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NUMERICAL NULL CONTROLLABILITY OF THE HEAT EQUATION

THROUGH A LEAST SQUARES AND VARIATIONAL APPROACH

ARNAUD MÜNCH AND PABLO PEDREGAL

Abstract. This work is concerned with the numerical computation of null controls for the
heat equation. The goal is to compute an approximation of controls that drives the solution
from a prescribed initial state at t = 0 to zero at t = T .

In spite of the diffusion of the heat equation, recent developments indicate that this issue
is difficult and still largely open. Most of the existing literature, concerned with controls
of minimal L

2-norm, make use of dual convex arguments and introduce backward adjoint
system. In practice, the null control problem is then reduced to the minimization of a dual
conjugate function with respect to the final condition of the adjoint state. As a consequence
of the highly regularizing property of the heat kernel, this final condition - which may be
seen as the Lagrange multiplier for the null controllability condition - does not belongs to L

2,

but to a much larger space than can hardly be approximated by finite (discrete) dimensional
basis. This phenomenon, unavoidable whatever be the numerical approximation used, strongly

deteriorates the efficiency of minimization algorithms.
In this work, we do not use duality arguments and in particular do not introduce any

backward heat equation. For the boundary case, the approach consists, first, in introducing a

class of functions satisfying a priori the boundary conditions in space and time - in particular
the null controllability condition at time T -, and then finding among this class one element
satisfying the heat equation. This second step is done by minimizing a convex functional,

among the admissible corrector functions of the heat equation. The inner case is performed
in a similar way.

We present the (variational) approach, discuss the main features of it, and then describe
some numerical experiments highlighting the interest of the method.

The method holds in any dimension but, for the sake of simplicity, we provide details in
the one-space dimensional case.

Key Words. Heat equation, Null controllability, Numerical approximation, Variational ap-
proach.
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1. Introduction

We are concerned in this work with the null controllability problem for the 1D heat equation
for both the boundary and the inner case. We denote by T any strictly positive real, ω any
non-empty (small) subset of (0, 1) and 1ω the characteristic function of ω. We introduce the
diffusion function a assumed to be uniformly bounded and strictly positive all over the interval
(0, 1):

(1.1) a ∈ C1([0, 1]), a(x) ≥ a0 > 0 ∀x ∈ [0, 1].

We also introduce in the sequel the notation

(1.2) qT = ω × (0, T ), QT = (0, 1) × (0, T ), ΣT ∈ {1} × (0, T ).

The boundary control problem we consider here can be stated as follows (see [5, 21]) : given
any initial data u0 ∈ L2(0, 1), find a control function w ∈ L2(ΣT ) such that the unique (weak)
solution u ∈ C0([0, T ];H−1(0, 1)) ∩ L2(0, T ;L2(0, 1)) of the homogeneous linear equation

(1.3)











ut − (a(x)ux)x = 0 (x, t) ∈ QT ,

u(x, 0) = u0(x) x ∈ (0, 1),

u(0, t) = 0, u(1, t) = w(t) t ∈ (0, T )

satisfies the null controllability condition

(1.4) u(·, T ) = 0 in (0, 1).

As it is usual, the solution are defined by transposition. Similarly, the inner (or distributed)
control problem may be stated as follows: given any initial data u0 ∈ L2(0, 1), find a control
function f ∈ L2(qT ) such that the unique solution u ∈ C0([0, T ];L2(0, 1)) ∩ L2(0, T ;H1

0 (0, 1)) of
the homogeneous linear equation

(1.5)











ut − (a(x)ux)x = f 1ω (x, t) ∈ QT ,

u(0, x) = u0(x) x ∈ (0, 1),

u(t, 0) = u(t, 1) = 0 t ∈ (0, T )

satisfies (1.4).
In the one dimensional space case, those controllability problems are known to be solvable

since the seventies: we refer to the earlier contributions [13, 30] for some proofs based on spectral
arguments. For more recent and general results based on duality arguments and Carleman type
estimates, we refer to [14, 23]. As it is usual in this type of problems, the dual approach allows
to reduce the controllability problem to a suitable observability result for the adjoint system.
Moreover, in the spirit of the celebrated Hilbert Uniqueness Method introduced by J.-L. Lions,
they lead to a practical way of computing controls of a given minimal Sobolev norm.

In order to highlight the underlying difficulties that motivate the search of new methods, let us
consider the inner case, which is simpler in many ways with respect to its boundary counterpart.
Since there are controls f ∈ L2(qT ) for (1.5), it is natural to look for the one with minimal
L2-norm, that is, one seeks to minimize the quadratic functional J(v) = 1

2‖v‖
2
L2(qT ) over the

non-empty set

C(u0, T ) = { (u, f) : f ∈ L2(qT ), u solves (1.5) and satisfies (1.4) }.
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Since it is difficult to construct pairs in C(u0, T ) (and a fortiori minimizing sequences !), one
may used, following [4], duality arguments to replace the constrained minimization of J by the
unconstrained minimization of its conjugate function J⋆ defined as

J⋆(ϕT ) =
1

2

∫∫

qT

|ϕ|2 dx dt +

∫ 1

0

u0(x)ϕ(x, 0) dx

over ϕT ∈ H (that will be made precise below), where ϕ is the adjoint backward state associated
with (1.5) such that ϕ(·, T ) = ϕT . The existence of a positive constant C = C(ω, T ) (the so-
called observability constant) such that C(ω, T )‖ϕ(·, 0)‖2

L2(0,1) ≤ ‖ϕ‖2
L2(qT ) for all ϕT ∈ L2(0, 1)

implies that J⋆ is coercive on the Hilbert space H defined as the completion of D(0, 1) for the
norm ‖ϕ‖L2(qT ). The control f of minimal L2(qT )-norm is then given by f = ϕ̂ 1ω where ϕ̂
is associated with the unique minimizer ϕ̂T in H of J⋆ (see [5, 18]). The difficulty, when one
wants to approximate such control, that is when one likes to minimize numerically J⋆, is that the
space H is huge, in particular, contains H−s for every s ∈ N, and even elements that may not be
distributions. Numerical experiments do suggest that the minimizer ϕ̂T is very singular (we refer
to [4] and also to [2, 26, 27] for more details). Notice that this phenomenon is independent of the
choice of J , but is related to the use of dual variables. As we stressed in the abstract, the equality
(1.4) can be viewed as an equality in a very small space (due to the strong regularization effect
of the heat kernel). Accordingly, the associated multiplier ϕT must belong to a large dual space,
much larger than L2(0, 1), that cannot be represented numerically. We refer to [11], generalizing
[4] for weighted-norms, where the same ill-posedness is shown and to [16] where a Tikhonov
regularization is introduced and analyzed. For these reasons, robust numerical approximations
of null controls for parabolic systems remain a challenge.

Recently, an alternative way of looking at these problems and avoiding the introduction of
dual variables has been introduced in [28]. It is based on the following simple strategy. Instead
of working all the time with solutions of the underlying state equation, and looking for one that
may comply with the final desired state, one considers a suitable class of functions complying
with required initial, boundary, and final conditions, and seeks one of those that is a solution of
the state equation. This is in practice accomplished by setting up an error functional defined for
all feasible functions, and measuring how far those are from being a solution of the underlying
state equation. The task of showing that a problem is controllable amounts to proving that
the infimum of the error is a minimum (there is a global minimizer of the error), and that it
vanishes. This job requires some interesting analysis as the error functional is not a local, classical
integral functional but rather a non-local functional as the ones consider for optimal control for
distributed parameter systems ([24]). Once we have a feasible function with zero error, the
control is obtained as the trace of this optimal function (or some other function determined in a
unique way through it) in the set where we are entitled to act on the system.

One main practical advantage of this variational approach is that the way to get closer to
a solution of the problem is by minimizing a functional that cannot get stuck on local minima
because the only critical points of the error turn out to be global minimizers with zero error (see
next section). Therefore a general strategy for numerical approximation consists in using a typical
descent algorithm for this error functional. Exploring this possibility for the problems described
above is the main reason for this paper. It is organized as follows. In Section 2, we describe (in
a non-technical way) the main ingredients of the variational approach for the heat equation for
the boundary case first, following [28]. We then show that [28] may be adapted to address the
inner situation. By a general-purpose lemma, we prove that the numerical schemes based on a
steepest descent strategy for the error functional, always produce numerical sequences which do
converge strongly in the appropriate space (3). We then move on to provide the details for the
numerical approach based on the Polak-Ribière version of the conjugate gradient algorithm to
minimize the error functional. Section 5 presents several experiments and discuss the practical
interest of the approach. Section 6 treats a typical non-linear example to stress the flexibility of
the approach. The final section provides a simple method to reduce the cost of controls.
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To our knowledge, very few contribution on that topic has appeared since the seminal paper
of Carthel-Glowinski-Lions [4] devoted to approximate controllability using duality. This is due
to the intrisic ill-posedness of the problem we have just pointed out. For the null boundary case
in one dimensional space, we mention the motion planning method introduced in [22] allowing
a semi-explicit expression of controlled solutions in term of Gevrey series. This approach has
been adapted and numerically developed recently in [27] to obtain inner controls. The recent
work [12] - following [14] - extend [4] with Carleman weighted L2-norm while [11] provides a
different variational approach, based on Carleman inequalities, that does not make use of duality
argument. For a numerical analysis viewpoint, we also indicate contributions [3, 7, 11, 19].

2. The least squares variational approach of the null controllability

We are going to describe in this section the basic ingredients of the variational approach in
order to apply it to both boundary, and inner controllability problems for the 1D heat equation.

2.1. Boundary controllability. Consider first the boundary controllability problem for the
heat equation which consists in finding a function w ∈ L2(ΣT ), such that the solution of the
problem (1.3) will comply with u(x, T ) = 0 in (0, 1), so that the state u with initial distribution
given by initial data u0 is led to state 0 at time T under the action of the boundary control w
at the right-end point x = 1. The data u0 is given a priori, and the function a is assumed to be
uniformly bounded and strictly positive all over the interval (0, 1).

The main idea of the variational method, as introduced in [28], consists in setting up an error
functional which measures the deviation of functions from being a solution of the underlying
heat equation, and minimizing such error over the class of feasible functions that comply with
initial, boundary, and final conditions. Namely, consider the class of functions

(2.1) A =

{

u ∈ H1(QT );u(x, 0) = u0(x), u(x, T ) = 0, x ∈ (0, 1), u(0, t) = 0, t ∈ (0, T )

}

assumed non empty. This requirement simply demands some compatibility with the vanishing
boundary data for x = 0, precisely that u0(0) = 0 and that u0, as the trace of an H1 function over
QT , be slightly more regular than L2(0, 1), that is u0 ∈ H1/2(0, 1). According to the regularizing
effect of the heat kernel, this assumption may be removed if we assume that the control is zero
at time t = 0. For any u ∈ A, we define its corrector v over QT as the solution of the (elliptic)
problem

(2.2)











ut − vtt − (a(x)(ux + vx))x = 0, (x, t) ∈ QT ,

vt(x, 0) = vt(x, T ) = 0, x ∈ (0, 1),

v(0, t) = v(1, t) = 0, t ∈ (0, T ).

Notice that the unique solution of this problem is the minimizer over H1
0,x(QT ) = {v ∈ H1(QT ), v =

0 on {0, 1} × (0, T )} of the regular quadratic functional

1

2

∫∫

QT

(

(|vt|
2 + a(x)|vx|

2) + utv + a(x)uxvx

)

dx dt.

The Neumann conditions on the part of the boundary for t = 0, and t = T , are the natural
boundary one. One may also consider Dirichlet conditions. Note how this variational problem
determining the corrector v is a well-defined problem if u ∈ A. Even though the corrector
function v was introduced in [28] for each time slice t to preserve as general a framework as
possible, from the point of view of numerical approximation it is advantageous to define such
error function globally in the whole time-space domain QT by introducing the additional term
−vtt. This has a regularizing effect on the time dependence which is very convenient for numerics.

The error functional is then

(2.3) E : A → R
+, E(u) =

1

2

∫∫

QT

(

|vt|
2 + a(x)|vx|

2
)

dx dt,
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where v is the corrector associated with u. It turns out that our problem is controllable if and
only if the minimum of the error vanishes. In particular, it is well-known that the heat problem
considered here is controllable, and so the infimum of this error functional is a minimum, and it
does vanish ([14]).

Once we know that the infimum m ≥ 0 is a minimum, we turn to optimality. We define, in a
classical way, the variation of E in the direction U ∈ A0

< E′(u), U >= lim
t→0

E(u + tU) − E(u)

t

where the set A0 of admissible variations of u is taken to be

(2.4) A0 =

{

U ∈ H1(QT ) : U(x, 0) = U(x, T ) = 0, x ∈ (0, 1), U(0, t) = 0, t ∈ (0, T )

}

.

We easily obtain that

(2.5) < E′(u), U >=

∫∫

QT

(vtVt + a(x)vxVx) dx dt

where V ∈ H1
0,x(QT ) is the corrector function associated with U ∈ A0, that is, the solution of

(2.6)











Ut − Vtt − (a(x)(Ux + Vx))x = 0, (x, t) ∈ QT ,

Vt(x, 0) = Vt(x, T ) = 0, x ∈ (0, 1),

V (0, 1) = V (1, t) = 0, t ∈ (0, T ).

Multiplying the state equation (2.6) by v, integrating by parts, and taking into account the
boundary conditions on v and U , we transform (2.5) into

< E′(u), U >= −

∫∫

QT

(Utv + a(x)Uxvx) dx dt, ∀U ∈ A0.

Now, let us assume that u ∈ A is a minimizer for E, so that < E′(u), U >= 0 for all U ∈ A0.
This equality implies that v satisfy the backward heat equation

{

− vt − (a(x)vx)x = 0, (x, t) ∈ QT ,

a(1)vx(t, 1) = 0, t ∈ (0, T ),

in addition to the boundary conditions
{

vt(x, 0) = vt(x, T ) = 0, x ∈ (0, 1),

v(0, t) = v(1, t) = 0, t ∈ (0, T ).

For any positive time T > 0, this implies, by the unique continuation property, that the corrector
v of u is zero, that m = E(u) = 0, and the corresponding minimizer u satisfies an homogeneous
heat equation. Since u belongs to A, the minimizer of E is then a controlled solution of the heat
equation. As already said, the Dirichlet control we are looking for is simply obtained by taking
the trace of u along ΣT . As the trace on ΣT of u ∈ H1(QT ), the control obtained then belongs
to H1/2(ΣT ) ⊂ L2(ΣT ). Neumann controls may be obtained in a similar way. Notice that this
argument implies that critical points can only occur at zero error.

Remark 2.1. We insist on the fact that this perspective relies on the minimization of the error
functional, and does not make use of duality argument nor introduce any dual variable. For
each u, the corrector v is the solution of an elliptic linear and well-posed problem in H1(QT ).
Actually, this variational approach introduced by the second author in [28] is a least squares type
method, as deeply discussed for instance in [17], chapter VII where the search of solution(s) for
F (u) = 0, given any F : H1

0 (Ω) → H−1(Ω) and a bounded domain Ω ∈ R
N is replaced by the

extremal problem :

min
u∈H1

0
(Ω)

‖v‖2
H1

0
(Ω)

where v = v(u) solves the elliptic problem : −∆v = F (u) in Ω, v = 0 on ∂Ω.
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We refer to [11] where a different variational approach leading to an elliptic problem defined
on QT has been introduced and analyzed.

Notice that, even though there might not be rigorous results to be applied for some particular
situation, the decrease of the error to zero is a sure indication that the problem is being (at least
approximatively) controlled.

Remark 2.2. There are many ways to define the corrector v. One may, for instance, replace
the state equation of (2.2) by the following equation

ut − vtt − (a(x)ux + vx)x = 0, (x, t) ∈ QT

leading to E(u) = 1
2

∫∫

QT

(|vt|
2 + |vx|

2) dx dt, and the same expression of the first derivative. The

choice we made in (2.2) seems the closest to the notion of a corrector for the heat equation.

2.2. Inner controllability. Let us now turn to the inner controllability case which is as usual
in control theory a bit simpler. This time we assume that the control is acting on a small subset
ω (for simplicity assumed independent of the time variable) of (0, 1).

Following again the ideas developed in the previous section, let us present an approach leading
to a control in L2(qT ). We define the non-empty set

A =

{

(u, f); u ∈ C([0, T ];L2(Ω))∩L2(0, T ;H1
0 (Ω));u′ ∈ L2(0, T, H−1(0, 1)),

u(x, 0) = u0(x), u(x, T ) = 0, x ∈ (0, 1), f ∈ L2(qT )

}

and the extremal problem :

(2.7) inf
(u,f)∈A

E(u, f) :=
1

2

∫∫

QT

(|vt|
2 + a(x)|vx|

2)dx dt,

where the corrector v = v(u, f) ∈ H1(QT ) is defined by

(2.8)











ut − vtt − (a(x)(ux + vx))x − f 1ω = 0, (x, t) ∈ QT ,

vt(x, 0) = vt(x, T ) = 0, x ∈ (0, 1),

v(0, t) = v(1, t) = 0, t ∈ (0, T ).

The well-posedness of this extremal problem is a consequence of the inner controllability for the
heat equation : if u is a controlled solution for the heat equation with a control f ∈ L2(qT ), then
(u, f) belongs to A, v solution of (2.2) vanishes on QT and min(u,f)∈A E(u, f) = 0.

Conversely, we check that any minimizer of E in A is a solution of the heat equation with
source term f 1ω. We define

A0 =

{

(u, f); u ∈ C([0, T ];L2(Ω))∩L2(0, T ;H1
0 (Ω));u′ ∈ L2(0, T, H−1(0, 1)),

u(x, 0) = u(x, T ) = 0, x ∈ (0, 1), f ∈ L2(qT )

}

so that for any (U, F ) ∈ A0, we compute that

< E′(u, f), (U,F ) >=

∫∫

QT

(vtVt + a(x)vxVx)dx dt =

∫∫

QT

(Uvt − a(x)Ux vx + Fv 1ω) dx dt

where V ∈ H1(QT ) is the corrector associated with (U, F ) ∈ A0. We have used here that

−
∫ T

0
< Ut, v >H−1,H1 dt =

∫∫

QT

Uvt dx dt −
∫ 1

0
[Uv]T0 dx =

∫∫

QT

Uvt dx dt. Writing that <

E′(u, f), (U, F ) >= 0 for all (U, F ) in A0, we obtain that the corrector satisfies the condition
{

vt + (a(x)vx)x = 0, (x, t) ∈ QT ,

v = 0, (x, t) ∈ qT

in addition to the boundary conditions on v (see (2.8)). Again, a unique continuation property
(see for instance [14], chapter 1) implies that v = 0 in QT so that (u, f) ∈ A solves the heat
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equation. This reduces the search of a control f distributed in ω to the minimization of the
functional E over A.

Remark 2.3. In order to address the inner case, an alternative is as follows. Put A and A0 as
in the boundary-controllability situation. To ensure that the solution u satisfies the homogeneous
heat equation off qT = ω × (0, T ), we consider the following error functional

(2.9) E(u) =
1

2

∫∫

QT \qT

(

|vt|
2 + a(x)|vx|

2
)

dx dt

where the corrector v is defined in two pieces :

(1) off qT :

(2.10)











ut − vtt − (a(x)(ux + vx))x = 0, (x, t) ∈ QT \ qT ,

v = 0, (x, t) ∈ ∂((0, 1) \ ω) × (0, T ),

vt(x, 0) = vt(x, T ) = 0, x ∈ (0, 1) \ ω.

(2) in qT :

(2.11)











ut − vtt − (a(x)(ux + vx))x = 0, (x, t) ∈ qT ,

v = 0, (x, t) ∈ ∂ω × (0, T ),

vt(x, 0) = vt(x, T ) = 0, x ∈ (0, 1) ∩ ω.

Then, proceeding as before, it can be shown that if u is a minimizer for E, then the corresponding
corrector v vanishes outside qT . A control is then given by (vtt + (a(x)vx)x)1ω. This procedure
gives satisfactory numerical results. Note however that the control is only in H−1(qT ). However,
this way of proceeding is a bit artificial in the sense that the control u is found essentially as a
boundary-controllability situation in QT \ qT .

Remark 2.4. Since the controllability problem is formulated in QT , we may consider, without
further change, the case where the support of the control depends on the time variables, i.e.
qT = {(x, t) ∈ QT : g(t) < x < h(t), t ∈ (0, T )} where g and h are two smooth functions on
[0, T ] with 0 < g ≤ h < 1, g(t) 6= h(t). We refer to [11] for some experiments using a different
variational approach.

3. Convergence of numerical schemes

One main issue in all the situations discussed earlier is to establish the convergence of the
various numerical procedures proposed. They all seem to perform reasonably well, at least in the
numerical tests carried out in this contribution. One main difficulty in showing such convergence
of iterates is that the error functionals are not, in general, coercive in the appropriate spaces.
They all are quadratic, non-negative, and so convex. But we will, in general, lack coercivity and
strict convexity. To prove the convergence of all the numerical procedures treated here, we prove
a general-purpose result that can be applied to the various scenarios dealt with above.

Lemma 3.1. Suppose T : X 7→ Y is a linear, continuous operator between Hilbert spaces, and
H ⊂ X, a closed subspace, u0 ∈ X. Put

E : u0 + H 7→ R+, E(u) =
1

2
‖Tu‖2, A = kerT ∩ H.

(1) Let u0 ∈ u0 +H. Then E : u0 +A⊥ → R is quadratic, non-negative, and strictly convex,
where A⊥ is the orthogonal complement of A in H.

(2) The derivative E′(u0 + u) always belongs to A⊥. In particular, a typical steepest descent
procedure will always stay in the manifold u0 + A⊥.

(3) If, in addition,
min
u∈H

E(u0 + u) = 0,

then the steepest descent scheme will always produce sequences converging (strongly in
X) to a unique (in u0 + A⊥) minimizer u0 + u with zero error.
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Proof. Suppose there are ui ∈ A⊥, i = 1, 2, such that

E

(

u0 +
1

2
u1 +

1

2
u2

)

=
1

2
E(u0 + u1) +

1

2
E(u0 + u2).

Due to the strict convexity of the norm in a Hilbert space, we deduce that this equality can only
occur if Tu1 = Tu2. So therefore u1 − u2 ∈ A ∩ A⊥ = {0}, and u1 = u2.

For the second part, note that for arbitrary U ∈ A, TU = 0, and so

E(u0 + u + U) =
1

2
‖Tu0 + Tu + TU‖2 =

1

2
‖Tu0 + Tu‖2 = E(u0 + u).

Therefore the derivative E′(u0 + u), the steepest descent direction for E at u0 + u, has to be
orthogonal to all such U ∈ A.

Finally, assume E(u0 + u) = 0. It is clear that this minimizer is unique in u0 + A⊥ (recall the
strict convexity in (1)). This, in particular, implies that for arbitrary u ∈ A⊥,

(3.1) 〈E′(u0 + u), u − u〉 ≤ 0,

because this inner product is the derivative of the section t 7→ E(u0 + tu + (1 − t)u) at t = 0,
and this section must be a positive parabola with the minimum point at t = 1. If we consider
the gradient flow

u′(t) = −E′(u0 + u(t)), t ∈ [0,+∞),

then, because of (3.1),

d

dt

(

1

2
‖u(t) − u‖2

)

= 〈u(t) − u, u′(t)〉 = 〈u(t) − u,−E′(u0 + u(t))〉 ≤ 0.

This implies that sequences produced through a steepest descent method will be minimizing for
E, uniformly bounded in X (because ‖u(t) − u‖ is a non-increasing function of t), and due to
the strict convexity of E restricted to u0 + A⊥, they will have to converge towards the unique
minimizer u0 + u. �

Remark 3.2. Despite the strong convergence in this statement, it may not be true that the error
is coercive, even restricted to u0+A⊥, so that that strong convergence could be very slow. Because
of this same reason, it may be impossible to establish rates of convergence for these minimizing
sequences.

The element u0 determines the non-homogeneous data set of each problem: source term,
boundary conditions, initial and/or final condition, etc. The subspace H is the subset of the
ambient Hilbert space X for which the data set vanishes. T is the operator defining the corrector,
so that ker(T ) is the subspace of all solutions of the underlying equation or system. The subspace
A is the subspace of all solutions of the problem with vanishing data set. In some situations A
will be trivial, but in some others will not be so. The important property is (3) in the statement
guaranteeing that we indeed have strong convergence in X of iterates. The main requirement
for this is to know, a priori, that the error attains its minimum value zero somewhere.

In the particular situation of boundary controllability for the heat equation (Section 2.1), X is
taken to be H1(QT ), and H = A0 is given in (2.4). The operator T takes each u ∈ H1(QT ) into
its corrector v through (2.2). If u0 is chosen appropriately, then u0 + H = A in (2.1). Finally,
the subspace A is the subspace of all solutions of the homogeneous heat equation which comply
also with the vanishing boundary conditions around the boundary of QT except for x = 1. This
is a non-trivial subspace of H1(QT ) that makes an interesting problem to look for the control
of minimal L2-norm over x = 1. As already pointed out earlier, we do know that the error does
attain the minimum value, and it vanishes because exact boundary null-controllability holds for
the heat equation. Therefore, the main requirement of the lemma above holds, and we thus have
the strong convergence of computed iterative sequences based on a minimization of the error.
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4. Numerical resolution of the minimization problem

As shown in the previous section, the practical search of controls for the heat equation may
be reduced to minimization for corrector problems. We describe in this section the minimization
procedure to approximate numerically correctors. We give the details for the boundary case, and
then point out the main differences for the inner counterpart.

For the boundary case, we have to solve

(4.1)







Minimize E(u) =
1

2

∫∫

QT

(|vt|
2 + a(x)|vx|

2) dx dt,

subject to u ∈ A

with A =
{

u ∈ H1(QT );u(x, 0) = u0 on (0, 1), u(·, T ) = 0 on (0, 1), u(x, t) = 0 on ΣT

}

. We en-
dowed the space A with the scalar product

(u, v)A =

∫∫

QT

(ut vt + a(x)ux vx + u v)dxdt, ∀u, v ∈ A

and note that ‖u‖A =
√

(u, u)A for all u ∈ A. The Hilbert space A0 is endowed with the same
scalar product.

4.1. Conjugate gradient algorithm. The Polak-Ribière version of the conjugate gradient
(CG) algorithm to minimize E over A is as follows (see [17]):

• Step 0: Initialization - Given any ε > 0 and any u0 ∈ A, compute the residual g0 ∈ A0

solution of

(g0, U)A =< E′(u0), U > ∀U ∈ A0.

If ‖g0‖/‖u0‖ ≤ ε take u = u0 as an approximation of a minimum of E. Otherwise, set
z0 = g0.

For n ≥ 0, assuming un, gn, zn being known with gn and zn both different from zero,
compute un+1, gn+1, and if necessary zn+1 as follows:

• Step 1: Steepest descent - Set un+1 = un − λnzn where λn ∈ R is the solution of the
one-dimensional minimization problem

(4.2) minimize E(un − λzn), over λ ∈ R.

Then, compute the residual gn+1 ∈ A0 from the relation

(gn+1, U)A =< E′(un+1), U > ∀U ∈ A0.

• Step 2: Convergence testing and construction of the new descent direction - If ‖gn+1‖A/‖g0‖A ≤
ε take u = un+1; otherwise compute

(4.3) γn =
(gn+1, gn+1 − gn)A

(gn, gn)A
, zn+1 = gn+1 + γnzn.

Then do n = n + 1, and return to step 1.

Let us provide more details for two important steps of the algorithm :

• Since E is a quadratic functional with respect to u, one may explicitly solve the problem
(4.2): we write

E(un − λzn) = E(un) − λ

∫∫

QT

(vn
t Zn

t + a(x)vn
xZn

x ) dx dt

+
λ2

2

∫∫

QT

(|Zn
t |

2 + a(x)|Zn
x |

2)dxdt
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where Zn
x is the corrector of zn, solution of

{

zn
t − Zn

tt − (a(x)(zn
x + Zn

x ))x = 0, (x, t) ∈ QT ,

Z(·, t) = 0, Σt, Zt(x, ·) = 0, Σx

so that the optimal parameter is given by

λn =

∫∫

QT

(vn
t Zn

t + a(x)vn
xZn

x ) dx dt
∫∫

QT

(|Zn
t |

2 + a(x)|Zn
x |

2) dx dt
= −

∫∫

QT

(zn
t vn + a(x)zn

xvn
x ) dxdt

∫∫

QT

(|Zn
t |

2 + a(x)|Zn
x |

2) dx dt
.

• The computation of the residual gn is performed as follows. According to the equality

< E′(un), U >= −

∫∫

QT

(Utv
n + a(x)Uxvn

x ) dx dt, ∀U ∈ A0,

E′(un) ∈ H−1(QT )) may be identified with the linear functional on A0 defined by

U → −

∫∫

QT

(Utv
n + a(x)Uxvn

x ) dx dt.

It then follows that gn is the solution of the following linear variational problem : find
gn ∈ A0 such that

∫∫

QT

(gn
t Ut + a(x)gn

xUx + gnU) dx dt = −

∫∫

QT

(Utv
n + a(x)Uxvn

x ) dx dt, ∀U ∈ A0,

where vn ∈ H1
0,x(QT ) is the corrector associated with un. The well-posed elliptic bound-

ary value problem corresponding to this variational formulation is

(4.4)











− gn
tt − (a(x)gn

x )x + gn = vn
t + (a(x)vn

x )x (x, t) ∈ QT

gn(0, t) = 0, gn
x (1, t) + vn

x (1, t) = 0, t ∈ (0, T )

gn(x, 0) = gn(x, T ) = 0, x ∈ (0, 1).

Remark 4.1. As we mentioned above, the parameter γn given by (4.3) corresponds to the Polak-
Ribière version of the conjugate gradient algorithm. In the present quadratic-linear situation, this
one should coincide with the Fletcher-Reeves conjugate algorithm for which

γn = ‖gn+1‖2
A/‖gn‖2

A ,

since gradients are conjugate to each other ((gm, gn)A = 0 for all m 6= n). However, we observed
that in the parabolic situation (see also [11]) the Polak-Ribière version (mainly used in nonlinear
situations) allows to reduce the loss of the orthogonality, due to the numerical approximation.

The detailed conjugate gradient scheme, written in a variational form, used for the minimiza-
tion of E is then as follows :

Step 0: Initialization u0 ∈ A be given, compute the corrector v0 ∈ H1
0,x(QT ) of u0 solution of

∫∫

QT

(v0
t φt + a(x)v0

xφx) dx dt = −

∫∫

QT

(u0
t φ + a(x)u0

xφx) dx dt, ∀φ ∈ H1
0,x(QT ),

then compute the gradient g0 ∈ A0 solution of
∫∫

QT

(g0
t φt + a(x)g0

xφx + g0φ) dx dt = −

∫∫

QT

(v0φt + a(x)v0
xφx) dx dt, ∀φ ∈ A0,

and set z0 = g0.

Then, for n ≥ 0, assuming un, gn, zn, vn known, compute un+1, gn+1, zn+1 and vn+1 by :

Step 1: Steepest descent Compute the corrector Zn ∈ H1
0,x(QT ) of zn solution

∫∫

QT

(Zn
t φt + a(x)Zn

x φx) dx dt = −

∫∫

QT

(zn
t φ + a(x)zn

xφx) dx dt, ∀φ ∈ H1
0,x(QT ),
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and set un+1 = un − λnzn ∈ A with

λn = −

∫∫

QT

(zn
t vn + a(x)zn

xvn
x ) dxdt

∫∫

QT

(|Zn
t |

2 + a(x)|Zn
x |

2) dx dt
.

Next, compute the corrector vn+1 ∈ A1 of un+1 solution of
∫∫

QT

(vn+1
t φt + a(x)vn+1

x φx) dx dt = −

∫∫

QT

(un+1
t φ + a(x)un+1

x φx) dx dt, ∀φ ∈ H1
0,x(QT ),

and the gradient gn+1 ∈ A0 solution of
∫∫

QT

(gn+1
t φt + a(x)gn+1

x φx + gn+1φ) dxdt = −

∫∫

QT

(vn+1φt + a(x)vn+1
x φx) dx dt, ∀φ ∈ A0.

Step 2: Construction of the new descent direction. If ‖gn+1‖A/‖g0‖A ≤ ε, take u = un+1;
otherwise compute

γn =
(gn+1, gn+1 − gn)A

(gn, gn)A
, zn+1 = gn+1 + γnzn.

Then do n = n + 1, and return to step 1.
Once the convergence of the algorithm is reached, up to the threshold ε, we take the trace

of u on ΣT to define an approximation of the control w of (1.3): w(t) = u(1, t), t ∈ (0, T ).
We next compute an approximation of the controlled solution u by solving (1.3): the L2-norm
‖u(·, T )‖L2(0,1), that may be seen as an a posteriori error, allows to evaluate the efficiency of the
approach.

The minimization of the functional E related to the inner case (see (2.9)) is very similar. The
main difference is that the corrector have to be solved independently in and off qT (see (2.10)
and (2)). The additional condition is v = 0 on ∂ω × (0, T ). It is important to note that these
correctors are linked through the descent direction gn, solution of the problem posed in all of
the domain QT :
(4.5)
∫∫

QT

(gn
t Ut+a(x)gn

xUx+gnU) dx dt = −

∫∫

QT \qT

(Utv
n+a(x)Uxvn

x ) dx dt, ∀U ∈ A0 = H1
0 (QT ).

4.2. Numerical approximation. For “large” integers Nx and Nt , we set ∆x = 1/Nx , ∆t =
T/Nt, and h = (∆x,∆t). Let us denote by P∆x the uniform partition of [0, 1] associated with
∆x, and let us denote by Qh the uniform quadrangulation of QT associated with h. In particular,

QT =
⋃

K∈Qh

K.

The following (conformal) finite element approximation of H1(QT ) is introduced :

Xh = {ϕh ∈ C0([0, 1] × [0, T ]) : ϕh|K ∈ (P1,x ⊗ P1,t)(K) ∀K ∈ Qh }.

Here, Pm,ξ denotes the space of polynomial functions of order m in the variable ξ. Accordingly,
the functions in Xh reduce on each quadrangle K ∈ Qh to a polynomial of the form A + Bx +
Ct + Dxt involving 4 degrees of freedom. Obviously, the space Xh is a conformal approximation
of L2(QT ). We will also consider the space

X0h = {ϕh ∈ Xh : ϕh(0, t) = ϕh(1, t) = 0 ∀t ∈ (0, T ) },

Xuh = {ϕh ∈ Xh : ϕh(0, t) = 0 ∀t ∈ (0, T ), ϕh(x, 0) = u0(x), ϕh(x, T ) = 0 ∀x ∈ (0, 1)}.

Xuh and X0h are finite-dimensional subspace of A and H1
0,x(QT ), respectively (and also of

L2(0, T ;H1(0, 1))). The functions ϕh ∈ X0h are uniquely determined by their values at the
nodes (xj , tj) of Qh such that 0 < xj < 1.
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Therefore, for any h, we consider the following problem, which is an approximation of (4.1):

(4.6)







Minimize Eh(uh) =
1

2

∫∫

QT

(|vh,t|
2 + a(x)|vh,x|

2) dx dt,

subject to uh ∈ Xuh.

According to the conjugate gradient algorithm, this minimization problem is reduced to the
resolution of well-posed elliptic problems defined on QT in order to compute corrector functions
vh ∈ X0h.

Once the optimal function uh, minimizer of E over Xh is obtained, the control wh is defined
by wh = uh on ΣT . In order to check the quality of the control wh, piecewise linear along ΣT ,
one may compare such solution in Xuh, with the solution uh of (1.3) starting from u0 at time
t = 0 and such that uh = wh on ΣT . uh is computed using, for the time discretization, the
two-step implicit Gear scheme of order two in time (see for instance [18]). We set

Φ∆x = { z ∈ C0([0, 1]) : z|k ∈ P1,x(k) ∀k ∈ P∆x },

a finite dimensional subspace of L2(0, 1). Functions in Φ∆x are uniquely determined by their
values at the nodes of P∆x .

The Gear scheme, which is of order two, is then combined with a P1-finite element discretiza-
tion in space as follows :

(1) We first set uh|t=0 = u0,∆x.
(2) Secondly, uh|t=t1 is the solution of the linear problem in Ψ ∈ Φ∆x







∫ 1

0

1

∆t
(Ψ − uh|t=0)z dx +

1

2

∫ 1

0

a(x)(Ψ + uh|t=0)xzx dx = 0

∀z ∈ Φ∆x .

(3) For given n = 2, . . . , Nt − 1, Ψ⋆ = uh|t=tn−1
and Ψ = uh|t=tn

, uh|t=tn+1
is the solution

of the linear problem in Ψ ∈ Φ∆x






∫ 1

0

1

2∆t
(3Ψ − 4Ψ + Ψ⋆)z dx +

∫ 1

0

a(x)Ψxzx dx = 0

∀z ∈ Φ∆x .

The L2-norm ‖uh(·, T ) − uh(·, T )‖L2(0,1) = ‖uh(·, T )‖L2(0,1) allows to analyze a posteriori how
the constraint (1.4) is satisfied. Recall that uh, obtained by an integration in time, solves the
heat equation.

This same numerical approximation is used for the inner case.

5. Numerical experiments

We now present some numerical experiments, and analyze the behavior of the computed
controls with respect to the data, and h. We assume for simplicity that ∆x = ∆t, that is we
consider only uniform meshes Qh.

5.1. Experiment 1: Boundary Case. As in [11, 27], we assume that the function u0 to be
controlled is the first mode of the Laplacian, that is

u0(x) = sin(πx), x ∈ (0, 1)

for which the diffusion of (1.3), without control, i.e. v = 0, is the lowest. Moreover, we assume
that the diffusion function a is constant equal to a(x) = a0 = 1/4 in (0, 1), and take a controlla-
bility time equal to T = 1/2. We take a value a0 lower than one in order to have a better control

of the diffusion. Without control, these data leads to ‖u(·, T )‖L2(0,1) =
√

1/2e−π2/8 ≈ 0.205 and
therefore leads to stiff case in the context of null boundary controllability for the heat equation.

We take ε = 10−5 as the value for the stopping criterion of the conjugate gradient algorithm.
The algorithm is initialized with u0 ∈ A defined by u0(x, t) = u0(x)(1 − t/T )2, (x, t) ∈ QT .

Table 1 gives various norms of the solution uh ∈ A with respect to h, and clearly suggests
the convergence of the approximation. Figure 1 depicts the evolution of E(un

h) and the residual
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‖gn
h‖A (in log10-scale) with respect to the iteration of the conjugate gradient corresponding to

∆x = ∆t = 1/100. The algorithm requires 2 013 iterations to fulfill ‖gn
h‖A ≤ ε. As is typical

when the heat equation is involved, the slope of the residual decreases significantly after the
first iterations. This phenomenon is also possibly due to the lack of coercivity of E. We check
however that the functional E(un

h) decreases with respect to the iteration and reaches a small
value, here of the order O(10−6).

∆x = ∆t 1/25 1/50 1/100 1/200
♯ CG iteration 846 2 132 2 014 2 834
‖uh‖L2(QT ) 4.78 × 10−1 5.06 × 10−1 4.81 × 10−1 4.87 × 10−1

‖uh‖H1(QT ) 6.024 6.658 5.920 6.021
‖uh‖L2(ΣT ) 1.369 1.487 1.392 1.418

‖u(·, T )‖L2(0,1) 1.95 × 10−2 9.65 × 10−3 8.39 × 10−3 6.04 × 10−3

‖uh − uh‖L2(QT ) 1.45 × 10−2 6.31 × 10−3 2.01 × 10−3 9.34 × 10−4

E(uh) 4.88 × 10−6 8.37 × 10−7 1.22 × 10−6 8.29 × 10−7

Table 1. Boundary case - u0(x) = sin(πx), T = 1/2, a0 = 1/4, ∆x = ∆t =
1/100 - ε = 10−5 - Numerical results with respect to h = (∆x,∆t).
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Figure 1. Boundary case - u0(x) = sin(πx), ∆x = ∆t = 1/100 - log10(Eh(un
h))

(dashed line) and log10(‖g
n
h‖A) (full line) vs. the iteration n of the conjugate

gradient algorithm.

Figure 2 depicts the corresponding solution uh ∈ A, and corrector vh ∈ H1
0,x(QT ). The trace

of uh on ΣT is given in Figure 4-left. The control obtained is oscillating near t = T . This is
reminiscent of what it is obtained in [22] by computing exactly the controlled heat solution in
the one dimensional space by means of the motion planning method (we also refer to [27] for an
adaptation to the inner case using the so-called transmutation method). We also plot on Figure 3
the iso-values of the solution uh that allow to appreciate the diffusion and the control of the heat
from the initial to the controllability time. Finally, the solution uh of (1.3) with w(t) = uh(1, t)
is plotted at time T on Figure 4-right. We compute that the L2-norm of uh(1, T ), what we called
the a posteriori error, is ‖uh(·, T )‖L2(0,1) ≈ 8.39 × 10−3. This is an acceptable value that can
be improved by reducing ε and h. Notice that the stiffness matrices involved in the resolution of
the elliptic problems in step 1 are standard and well-conditioned. Notice also that a small gap
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between u and u (in particular at time T ) is a priori unavoidable since they are approximated,
and computed in a different way.
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Figure 2. Boundary case - u0(x) = sin(πx) - Solution of uh ∈ Ah (Left) and
corresponding corrector vh (Right) along QT .
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Figure 3. Boundary case - u0(x) = sin(πx) - Isovalues of uh ∈ Ah along QT .

It is also interesting to note that this method allows to obtain non trivial controlled solution of
the heat equation with zero initial data, that is in A0. Figure 5 depicts one such solution obtained
with the initial function u0(x, t) = sin(πx)t2(1 − t/T )2. For ε = 10−6, the algorithm converges
after 1 242 iterations, and we get Eh(un=1 242

h ) ≈ 6.63×10−9 and ‖uh(·, T )‖L2(0,1) ≈ 2.89×10−5.
Accordingly, this means that any linear combination of such nontrivial solution in A0 with the
previous ones in A remains a controlled solution of the heat equation. We will get back to this
notion in Section 7. The non uniqueness of our minimization problem may also be checked by
considering different initial function u0 ∈ A.

As expected, the experiments also suggest that the situation is more favorable, notably with
respect to the speed of convergence of the algorithm, when the control acts on both sides,
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Figure 4. Boundary case - u0(x) = sin(πx) - Full line: Trace uh(x = 1, t)
vs. t ∈ (0, T ) (Left) and a posteriori solution uh(x, T ) vs. x ∈ (0, 1) (Right);
Dashed line: same quantities obtained with an additional compact support
function in time.
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Figure 5. Boundary case - u0 = 0 - Control acting on 0 - ε = 10−6- So-
lution in uh ∈ Ah (Left) and corresponding corrector vh (Right) along QT .
Eh(un=1 242

h ) ≈ 6.63 × 10−9 and ‖uh(·, T )‖L2(0,1) ≈ 2.89 × 10−5.

that is on x = 0 and x = 1. Figure 6 shows the controlled solution with initial data u0(x) =
sin(πx)+sin(2πx)+sin(3πx) in that situation. For a same value of ε, the L2-norm of the corrector
as well as the a posteriori error are lower than in the previous situation: Eh(un=855

h ) ≈ 6.69×10−6

and ‖uh(·, T )‖L2(0,1) ≈ 2.21 × 10−4 after 855 iterations.
We also emphasize that we may consider the more realistic situation where null Neumann

boundary limit holds on the free part, here x = 0. It suffices to start with u0 ∈ AN = {u ∈
H1(QT ), u(·, T ) = 0, u(·, 0) = u0, ux(0, t) = 0}, and impose that both the descent direction and
the corrector have null derivatives at x = 0. Figure 7 shows the function uh ∈ AN associated
with u0(x) = sin2(πx). With ε = 10−5, the convergence is reached after 3 431 iterations, and we
get ‖uh(·, T )‖L2(0,1) ≈ 1.31×10−2. The convergence is slower in that case, because null Neumann
boundary condition - contrary to null Dirichlet one - does not emphasize the dissipation of the
solution.
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Figure 6. Boundary control - u0(x) = sin(πx) + sin(2πx) + sin(3πx) - Control
acting on {0, 1} - ε = 10−5 - Solution in uh ∈ Ah (Left) and corresponding
corrector vh (Right) along QT .
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Figure 7. Boundary case - u0(x) = sin2(πx) - Controlled solution uh over QT

with free Neumann boundary condition at x = 0.

Finally, let us comment on a simple way to smooth out the control near t = T , and therefore
avoid the oscillations we mentioned at the beginning of this section (see Figure 4-Left). It suffices
to replace at each iteration n the descent direction gn by c(t)gn with any smooth positive function
c such that c(T ) = c′(T ) = 0. Figure 4 gives (in dashed line) the quantities uh(1, ·) on (0, T ) and
u(·, T ) on (0, 1) obtained with c(t) = sin2(πt/T ) (in that case, notice that the solution is also
smoothed at t = 0). This modification has the effect to reduce the a posteriori error ‖uh‖L2(0,1)

but to increase the number of iterations. Notice also that the L2-norm of the trace is larger (see
Table 2).

We observe similar results with Dirichlet boundary condition on (0, 1) × {0, T} in (2.2). The
CG algorithm converges faster and leads to a control with smaller L2-norm. The a posteriori
error ‖uh‖L2(0,1) is however larger.
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Figure 8. Boundary case - u0(x) = sin2(πx) - Iso-values of uh ∈ Ah along QT

with free Neumann boundary condition at x = 0.

∆x = ∆t 1/25 1/50 1/100 1/200
♯ CG iteration 2 552 2 724 3 689 4 276
‖uh‖L2(QT ) 5.19 × 10−1 5.26 × 10−1 5.57 × 10−1 5.71 × 10−1

‖uh‖H1(QT ) 7.052 7.092 7.889 8.285
‖uh‖L2(ΣT ) 1.526 1.554 1.678 1.738

‖u(·, T )‖L2(0,1) 9.08 × 10−3 5.25 × 10−3 3.46 × 10−3 2.83 × 10−3

‖uh − uh‖L2(QT ) 9.51 × 10−3 2.73 × 10−3 1.19 × 10−3 9.61 × 10−4

E(uh) 2.88 × 10−6 2.17 × 10−6 1.20 × 10−6 1.19 × 10−6

Table 2. Boundary case - u0(x) = sin(πx) - ε = 10−5 Numerical results with
respect to h = (∆x,∆t) with a compact support function in time.

5.2. Experiment 2: Inner Case. Let us consider the following data ω = (0.2, 0.5), T = 1/2
and a(x) = a0 = 1/4 used notably in ([11, 27]). The initial data to be controlled is again
u0(x) = sin(πx).

Table 1 collects some numerical values obtained with the CG algorithm and ε = 10−6. In order
to have a vanishing control as time t, we simply replace in the formulation (2.8) the characteristic
function 1ω(x) by 1ω(x)m(t) for any smooth time function such that m(T ) = 0. The control is
thus f(x, t)1ω(x)m(t). Here, we take m(t) = (1 − t/T )2. The situation is more favorable than
the boundary case in the sense that the number of iterations to reach a relative residual of order
10−6 (instead of 10−5 in Table 1) is significantly reduced. The evolution of the cost function is
given in Figure 9. As a consequence, the a posteriori error ‖uh(·, T )‖L2(0,1) is smaller, of the

order O(10−5). We also check the boundeness for the L2(qT ) norm of the fh m(t) with respect
to h, and converges as h → 0. The controlled solution uh ∈ A and the corresponding control
fh 1ω(x) m(t) are depicted on Figure 10 and Figure 11 respectively for (∆t, ∆x) = (1/100, 1/100).
The iso-values of the corrector function vh are depicted in Figure (12). Notice that this control,
obtained with the initial guess u0(x) = sin(πx)(1−t/T )2, is quite different from controls obtained
by duality arguments in [27]. Mainly concentrated at the beginning of the time interval (it is the
effect of the decreasing positive function m(t)),his L2-norm is larger : for h = (1/100, 1/100), we
obtain ‖f(x, t) 1ω(x) m(t)‖L2(QT ) ≈ 2.839, about twice the HUM-control obtained in [27].
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∆x = ∆t 1/25 1/50 1/100 1/200
♯ CG iterates 135 192 231 361
‖uh‖L2(QT ) 2.53 × 10−1 2.58 × 10−1 2.57 × 10−1 2.61 × 10−1

‖uh‖H1(QT ) 1.301 1.336 1.337 1.352
‖f(x, t) 1ω(x) m(t)‖L2(QT ) 1.675 2.641 2.839 2.981

‖uh(·, T )‖L2(0,1) 7.23 × 10−5 5.43 × 10−5 4.30 × 10−5 2.91 × 10−5

‖uh − uh‖L2(QT ) 3.21 × 10−5 7.31 × 10−5 5.10 × 10−5 1.58 × 10−5

E(uh) 4.12 × 10−7 3.34 × 10−7 4.16 × 10−7 2.36 × 10−7

Table 3. Inner case - u0(x) = sin(πx), T = 1/2, a0 = 1/4, ∆x = ∆t = 1/100 -
ω = (0.2, 0.5) - ε = 10−6 Numerical results with respect to h = (∆x,∆t) with a
compact support function in time.
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Figure 9. Inner case - u0(x) = sin(πx) - Control acting on ω = (0.2, 0.5) -
ε = 10−6 - log10(Eh(un

h) (dashed line) and log10(‖g
n
h‖A) (full line) vs. the

iteration n of the CG algorithm.
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Figure 10. Inner case - u0(x) = sin(πx) - Solution in uh ∈ Ah along QT .
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Figure 11. Inner case - u0(x) = sin(πx) - Control fh(x, t) 1ω(x)m(t) along QT .
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Figure 12. Inner case - u0(x) = sin(πx) - Iso-values of the corrector vh along QT .

6. Remarks on a non-linear situation

As a good way to emphasize the flexibility of the variational approach to adapt itself to various
different settings, we are going to indicate the changes needed for a typical non-linear situation
where a low order non-linear perturbation is considered (see [20]). Namely, we will look at the
problem of finding a control w, so that the solution of the problem

(6.1)











ut − (a(x)ux)x + F (u) = 0, (x, t) ∈ QT ,

u(x, 0) = u0(x), x ∈ (0, 1),

u(0, t) = 0, u(1, t) = w(t), t ∈ (0, T )

will comply with u(x, T ) = 0 for all x ∈ (0, 1). System (6.1) is known to be controllable,
uniformly with respect to the data u0 and T , if the nonlinear function F (s) grows slower than

s log3/2(1 + |s|) as |s| → +∞ (we refer to [8]). Therefore our approximation scheme can be
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used in such situations where controllability is known to hold. To our knowledge, the numerical
approximation of controls in that nonlinear context has been only addressed recently in [9, 10]
using linearization and fixed point arguments.

The procedure for such nonlinear system is similar. We define the corrector associated with
u, through the problem

(6.2)











ut − vtt − (a(x)(ux + vx))x + F (u) = 0, (x, t) ∈ QT ,

vt(x, 0) = vt(x, T ) = 0, x ∈ (0, 1),

v(0, t) = v(1, t) = 0, t ∈ (0, T )

while the error functional E is still defined by (2.3). Because of controllability, we know that
the problem of minimizing the error is well-posed, and so we can go on to explore a descent
procedure for E. We obtain that the first derivative of E is given by

< E′(u), U >= −

∫∫

QT

(Utv + a(x)Uxvx + (F ′(u) · U)v) dx dt, ∀U ∈ A0,

leading to the characterization of the corrector v associated with any optimal u (assumed to exist
in A)











vt + (a(x)vx)x + F ′(u)v = 0, (x, t) ∈ QT ,

vt(x, 0) = vt(x, T ) = 0, x ∈ (0, 1),

v(0, t) = v(1, t) = a(1)vx(1, t) = 0, t ∈ (0, T ).

Once again, the solution of this system vanishes in QT so that the minimizer of E is a solution
of the nonlinear heat equation (6.1).

As we mentioned earlier, even if we are not able to show the well-posedness of the minimization
corrector problem, the decrease of the error to zero is a sure indication that the problem is
being, at least approximately, controlled. Let us simply mention that, in the conjugate gradient
algorithm, the function gn in the steepest descent step is the solution of the linear formulation

∫∫

QT

(gn
t φt + a(x)gn

xφx)dx dt = −

∫∫

QT

(vnφt + a(x)vn
xφx + F ′(un)vnφ)dx dt, ∀φ ∈ A0.

We consider here the function F given by

F (s) = −αs logp(1 + |s|), α = 5, p = 1.4.

Clearly, F belongs to C1(R) and we have F ′(s) = −α[logp(1+ |s|)+p logp−1(1+ |s|))|s|/(1+ |s|)).
We take u0(x) = 3 sin(πx), the other data are kept unchanged. This nonlinear term prevents

the diffusion in time of the heat solution, that is the L2-norm ‖u(·, t)‖L2(0,1) increases with

respect to t: in the uncontrolled situation, we get a norm ‖u(·, T )‖L2(0,1) ≥ 1010 to be compared

with ‖u(·, T )‖L2(0,1) ≈ 2.05 × 10−1 for the linear case. The situation is therefore much more
difficult than the linear one. However, our approach allows to drive the solution in a closed
neighborhood of zero: the a posteriori error we get is ‖uh(·, T )‖L2(0,1) ≈ 1.92 × 10−3.

The control we obtain is still oscillating along the time and has a much larger amplitude
(compared to the linear situation), specially near t = 0, so as to avoid the blow up of the solution
(see Figure 14-left). Notice that we have used the compact support function c(t) = sin2(πt/T )
so that uh is smooth near T . The nonlinearity increases slightly the number of the iterations,
here 2 788, to reach the same threshold ε = 10−5. We also plot the corrector vh in QT (see
Figure 14-right) and the iso-values of the solution uh (see Figure 15). For larger values of α, the
algorithm does not converge anymore. Similar phenomena are observed for smaller larger values
of ‖y0‖L∞(0,1). We also obtain convergence results for the case F (s) = −5|s| log(1 + |s|), more
critical than the previous situation since f is non-positive. The number of iterations is greater
(6 883) as well as the L2(ΣT )-norm of the control. Similar remarks hold for “more” nonlinear
function such as F (s) = α|s|p, p ∈ N or F (s) = α exp(s) provided that α or ‖y0‖L2(0,1) be small
enough.
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Figure 13. Non linear case - u0(x) = 3 sin(πx) - F (s) = −5s log1.4(1 + |s|)
- T = 1/2, a0 = 1/4, ∆x = ∆t = 1/100 - log10(Eh(un

h)) (dashed line) and
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h‖A) (full line) vs. the iteration n of the CG algorithm.
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Figure 14. Non linear case - u0(x) = 3 sin(πx) - Control acting on x = 0 -
ε = 10−5- Solution in uh ∈ Ah (Left) and corrector vh (Right) along QT .
Eh(un=2 788

h ) ≈ 3.33 × 10−6, ‖gn=2 788
h ‖A ≈ 9.89 × 10−6 and ‖uh(·, T )‖L2(0,1) ≈

1.92 × 10−3.

7. Reducing the norm of the control

By minimizing the error functional E defined by (2.3), we do not control any norm, in partic-
ular the L2-norm, of the trace of the solution on ΣT . From a practical viewpoint, it is interesting
to minimize such norm. A possibility is to take advantage of the fact that the method allows to
obtain non trivial controlled solutions in A with null initial condition u0, that is, solutions in A0.
Suppose a family {uk}k∈[1,N ] of N elements in A0 is given. Then, for any αn ∈ R, n = 1 · · ·N ,
and any u ∈ A,

uN (x, t) = u(x, t) +

N
∑

k=1

αkuk(x, t), (x, t) ∈ QT



22 ARNAUD MÜNCH AND PABLO PEDREGAL

!

"

#

#

$ $%& $%' $%( $%) *
$

$%$+

$%*

$%*+

$%&

$%&+

$%,

$%,+

$%'

$%'+

$%+

(,$

(&$

(*$

$

*$

&$

Figure 15. Non linear case - u0(x) = 3 sin(πx) - Control acting on x = 0 -
ε = 10−5- Iso-values of uh ∈ Ah along QT .

still belongs, in the linear situation of Section 2, to A. The minimization of ‖uN (1, t)‖L2(0,T ) is
then reduced to a quadratic minimization on {αk}k=1,N . The method we propose to construct
the family {uk}k∈[1,N ] is as follows: we first compute N elements vk, k = 1, · · · , N in A0 using the

conjugate gradient algorithm with initial guesses u0
k(x, t) = x sin(kπt/T )2: then, we orthogonalize

these elements using the Gram-Schmidt procedure with the scalar product associated with A:

uk = vk −

k−1
∑

n=1

< vk, un >A un.

Figure 16 shows the trace of uN ∈ A along ΣT obtained with N = 10 as well as the trace of
u ∈ A corresponding to u0(x) = sin(πx)(1−t/T )2 (see Figure 2). We obtain ‖uN

h ‖L2(ΣT ) ≈ 0.981
lower than ‖uh‖L2(ΣT ) ≈ 1.392. Larger values of N , which require a finer mesh in time so as to
capture the oscillating functions sin(mπt/T ), do not allow a significant additional reduction of
the L2(ΣT )-norm.

This constructive approach which allows to jump from a local minimum of E to another one
does not apply for the nonlinear situation of Section 6. On the other hand, the more flexible
approach which consists to minimize at the same time the error functional E and the L2-norm
of the trace with respect to u, does not lead to satisfactory results, as it depends too much on
the initial guess u0. In that respect, a possible strategy could be to initialize the CG algorithm
with an approximate control obtained from the dual approach (see [4]). Nevertheless, since the
set {u ∈ A, E(u) = 0} is convex, we may apply an Uzawa type method (see for instance [17])
and minimize over A× R the Lagrangian

L(u, λ) =
1

2
‖u(1, t)‖2

L2(0,T ) + λE(u).

The real λ is thus the multiplier corresponding to the constraint E(u) = 0. Starting from any
λ0 ∈ R, the algorithm aims to define a sequence of pair (uk, λk) ∈ A×R, k ≥ 0 according to the
following two steps :

• Compute uk such that L(uk, λk) ≤ L(v, λk), ∀v ∈ A;
• Compute λk+1 := λk + ρE(uk), ρ > 0.

The first step is performed using the gradient method developed in Section 2 and 4, the functional
E being replaced by the functional L(·, λk). First experiments lead to satisfactory results and
will be given in a distinct work.
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Figure 16. u0(x) = sin(πx) - T = 1/2, a0 = 1/4, ∆x = ∆t = 1/100 - Trace of
uN

h (full line) and of uh (dashed line) along ΣT .

8. Concluding remarks

The variational approach we discussed here to construct numerical controls is very different
in nature from the usual one [4, 27] which makes use of dual variable to deal with the constraint
u(·, T ) = 0. In the context of parabolic equations, this difference is significant because the
variational approach avoids the approximation of singular functional spaces and therefore ill-
posed problems. Here, the problem is elliptic and leads to standard and well-posed formulations.
A quantitative comparison with the dual approach for the boundary situation remains however
to be done.

The method extends to any target - trajectory for the heat equation -, to higher dimensions,
and to any system for which a controllability result is known. In particular, we may consider
the heat equation with zero order term and address - as we have written in Section 6 - the
controllability of semi-linear heat equations in a different form compared to linearization and
fixed point arguments.

It is also remarkable to note that this variational approach allows to solve inverse problems.
Let us mention, in particular, the highly ill-posed backward heat problem which consists to
determine the solution of the heat equation at time t = 0 from the solution uT at any positive
time T (we refer to [15]). It suffices to define the functional spaces A and A0 respectively as
follows : A = {u ∈ H1(QT ), u(0, t) = u(1, t) = 0, u(x, T ) = uT (x), (x, t) ∈ QT } and A0 = {u ∈
H1(QT ), u(0, t) = u(1, t) = 0, u(x, T ) = 0, (x, t) ∈ QT }. We plan to analyze this situation in the
future.
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Séma Journal. 61(1), 49-78 (2013).

[12] E. Fernández-Cara and A. Münch, Numerical null controllability of the 1D heat equation: Carleman weights
and duality. Preprint. http://hal.archives-ouvertes.fr/hal-00687887.

[13] H.O. Fattorini and D.L. Russel, Exact controllability theorems for linear parabolic equation in one space

dimension, Arch. Rational Mech. 43 (1971) 272-292.
[14] A.V. Fursikov and O. Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series, number

34. Seoul National University, Korea, (1996) 1–163.
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