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DIFFERENCE SETS AND FREQUENTLY HYPERCYCLIC
WEIGHTED SHIFTS

FRÉDÉRIC BAYART, IMRE Z. RUZSA

Abstract. We solve several problems on frequently hypercyclic operators. Firstly,
we characterize frequently hypercyclic weighted shifts on ℓp(Z), p ≥ 1. Our method
uses properties of the difference set of a set with positive upper density. Secondly, we
show that there exists an operator which is U-frequently hypercyclic, yet not frequently
hypercyclic and that there exists an operator which is frequently hypercyclic, yet not
distributionally chaotic. These (surprizing) counterexamples are given by weighted
shifts on c0. The construction of these shifts lies on the construction of sets of positive
integers whose difference sets have very specific properties.

1. Introduction

Let X be a Banach space and let T ∈ L(X) be a bounded operator on X . T is
called hypercyclic provided there exists a vector x ∈ X such that its orbit O(x, T ) =
{T nx; n ≥ 0} is dense in X . x is then called a hypercyclic vector for T and we shall
denote by HC(T ) the set of T -hypercyclic vectors. The study of hypercyclic operators
is a branch of linear dynamics, a very active field of analysis. We refer to the books [4]
and [12] to learn more on this subject.
In 2005, the first author and S. Grivaux have introduced in [2] a refinement of the

notion of hypercyclicity, called frequent hypercyclicity. For an operator to be frequently
hypercyclic, one ask now that not only there exists a vector with a dense orbit, but
moreover that this orbit visits often each nonempty open subset. To be more precise,
let us introduce the following definitions and notations. For A ⊂ Z+, we denote by
A(n) = {a ∈ A; a ≤ n}. The lower density of A is defined by

d(A) = lim inf
n→+∞

#A(n)

n
,

and the upper density of A is defined by

d̄(A) = lim sup
n→+∞

#A(n)

n
.

We will also use corresponding definitions and notations for subsets of Z. For instance,
for A ⊂ Z and n ∈ Z+, A(n) = {a ∈ A; |a| ≤ n}.

Definition 1. T ∈ L(X) is called frequently hypercyclic provided there exists a vector
x ∈ X , called a frequently hypercyclic vector for T , such that, for any U ⊂ X open and
nonempty, {n ∈ Z+; T

nx ∈ U} has positive lower density. We shall denote by FHC(T )
the set of frequently hypercyclic vectors for T .

This notion has then been investigated by several authors, see for instance [3], [5], [8],
[10], [11], [16]. In particular, it has many connections with ergodic theory. Of course,
one may also investigate the corresponding notion replacing lower by upper density,
leading to the following definition introduced in [16].
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Definition 2. T ∈ L(X) is called U-frequently hypercyclic provided there exists a vector
x ∈ X , called a U-frequently hypercyclic vector for T , such that, for any U ⊂ X open
and nonempty, {n ∈ Z+; T

nx ∈ U} has positive upper density. The set of U-frequently
hypercyclic vectors for T will be denoted by UFHC(T ).

Several basic problems remain open regarding these two refinements of hypercyclicity.
In this paper, we solve several of these problems. We begin by studying the frequently
(resp. the U-frequently) hypercyclic weighted shifts on ℓp, p ≥ 1. Let w = (wn)n∈Z be a
bounded sequence of positive real numbers and let p ≥ 1. The bilateral weighted shift
B

w
on ℓp(Z) is defined by B

w
(en) = wnen−1, where (en) is the standard basis of ℓp(Z).

Hypercyclicity of B
w

has been characterized by H. Salas in [14]. In Section 3, we will
prove the following characterization of frequently hypercyclic weighted shifts.

Theorem 3. Let p ∈ [1,+∞) and let w = (wn)n∈Z be a bounded sequence of positive
real numbers. The following assertions are equivalent.

(i) B
w
is frequently hypercyclic on ℓp(Z);

(ii) B
w
is U-frequently hypercyclic on ℓp(Z);

(iii) The series
∑

n≥1
1

(w1···wn)p
and

∑

n<0(w−1 · · ·wn)
p are convergent.

A similar result holds for the unilateral weighted shift B
w
on ℓp(Z+), which is defined

by B
w
(en) = wnen−1 for n ≥ 1 and by B

w
(e0) = 0.

Theorem 4. Let p ∈ [1,+∞) and let w = (wn)n∈Z+
be a bounded sequence of positive

real numbers. The following assertions are equivalent.

(i) B
w
is frequently hypercyclic on ℓp(Z+);

(ii) B
w
is U-frequently hypercyclic on ℓp(Z+);

(iii) The series
∑

n≥1
1

(w1···wn)p
is convergent.

That
∑

n≥1
1

(w1···wn)p
< +∞ implies the frequent hypercyclicity of B

w
on ℓp(Z+) is

known since [2]. A necessary condition for B
w
to be frequently hypercyclic was given in

[2] and this condition was improved in [11]. This last condition is the starting point of
the present work. We show how to combine this condition with a result on the difference
set of a set with positive upper density to prove that (ii) implies (iii) in Theorem 4.

We then investigate frequently hypercyclic weighted shifts on c0. It is worth noting
that the previous theorems cannot be extended to c0. Indeed, in [3], a frequently
hypercyclic backward weighted shift B

w
is exhibited on c0(Z+) such that the sequence

(w1 · · ·wn)
−1 does not converge to 0 (in fact, one may require that w1 · · ·wn = 1 for

infinitely many n). Nevertheless, we will give in Section 4 a characterization of frequently
and U-frequently hypercyclic weighted shifts on c0. This characterization is necessarily
more difficult than that of Theorem 4. However, it will be efficient to give later in
the paper nontrivial examples and counterexamples of frequently hypercyclic weighted
shifts on c0(Z).

Interestingly, the weighted shift B
w

constructed in [3] give several counterexamples
in the theory of frequently hypercyclic operators:

• B
w
is frequently hypercyclic, yet neither chaotic nor topologically mixing;

• B
w
does not admit any nonzero invariant Gaussian measure.

In Section 5 and 6, we show that weighted shifts on c0 can help to solve further problems
on frequently hypercyclic operators. For instance, there are no examples in the literature
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of U-frequently hypercyclic operators which are not frequently hypercyclic. Weighted
shifts on c0(Z+) give an example.

Theorem 5. There exists a bounded sequence w = (wn)n≥1 of positive real numbers
such that

(i) B
w
is U-frequently hypercyclic on c0(Z+);

(ii) B
w
is not frequently hypercyclic on c0(Z+).

Another problem that weighted shifts on c0 can solve is related to distributionally
chaotic operators. The notion of distributional chaos was introduced by B. Schweizer
and J. Smı́tal in [15]. Let f : X → X be a continuous map on a metric space X . For
each x, y ∈ X and each n ∈ N, the distributional function F n

xy : R+ → [0, 1] is defined
by

F n
xy(τ) :=

1

n
card

{

0 ≤ i ≤ n− 1; d(f i(x), f i(y)) < τ
}

.

Moreover define

Fxy(τ) := lim inf
n→+∞

F n
xy(τ) and F ∗

xy(τ) := lim sup
n→+∞

Fxy(τ).

f is said distributionally chaotic if there exists an uncountable set Γ ⊂ X and ε > 0
such that, for every τ > 0 and each pair of distinct points x, y ∈ Γ, we have

Fxy(ε) = 0 and F ∗
xy(τ) = 1.

When f is a linear map acting on a Banach space X , the notion of distributional chaos
is related to the existence of distributionally irregular vectors.

Definition 6. Given T ∈ L(X) and ε > 0, a vector x ∈ X is a distributional irregular
vector for T if there exists A,B ⊂ N with d̄(A) = d̄(B) = 1 such that

lim
n→+∞, n∈A

T nx = 0 and lim
n→+∞, n∈B

‖T nx‖ = +∞.

It is shown in [7] that T is distributionally chaotic if and only if T admits a distribu-
tional irregular vector.
In [7], the following question is asked: are there frequently hypercyclic operators

which are not distributionally chaotic? We answer this question thanks to weighted
shifts on c0(Z).

Theorem 7. There exists a frequently hypercyclic weighted shift on c0(Z) which is not
distributionally chaotic.

We conclude this paper in Section 7 by miscellaneous problems and results on fre-
quently hypercyclic operators. In particular, we show that if T is invertible and fre-
quently hypercyclic, then T−1 is U-frequently hypercyclic.

Let us mention that a common feature of Theorems 3 to 7 is their interaction with
additive number theory. To prove Theorems 3 and 4, we need a property of the difference
set of a set with positive upper density. The proofs of Theorems 5 and 7 need both the
construction of big sets of integers such that their difference sets are sparse enough.
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2. A result on difference set

Let A ⊂ Z+ be a set with positive upper density. A well-known result of Erdös
and Sarközy (see for instance [13]) ensures that the difference set A − A is syndetic
(namely it has bounded gaps). Our first result is a strenghtening of this property. Let
us introduce, for k ∈ Z+,

Bk = A ∩ (A− k).

Erdös and Sarközy proved that the set of integers k such thatBk is nonempty is syndetic.
We shall prove that the set of integers k such that Bk has a big upper density is also
syndetic. For convenience, we formulate this for subsets of Z.

Theorem 8. Let A ⊂ Z be a set with positive upper density, let δ = d̄(A) and let
ε ∈ (0, 1). For any k ∈ Z, let Bk = A ∩ (A − k) and let δk = d̄(Bk). Let also
F = {k; δk > (1− ε)δ2}. Then F is syndetic.

Proof. We select a sequence (ni) such that

#A(ni)/(2ni + 1) → δ.

Then we select by a usual diagonal procedure a subsequence (mi) of (ni) such that for
every k ∈ Z the limit

ηk = lim#Bk(mi)/(2mi + 1)

exists. Observing that Bk = −k + B−k, one knows that ηk = η−k. Moreover, ηk ≤ δk
and we shall in fact prove that

F = {k; ηk > (1− ε)δ2}

is syndetic. Let R be a (finite) set with the property that

ηk−l ≤ (1− ε)δ2

for all k, l ∈ R, k 6= l. We will see that the cardinality of such sets is uniformly bounded.
We set r = #R and we put

f(x) = #{k ∈ R; x ∈ A− k}.

We have

f(x)2 = #{k, l ∈ R; x ∈ (A− k) ∩ (A− l)} = #{k, l ∈ R; x+ k ∈ A ∩ (A+ k − l)}.

Clearly
∑

|x|≤m

f(x) =
∑

k∈R

#
{

x ∈ {−m, . . . ,m}; x ∈ A− k
}

= r#A(m) +O(1),

hence
1

2mi + 1

∑

|x|≤mi

f(x) → rδ.

Similarly
∑

|x|≤m

f(x)2 =
∑

k,l∈R

#Bk−l(m) +O(1),

hence
1

2mi + 1

∑

|x|≤mi

f(x)2 →
∑

k,l∈R

ηk−l ≤ rδ + (1− ε)r(r − 1)δ2.
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Using the inequality of arithmetic and square means we get

(rδ)2 ≤ rδ + (1− ε)r(r − 1)δ2,

hence

r ≤
1− δ(1− ε)

δε
.

Now select a maximal set R (take 0, then the integer n with the smallest absolute
value which can be added and so on). This procedure stops after a finite number of steps.
Maximality means that for every integer n there is a k ∈ R such that ηn−k > (1− ε)δ2,
that is, n − k ∈ F, which means that F + R = Z. This amounts to say that F is
syndetic. �

Remark. The previous theorem is reminiscent from Khintchine’s recurrence theorem
which says the following: for any invertible probability measure preserving system
(X,B, µ, T ), for any ε > 0 and any A ∈ B, the set {n ∈ Z; µ(A ∩ T nA) ≥ µ(A)2 − ε}
is syndetic. It turns out that we may deduce Theorem 8 from Khintchine’s recurrence
theorem using Furstenberg’s correspondence principle (see [9]), exactly as Furstenberg
deduced the Szemerédi’s theorem on arithmetic progressions from his extension of the
classical Poincaré’s recurrence theorem (we refer to [6] and to [9] for details).
One may prove Khintchine’s recurrence theorem using the uniform version of von

Neumann’s ergodic theorem. One can also find in [6] a combinatorial proof of this
theorem, which does not match exactly the proof of Theorem 8. To keep a self-contained
exposition, we have chosen to give a complete and elementary proof of Theorem 8.

From this, we can deduce a result on series which is the key for the application to
frequently hypercyclic weighted shifts.

Corollary 9. Let (αn)n∈Z be a sequence of nonnegative real numbers such that
∑

n αn =
+∞. Suppose that there exists some C > 0 such that either αn ≥ Cαn−1 for every n ∈ Z

or αn−1 ≥ Cαn for every n ∈ Z. Let A ⊂ Z be a set with positive upper density and let,
for n ∈ A,

βn =
∑

m∈A

αm−n.

Then

lim sup
n→+∞

1

2n + 1

∑

|m|≤n,m∈A

βm = +∞.

In particular, the sequence (βn)n∈A cannot be bounded.

Proof. We keep the notations of the previous theorem, which we apply with ε = 1/2.
We first show that

∑

n∈F

αn = +∞,(2.1)

using only that F is syndetic. Indeed, write F = (fn)n∈Z in increasing order with
f0 = min{f ∈ F ; f ≥ 0}. There exists some M > 0 such that fi+1 − fi ≤ M for every
i ∈ Z. Assuming first that αn ≥ Cαn−1 for every n, we get

αfj ≥
max(1, CM)

M

∑

fj−1<i≤fj

αi,
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and (2.1) follows by summing this for all j. If αn−1 ≥ Cαn for every n, then we write

αfj ≥
max(1, CM)

M

∑

fj≤i<fj+1

αi,

and (2.1) follows also by summation. Now, consider the sum

si =
∑

|n|≤mi,n∈A

βn.

This can be rewritten as

si =
∑

|n|≤mi,n,m∈A

αm−n.

We group this sum according to the value of k = m − n, and keep only those terms
where k ∈ F , |k| < l for some fixed l. We get

si ≥
∑

k∈F,|k|<l

αk#Bk(mi).

We divide by 2mi + 1 and let i → ∞. We get

lim sup
i→+∞

1

2mi + 1

∑

|n|≤mi,n∈A

βn ≥
∑

k∈F,|k|<l

αk lim
i→+∞

#Bk(mi)

2mi + 1

≥
∑

k∈F,|k|<l

αkηk

≥
δ2

2

∑

k∈F,|k|<l

αk,

and this can be arbitrarily large by (2.1).
�

3. Frequently hypercyclic weighted shifts on ℓp

In this section, we prove Theorem 3. The proof of Theorem 4 is similar but simpler.
We first prove that (ii) implies (iii). Thus we start with a U-frequently hypercyclic
weighted shift B

w
on ℓp(Z) and let x be a U-frequently hypercyclic vector for B

w
. Let

A =
{

n ∈ Z+; ‖Bn
w
x− e0‖p ≤ 1/2

}

,

which has positive upper density. Let m ∈ A. Then |w1 · · ·wmxm − 1| ≤ 1/2 so that
|w1 · · ·wmxm| ≥ 1/2. Now, for any n ∈ A, we can also write

1

2p
≥ ‖Bn

w
x− e0‖

p
p

≥
∑

m∈A,m<n

(wm · · ·w1w0 · · ·wm−n+1)
p|xm|

p +
∑

m∈A,m>n

(wm · · ·wm−n+1)
p|xm|

p

≥
∑

m∈A,m<n

(w0 · · ·wm−n+1)
p|w1 · · ·wmxm|

p +
∑

m∈A,m>n

|w1 · · ·wmxm|
p

(w1 · · ·wm−n)p
.
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Putting this together, we get that for any n ∈ A,














∑

m∈A,m<n

(w0 · · ·wm−n+1)
p ≤ 1

∑

m∈A,m>n

1

(w1 · · ·wm−n)p
≤ 1.

Firstly, we set αn = 0 provided n ≤ 0 and αn = 1
(w1···wn)p

provided n > 0. Because

(wn)n∈Z is bounded, αn ≥ Cαn−1 for every n ∈ Z. Suppose that
∑

n≥1
1

(w1···wn)p
= +∞.

Then by Corollary 9, the sequence (βn)n∈A is unbounded, where

βn =
∑

m∈A

αm−n =
∑

m∈A,m>n

αm−n =
∑

m∈A,m>n

1

(w1 · · ·wm−n)p
.

This is a contradiction. Secondly, set αn = 0 provided n ≥ 0 and αn = (w0 · · ·w−n+1)
p

provided n < 0. Because (wn)n∈Z is bounded, αn ≤ Cαn−1 for any n ∈ Z. Suppose that
∑

n<0(w0 · · ·wn)
p = +∞. Then by Corollary 9, (βn) is unbounded where

βn =
∑

m∈A

αm−n =
∑

m∈A,m<n

αm−n =
∑

m∈A,m<n

(w0 · · ·wm−n)
p.

This is also a contradiction, since w0 · · ·wm−n ≤ Cw0 · · ·wm−n+1.

Let us now show that the condition is sufficient. This follows from a standard appli-
cation of the frequent hypercyclicity criterion of [8], which we recall for convenience:

Theorem 10. Let T ∈ L(X), where X is a separable Banach space. Assume that there
exists a dense set D ⊂ X and a map S : D → D such that

(1)
∑

T n(x) and
∑

Sn(x) converge unconditionally for any x ∈ D;
(2) TS = I on D.

Then T is frequently hypercyclic.

In our situation, we define S by S(en) = w−1
n+1en+1 and let D be the set of finitely

supported sequences. It is easy to check that
∑

n<0(w−1 · · ·w−n)
p < +∞ implies that

the series
∑

nB
n
w
x is unconditionally convergent for any x ∈ D. In the same vein, the

condition
∑

n≥1
1

(w1···wn)p
< +∞ implies that

∑

n S
nx is unconditionally convergent for

any x ∈ D. Thus, B
w
is frequently hypercyclic.

Our result implies the following interesting corollary.

Corollary 11. Let w = (wn)n∈Z be a bounded and bounded below sequence of positive
real numbers. Then B

w
is frequently hypercyclic on ℓp(Z) if and only if B−1

w
is frequently

hypercyclic on ℓp(Z).

4. Frequently hypercyclic weighted shifts on c0

In this section, we give a characterization of (invertible) frequently hypercyclic weighted
shifts on c0(Z+) and c0(Z). Because of [3], we know that we cannot expect a statement
as clean as Theorem 4. Nevertheless, it will be useful in the forthcoming examples. We
begin with invertible bilateral weighted shifts.
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Theorem 12. Let w = (wn)n∈Z be a bounded and bounded below sequence of positive
integers. Then B

w
is frequently hypercyclic (resp. U-frequently hypercyclic) on c0(Z) if

and only if there exist a sequence (M(p)) of positive real numbers tending to +∞ and
a sequence (Ep) of subsets of Z+ such that

(a) For any p ≥ 1, d(Ep) > 0 (resp. d̄(Ep) > 0);
(b) For any p, q ≥ 1, p 6= q, (Ep + [−p, p]) ∩ (Eq + [−q, q]) = ∅;
(c) limn→+∞, n∈Ep

w1 · · ·wn = +∞;
(d) For any p, q ≥ 1, for any n ∈ Ep and any m ∈ Eq with n 6= m,







w1 · · ·wm−n ≥ M(p)M(q) provided m > n

wm−n+1 · · ·w0 ≤
1

M(p)M(q)
provided m < n.

Proof. We first observe that we may replace “there exists a sequence (M(p))” by “for
any sequence (M(p))” in the statement of the previous theorem. Indeed, if properties (a)
to (d) are true for some sequence (M(p)), then they are also satisfied for any sequence
(M(p)), considering instead of (Ep) a subsequence of (Ep) if necessary.
We just prove the frequently hypercyclic case, the U-frequently hypercyclic one being

completely similar. We first assume that B
w

is frequently hypercyclic and we let x ∈
FHC(B

w
). Let us fix ρ > 1 such that ρ−1 ≤ wk ≤ ρ for any k ∈ Z. Let us also

consider a sequence (ωp) of positive real numbers such that ω1 = 2 and, for any p ≥ 2,
ωp > 4ωp−1ρ

2p+1. We set

Ep =

{

n ∈ Z+; ‖Bn
w
x− ωp(e−p + · · ·+ ep)‖∞ <

1

p

}

.

Since x belongs to FHC(B
w
), Ep has positive lower density. Let p 6= q and let us

show that (Ep + [−p, p]) ∩ (Eq + [−q, q]) = ∅. By contradiction, let us assume that
(n, s,m, t) ∈ Ep× [−p,−p]×Eq × [−q, q] with n+s = m+ t. Without loss of generality,
we may assume p < q. ws+1 · · ·wn+sxn+s is the s-th coefficient of Bn

w
x. Its modulus is

smaller than 2ωp. Similarly, wt+1 · · ·wm+txm+t is the t-th coefficient ofBm
w
x. Its modulus

is greater than ωq/2. Moreover, ws+1 · · ·wn+sxn+s and wt+1 · · ·wm+txm+t differ by at
most (2q + 1) coefficients of the sequence w. Hence,

(

1

ρ

)2q+1

≤
ws+1 · · ·wn+s|xn+s|

wt+1 · · ·wm+t|xm+t|
≤ 2ωp ×

2

ωq
.(4.1)

This contradicts the definition of (ωn).
Moreover, pick n ∈ Ep and look at the 0-th coefficient of Bn

w
x. It is equal to

w1 · · ·wnxn and its modulus cannot be less than ωp/2. Since x ∈ c0(Z), we get that
w1 · · ·wn tends to +∞ when n goes to infinity, n ∈ Ep. Fix another m ∈ Eq, m 6= n and
look at the (n−m)-th coefficient of Bm

w
x. This coefficient is equal to wn−m+1 · · ·wnxn

and its modulus is less than 1/q (recall that |n − m| > q). If n > m, then since
w1 · · ·wnxn ≥ ωp/2, we can deduce

w1 · · ·wn−m ≥
w1 · · ·wn|xn|

wn−m+1 · · ·wn|xn|
≥ q

ωp

2
.

Similarly, if n < m, then

wn−m+1 · · ·w0 ≤
wn−m+1 · · ·wn|xn|

w1 · · ·wn|xn|
≤

2

qωp

.
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This shows (d) with M(p) = p.

We now show that the condition is sufficient. As pointed out above, we may assume
that, for any p ≥ 1, M(p) ≥ ρ4p. We set

E ′
p = Ep\

{

n ∈ N; w1 · · ·wn ≤ ρ4p
}

.

E ′
p is a cofinite subset of Ep, hence it has positive lower density. We write E ′

p = (np
k)k≥0

in an increasing order and we set Fp = (np
(2p+1)k)k≥0. Fp has positive lower density and

|n−m| > 2p provided n,m are two distinct elements of Fp.
Let (y(p))p≥1 be a dense sequence in c0(Z) such that the support of y(p) is contained

in [−p,−p] and such that ‖y(p)‖∞ ≤ ρp. We define x ∈ CN by setting

xk =

{

1
ws+1···wn+s

yp(s) for k = n+ s, n ∈ Fp, |s| ≤ p

0 otherwise.

This definition is not ambiguous because of (b) and the definition of Fp. We claim that
x belongs to c0(Z). Indeed, let ε > 0. For p ≥ 1 and n ∈ Fp, |s| ≤ p,

|xk| ≤
ρ2p

w1 · · ·wn
× ρp ≤ ρ−p ≤ ε(4.2)

provided p is greater than some p0 ≥ 1. Now, fix p ≤ p0. Then by (c), xk goes to zero
when k goes to +∞, k staying in Fp + [−p,−p].
We then show that x is a frequently hypercyclic vector for B

w
. It is sufficient to prove

that, for any p ≥ 1 and any n ∈ Fp, ‖B
n
w
x− y(p)‖∞ ≤ ε(p) with ε(p) → 0 as p goes to

+∞. We observe that

‖Bn
w
x− y(p)‖∞ = sup

s/∈[−p,p]

|ws+1 · · ·wn+sxn+s|.

The terms which appear in the sup-norm are nonzero if and only if n + s = m+ t, for
some m ∈ Eq, q ≥ 1, and t ∈ [−q, q]. We distinguish two cases. First, if m > n, then
we write

ws+1 · · ·wn+sxn+s =











w1 · · ·wt

w1 · · ·wm−n+t
yt(q) if t ≥ 1

1

wt+1 · · ·w0

×
1

w1 · · ·wm−n+t

yt(q) if t ≤ 0.

Now, w1 · · ·wt ≤ ρq if t ≥ 0, (wt+1 · · ·w0)
−1 ≤ ρq if t < 0, so that in both cases

|ws+1 · · ·wn+sxn+s| ≤
ρ2q

w1 · · ·wm−n+t
≤

ρ2qρp

w1 · · ·wm−n
≤

ρ2qρp

ρ4qρ4p
≤ ρ−3p.(4.3)

Second, if m < n, then we write

ws+1 · · ·wn+sxn+s = wm−n+t+1 · · ·wtwt+1 · · ·wm+txm+t

= wm−n+t+1 · · ·wtyt(q)

=







wm−n+t+1 · · ·w0w1 · · ·wtyt(q) if t ≥ 1
wm−n+t+1 · · ·w0

wt+1 · · ·w0

yt(q) if t ≤ 0.

We conclude as before. �

We turn to unilateral weighted shifts. A similar statement holds.
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Theorem 13. Let w = (wn)n∈Z+
be a bounded sequence of positive integers. Then B

w

is frequently hypercyclic (resp. U-frequently hypercyclic) on c0(Z+) if and only if there
exist a sequence (M(p)) of positive real numbers tending to +∞ and a sequence (Ep) of
subsets of Z+ such that

(a) For any p ≥ 1, d(Ep) > 0 (resp. d̄(Ep) > 0);
(b) For any p, q ≥ 1, p 6= q, (Ep + [0, p]) ∩ (Eq + [0, q]) = ∅;
(c) limn→+∞, n∈Ep+[0,p]w1 · · ·wn = +∞;
(d) For any p, q ≥ 1, for any n ∈ Ep and any m ∈ Eq with m > n, for any t ∈ {0, . . . , q},

w1 · · ·wm−n+t ≥ M(p)M(q).

Proof. The proof is more or less a rephrasing of the proof of Theorem 12. We have to
take into account that w is not necessarily bounded below. This was used at several
places:

• to prove that x belongs to c0; this remains true because we have a stronger
assumption (c).

• to obtain inequalities (4.1), (4.2) and (4.3). This is settled by the stronger
assumption (d) and by adjusting the values of ωp and M(p). For instance, we
may choose

ωp ≥ 4ωp−1ρ
p+1 ×

1

min(1, inf(wp+1
t ; t ∈ [0, p]))

M(p) ≥ ρ4p ×
1

min(1, inf(w2p
t ; t ∈ [0, p]))

.

The details are left to the reader. �

5. A U-frequently hypercyclic operator which is not frequently

hypercyclic

We turn to the proof of Theorem 5. It requires careful constructions. We first build
sequences of integers with positive upper density and additional properties. These
sequences allow us to define our weight w. We then conclude by showing that B

w
is not

frequently hypercyclic and by applying Theorem 13 to show that B
w

is U-frequently
hypercyclic. The rest of this section is devoted to these constructions.

5.1. The sequences of integers. We shall construct sets of integers (Ep)p≥1 and se-
quences of integers (ar)r≥1, (br)r≥1 satisfying the following properties:

(S1): For any r ≥ 1, ar+1 ≥ br + 2r + 1, br ≥ rar and br > r2(2r + 1);
(S2): For any p ≥ 1, d

(

Ep

)

> 0;
(S3): For any p ≥ 1, Ep ⊂ bpN;
(S4): For any p, q ≥ 1 with p 6= q and any (n,m) ∈ Ep × Eq with m > n, then

m− n > p

m− n /∈
⋃

r≥1

[ar − (r + 1)− q; br + r + p+ q];

n /∈
⋃

r≥1

[ar − (r + 1)− p; br + 2r].

The construction of these sequences is done by induction. Precisely, at Step r, we
construct integers ar, br, Np,r for p ≤ r and subsets Er

p of bpN for p ≤ r such that
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• ar ≥ br−1 + 2(r − 1) + 1, br ≥ rar and br > r2(2r + 1);
• For any p ≤ r,

#Er
p(Np,r) ≥

1

2bp
Np,r.

• For any p, q ∈ {1, . . . , r} with p 6= q and any (n,m) ∈ Er
p ×Er

q with m > n, then

m− n > p

m− n /∈
r
⋃

ρ=1

[aρ − (ρ+ 1)− q; bρ + ρ+ p+ q];

n /∈
r
⋃

ρ=1

[aρ − (ρ+ 1)− p; bρ + 2ρ].

• For any p < r, Er−1
p ⊂ Er

p .

Provided this construction has been done, it is enough to set Ep =
⋃

r≥pE
r
p . The

initialization of the induction is very easy. One just sets for instance a1 = 1, b1 = 4,
N1,1 = 8 and E1

1 = {8}. Let us explain how to proceed with Step r + 1 provided the
construction has been done until Step r. Let ar+1 be any integer such that

ar+1 ≥

{

br + 2r + 1
max

(

n + p; p ≤ r, n ∈ Er
p

)

+ (r + 2).

Next we set br+1 = max
(

(r+1)ar+1, (r+1)2(2r+3)+ 1
)

. In particular, it is clear that
if (n,m) ∈ Er

p × Er
q with m > n and p 6= q ∈ {1, . . . , r}, then

m− n > p

m− n /∈
r+1
⋃

ρ=1

[aρ − (ρ+ 1)− q; bρ + ρ+ p+ q];

n /∈
r+1
⋃

ρ=1

[aρ − (ρ+ 1)− p; bρ + 2ρ].

Let us now define Er+1
1 . We first set

M1,r+1 = br+1 + 3(r + 1) + max(Er
p ; p ≤ r)

and we consider N1,r+1 ≥ M1,r+1 such that

#
(

[M1,r+1;N1,r+1] ∩ b1N) ≥
1

2b1
N1,r+1.

We then set Er+1
1 = Er

1∪([M1,r+1;N1,r+1]∩b1N). In particular, if m belongs to Er+1
1 \Er

1

and n ∈ Er
p with m > n and 2 ≤ p ≤ r, then
{

m− n ≥ br+1 + 3(r + 1) ≥ br+1 + (r + 1) + p + 1 > p
m ≥ br+1 + 3(r + 1) > br+1 + 2(r + 1).

The construction of the other sets Er+1
p , 2 ≤ p ≤ r + 1, follows exactly the same lines,

defining first

Mp,r+1 = br+1 + 3(r + 1) + max(Em
q ; 1 ≤ q ≤ m ≤ r or 1 ≤ q ≤ p− 1, m = r + 1).

The remaining details are left to the reader. We point out that, for p 6= q, Ep + [0, p]
does not intersect Eq + [0, q].
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5.2. The weight. We first define a weight w0 whose behaviour is adapted to the se-
quence (ar). Precisely, for n ≥ 1, w0

n is defined by

• w0
n = 2 provided n /∈

⋃

r≥1[ar − r; br + r];

• w0
ar−r is the (very small) positive real number such that w0

1 · · ·w
0
ar−r = 1;

• w0
n = 1 otherwise.

The main interest of w0 is that the product w0
1 · · ·w

0
n is rather large when n belongs

to a difference set Ep − Eq, with p 6= q, or to a set Ep, whereas w0
1 · · ·w

0
n = 1 if

n ∈
⋃

r≥1[ar − r; br + r]. We then define, for each p ≥ 1, a weight wp which is suitable
for the difference set Ep − Ep. Indeed, let

• wp
n = 2 provided n = bpk + u, with k ≥ 1 and u ∈ {−(p− 1), . . . , 0};

• wp
n = 1

2p
provided n = bpk + p+ 1, k ≥ 1;

• wp
n = 1 otherwise.

This is not ambiguous since bp > 2p + 1. Notice that wp
1 · · ·w

p
n = 2p provided n ∈

bpN+ [0, p] whereas wp
1 · · ·w

p
n = 1 is equal to 1 outside

⋃

k≥1[bpk − (p− 1); bpk + p].
The weight w combines the properties of all wp. It is defined by setting by induction

on n ≥ 1

w1 · · ·wn = max(wp
1 · · ·w

p
n; p ≥ 0).

w is well-defined. Indeed, let n ≥ 1 and let r ≥ 1 be such that n ∈ [br, br+1). Then
wp

1 · · ·w
p
n = 1 ≤ w0

1 · · ·w
0
n provided p ≥ r + 2, so that bp − p ≥ br+1. Moreover w is

bounded by 2, since its definition easily implies that, for any n ≥ 1, wn ≤ max(wp
n; p ≥

0) ≤ 2.
We shall point out several important facts regardingw which come from the properties

of w0 and wp, p ≥ 1. The products w1 · · ·wn and w1 · · ·wn−m for (n,m) ∈ Ep×Eq, m >
n, are large. Indeed, let r be the unique integer such that n ∈ [br+2r+1; ar+1−(r+2)−p].
Then, for any s ∈ {0, . . . , p}, the definition of w ensures that

w1 · · ·wn+s ≥ w0
1 · · ·w

0
n+s

≥ w0
1 · · ·w

0
br+rw

0
br+r+1 · · ·w

0
nw

0
n+1 · · ·w

0
n+s

≥ 1 · 2r · 1.(5.1)

Moreover, if p 6= q, there exists some ρ ≥ 1 such that m− n belongs to [bρ + ρ+ p+ q+
1; aρ+1 − (ρ+ 2)− q − 1], so that, for any t ∈ {0, . . . , q},

w1 · · ·wm−n+t ≥ w0
1 · · ·w

0
m−n+t ≥ 2p+q.(5.2)

If p = q, then

w1 · · ·wm−n+t ≥ wp
1 · · ·w

p
m−n+t ≥ 2p.(5.3)

On the contrary, w1 · · ·wn is often small. Indeed, observe that for p ≥ 1, wp
1 · · ·w

p
n ≤ 2p

for any n > 1 and that w0
1 · · ·w

0
n = 1 provided n ∈

⋃

r≥1[ar, br]. Hence, if n belongs
to
⋃

r≥1[ar, br] and satisfies w1 · · ·wn > 2p, then there exists q > p such that n ∈
bqN+ [−q, q].

5.3. B
w
is not frequently hypercyclic. Assume on the contrary thatB

w
is frequently

hypercyclic. Then there exists E ⊂ N with d(E) > 0 such that w1 . . . wn → +∞ when
n → +∞, n ∈ E. In particular, for any p ≥ 1,

Fp =
{

n ∈ E; w1 · · ·wn > 2p
}



DIFFERENCE SETS AND FREQUENTLY HYPERCYCLIC WEIGHTED SHIFTS 13

is a cofinite subset of E. It has the same lower density. Now, let r ≥ 1 and let
n ∈ Fp ∩ [0, br]. Then either n ≤ ar or there exists q > p such that n belongs to
bqN+ [−q, q]. This yields

#Fp(br) ≤ ar + br ×
∑

q>p

2q + 1

bq
.

Since ar/br goes to zero, this implies

d(E) = d(Fp) ≤
∑

q>p

1

q2
.

Since p is arbitrary, d(E) = 0 and B
w
cannot be frequently hypercyclic.

5.4. B
w

is U-frequently hypercyclic. This follows from an application of Theorem
13 for the sets Ep defined above and from the work of Subsection 5.2. Indeed, condition
(c) of this theorem follows from (5.1) whereas condition (d) is a consequence of (5.2)
and (5.3), setting M(p) = 2p/2.

6. Frequent hypercyclicity vs distributional chaos

We turn to the proof of Theorem 7. We follow the same kind of proof.

6.1. The sequences of integers. For a > 1, ε > 0 and u ∈ N, we set

Ia,εu = [(1− ε)au, (1 + ε)au].

Lemma 1. There exist a > 1 and ε > 0 such that d̄(
⋃

u≥1 I
a,4ε
u ) < 1 and, for any

u > v ≥ 1,
Ia,2εu ∩ Ia,2εv = ∅, Ia,2εu − Ia,2εv ⊂ Ia,4εu .

Proof. It is easy to check that, for any u > v ≥ 1, Ia,2εu − Ia,2εv ⊂ Ia,4εu as soon as, for
any u ≥ 2,

(1− 2ε)au − (1 + 2ε)au−1 ≥ (1− 4ε)au.

This condition is satisfied provided

2εa

1 + 2ε
≥ 1.

Moreover, let us also assume that (1 + 4ε)/(1− 4ε) < a. Then

d̄

(

⋃

u≥1

Ia,4εu

)

≤ lim
k→+∞

8ε(1 + · · ·+ ak)

(1 + 4ε)ak

≤
8εa

(1 + 4ε)(a− 1)
,

and this is less than 1 provided ε is small enough and a is large enough. Observe also
that this choice of a and ε guarantees that Ia,2εu ∩ Ia,2εv = ∅ for any u 6= v. �

From now on, we fix a > 1 and ε > 0 satisfying the conclusions of the previous lemma.
We then consider an increasing sequence of positive integers (bp)p∈N such that

∑

p≥1

d̄(bpN+ [−2p, 2p]) + d̄

(

⋃

u≥1

Ia,4εu

)

< 1.
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Observe that bp ≥ 4p for any p ≥ 1.
We also consider a partition of N into

⋃

p≥1Ap where each Ap is syndetic. For instance,

we may set Ap = 2p−1N\2pN. We finally set

Ep =
⋃

u∈Ap

Ia,εu ∩ bpN.

Lemma 2. For any p ≥ 1, d(Ep) > 0.

Proof. Let (nk) be an increasing enumeration of Ap and let M > 0 be such that nk+1 −
nk ≤ M . Then

d(Ep) ≥ lim inf
k→+∞

#Ep

(

(1 + ε)ank

)

ank+1

≥ lim inf
k→+∞

2εank

bpank+M
> 0.

�

Deleting a finite number of elements in Ap if necessary, we may and shall assume that
for any u ∈ Ap, I

a,ε
u + [−2p, 2p] ⊂ Ia,2εu . Since Ia,2εu ∩ Ia,2εv = ∅ whenever u 6= v and since

bp ≥ 4p, we get the following lemma.

Lemma 3. Let p, q ≥ 1, n ∈ Ep, m ∈ Eq with n 6= m. Then |n−m| > 2max(p, q).

In particular, (Ep + [−p, p]) ∩ (Eq + [−q, q]) = ∅ if p 6= q.

6.2. The weight. As in Section 5.2, we will define several weights: weights wp such
that wp

m−n+1 · · ·w
p
0 is small when m < n belong to the same Ep, and weights wu,v,

u > v, such that wu,v
m−n+1 · · ·w

u,v
0 is small when m belongs to Ia,εv and n belongs to Ia,εu .

Elsewhere, they will be large to ensure that B
w
cannot be distributionally chaotic.

We begin with wp, p ≥ 1. We set wp = (wp
k) any sequence of positive integers such

that

wp
−k+1 · · ·w

p
0 =

{

1 provided k /∈ bpN+ [−2p, 2p]
1
2p

provided k ∈ bpN,

1
2
≤ wp

k ≤ 2 for any k ∈ Z

wp
k = 2 for any k ≥ 1.

Let us now define wu,v for u > v. Let p, q ≥ 1 such that u ∈ Ap and v ∈ Aq. We set
wu,v = (wu,v

k ) any sequence of positive real numbers such that

wu,v
−k+1 · · ·w

u,v
0 =

{

1 provided k /∈ Ia,4εu

min
(

1
22p

, 1
22q

)

provided k ∈ Ia,εu − Ia,εv ,

1
2
≤ wu,v

k ≤ 2 for any k ∈ Z

wu,v
k = 2 for any k ≥ 1.

It is possible to construct such a weight because

Ia,εu − Ia,εv + [−2max(p, q), 2max(p, q)] ⊂ Ia,2εu − Ia,2εv ⊂ Ia,4εu .

We finally define our weight w by setting inductively w−n for n > 0 with the relation

w−n+1 · · ·w0 = min
p,u,v

(wp
−n+1 · · ·w

p
0, w

u,v
−n+1 · · ·w

u,v
0 )



DIFFERENCE SETS AND FREQUENTLY HYPERCYCLIC WEIGHTED SHIFTS 15

and by letting wk = 2 for k ≥ 1. w is well-defined because, for a fixed n ≥ 1,
wp

−n+1 · · ·w
p
0 = 1 and wu,v

−n+1 · · ·w
u,v
0 = 1 provided p and u are large enough. Moreover,

the definition of w easily implies that 1
2
≤ wk ≤ 2 for any k ∈ Z, so that the weighted

shift B
w
is bounded and invertible on c0(Z).

6.3. B
w

is not distributionally chaotic. We verify that the product w−n+1 · · ·w0 is

not small very often. Indeed, let A = N\
(

⋃

p(bpN+ [−2p, 2p]) ∪
⋃

u I
a,4ε
u

)

. Then our

choices of a, ε and (bp) tell us that d(A) > 0. Moreover, by the construction of our
weight, w−n+1 · · ·w0 = 1 provided n ∈ A. Pick now x ∈ c0(Z), x 6= 0 and let k be such
that xk 6= 0. If n − k belongs to A, then ‖Bn−k

w
x‖∞ ≥ |xk| > 0 so that x cannot be a

distributional irregular vector for B
w
. Therefore, B

w
is not distributionally chaotic.

6.4. B
w

is frequently hypercyclic. We apply Theorem 12. The only thing that we
do not have verified yet is property (d). Thus, let n ∈ Ep, m ∈ Eq with m < n. If
p = q, then m− n ∈ bpN so that

wm−n+1 · · ·w0 ≤
1

22p
.

If p 6= q, then there exists u > v such that n ∈ Ia,εu and m ∈ Ia,εv . Thus,

wm−n+1 · · ·w0 ≤ min

(

1

22p
,
1

22q

)

≤
1

2p+q
.

Hence,

wm−n+1 · · ·w0 ≤
1

M(p)M(q)

with M(p) = 2p. If m > n, then we just observe that m− n ≥ p+ q to conclude

w1 · · ·wm−n ≥ 2p+q = M(p)M(q).

7. Final comments and open questions

The work of Section 6 shows that a frequently hypercyclic operator does not need
to be distributionally chaotic. However, it admits plenty of half distributional irregular
vectors!

Proposition 14. Let T ∈ L(X) be frequently hypercyclic. Then there exists a residual
subset R of X such that any vector y ∈ R has a distributional unbounded orbit, namely
there exists B ⊂ N such that d(B) = 1 and limn→+∞,n∈B ‖T ny‖ = +∞.

Proof. By the work of [7], it is sufficient to find ε > 0, a sequence (yk) ⊂ X and an
increasing sequence (Nk) in N such that limk yk = 0 and

#
{

1 ≤ j ≤ Nk; ‖T jyk‖ > ε
}

≥ εNk.

Let x ∈ FHC(T ) and let η > 0 be such that

d
({

n ∈ N; ‖T nx‖ > 1
})

> η.

We set ε = η/2. For any k ≥ 1, let pk > 0 be such that ‖T pkx‖ < 1/k. We set
yk = T pkx. This pk being fixed, we may find Nk as large as we want such that

#
{

1 ≤ n ≤ Nk; ‖T nyk‖ > 1
}

= #
{

pk + 1 ≤ n ≤ Nk + pk; ‖T nx‖ > 1
}

≥
ηNk

2
.

�
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This proposition has several interesting corollaries. First of all, a frequently hyper-
cyclic operator is ”almost” distributionally chaotic.

Corollary 15. Let T ∈ L(X) be frequently hypercyclic and assume that there exists
a dense set X0 ⊂ X such that T nx → 0 for any x ∈ X. Then T is distributionally
chaotic.

Proof. By [7], an operator with a distributional unbounded orbit and such that T nx → 0
for any x in a dense subset X0 of X is distributionally chaotic. And we have just proved
that a frequently hypercyclic operator has a distributional unbounded orbit. �

Our example of a frequently hypercyclic operator which is not distributionally chaotic
was a bilateral weighted shift. This would be impossible with a unilateral weighted shift.

Corollary 16. A frequently hypercyclic unilateral weighted shift is distributionally chaotic.

Proof. The orbit of any vector with a finite support goes to zero, so that we may apply
Corollary 15. �

Thanks to Proposition 14, we can solve another open question of [7].

Definition 17. Let T ∈ L(X). We say that the T-eigenvectors of T are perfectly
spanning if, for any countable set D ⊂ T = {z ∈ C; |z| = 1}, the linear span of
⋃

λ∈T\D ker(T − λ) is dense in X .

The next corollary extends a result of [7] from Hilbert spaces to general Banach
spaces.

Corollary 18. Let T ∈ L(X) be such that its T-eigenvectors are perfectly spanning.
Then T is distributionally chaotic.

Proof. By [5], T is frequently hypercyclic. By [1], there exists a dense set X0 ⊂ X such
that T nx → 0 for all x ∈ X0. Thus we may apply Corollary 15. �

A striking difference between hypercyclic operators and frequently hypercyclic oper-
ators is the comparison of the size of HC(T ) and FHC(T ). Whereas HC(T ) is always
residual when it is nonempty, it was shown (see for instance [4]) that, for many fre-
quently hypercyclic operators, FHC(T ) is of first category. It turns out that FHC(T )
is always meagre.

Corollary 19. Let T ∈ L(X) be frequently hypercyclic. Then FHC(T ) is a set of first
category.

Proof. A vector with a distributional unbounded orbit cannot be a frequently hyper-
cyclic vector. By Proposition 14, a frequently hypercyclic operator admits a residual
subset of vectors with distributionally unbounded orbit. �

We now turn to an interesting problem regarding frequently hypercyclic operators.

Question. Let T ∈ L(X) be frequently hypercyclic and invertible. Is T−1 invertible?

In view of this paper, it is natural to study whether a bilateral weighted shift on c0
could be a counterexample. It we look at Theorem 12, this does not seem impossible;
indeed, because of (c), the conditions on the right part and on the left part of B

w
are

not symmetric. However, it could be possible that this condition is superfluous.
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Question. Let w = (wn)n∈Z be a bounded and bounded below sequence of positive
integers such that conditions (a), (b) and (d) of Theorem 12 are satisfied. Does it
automatically satisfy conditions (a), (b), (c) and (d), maybe for another family (Ep) of
subsets of N?

At least, we are able to give a partial positive answer to our first question.

Proposition 20. Let T ∈ L(X) be frequently hypercyclic and invertible. Then T−1 is
U-frequently hypercyclic.

Proof. Let x ∈ FHC(T ), let (Uk) be a basis of open subsets of X and let

δk = d
({

n ∈ N : T nx ∈ Uk

})

.

We set, for k,N ≥ 1 and n ≥ N ,

Uk,N,n =
{

y ∈ X ; #{1 ≤ j ≤ n; T−jy ∈ Uk} ≥ δkn/2
}

.

Uk,N,n is clearly open. Moreover,
⋂

k,N≥1

⋃

n≥N Uk,N,n contains UFHC(T−1). We intend

to apply Baire’s theorem and we prove that
⋃

n≥N Uk,N,n is dense for any k,N ≥ 1. Let
V ⊂ X be open and nonempty and let Nk ≥ N be such that, for any n ≥ Nk,

#{0 ≤ j ≤ n; T jx ∈ Uk} ≥
δkn

2
.

There exists n ≥ Nk such that T nx ∈ V . Let us set y = T nx. Then

#{0 ≤ j ≤ n; T−jy ∈ Uk} = #{0 ≤ j ≤ n; T jx ∈ Uk}.

In particular, y ∈
⋃

n≥N Uk,N,n∩V . By Baire’s theorem, UFHC(T−1) is residual, hence
nonempty. �

An easy modification of the previous argument yields the following interesting corol-
lary, to be compared with Corollary 19.

Proposition 21. Let T ∈ L(X) be U-frequently hypercyclic. Then UFHC(T ) is resid-
ual.

Proof. Let x ∈ UFHC(T ), let (Uk) be a basis of open subsets of X and let

δk = d̄
({

n ∈ N : T nx ∈ Uk

})

.

We set, for k,N ≥ 1 and n ≥ N ,

Uk,N,n =
{

y ∈ X ; #{1 ≤ j ≤ n; T jy ∈ Uk} ≥ δkn/2
}

,

which is open. Moreover, it is easy to see that any iterate T px belongs to
⋂

k,N≥1

⋃

n≥N Uk,N,n.

Since these iterates are dense in X ,
⋂

k,N≥1

⋃

n≥N Uk,N,n is a dense Gδ-set, which is con-

tained in UFHC(T ). �
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Alfréd Rényi Institute of Mathematics, Budapest, Pf. 127, H-1364 Hungary

E-mail address : Frederic.Bayart@math.univ-bpclermont.fr
E-mail address : ruzsa@renyi.hu


