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Abstract 

The purpose of this paper is to gain a better understanding of Artificial Intelligence (AI) application dynamics in the oil 

and gas supply chain. A location perspective is used to explore the opportunities and challenges of specific AI 

technologies from upstream to downstream of the oil and gas supply chain. A literature review approach is adopted to 

capture representative research along these locations. This was followed by descriptive and comparative analysis for the 

reviewed literature. Results from the conducted analysis revealed important insights about AI implementation dynamics 

in the oil and gas industry. Furthermore, various recommendations for technology managers, policymakers, practitioners, 

and industry leaders in the oil and gas industry to ensure successful AI implementation were outlined. 

Keywords: Artificial Intelligence; Development; Supply Chain; Oil and Gas; Petroleum Industry, Energy. 

 

1. Introduction 

In today’s uncertain and volatile demand as well as the evolution of alternative energy sources, oil and gas firms 

have been forced by great pressure to speed up the pursuit of productivity in this climate, thus boosting production, 

reducing costs, and optimizing profits [1]. To help in this pursuit, the application of Artificial Intelligence (AI) in the 

oil and gas industry is quickly evolving at present, as the idea of AI steadily enters different phases of the industry like 

smart drilling, smart development, smart refinery, and smart pipeline [2]. According to the Evensen et al. (2021) [3] 

study, existing AI investments within firms in the oil and gas industry have yielded a 32% average return on 

investment. Over the last three years, there has been a 3% decrease in expenses and a 3% growth in income. This 

corresponds to an extra $570 million in earnings for a $10 billion corporation with a 10% profit margin. AI 

investments have also slashed the time it takes for new products and services to reach the market by 31 days.  

The authors also stated that over the last three years, nearly 75% of AI champions in the oil and gas industry have 

generated more value than planned from their AI investments, when compared to their peers. The percentage of value 

generated through AI investments for different business objectives, is shown in Figure 1. The oil and gas supply chain 

is divided into 3 sectors: upstream, mid-stream and downstream. The upstream field of the oil and gas industry is the 

most capital-intensive and critical division of the three, since this is where crude oil and natural gas are extracted [4]. 

The midstream involves transportation and distribution, and like any other field, is an important aspect of the oil and 

gas industry, but the industry is unique from other sectors because of the highly sensitive quality of shipped and 
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delivered products [5]. The downstream sector is responsible for the refining of oil and gas, as well as the distribution 

of end goods [6]. Activities in each of the three locations are captured in Figure 1.  

 

Figure 1. Levels of business objectives achieved, AI vs. traditional [3] 

According to the International Energy Agency (2017) [7], digital technologies, such as AI, have the potential to 

reduce production costs by 10 to 20%. Biscardini et al. (2018) [8] estimated that the use of digital technologies like AI 

in oil and gas upstream operations could result in savings in capital and operating expenditures of $100 billion to $1 

trillion by 2025. The potential increase in efficiency through digitalization is shown in Figure 2. 

 

Figure 2. Efficiency increase from digitalization [8] 

Worldwide, within offshore oil and gas companies, unplanned outages caused by damage or failure can cause 

output lags of tens of thousands of barrels of oil per day, as represented in Figure 3. An average offshore oil and gas 

company has 27 days of unplanned downtime per year, resulting in yearly losses ranging from $38 million to $88 

million [9]. Additionally, offshore platforms are often only operating at 77% of their potential, this gap amounts to 

almost ten million barrels per day, or over $200 billion in annual revenue [10]. 

This is where AI-enabled predictions and natural language processing (NLP) can help elevate traditional predictive 

analytics to optimize production. By monitoring and forecasting equipment breakdowns and highlighting the 

commercial effect of unplanned loss of production capacity, AI can assist in reducing costly downtime [9]. 

Advanced analytics, when used correctly, can produce returns of 30-50 times investment in just a few months [10]. 

Data from seismic surveys, geology evaluations, and reservoirs can be analysed by an AI system utilizing technologies 

like machine learning, artificial neural networks, expert systems, and fuzzy logic [9]. This analytical technique has the 
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potential to increase the global average subterranean recovery factor by up to 10%, equating to an additional $1 trillion 

in BOE (Barrel of oil equivalent) [11]. 

 

Figure 3. Global average of barrels of oil lost daily due to downtime [9] 

This paper attempts, using a literature review approach, to better understand the applications and challenges 

dynamics of artificial intelligence (AI) in the oil and gas supply chain from a location perspective (as described in 

Figure 4). Many of the previous related work were concerned with the “what” and “how” questions regarding AI in oil 

and gas supply chain, while this paper focus to answer more the “where” question. We aim to get a broader 

understanding of the usage of AI technologies within oil and gas supply chain locations i.e., upstream, midstream and 

downstream. Along these locations, this paper will specifically focus on four main AI technologies, namely machine 

learning and hybrid algorithms, natural language processing, computer vision and robotics. These technologies were 

selected as they cover the widest range of potential AI applications within any supply chain. 

 

Figure 4. Upstream sector of the oil and gas industry [12] 

2. Research Approach 

The research methodology used in this research is based on literature review of the current body of knowledge and 

using secondary data from a variety of sources such as peer-reviewed papers, surveys, reports and websites. The 

science direct database is used for the literature review, and papers were selected by using specific set of keywords and 

filters.  

The structured literature review involved five steps. In Step 1, a general literature search was performed to show 

the total number of journal articles on “Artificial Intelligence in Oil and Gas Industry”. In Step 1, the studies were 

found by using these combinations of keywords: TITLE (“Artificial Intelligence”) AND TITLE (“Oil and Gas”). 
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Based on the search a total of 2098 relevant results were found, these studies included articles from the year 1998 to 

2021. Step 2 involved narrowing down the search results to capture the total number of journal articles on “Artificial 

Intelligence in Oil and Gas Industry Supply Chain”. In Step 2, the studies were found by using these combinations of 

keywords: TITLE (“Artificial intelligence”) AND TITLE (“Oil and Gas”) AND TITLE (“Supply Chain”). Based on 

the search a total of 346 relevant results were found, these studies included articles from the year 1997 to 2021. Step 3 

attempted at narrowing down the search results even further by location and explore the total number of journal articles 

on “Artificial Intelligence in Oil and Gas Upstream”, “Artificial Intelligence in Oil and Gas Midstream” and “Artificial 

Intelligence in Oil and Gas Downstream”. In Step 3, the studies were found by using these combinations of keywords: 

TITLE (“Artificial intelligence”) AND TITLE (“Oil and Gas”) AND TITLE (“Upstream” OR “Midstream” OR 

“Downstream”).  

Based on the search a total of 296 relevant results were found for the Upstream sector, 24 for Midstream and 294 

for Downstream, these studies included articles from the year 1992 to 2021. In Step 4, 40 papers were selected to 

represent relevant studies that captured the selected AI technologies along the whole oil and gas supply chain. It is 

important to acknowledge the following points regarding the adopted review process. First is that the intent was not to 

conduct a comprehensive literature review for the whole body of knowledge; rather, this paper objective is to gain 

some insights regarding the AI location dynamics with oil and gas supply chain using representative sample of the 

research work. Second, it is clear from Figures 5(a) to 5(c) that the interest in AI application in the oil and gas supply 

chain is exponentially rising in the recent years among academicians. Third, the number of papers downstream that 

really focused on AI technologies considered in this paper within the focus of downstream activities identified also in 

this study (mainly refinery) are far less than the number reported using the search engines (294). Most of the papers at 

this category are actually referring to activities regarding demand management and forecasting which are important 

activities but do not align with the downstream definition in this work. A sample of this group is captured though in 

this analysis for purpose of completion. The literature review selection criteria are shown in Figure 6. 

 

Figure 5. No of papers per year for (a) upstream, (b) midstream and (c) downstream 
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Figure 6. Literature review selection criteria 

3. A Location Perspective of AI in Oil and Gas Supply Chain 

In this section, we summarize the main findings from the considered literature papers regarding the AI technology 

benefits and challenges in oil and gas supply chain. As mentioned earlier, the summary will follow the location 

perspective since this is the focus of this paper.   

3.1. AI in Oil and Gas Upstream 

In the upstream sector of the oil and gas industry, the three critical areas are exploration, field development, and 

production. In exploration, machine learning (ML) models have been used to automate data collection, transmission 

and analysis for activities such as seismic surveying, well logging and core analysis, thereby reducing costs, lowering 

errors and improving efficiencies [12].  

Many research work have focused on the applications of AI technologies within field development, for activities 

such as drilling, reservoir engineering and infrastrucutre. Machine learning models and its hybrids reveal successful 

applications in drilling for prediction of optimal mud properties and drilling parameters to improve safety, drilling 

efficiency and cost effectiveness [13-17]. Similarly in reservoir engineering and infrastructure, ML and its hybrids are 

used for estimation and optimization purposes in activities such as estimating dew point pressure and optimizing 

waterflooding which helps to maximize hydrocarbon production, optimize oil production and maximize finanacial 

profits [2, 18, 19]. 

In the area of production, ML models and its hybrids are mainly used for the monitoring, prediction, forecasting, 

selection and detection of various characteristics and components critical for optimal production. This includes, choke 

valve flow-rates, production at ultra-high water cut stages, precipitation of asphaltene, sand production, separator 

selection, faulty events, production forecasting and predictive maintenance [20-29]. 

Furthermore, in the upstream sector, computer vision technology has been used for training technicians and field 

operators using a virtual reality environment. This has helped to both reduce the cost and time of training, while at the 

same time improving safety [30]. 

3.2. AI in Oil and Gas Midstream 

In the midstream sector, the main functions are transportation and distribution. Pipes and tanks are two of the most 

important systems used in the transport and storing of oil and gas in the industry [5].  

Many of the considered papers discussed the applications of ML algorithms for the modelling, monitoring, 

assessment and optimization of gas pipelines. Particularly, ML has been used to: find optimal balance between 

operation benefit and transmission amount in pipelines [31, 32], to develop continuous and dependable monitoring 

systems to assure pipeline safety and help extend their lifespans [33, 34], and finally to improve specific operation, 

design and risk assessments using predictive models and simulations to reduce maintenance and operational costs [35, 

36]. 

Pipes and storage tanks, especially those continuously used for long-distance transport and long-term storage, need 

periodic inspection and maintenance. It is costly and unsafe to humanly inspect these components, so automated 

inspection and handling of these components is very desirable. Research conducted evaluated the applications of 

robotics for this purpose, in the form of in-pipe inspection robots, tank inspection robots, unmanned aerial vehicles, 

autonomous underwater vehicles and under-water welding robots [5, 37, 38]. 

3.3. AI in Oil and Gas Downstream 

In the downstream sector, the main functions are refining of oil and gas, as well as the distribution of end products, 

ML algorithms and hybrid versions of them were found to be more capable than conventional models and reveal 

Location perspective

• Upstream

• Midstream

• Downstream

Activities

• Exploration 

• Field development

• Production

• Training

• Transportation

• Processing

• Safety

AI Technology perspective

• Machine learning and hybrid algorithms

• Natural language processing

• Computer vision

• Robotics



HighTech and Innovation Journal         Vol. 3, Special Issue, 2022 

6 

 

successful applications for accident prediction relating to repair & maintenance in refineries. They can also assist in 

prediction and estimation of various chemical processes, which directly affects the efficiency and safety of 

downstream processing during product recovery [39-41].  

ML and its hybrids have also been used in the downstream oil and gas industry for overall demand and 

consumption forecasting, where its use has helped improve predictability and accuracy of forecasted data and 

synchronizing it with different production activities [42, 43]. 

Additionally, in the downstream sector, computer vision technology has been used to monitor the various 

parameters associated with the processing of oil in refinery processing plants. The technology has been found to be 

successful in predicting the occurrence of unstable conditions, by monitoring oil flame dynamics within the refinery 

using cameras, thereby avoiding potentially dangerous situations and promoting safety by automating the control 

system [44]. 

3.4. Other Applications of AI along the Whole Oil and Gas Supply Chain 

Several papers discussed how AI technologies can be used throughout the whole oil and gas supply chain. Shukla 

and Karki (2016a, 2016b) [5, 37] discuss how robotics, in the form of in-pipe inspection robots, tank inspection robots, 

unmanned aerial vehicles, wireless sensor networks, remote operated vehicles, autonomous underwater vehicles under-

water welding robots can be used for onshore and offshore applications for activities such as site survey, drilling, 

production and transportation. According to them, these technologies can help automate several processes within the 

industry and can help improve health and safety standards and also improve efficiency. 

Other work discussed how to improve overall safety and operational performance throughout the oil and gas supply 

chain from upstream to downstream. This can be realized using ML for activities such as process safety management 

(PSM), risk-based inspection (RBI), disaster assessments and production and maintenance related tasks. In these cases, 

ML has helped to expedite data collection and analysis processes in PSM, predict the vulnerability and disruption in 

disaster assessments, improve quality of conventional RBI by reducing output variability and increasing precision and 

accuracy [6, 45-47]. 

Single et al. (2020) [48] discussed the use of natural language processing, to help with the acquisition of knowledge 

related to accidents throughout the supply chain. The authors’ results indicated that their proposed method was useful 

to discover causal accident relations from databases. The authors also stated that this technology, with the help of 

databases can be used to create a robust shareable knowledge structure that can be used across countries and 

companies, to help improve safety. 

3.5. Challenges of Implementing AI in Oil and Gas Supply Chain 

The considered literature also discussed AI implementation challenges. For example, in the upstream sector of the 

oil and gas industry, Koroteev and Tekic (2021) [12] highlights three main challenges. First, is the people since AI 

have to be highly customized based on the business context and data, firms will need in-house teams capable of 

supporting development of AI infrastructure and customizing AI tools. Second, is the data since successful AI 

applications requires access to large amounts of good quality data. Third challenge is the open collaboration among all 

echelons, which is a challenge due to the lack of open data source and cross-company, cross-border data sharing. 

Osarogiagbon et al. (2021) [13] pointed to safety challenges in the area of ML algorithms being applied for dangerous 

events in drilling operations. Apart from a lack of publicly available datasets, a lack of customized deep learning 

algorithms primarily in the field of drilling activity was also observed. 

Al-Fattah and Aramco (2021) [42] discussed some of the serious challenges faced when building AI and ML 

models for forecasting crude oil demand. The challenges were due to the over-fitting, under-fitting, and/or 

memorization, which means that during the training phase, the model appears to produce excellent results, but does not 

perform as well in the testing phase, resulting in unacceptable forecast results. According to the author, some of the 

causes for these challenges are: (a) Insufficient data, and (b) inappropriate network configuration. 

Hanga and Kovalchuk (2019) [6] presents other challenges in applying AI to oil and gas industry tasks. Some of the 

challenges that limit the implementation of AI in oil and gas industry are: (a) Lack of awareness and knowledge about 

the techniques technical capacity; (b) Shortage of development tools for efficient implementation and finally (c) 

Uncertainty and risk of acceptance of new technologies. 

Shukla and Karki (2016b) [37] highlighted that some challenges regarding applying robotic solutions in the 

offshore oil and gas activities including inspection, manipulation and repair. Navigation and localization of the 

autonomous underwater vehicles were some examples of these challenges. 
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In the oil and gas midstream sector, Ben Seghier et al. (2021) [33] discussed data measurement problems due to the 

high cost of inspections, excavation requirements and the risk of vulnerable pipelines, particularly for the anticipation 

of high pitting corrosion depths in oil and gas pipelines. 

Finally, the work of Lu et al. (2019) revealed several difficulties that the oil and gas industry will face when 

transitioning into the Oil and Gas 4.0 era [1]. Apart from the challenges mentioned earlier, some of other challenges 

include negative outlook as well as lack of general standardization and planning. 

4. Literature Review Analysis for AI Location 

To gain further insights about the AI implementation dynamics along the oil and gas supply chain, descriptive and 

comparative analyses were conducted for the reviewed body of literature. The analyses started with general 

quantitative overview and then was followed by specific analysis for each location in the supply chain. 

4.1. Overall Comparative Analysis for AI Location and Technology Type 

Out of the 40 considered studies for review that focused on the specific AI technologies in oil and gas supply chain 

perspective, 50% contributed to the upstream sector, 18% to the midstream sector, 15% to the downstream sector. In 

addition, 17% of the papers focused on all three supply locations, for the selected AI technologies in the oil and gas 

supply chain. The overall distribution is shown in Figure 7. 

 

Figure 7. Literature review location focus quantitative analysis 

Figure 8 captures the overall distribution for the same body of knowledge focusing on the selected AI technologies 

implementation along the whole supply chain. One can observe that 85% of AI technology implementation are related 

to machine learning and hybrid algorithms, 5% are related to computer vision, 8% are related to robotics and 2% are 

related to Natural Language Processing (NLP). 

From Figures 7 and 8 we can point to some interesting observations. First, when compared to other locations, the 

highest concentration of research work is related to upstream while the lowest concentration of work is found to be 

focusing on downstream activities. This poses an important query for such distribution. The key to understand such 

distribution is related to the complexity of activities and operations at each location. Upstream activates are by far 

more complex and capital intensive and thus more information is need to manage and reduce such complexity and its 

associated risks. AI is well suited to capture and process high plethora of information and thus it had been an attractive 

solution to oil and gas supply chains especially upstream.  

Second, in terms of the type of AI technology used within the oil and gas supply chain locations, machine learning 

and hybrid algorithms are clearly the main adopted technology (85% of all papers focused on this specific AI 

technology). This should come with no surprise given the ability of ML and its hybrids to analyse various data in 

predictive and prescriptive manner assisting oil and gas supply chain managers in various decisions. ML as the 

paramount of AI technology will enhance the visibility of the whole supply chain leading to almost real time educated 

decisions saving time and cost as well as reducing risks in this critical industry.  

17%

50%

18%

15%

All 3 Sectors

Upstream Sector

Midstream Sector

Downstream Sector
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Third, the results also suggest that more research is required to explore the lower adoption rates of AI at both 

midstream and downstream locations. The same need is also true to explore why some AI technologies like NLP for 

example in this study had captured less attention than other AI technologies in the oil and gas supply chain.  

 

Figure 8. Literature review quantitative analysis for AI technology type 

4.2. Descriptive Analysis for AI Location and Technology Type 

In this section, a detailed description of the various AI technologies implemented at the different oil and gas supply 

chain locations is presented in a tabular format. The main objective is to provide a more granular insight beyond where 

AI technology is concentrated or its general type into how it relates to the different locations’ activities within the 

captured body of knowledge.  

Table 1 lists the different AI technologies implemented within the different oil and gas activities upstream the 

supply chain. A total of 20 studies in the considered literature focused on AI applications upstream the oil and gas 

supply chain. Field development and production were the main activities with had ML-based solutions as the dominant 

applied AI technology. This is mainly due to the ability of ML technologies to assist in precise drilling, adaptive 

production as well as preventive maintenance. Using ML solutions like digital twins integrated with IoT can lead to 

overall optimal performance in these activities and significant cost reduction. Other research work upstream pointed to 

the importance of upskilling the current human resources to expedite and improve AI application in upstream 

activities.  

Table 1. Papers focusing on AI technologies applied to upstream activities 

Supply chain 

location 
Location activities AI technology implemented References captured 

Upstream Sector 

Field development (Drilling) Machine learning – Supervised learning Osarogiagbon et al. (2021) [13] 

Field development 
Machine learning; Fuzzy logic; Swarm 
intelligence; Genetic algorithm; Hybrid 

Li et al. (2020) [2] 

Field development (Drilling) 

Hybrid [Machine learning - Supervised learning 

& Genetic algorithm]; Hybrid [Machine learning 
- Supervised learning & Swarm intelligence] 

Mohamadian et al. (2021) [14] 

Field development (Drilling) 

Machine learning – Supervised learning; Fuzzy 

logic; Swarm intelligence; Genetic algorithm; 

Hybrid (Multiple types) 

Ossai and Duru (2020) [15] 

Field development (Drilling) 
Machine learning - Multigene genetic 

programming 
Agwu et al. (2021) [16] 

Field development (Drilling) Machine learning – Supervised learning Agwu et al. (2018) [17] 

Field development (Reservoirs) 

Hybrid [Machine learning – Supervised learning 

& Swarm intelligence]; Fuzzy logic; Hybrid 

[Genetic algorithm & Fuzzy logic] 

Ahmadi et al. (2014) [18] 

Field development (Reservoirs) Machine learning – Reinforcement learning Hourfar et al. (2019) [19] 

Production 
Machine learning - Supervised learning; Genetic 
algorithm used as an optimizer 

Rashid et al. (2019) [20] 

85%

2% 5%

8%

Machine learning and Hybrid

algorithms
Natural language processing

Computer vision

Robotics
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Production 
Machine learning - Supervised learning; Swarm 

intelligence used as an optimizer 
Aminu et al. (2019) [21] 

Production 
Machine learning – Supervised learning; 

Bayesian optimizer 
Marins et al. (2021) [22] 

Production Machine learning - Supervised learning WANG et al. (2020) [23] 

Production 
Hybrid [Machine learning - Supervised learning 

& Genetic algorithm] 
Naseri et al. (2016) [24] 

Production Machine learning - Supervised learning Ayala H et al. (2009) [25] 

Production 
Machine learning - Supervised learning; Genetic 
algorithm used as an optimizer 

Sadi and Shahrabadi (2018) [26] 

Production (Forecasting) Machine learning – Supervised learning Al-Shabandar et al. (2021) [28] 

Production (Forecasting) Machine learning – Supervised learning Sheremetov et al. 2013 [29] 

Production (Artificial Lift) Machine learning – Supervised learning Syed et al. (2020) [27] 

Exploration, Field development, 

Production 

Machine learning; Hybrid modelling [Physics-

driven models and data-driven models] 
Koroteev and Tekic (2021) [12] 

Training Computer Vision Garcia et al. (2019) [30] 

Table 2 captures the research work considered focusing on midstream of the oil and gas supply chain. 

Transportation through pipelines was the main activity discussed with ML-based solution again as the leading 

technology. Many of the suggested AI solutions addressed the pipeline maintenance and monitoring using historical 

data. This highlights the importance of data availability as a fundamental requirement and in many cases challenge for 

successful AI implementation in midstream activities. 

Table 2. Papers focusing on AI technologies applied to midstream activities 

Supply chain location Location activities AI technology implemented References captured 

Midstream Sector 

Transportation (Pipeline) Machine learning – Multiple types Ben Seghier et al. (2021) [33] 

Transportation (Pipeline) Machine learning - Supervised learning; Fuzzy logic Neuroth et al. (2000) [35] 

Transportation (Pipeline) Robotics Ibrahimov (2018) [38] 

Transportation (Pipeline) Swarm intelligence Wu et al. (2014) [31] 

Transportation (Pipeline) 

Machine learning - Supervised learning; Adaptive 

Neuro-Fuzzy inference System; Fuzzy Inference 

System; Genetic algorithm used as an optimizer 

MohamadiBaghmolaei et al. 
(2014) [32] 

Transportation (Pipeline) Machine learning - Genetic programming Nazari et al. (2015) [36] 

Transportation (Pipeline) Machine learning - Supervised learning Saade and Mustapha (2020) [34] 

Table 3 demonstrates the lower emphasize the considered research had on downstream sector. The few articles 

reviewed highlighted the importance of big data ML and computer vision techniques to be applied for accident 

prediction (safety) and intelligent refining (operation) in refineries.  

Table 3. Papers focusing on AI technologies applied to downstream activities 

Supply chain location Location activities AI technology implemented References captured 

Downstream Sector 

Downstream processing Machine learning - Supervised learning Eze and Masuku (2018) [39] 

Accident prediction in refineries 
Machine learning - Supervised learning; Fuzzy logic; 
Genetic algorithm; Metaheuristic algorithm; Hybrid 

(Multiple types) 

Zaranezhad et al. (2019) 

[40] 

Refinery process Machine learning - Supervised learning 
Arce-Medina and Paz-

Paredes (2009) [41] 

Refinery process Computer vision Silva et al. (2015) [44] 

Consumption forecasting 
Hybrid [Machine learning - Supervised learning & 

Genetic algorithm] 
Li et al. (2018) [43] 

Demand forecasting 
Hybrid [Data mining & Genetic algorithm & Artificial 

neural network] 

Al-Fattah and Aramco 

(2021) [42] 

 

 

 

A group of the considered research work were focusing on AI technologies that can offer solutions for issues along 

all three locations. Table 4 summarizes the findings of this group where robotics, ML and NLP were the suggested AI 

technologies. Robotic solutions were investigated for both onshore and offshore operation performance improvements. 

ML models were also discussed to enhance prediction and assessment of risks and disasters along the whole oil and gas 

supply chain. NLP was used to improve data acquisition, to help discover causal accident relations from databases. 
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Table 4. Papers focusing on AI technologies applied to activities along the whole supply chain 

Supply chain location Location activities AI technology implemented References captured 

All 3 locations 

Onshore Robotics Shukla and Karki (2016a) [5] 

Offshore Robotics Shukla and Karki (2016b) [37] 

Predict and assess disasters Machine learning – Supervised learning Sattari et al. (2021) [45] 

Predict and assess disasters Machine learning – Supervised learning Sakib et al. (2021) [46] 

Oil and Gas industry tasks Machine learning; Multi-agent Systems Hanga and Kovalchuk (2019) [6] 

Risk based inspection Machine learning Rachman and Ratnayake (2019) [47] 

Accident exploration Natural language processing Single et al. (2020) [48] 

5. Conclusions and Recommendations 

This paper attempted to understand some of the dynamics related to the application of artificial intelligence (AI) in 

the oil and gas industry through a supply chain location perspective. Using a literature review approach that was 

followed by a comparative and descriptive analysis, the nexus of where oil and gas supply chain location and AI 

technology intersect was highlighted through a representative body of knowledge. Results from the conducted analysis 

suggest the following observations and recommendations:  

 Current research focuses on the AI applications at upstream of the oil and gas supply chain more than other 

locations. This actually reflects the industry practice and can be due to two main reasons. First, is the fact that 

upstream activities are the most capital-intensive and second, they have a significant complexity level. AI 

technologies are ideal to offer different solutions that can save costs, reduce complexity, improve productivity, 

efficiency and safety within these upstream activities.   

 Midstream activities were mainly concerned with the impact AI technology can have on improving pipeline 

transportation this included investing in intelligent pipelines that ensures the tracking and tracing of oil delivery 

and at the same time well maintaining the safety of these ongoing growing lines (the length of pipelines 

worldwide grows by 3–4% per year). This also applies to various equipment used at this midstream 

transportation stage.     

 As for downstream, different AI solutions were suggested to develop intelligent refinery systems. The role of AI 

integrated with IoT is reemphasized in these new refineries that utilize data gathered by IoT and delivered to AI 

digital models to optimize refinery plants settings and operations for various products. Some research at this 

location also highlighted the importance of improving sales prediction using AI forecasting models to align 

refinery production plans with real demand signals as much as possible. 

 The research points to the evolution of the oil and gas supply chain towards more automation and intelligence 

(Oil and Gas 4.0). This will be demonstrated through various intelligentization of the supply chain echelons 

including precise drilling, automated production, smart maintenance and intelligent refining to name a few. It is 

important in this regard to mention that a fundamental requirement for such evolution as outlined by the research 

work is a successful digitization of the whole ecosystem. 

 The digitization requirement of the oil and gas supply chain infrastructure highlight the challenge of data 

availability. The considered research suggested some strategies to manage this challenge through integrated IoT 

solutions as well as developing standardized platforms for data sharing and guidelines. This should be the effort 

of both the private as well as the public sectors through industry regulations and government policies that awards 

for transparency and ensure fairness. 

 Within the considered literature body, machine learning ML-solutions were the leading AI technology type 

across all supply chain locations. This is mainly due to their versatility, and ability to assist in offering educated 

decisions in this very complex and costly environment. Furthermore, these decisions can be almost at real time 

using techniques like digital twins that had been growing recently in the oil and gas industry. The second popular 

AI techniques were robotics solutions. Interestingly, within the considered literature body, NLP technologies to 

were rarely used and still needed more investigation to explore their potential in this industry. 

 The review also revealed that some challenges facing AI implementation throughout the oil and gas supply 

chain. These were mainly: (a) Lack of open-source quality data related to oil and gas; (b) Lack of open 

collaboration and standardization; (c) High cost of implementing AI and (d) Lack of interdisciplinary talent.  

 From the above challenges, various strategies are recommended. For the lack of open-source quality data, 

simulations can be used instead of raw data as an alternative. Another suggestion would be for regulatory 
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authorities to create rules and guidelines for data governance that promote broad access to and exchange of 

quality data specifically for the oil and gas industry. This will allow future researches to do in-depth studies and 

contribute to improving the efficiency, productivity and sustainability of existing and future oil and gas Industry. 

Furthermore, this could also help mitigate the lack of open collaboration and standardization.  

 In terms of the high cost of implementing AI, in addition to cost reduction techniques, more research needs to be 

conducted to explore the optimal investment portfolio and planning. This will require some effort in terms of 

valuation approaches that apply to all digital investment decisions. This includes determining the best business 

model that will ensure growth utilizing AI technology, capturing risk resilience improvement and estimating 

present value not just by discounting the expected savings and subtracting the investments required but also by 

examining second-order competitive effects. Finally assessing how customer service improvement can lead to 

higher market share should be art of this valuation process. 

 Skilling and upskilling the current workforce in the oil and gas supply chain was a clear need in most of the 

research work reviewed. AI requires a new set of skills that industry and education institutions alike need to offer 

through more training and degrees. This should be at all levels starting from simple data analysis to sophisticated 

system design and modeling operations. Without such effort to close the current skill gap, the implementation of 

AI will continue to suffer from its current slow pace. 

 Few researches touched on ethical and social issues related to AI implementation. This is an indication to the 

need to further look into these maters along all locations to explore concerns regarding for example labor 

replacement and data privacy and integrity to name a few.  

It is important to acknowledge that although the results of this study are the limited by number and scope of papers 

considered, however, the findings are general enough to offer valid insights for AI in the oil and gas supply chain. 

Future research is needed to explore how the AI technologies can be implemented at the same rate of upstream into 

midstream and downstream. Specific AI solutions are up for further investigation to realize their potential in the oil 

and gas supply chain including NLP and augmented and virtual reality. AI integration with blockchain, IoT and cloud 

computing is a further area of hot research especially with the rising discussion of Oil and Gas 4.0. Finally, more field 

work is needed to align the research work with the real need and current application of the oil and gas supply chain 

practices.  

In conclusion, this work aimed at highlighting the importance of the where question as much as research and 

practice are concerned with the “what” and “how” questions regarding AI implementation in oil and gas supply chain. 

Studying this question can help in offering oil and gas supply chain practitioners and technology managers multiple 

insights regarding AI implementation evolution, investment priorities profile as well as optimal solutions for operation 

excellence. 
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