‖∞

𝑛 . 

Thus, ‖𝑓‖∞ ≤ 𝐶
1

𝑛⁄ ‖𝑅𝑓‖∞. By letting 𝑛 → ∞ we get ‖𝑓‖∞ ≤ ‖𝑅𝑓‖∞. We can clearly see that 

‖𝑅𝑓‖∞ ≤ ‖𝑓‖∞ hence from the following inequalities we get that ‖𝑅𝑓‖∞ =

‖𝑓‖∞.  𝑇ℎ𝑢𝑠 {𝑧𝑛}𝑛=1
∞  is a dominating sequence. ∎ 

Case 2 R is not 1-1 (Interpolating) 

In this case Luecking used the proof as follows: 

We start by letting 𝑥 ∈ ℓ∞, then there exists 𝐹 ∈ 𝐻∞such that 𝑅𝐹 = 0 yet 𝐹 ≢ 0 𝑜𝑛 𝔻. 

∀𝑛 ∈ ℕ ∃ 𝑚𝑛 ∈ ℕ and 𝜏𝑛 ∈ ℋ(𝔻) such that 𝜏𝑛(𝑧𝑛) ≠ 0 and 𝐹(𝑧) = (𝑧 − 𝑧𝑛)𝑚𝑛𝜏𝑛(𝑧). Clearly 

then every 𝜏𝑛 is bounded on 𝔻. 

Now, for 𝑛 ∈ ℕ put  

 

𝑔𝑛 = ∑
𝑥(𝑘)𝜏𝑛

𝜏𝑛(𝑧𝑘)

𝑛

𝑘=1

 

 

 

(1.14) 

 

 

Then 𝑔𝑛 ∈ 𝐻∞and   𝑅𝑔𝑛 = {
𝑥(𝑘) 𝑖𝑓 1 ≤ 𝑘 ≤ 𝑛

0 𝑖𝑓 𝑘 > 𝑛
 

 

(1.15) 
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There then exists 𝑓𝑛 ∈ 𝐻∞ such that 𝑅𝑓𝑛 = 𝑅𝑔𝑛 and ‖𝑓𝑛‖∞ ≤ 𝐶‖𝑅𝑔𝑛‖∞ ≤ 𝐶‖𝑥‖∞. 

Now, {𝑓𝑛: 𝑛 ∈ ℕ} is a normal family on 𝔻 so there exists an 𝑓 ∈ ℋ(𝔻) and a subsequence of 

𝑓𝑛, {𝑓𝑛𝑗
}

𝑗=1

∞

 such that 𝑓𝑛𝑗
→ 𝑓 uniformly on each compact set in 𝔻 as 𝑗 → ∞. For any 𝑧 ∈ 𝔻,  

 

|𝑓(𝑧)| = lim
𝑗→∞

|𝑓𝑛𝑗
(𝑧)| ≤ 𝐶‖𝑥‖∞ 𝑠𝑜 𝑓 ∈ 𝐻∞. 

 

 

(1.16) 

 

Now, let 𝑛 ∈ ℕ. If 𝑗 ≥ 𝑛, then 𝑛𝑗 ≥ 𝑛 so 

 

𝑅𝑓(𝑛) = 𝑓(𝑧𝑛) =  lim
𝑗→∞

|𝑓𝑛𝑗
(𝑧𝑛)| = 𝑥(𝑛). Thus, 𝑅𝑓 = 𝑥. 

 

 

(1.17) 

 

The previous equality agrees with the definition of an interpolating sequence hence when 

R is not 1-1 the sequence {𝑧𝑛}𝑛=1
∞  is interpolating. ∎ 

Summary and additional content 

It can be easy and even tempting to fall into the trap of assuming that such distinct 

outcomes in terms of sequences must be completely unrelated. Yet as was discussed earlier in the 

section by Luecking, both interpolating and dominating sequences can be produced from a 

sequence mapped onto the unit disc. With the only difference between the two being whether the 

function R is 1-1 or not. The ultimate reason for this comes down to the fact that R has closed 

range.  
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A further, deeper, result was shown by Carleson and Garnett in which they proved that 

given that {𝑧𝑛: 𝑛 ∈ ℕ}−𝑤∗
 is homeomorphic to 𝛽ℕ given that the function R from before is 

defined as: 

 

𝑅∗|𝛽ℕ: 𝛽ℕ → (𝐻∞)∗ 

 

 

(1.18) 

 

Even under this restriction Carleson and Garnett were able to show that 𝑅(𝐻∞) = ℓ∞ meaning 

that we still receive a dominating sequence. This is a very deep and complex result and will not 

be expanded upon further. However, this serves as a good example of the level of complexity in 

which these topics can attain. 



 

10 

CHAPTER II 

RESULTS 

Comparison of 𝝆𝔻 to disc to 𝝏𝔻 

In this section we will prove that if {𝑧𝑛}𝑛=1
∞  is dominating for 𝔻 with 0 < 𝑟 < 1 and 

𝜌𝔻(𝑧𝑛, 𝑤𝑛) < 𝑟 for all 𝑛 ∈ ℕ such that 𝜌𝔻 is the pseudo-hyperbolic metric on the unit disc given 

by 

 

𝜌𝔻(z, w) = |
z − w

1 − w̅z
| 

 

 

(2.1) 

 

then the sequence {𝑤𝑛}𝑛=1
∞  is dominating for 𝔻. 

Proof 

We start with the assumption that 0 < 𝑟 < 1 and choose some 𝑧0 ∈ 𝔻 then  

 

𝜓z0
=

𝑧0 − B(0; r)

1 − 𝑧0̅B(0; r)
 

 

(2.2) 

 

 

𝐷(z0; 𝑟) = {𝑧: 𝜌(𝑧, z0) < 𝑟} 
(2.3) 

 

 

= {z: |𝜓z0
(z)| < r} 

(2.4) 
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= 𝜓z0
−1(B(0; r)) = 𝜓z0

(B(0; r)) 
(2.5) 

 

such that 𝐵(𝑧; 𝑟) is the ball centered at z with radius 𝑟 > 0 and 𝜓𝑧0
∈ ℳ with ℳ being 

the Mobius transformation implies that 𝐷(𝑧0, 𝑟) is a Euclidean disc. Thus, we can take advantage 

of the rotation-invariance property. So, assume now that 0 < 𝑥0 < 1 then the image below can 

be used to represent the Euclidean disc. With this in mind this is what we will perform the bulk 

of our mathematics on. We then perform the following: 

 

 

Figure 2.1 The Euclidean disc with pseudohyperbolic center 𝑥0, 𝑥1at the left, and 𝑥2 at the 

right 

 

 
𝑥0 − 𝑥1

1 − 𝑥0𝑥1
= |

𝑥0 − 𝑥1

1 − 𝑥0𝑥1
| = 𝜌(𝑥1, 𝑥0) = 𝑟 

(2.6) 
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𝑥2 − 𝑥0

1 − 𝑥0𝑥2
= |

𝑥0 − 𝑥2

1 − 𝑥0𝑥2
| = 𝜌(𝑥2, 𝑥0) = 𝑟 

 

(2.7) 

 

where 𝑥1, 𝑥2 ∈ 𝜕𝐷(𝑧0, 𝑟). We now desire to find the Euclidean center. We start by 

solving for 𝑥1 

 

𝑥0 − 𝑥1 = 𝑟 − 𝑟𝑥0𝑥1 

𝑥0 − 𝑟 = (1 − 𝑟𝑥0)𝑥1 

𝑥1 =
𝑥0 − 𝑟

1 − 𝑟𝑥0
 

 

(2.8) 

 

taking the same approach for 𝑥2, we get that  

 

𝑥2 =
𝑥0 + 𝑟

1 + 𝑟𝑥0
 

 

(2.9) 

 

Now, using the formula for Euclidean center and performing some careful algebra 

 
𝑥1 + 𝑥2

2
=

1

2

(𝑥0 − 𝑟)(1 + 𝑟𝑥0) + (𝑥0 + 𝑟)(1 − 𝑟𝑥0)

1 − 𝑟2𝑥0
2  

=
1

2

𝑥0 − 𝑟 + 𝑟𝑥0
2 − 𝑟2𝑥0 + 𝑥0 + 𝑟 − 𝑟𝑥0

2 − 𝑟2𝑥0

1 − 𝑟2𝑥0
2  

= (
1 − 𝑟2

1 − 𝑟2𝑥0
2) 𝑥0 

 

(2.10) 
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Lastly, we can calculate the Euclidian radius 

 
𝑥2 − 𝑥1

2
=

1

2

(𝑥0 + 𝑟)(1 − 𝑟𝑥0) − (𝑥0 − 𝑟)(1 + 𝑟𝑥0)

1 − 𝑟2𝑥0
2  

=
1

2

𝑥0 + 𝑟 − 𝑟𝑥0
2 − 𝑟2𝑥0 − 𝑥0 + 𝑟 − 𝑟𝑥0

2 + 𝑟2𝑥0

1 − 𝑟2𝑥0
2  

= (
1 − 𝑥0

2

1 − 𝑟2𝑥0
2) 𝑟 

 

(2.11) 

 

In general, now, for 𝑧0 ∈ 𝔻 and 0 < 𝑟 < 1 we get 

 

𝐷(𝑧0; 𝑟) = 𝐵 ((
1 − 𝑟2

1 − 𝑟2|𝑧0|2
) 𝑧0;  (

1 − |𝑧0|2

1 − 𝑟2|𝑧0|2
) 𝑟) 

 

(2.12) 

 

We now want to show that the sequence {𝑤𝑛}𝑛=1
∞  satisfies the criterion from Brown, 

Shields, and Zeller. Then, we can prove that the sequence is a dominating sequence. The rest of 

this proof will be shown via figures. We will first consider the case where the aperture of the 

non-tangential limit does not have to be widened to encompass the sequence {𝑤𝑛}𝑛=1
∞ . As 

illustrated in the following figures.  
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Figure 2.2 The resulting triangle with our sequences inside given the first iteration of epsilon. 

 

 

Figure 2.3 The resulting triangle with our sequences inside given the second iteration of 

epsilon. 
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Figure 2.4 The resulting triangle with our sequences inside given the third iteration of epsilon. 

It’s at this point that we show that this trend of shrinking epsilon will continue.  

 

 

 

Figure 2.5 Non-tangential angle capturing the dominating sequence along with the region W 

with a wider aperture to ensure the sequence w is within a non-tangential angle. 

 



 

16 

What the previous figures show is that as the distance between epsilon and the unit circle 

gets smaller the line segments from 𝜆𝜀1
 to 𝜁 and 𝛾𝜀1

 to 𝜁 get smaller so do the distances from 𝑧𝑛 

to 𝜁 and 𝑤𝑛 to 𝜁. The process of shrinking the distance between epsilon and the unit circle is 

repeated through the last two figures. With the last figure showing the continuation of the 

process. The concept of the shrinking distances is continued as well. If we keep in mind the 

geometry of a triangle, we know that any point inside the triangle, in this case the points we care 

about most are 𝑧𝑛 and 𝑤𝑛, will be a shorter distance away from our 𝜁 point than the distances 

between 𝜆𝜀 to 𝜁 and 𝛾𝜀 to 𝜁. With this in mind, we can “squeeze” our triangle down to a smaller 

and smaller size. And since 𝑧𝑛 is dominating hence approaching the point 𝜁 and 𝑤𝑛 is within the 

distance of 𝑧𝑛 using the Euclidean metric above it follows that 𝑤𝑛 will approach to the point 𝜁 as 

well. Hence, 𝑤𝑛 is also a dominating sequence on 𝔻. 

Now, what was stated above can be easily shown using a more geometric approach, that 

is of course that the sequence 𝑤𝑛 approaches 𝜁 along with 𝑧𝑛 is obvious given the metric that 

was shown above. What we want to take a closer look at now and what is the more interesting of 

the two scenarios is when 𝑤𝑛 is outside of the non-tangential angle in which the sequence 𝑧𝑛 is 

inside of. This scenario is illustrated in figure 2.2 in which the dashed lines represent the 

widened aperture to ensure 𝑤𝑛 falls within in it, this is what we will discuss further. Now, we 

will define the region W (as shown in the figure above) with  

 

|𝑧 − 𝜁| < 𝐶(1 − |𝑧|2) for some constant C 

 

(2.13) 

 

We now want to show that there is then a constant B such that 
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|𝑧𝑛 − 𝜁| < 𝐶(1 − |𝑧𝑛|2) ⟹  |𝑤𝑛 − 𝜁| < 𝐵(1 − |𝑤𝑛|2) 

 

(2.14) 

 

Performing some careful algebra, we put 

 

 

𝐵 =
8

(2 − 𝑟)(1 − 𝑟)
+

2𝐶(1 + 𝑟)

1 − 𝑟
 

 

(2.15) 

Now, if |𝑧𝑛| >
1

2
 and |𝑧𝑛 − 𝜁| < 𝐶(1 − |𝑧𝑛|2) we will get |𝑤𝑛 − 𝜁| < 𝐵(1 − |𝑤𝑛|2) as 

desired. Lastly, we can say that as 𝑧𝑛 approaches 𝜁 then 𝑤𝑛 will approach it as well. Since this is 

within a non-tangential angle and 𝜁 ∈ 𝜕𝔻 it suffices to say that if 𝑧𝑛 is a dominating sequence 

then 𝑤𝑛 is also a dominating sequence on 𝔻. ∎ 
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